JP5361233B2 - Lithium secondary battery and manufacturing method thereof - Google Patents

Lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5361233B2
JP5361233B2 JP2008091513A JP2008091513A JP5361233B2 JP 5361233 B2 JP5361233 B2 JP 5361233B2 JP 2008091513 A JP2008091513 A JP 2008091513A JP 2008091513 A JP2008091513 A JP 2008091513A JP 5361233 B2 JP5361233 B2 JP 5361233B2
Authority
JP
Japan
Prior art keywords
negative electrode
particles
active material
silicon
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008091513A
Other languages
Japanese (ja)
Other versions
JP2009245773A (en
Inventor
厚史 福井
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008091513A priority Critical patent/JP5361233B2/en
Publication of JP2009245773A publication Critical patent/JP2009245773A/en
Application granted granted Critical
Publication of JP5361233B2 publication Critical patent/JP5361233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池及びその製造方法に関するものである。   The present invention relates to a lithium secondary battery and a method for manufacturing the same.

最近、リチウム二次電池においては、高エネルギー密度化を目的として、現在実用化されている黒鉛材料に代わり、リチウムとの合金化反応によってリチウムを吸蔵するAl、Sn、Siなどの元素の合金材料が、新たな負極活物質の候補として検討されている。   Recently, in order to increase the energy density of lithium secondary batteries, an alloy material of elements such as Al, Sn, and Si that occludes lithium by an alloying reaction with lithium instead of a graphite material that is currently in practical use. However, it is being considered as a candidate for a new negative electrode active material.

しかしながら、リチウムと合金化する材料を活物質として用いた電極では、リチウムの吸蔵・放出時の活物質の体積変化が大きいため、活物質の微粉化や集電体からの離脱が生じ易く、電極内の集電性が低下して、充放電サイクル特性が悪くなるという問題がある。   However, in an electrode using a material that is alloyed with lithium as an active material, the volume change of the active material during insertion and extraction of lithium is large, so that the active material is easily pulverized and detached from the current collector. There is a problem in that the current collecting property is lowered and the charge / discharge cycle characteristics are deteriorated.

そこで、電極内に高い集電性を与えるため、ケイ素を含む材料からなる活物質とバインダーとを含む合剤層を非酸化性雰囲気下で焼結して配置することにより得られた負極が、良好な充放電サイクル特性を示すことが見出されている(特許文献1)。   Therefore, in order to give high current collection in the electrode, a negative electrode obtained by sintering and arranging a mixture layer containing an active material composed of a material containing silicon and a binder in a non-oxidizing atmosphere, It has been found that it exhibits good charge / discharge cycle characteristics (Patent Document 1).

さらに、ケイ素活物質粒子の粒径を制御することにより、サイクル特性がさらに改善されることが見出されている(特許文献2〜5)。   Furthermore, it has been found that the cycle characteristics are further improved by controlling the particle size of the silicon active material particles (Patent Documents 2 to 5).

しかしながら、充放電サイクル特性をさらに改善することが求められている。
特開2002−260637号公報 特開2004−22433号公報 特開2006−278124号公報 特開2007−73334号公報 特開2007−234336号公報
However, there is a demand for further improving the charge / discharge cycle characteristics.
Japanese Patent Laid-Open No. 2002-260637 Japanese Patent Laid-Open No. 2004-22433 JP 2006-278124 A JP 2007-73334 A JP 2007-234336 A

本発明の目的は、充放電サイクル経過に伴う負極内の集電性の低下を抑制し、エネルギー密度が高く、かつ充放電サイクル特性に優れたリチウム二次電池及びその製造方法を提供することにある。   An object of the present invention is to provide a lithium secondary battery that suppresses a decrease in current collecting performance in a negative electrode with the progress of a charge / discharge cycle, has a high energy density, and is excellent in charge / discharge cycle characteristics, and a method for manufacturing the same. is there.

本発明は、負極活物質粒子及び負極バインダーを含む負極活物質層が負極集電体の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、メディアン径(D50)が3μm以上6μm以下であり、かつ粒径2μm以上7μm以下の範囲に60体積%以上存在する粒度分布を有する、ケイ素及び/またはケイ素合金を含む粒子Aと、メディアン径(D50)が9μm以上15μm以下であり、かつ粒径7μm以上17μm以下の範囲に60体積%以上存在する粒度分布を有する、ケイ素及び/またはケイ素合金を含む粒子Bとを、重量比(粒子A:粒子B)10:90〜25:75の範囲で混合した混合粒子を、負極活物質粒子として用い、以下に示す構造を有するポリイミド樹脂を、負極バインダーとして用いることを特徴としている。 The present invention relates to a lithium secondary battery comprising a negative electrode in which a negative electrode active material layer containing negative electrode active material particles and a negative electrode binder is formed on the surface of a negative electrode current collector, a positive electrode, and a nonaqueous electrolyte. Particles A containing silicon and / or a silicon alloy having a particle size distribution having a diameter (D 50 ) of 3 μm or more and 6 μm or less and a particle diameter of 2 μm or more and 7 μm or less, and a median diameter (D 50 ) is 9 μm or more and 15 μm or less and has a particle size distribution having a particle size distribution of 60% by volume or more in a particle size range of 7 μm or more and 17 μm or less, and a weight ratio (particle A: Particle B) Mixed particles mixed in a range of 10:90 to 25:75 are used as negative electrode active material particles, and a polyimide resin having the following structure is used as a negative electrode binder. It is characterized in that.

Figure 0005361233
Figure 0005361233

本発明に従い、ケイ素及び/またはケイ素合金を含む粒子Aと、ケイ素及び/またはケイ素合金を含む粒子Bとを、上記重量比の範囲で混合した混合粒子を負極活物質粒子として用い、上記構造を有するポリイミド樹脂を負極バインダーとして用いることにより、充放電サイクル経過に伴う負極内の集電性の低下を抑制し、エネルギー密度が高く、かつ充放電サイクル特性に優れたリチウム二次電池とすることができる。   According to the present invention, mixed particles obtained by mixing particles A containing silicon and / or silicon alloy and particles B containing silicon and / or silicon alloy in the above weight ratio range are used as negative electrode active material particles, By using a polyimide resin having a negative electrode binder as a negative electrode binder, it is possible to suppress a decrease in current collecting property in the negative electrode with the progress of charge / discharge cycle, to have a high energy density, and to be a lithium secondary battery excellent in charge / discharge cycle characteristics. it can.

このような本発明の作用効果が得られる理由は、以下の通りである。   The reason why such an effect of the present invention can be obtained is as follows.

本発明に従い、相対的に大きな活物質粒子に対して相対的に小さな活物質粒子を少ない割合で混合することにより、負極合剤層内において、相対的に大きな活物質粒子の間の隙間に、相対的に小さな活物質粒子が入り込んだ充填性の高い構造とすることができる。このため、活物質間の接触割合が増加し、負極合剤層内の電子伝導性が増加する。   According to the present invention, by mixing a relatively small active material particle in a small proportion with respect to a relatively large active material particle, in the negative electrode mixture layer, in the gap between the relatively large active material particles, A structure having a high filling property in which relatively small active material particles enter can be obtained. For this reason, the contact ratio between active materials increases, and the electronic conductivity in a negative mix layer increases.

さらに、相対的に大きな活物質粒子に対する相対的に小さな活物質粒子の混合比を、上記重量比の範囲内に制御することにより、大きな活物質粒子間の隙間に小さな活物質粒子が適切量存在した構造になる。上記重量比において、粒子Aの割合が10未満であると、小さな活物質粒子(粒子A)の量が少な過ぎるため、活物質間の接触割合の増加が図れず、集電性が向上しない。また、粒子Aの重量比が25より多くなると、サイクル経過に伴う劣化(膨化、変質)が生じ易い小さな活物質粒子(粒子A)が多過ぎるため、サイクル特性が低下する。小さな活物質粒子は、大きな活物質粒子に比べ、質量当たりの表面積が大きいので、電解液との接触面積が多く、活物質表面の電解液との副反応も生じ易くなっており、活物質の劣化を生じ易い。   Furthermore, by controlling the mixing ratio of the relatively small active material particles to the relatively large active material particles within the range of the above weight ratio, an appropriate amount of small active material particles exists in the gaps between the large active material particles. It becomes the structure. When the ratio of the particles A is less than 10 in the above weight ratio, the amount of small active material particles (particle A) is too small, so that the contact ratio between the active materials cannot be increased, and the current collecting performance is not improved. On the other hand, when the weight ratio of the particles A is more than 25, the cycle characteristics are deteriorated because there are too many small active material particles (particles A) that are likely to be deteriorated (expanded or altered) with the passage of cycles. Small active material particles have a larger surface area per mass than large active material particles, so there is a large contact area with the electrolytic solution, and side reactions with the electrolytic solution on the active material surface easily occur. Deterioration is likely to occur.

また、負極バインダーとして、上記構造を有するポリイミド樹脂を用いることにより、充放電時に負極活物質粒子の体積変化が生じた際にも、活物質粒子間の配置が保持され、高い集電性が保持される。これは、上記ポリイミド樹脂がケイ素と高い密着性を有し、かつ機械的強度に優れるためである。バインダーのケイ素負極活物質粒子との密着性や機械的強度が低い場合には、充放電に伴ってケイ素活物質粒子の体積変化が生じた際に、負極合剤層の構造が破壊されるため、小さな活物質粒子を混合することによる効果が十分に得られない。   In addition, by using the polyimide resin having the above structure as the negative electrode binder, even when the volume change of the negative electrode active material particles occurs during charging and discharging, the arrangement between the active material particles is maintained, and high current collection is maintained. Is done. This is because the polyimide resin has high adhesion to silicon and is excellent in mechanical strength. When the adhesiveness and mechanical strength of the binder with the silicon negative electrode active material particles are low, the structure of the negative electrode mixture layer is destroyed when the volume of the silicon active material particles changes with charge / discharge. The effect of mixing small active material particles cannot be sufficiently obtained.

本発明の負極活物質粒子は、結晶子サイズが、100nm以下であることが好ましい。この場合、粒子径に対する結晶子サイズの小ささから、粒子内に多くの結晶子が存在する。従って、粒子表面では、多くの結晶子の面が現れることとなるため、表面に細かな凹凸が存在している。このため、バインダーと負極活物質粒子とのアンカー効果がより大きく得られるため、より高い密着性を得ることが可能となる。従って、充放電後においても、大きな活物質粒子間の隙間に小さな活物質粒子が入り込んだ充填性の高い負極合剤層構造の安定性がさらに高まり、より高い集電性が得られる。   The negative electrode active material particles of the present invention preferably have a crystallite size of 100 nm or less. In this case, there are many crystallites in the particle because of the small crystallite size with respect to the particle diameter. Accordingly, since many crystallite faces appear on the particle surface, fine irregularities exist on the surface. For this reason, since the anchor effect of a binder and negative electrode active material particle is acquired more, it becomes possible to obtain higher adhesiveness. Therefore, even after charge / discharge, the stability of the negative electrode mixture layer structure having a high filling property in which the small active material particles enter the gaps between the large active material particles is further improved, and higher current collecting properties can be obtained.

また、このアンカー効果は、バインダーであるポリイミド樹脂のガラス転移温度である300℃を超える温度で熱処理を行うことにより、さらに促進することができる。ガラス転移温度以上での熱処理により、ポリイミド樹脂が可塑性領域となるため、ポリイミドの活物質粒子表面の凹凸内への入り込みがさらに大きく生じ、ポリイミドの熱融着効果が発現される。このため、さらに大きな密着性を得ることができる。   Further, this anchor effect can be further promoted by performing a heat treatment at a temperature exceeding 300 ° C. which is the glass transition temperature of the polyimide resin as the binder. Due to the heat treatment at the glass transition temperature or higher, the polyimide resin becomes a plastic region, so that the polyimide enters the irregularities on the surface of the active material particles, and the heat fusion effect of the polyimide is exhibited. For this reason, greater adhesion can be obtained.

負極の熱処理の温度の上限温度としては、450℃が好ましい。450℃を超える温度では、本発明のバインダーである上記ポリイミド樹脂の熱分解が多く生じ、バインダーの強度が大きく低下するので、密着性が低下し、充放電特性が低下する場合がある。   The upper limit temperature for the heat treatment of the negative electrode is preferably 450 ° C. When the temperature exceeds 450 ° C., the polyimide resin, which is the binder of the present invention, frequently undergoes thermal decomposition, and the strength of the binder is greatly reduced. Thus, adhesion may be reduced, and charge / discharge characteristics may be reduced.

本発明の負極活物質粒子は、上記粒子Aと上記粒子Bを上記重量比で混合することにより、メディアン径(D50)が9μm以上14μm以下であり、粒径2μm以上7μm以下の範囲に9体積%以上20体積%以下、粒径7μm以上17μm以下の範囲に61体積%以上86体積%以下存在する粒度分布を負極活物質粒子が有していることが好ましい。これにより、上記の活物質粒度の制御による充填性の向上、及び上記ポリイミド樹脂をバインダーとして使用することによる密着性の向上の効果がさらに効果的に発現し、充放電に伴う負極活物質の体積変化が生じた際にも、負極合剤層内の高い集電性が保持され、優れた充放電サイクル特性を得ることができる。 The negative electrode active material particles of the present invention have a median diameter (D 50 ) of 9 μm or more and 14 μm or less and a particle size of 2 μm or more and 7 μm or less by mixing the above particles A and B in the above weight ratio. It is preferable that the negative electrode active material particles have a particle size distribution that exists in a range of volume% to 20 volume% and a particle diameter in the range of 7 μm to 17 μm in a range of 61 volume% to 86 volume%. As a result, the effect of improving the filling property by controlling the particle size of the active material and the effect of improving the adhesion property by using the polyimide resin as a binder are more effectively expressed, and the volume of the negative electrode active material accompanying charge / discharge Even when the change occurs, high current collecting property in the negative electrode mixture layer is maintained, and excellent charge / discharge cycle characteristics can be obtained.

なお、本発明の負極活物質粒径制御による電子伝導性向上効果は、黒鉛活物質系においても同様に得ることが可能であるが、本発明のようなバインダー性能への依存度は非常に低い。これは、黒鉛材料ではリチウムの吸蔵・放出時の体積変化がケイ素材料に比べて小さく、またその材料自身の電子伝導性も高いため、本発明のように機械的強度が高くかつ活物質との密着性に優れるバインダーを使用しなくとも、リチウムの吸蔵・放出時の活物質粒子間の接触性を保持できるためである。   The effect of improving the electron conductivity by controlling the particle size of the negative electrode active material of the present invention can be obtained in the same way in the graphite active material system, but the dependence on the binder performance as in the present invention is very low. . This is because the graphite material has a small volume change during insertion and extraction of lithium compared to the silicon material, and the material itself has a high electronic conductivity. This is because the contact between the active material particles at the time of occlusion / release of lithium can be maintained without using a binder having excellent adhesion.

以下、本発明における負極、正極、及び非水電解質についてさらに説明する。   Hereinafter, the negative electrode, the positive electrode, and the nonaqueous electrolyte in the present invention will be further described.

(負極活物質)
本発明の負極活物質は、ケイ素及び/またはケイ素合金を含む粒子であるが、ケイ素合金としては、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金などが挙げられる。
(Negative electrode active material)
The negative electrode active material of the present invention is a particle containing silicon and / or a silicon alloy. Examples of the silicon alloy include a solid solution of silicon and one or more other elements, and silicon and one or more other elements. Examples thereof include intermetallic compounds, eutectic alloys of silicon and one or more other elements.

また、本発明の負極活物質粒子としては、ケイ素及び/またはケイ素合金を含む粒子の表面を金属等で被覆したものを用いてもよい。被覆方法としては、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などが挙げられる。   Moreover, as the negative electrode active material particles of the present invention, particles obtained by coating the surfaces of particles containing silicon and / or silicon alloys with a metal or the like may be used. Examples of the coating method include an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, and a chemical vapor deposition method.

また、本発明の負極活物質粒子としては、ケイ素単体の粒子も好ましく用いることができる。   Further, as the negative electrode active material particles of the present invention, particles of silicon alone can also be preferably used.

結晶子サイズが100nm以下であるケイ素及び/又はケイ素合金の粒子は、熱分解法または熱還元法で作製することができる。熱分解法とは、三塩化シラン(SiHCl)、モノシラン(SiH)、ジシラン(Si)等のシラン化合物を含む材料を熱分解することによって生成されるケイ素を析出させる方法である。熱還元法とは、三塩化シラン(SiHCl)、モノシラン(SiH)、ジシラン(Si)等のシラン化合物を含む材料を還元雰囲気下で熱分解することによって生成されるケイ素を析出させる方法である。 Silicon and / or silicon alloy particles having a crystallite size of 100 nm or less can be produced by a thermal decomposition method or a thermal reduction method. The thermal decomposition method is a method for precipitating silicon produced by thermally decomposing a material containing a silane compound such as trichlorosilane (SiHCl 3 ), monosilane (SiH 4 ), disilane (Si 2 H 6 ) or the like. . In the thermal reduction method, silicon produced by thermally decomposing a material containing a silane compound such as trichlorosilane (SiHCl 3 ), monosilane (SiH 4 ), disilane (Si 2 H 6 ), etc. in a reducing atmosphere is precipitated. It is a method to make it.

結晶子サイズのより小さなケイ素粒子を熱分解法または熱還元法で作製するには、シラン化合物を熱分解する温度が可能な限り低いことが好ましい。温度が低いほど、結晶子サイズが小さな粒子が生成される可能性が高くなる。熱分解法、熱還元法の原料として、三塩化シラン(SiHCl)を用いた際には、ケイ素を適切に析出できる熱分解に必要な最低温度は900〜1000℃程度となるが、モノシラン(SiH)を用いた際には、600〜800℃程度であり、より低い温度でのケイ素の析出が可能となる。従って、本発明に適した結晶子サイズの小さいケイ素粒子の作製には、モノシラン(SiH)を原料とすることが好ましい。 In order to produce silicon particles having a smaller crystallite size by the thermal decomposition method or the thermal reduction method, it is preferable that the temperature at which the silane compound is thermally decomposed is as low as possible. The lower the temperature, the more likely that particles with a small crystallite size will be produced. When trichlorosilane (SiHCl 3 ) is used as a raw material for the thermal decomposition method and the thermal reduction method, the minimum temperature required for thermal decomposition capable of appropriately depositing silicon is about 900 to 1000 ° C., but monosilane ( When SiH 4 ) is used, it is about 600 to 800 ° C., and silicon can be deposited at a lower temperature. Therefore, monosilane (SiH 4 ) is preferably used as a raw material for the production of silicon particles having a small crystallite size suitable for the present invention.

また、本発明のケイ素粒子及びケイ素合金粒子は、熱分解法や熱還元法で作製されたケイ素の塊を粉砕、分級することにより、作製することが好ましい。例えば、粉砕及び分級の度合いを変えることにより、メディアン径(D50)及び粒度分布の異なるケイ素粒子及びケイ素合金粒子を得ることができ、本発明の粒子A及び粒子Bを得ることができる。 The silicon particles and silicon alloy particles of the present invention are preferably prepared by pulverizing and classifying a silicon lump prepared by a thermal decomposition method or a thermal reduction method. For example, by changing the degree of pulverization and classification, silicon particles and silicon alloy particles having different median diameters (D 50 ) and particle size distributions can be obtained, and particles A and B of the present invention can be obtained.

(負極バインダー)
本発明に用いる負極バインダーは、上記化学構造を有するポリイミド樹脂である。重量平均分子量としては、30000〜200000の範囲であることが好ましい。上述のように、負極合剤層を形成した後、負極バインダーであるポリイミド樹脂のガラス転移温度(300℃)を超える温度で熱処理することが好ましい。これにより、活物質粒子の表面の凹凸内にポリイミド樹脂が入り込み、さらに大きな密着性を得ることができる。この熱処理温度は、上述のように、負極バインダーの熱分解が生じないように、450℃以下であることが好ましい。
(Negative electrode binder)
The negative electrode binder used in the present invention is a polyimide resin having the above chemical structure. The weight average molecular weight is preferably in the range of 30000-200000. As described above, after forming the negative electrode mixture layer, it is preferable to perform heat treatment at a temperature exceeding the glass transition temperature (300 ° C.) of the polyimide resin as the negative electrode binder. Thereby, a polyimide resin enters into the unevenness | corrugation of the surface of active material particle, and still greater adhesiveness can be obtained. As described above, the heat treatment temperature is preferably 450 ° C. or lower so that the thermal decomposition of the negative electrode binder does not occur.

本発明のリチウム二次電池における負極バインダーの量は、負極合剤層の総重量の5重量%以上、バインダーの占める体積が負極活物質層の総体積の5%以上であることが好ましい。ここで、負極活物質層の総体積とは、活物質層内に含まれる活物質やバインダーなどの材料それぞれの体積を総和したものであり、活物質層内に空隙が存在する場合にはこの空隙が占める体積を含まないものとする。   The amount of the negative electrode binder in the lithium secondary battery of the present invention is preferably 5% by weight or more of the total weight of the negative electrode mixture layer, and the volume occupied by the binder is preferably 5% or more of the total volume of the negative electrode active material layer. Here, the total volume of the negative electrode active material layer is the sum of the volumes of materials such as the active material and the binder contained in the active material layer. If there are voids in the active material layer, It does not include the volume occupied by voids.

(負極集電体)
本発明の負極集電体としては導電性金属箔が好ましく用いられ、負極活物質層が配置される面の表面粗さRaが0.2μm以上10μm以下であることが好ましい。このような表面粗さRaを有する導電性金属箔を負極集電体として用いることにより、集電体の表面凹凸部分に負極バインダーが入り込み、バインダーと集電体間にアンカー効果が発現して高い密着性が得られため、リチウム吸蔵、放出に伴うケイ素活物質粒子の体積変化を生じても、活物質層の集電体からの剥離が抑制される。集電体の両面に負極活物質層を配置する場合には、集電体の両面において、表面粗さRaが0.2μm以上であることが好ましい。
(Negative electrode current collector)
As the negative electrode current collector of the present invention, a conductive metal foil is preferably used, and the surface roughness Ra of the surface on which the negative electrode active material layer is disposed is preferably 0.2 μm or more and 10 μm or less. By using a conductive metal foil having such a surface roughness Ra as the negative electrode current collector, the negative electrode binder enters the surface irregularities of the current collector, and an anchor effect is exhibited between the binder and the current collector, which is high. Since adhesiveness is obtained, even if the volume change of the silicon active material particles caused by the occlusion and release of lithium occurs, the peeling of the active material layer from the current collector is suppressed. When the negative electrode active material layers are disposed on both sides of the current collector, the surface roughness Ra is preferably 0.2 μm or more on both sides of the current collector.

上記の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましい。表面粗さRa及び局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば、表面粗さ計により測定することができる。   The surface roughness Ra and the average interval S between the local peaks are preferably 100Ra ≧ S. The surface roughness Ra and the average interval S between the local peaks are defined in Japanese Industrial Standard (JIS B 0601-1994), and can be measured, for example, with a surface roughness meter.

導電性金属箔の表面粗さRaを0.2μm以上とするためには、導電性金属箔に粗面化処理を行う方法が好ましい。このような粗面化処理としては、めっき法、気相成長法、エッチング法、及び研磨法などが挙げられる。   In order to set the surface roughness Ra of the conductive metal foil to 0.2 μm or more, a method of subjecting the conductive metal foil to a roughening treatment is preferable. Examples of such roughening treatment include a plating method, a vapor phase growth method, an etching method, and a polishing method.

また、本発明における負極集電体は、上記のように、負極バインダーの熱融着による密着性向上のための負極の熱処理を行う場合、熱処理による軟化性が小さい、すなわち耐熱性が高いものが好ましい。軟化により機械的強度が低下した場合、充放電時のケイ素活物質の体積変化に伴い、集電体の変形が生じるため、充放電サイクル特性が低下する。   Further, as described above, the negative electrode current collector in the present invention has a low softening property by heat treatment, that is, a high heat resistance when the negative electrode heat treatment for improving adhesion by thermal fusion of the negative electrode binder is performed. preferable. When the mechanical strength is reduced due to softening, the current collector is deformed in accordance with the volume change of the silicon active material during charge / discharge, so that the charge / discharge cycle characteristics are deteriorated.

このような高い機械的強度及び耐熱性を有する導電性金属箔としては合金箔が挙げられ、特に、銅、ニッケル、鉄、チタン、コバルト、マンガン、錫、ケイ素等の元素またはこれらの組み合わせからなる合金箔が好ましい。   Examples of such a conductive metal foil having high mechanical strength and heat resistance include alloy foils, and in particular, elements such as copper, nickel, iron, titanium, cobalt, manganese, tin, and silicon, or combinations thereof. Alloy foil is preferred.

(負極導電剤)
本発明の負極においては、活物質層内に導電剤として導電性粉末を混合してもよい。導電性粉末を混合することにより、活物質粒子の周囲に導電性粉末による導電性ネットワークが形成されるので、電極内の集電性を更に向上させることができる。導電性粉末としては、黒鉛粉末などの導電性炭素材料粉末、銅、ニッケル、鉄、チタン、コバルト、マンガン等の金属またはこれらの組み合わせからなる合金粉末なとが挙げられる。
(Negative electrode conductive agent)
In the negative electrode of the present invention, conductive powder may be mixed as a conductive agent in the active material layer. By mixing the conductive powder, a conductive network of the conductive powder is formed around the active material particles, so that the current collecting property in the electrode can be further improved. Examples of the conductive powder include conductive carbon material powder such as graphite powder, metal such as copper, nickel, iron, titanium, cobalt, manganese, or alloy powder made of a combination thereof.

導電性粉末の平均粒径は、1μm以上10μm以下であることが好ましい。   The average particle size of the conductive powder is preferably 1 μm or more and 10 μm or less.

(負極作製方法)
本発明の負極は、負極バインダーの溶液中に負極活物質粒子を均一に混合、分散させたスラリーを負極集電体の表面上に塗布し、負極合剤層を配置することにより作製することが好ましい。このように作製することにより、負極活物質層中に負極バインダーが均一に存在することによって、負極バインダーによる結着効果が有効に発現され、負極内に高い密着性が得られる。
(Negative electrode fabrication method)
The negative electrode of the present invention can be prepared by applying a slurry in which negative electrode active material particles are uniformly mixed and dispersed in a negative electrode binder solution onto the surface of the negative electrode current collector and disposing a negative electrode mixture layer. preferable. By producing in this way, when the negative electrode binder is uniformly present in the negative electrode active material layer, the binding effect by the negative electrode binder is effectively expressed, and high adhesion is obtained in the negative electrode.

また、本発明の負極は、上記に述べたように、負極バインダーとして熱可塑性ポリイミド樹脂を用いた場合、バインダーの熱融着による更なる結着性向上のために、負極合剤層を負極集電体上に配置した状態で、負極バインダーのガラス転移温度以上、熱分解開始温度以下で、熱処理を行うことにより作製することが好ましい。また、この熱処理を行う場合で、負極集電体として銅元素を含む箔を使用した場合に、200℃以上で熱処理を行うことにより、負極集電体中の銅元素が負極活物質層中のケイ素負極活物質に拡散することにより、焼結効果が得られ、更に高い密着性を得ることができる。この熱処理を行う雰囲気としては、真空下または窒素雰囲気下またはアルゴンなどの不活性ガス雰囲気下や、水素雰囲気などの還元性雰囲気下が好ましい。   In addition, as described above, when a thermoplastic polyimide resin is used as a negative electrode binder, the negative electrode of the present invention is formed by combining a negative electrode mixture layer with a negative electrode collection layer for further improvement of binding property by thermal fusion of the binder. It is preferable to produce it by performing a heat treatment at a temperature not lower than the glass transition temperature of the negative electrode binder and not higher than the thermal decomposition starting temperature in a state of being disposed on the electric body. Further, in the case of performing this heat treatment, when a foil containing a copper element is used as the negative electrode current collector, the heat treatment is performed at 200 ° C. or higher so that the copper element in the negative electrode current collector is in the negative electrode active material layer. By diffusing into the silicon negative electrode active material, a sintering effect can be obtained, and higher adhesion can be obtained. The atmosphere for performing the heat treatment is preferably a vacuum, a nitrogen atmosphere, an inert gas atmosphere such as argon, or a reducing atmosphere such as a hydrogen atmosphere.

(正極活物質)
本発明の正極活物質としては、化学式LiNiMnCo(0≦a≦1.1、x+y+z=1で、且つ0≦x≦1、0≦y≦1、0≦z≦1)で表される層状構造を有するリチウム遷移金属複合酸化物が好ましく用いられる。このようなものとしては、LiCoO、LiNiO、LiMn、LiMnO、Li Ni0.5Co0.5、Li Ni0.7Co0.3、Li Ni0.8Co0.2、LiNi0.33Co0.33Mn0.34などが例示されるが、特には、Li Ni0.8Co0.2とLiCoOとを好ましく用いることができる。また、リチウム遷移金属複合酸化物には、チタン、マグネシウム、ジルコニウム、アルミニウムから成る群から選択される少なくとも1種の元素が添加されていてもよい。
(Positive electrode active material)
The positive electrode active material of the present invention has a chemical formula Li a Ni x Mn y Co z O 2 (0 ≦ a ≦ 1.1, x + y + z = 1, and 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z. A lithium transition metal composite oxide having a layered structure represented by ≦ 1) is preferably used. As such, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , Li Ni 0.5 Co 0.5 O 2 , Li Ni 0.7 Co 0.3 O 2 , Li Ni 0.8 Co 0.2 O 2 , LiNi 0.33 Co 0.33 Mn 0.34 O 2 and the like are exemplified, and in particular, Li Ni 0.8 Co 0.2 O 2 and LiCoO 2 are preferably used. Can do. Further, at least one element selected from the group consisting of titanium, magnesium, zirconium, and aluminum may be added to the lithium transition metal composite oxide.

また、リチウム遷移金属複合酸化物の平均粒子径(二次粒子の平均粒子径)は、20μm以下であることが好ましい。平均粒子径が20μmを超える場合、リチウム遷移金属複合酸化物粒子内のリチウムイオンの移動距離が大きくなるため、充放電特性が低下する。   Moreover, it is preferable that the average particle diameter (average particle diameter of a secondary particle) of lithium transition metal complex oxide is 20 micrometers or less. When the average particle diameter exceeds 20 μm, the movement distance of lithium ions in the lithium transition metal composite oxide particles is increased, so that the charge / discharge characteristics are deteriorated.

正極導電剤としては、公知の様々な導電剤を用いることができ、例えば、導電性の炭素材料を好ましく用いることができ、特には、アセチレンブラックやケッチェンブラックを好ましく用いることができる。   As the positive electrode conductive agent, various known conductive agents can be used. For example, a conductive carbon material can be preferably used, and in particular, acetylene black or ketjen black can be preferably used.

正極バインダーとしては、公知の様々なバインダーにおいて、本発明における非水電解質の溶媒に溶解しないものであれば制限なく用いることができ、例えば、ポリフッ化ビニリデン等のフッ素系樹脂、ポリイミド系樹脂、ポリアクリロニトリルなどを好ましく用いることができる。   As the positive electrode binder, various known binders can be used without limitation as long as they do not dissolve in the solvent of the nonaqueous electrolyte in the present invention. For example, a fluorine resin such as polyvinylidene fluoride, a polyimide resin, Acrylonitrile and the like can be preferably used.

正極集電体としては導電性金属箔が好ましく用いられる。このようなものとしては、充放電時に正極に加わる電位において、非水電解質に溶解せず安定に存在するものであれば制限なく用いることができ、特にアルミニウム箔を好ましく用いることができる。   As the positive electrode current collector, a conductive metal foil is preferably used. As such a thing, it can be used without a restriction | limiting, if it exists in the electric potential added to a positive electrode at the time of charging / discharging, without melt | dissolving in a non-aqueous electrolyte, and it can use without limitation especially aluminum foil.

(非水電解質)
本発明のリチウム二次電池における非水電解質の溶媒は、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートや、フルオロエチレンカーボネートなどのフッ素化カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトンなどのエステル類や、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2−メチルテトラヒドロフランなどのエーテル類や、アセトニトリル等の二トリル類や、ジメチルホルムアミド等のアミド類などを用いることができ、これらを単独または複数組み合わせて使用することができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を好ましく用いることができる。
(Nonaqueous electrolyte)
The solvent of the non-aqueous electrolyte in the lithium secondary battery of the present invention is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate Chain carbonates such as fluorinated carbonates such as fluoroethylene carbonate, esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, Ethers such as 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane and 2-methyltetrahydrofuran; Le such and, an amide such as dimethyl formamide can be used, these can be used singly or in combination. In particular, a mixed solvent of a cyclic carbonate and a chain carbonate can be preferably used.

また、本発明における非水電解質の溶質としては、特に限定されるものではないが、LiPF、LiBF、LiAsFなどの化学式LiXF(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である)で表されるものや、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiClO、Li10Cl10、Li12Cl12などのリチウム化合物を用いることができる。これらの中でも、特にLiPFを好ましく用いることができる。 In addition, the solute of the nonaqueous electrolyte in the present invention is not particularly limited, but is a chemical formula LiXF y such as LiPF 6 , LiBF 4 , LiAsF 6 (where X is P, As, Sb, B, Bi). , Al, Ga, or In, and when X is P, As, or Sb, y is 6, and when X is B, Bi, Al, Ga, or In, y is 4. LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , lithium compounds such as LiC (C 2 F 5 SO 2 ) 3 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 can be used. Among these, LiPF 6 can be particularly preferably used.

更に、本発明における非水電解質としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質が挙げられる。 Furthermore, examples of the non-aqueous electrolyte in the present invention include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide and polyacrylonitrile is impregnated with an electrolyte, and inorganic solid electrolytes such as LiI and Li 3 N.

本発明の非水電解質は、CO及び/またはフルオロエチレンカーボネートを含有していることが好ましい。COや、F元素を含む炭酸エステル(フルオロエチレンカーボネート等)は、充放電時のケイ素活物質表面でのリチウムとの反応を円滑に生じさせる効果がある。これより、反応均一性が向上し、ケイ素活物質の膨化が抑制されるので、優れた充放電サイクル特性を得ることができる。 The nonaqueous electrolyte of the present invention preferably contains CO 2 and / or fluoroethylene carbonate. Carbonic acid ester (fluoroethylene carbonate or the like) containing CO 2 or F element has an effect of causing a smooth reaction with lithium on the surface of the silicon active material during charge / discharge. Thereby, the reaction uniformity is improved and the expansion of the silicon active material is suppressed, so that excellent charge / discharge cycle characteristics can be obtained.

本発明における非水電解質は、リチウムイオン導電性を発現させる溶質としてのリチウム化合物と、これを溶解、保持する溶媒が電池の充放電時あるいは保存時に分解しない限り、制約なく用いることができる。   The non-aqueous electrolyte in the present invention can be used without limitation as long as the lithium compound as a solute that develops lithium ion conductivity and the solvent that dissolves and retains the lithium compound do not decompose during charge / discharge or storage of the battery.

本発明によれば、充放電サイクル経過に伴う負極内の集電性の低下を抑制し、エネルギー密度が高く、かつ充放電サイクル特性に優れたリチウム二次電池とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the lithium secondary battery which suppressed the fall of the current collection property in the negative electrode accompanying progress of charging / discharging cycles, has a high energy density, and was excellent in charging / discharging cycling characteristics.

また、本発明の製造方法によれば、上記本発明のリチウム二次電池を効率良く製造することができる。   Moreover, according to the manufacturing method of the present invention, the lithium secondary battery of the present invention can be efficiently manufactured.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

<実験1>
(実施例A1)
〔ケイ素負極活物質の作製〕
熱還元法により、多結晶ケイ素塊を作製した。具体的には、金属反応炉(還元炉)内に設置されたケイ素芯を通電加熱して800℃まで上昇させ、これに精製した高純度モノシラン(SiH)ガスの蒸気と、精製した水素とを混合したガスを流すことにより、ケイ素芯の表面に多結晶ケイ素を析出させ、これにより太い棒状の多結晶ケイ素塊を作製した。
<Experiment 1>
(Example A1)
[Production of silicon negative electrode active material]
A polycrystalline silicon lump was prepared by a thermal reduction method. Specifically, a silicon core installed in a metal reactor (reduction furnace) is heated by heating to 800 ° C., and purified high-purity monosilane (SiH 4 ) gas vapor, purified hydrogen, By flowing a mixed gas, polycrystalline silicon was deposited on the surface of the silicon core, thereby producing a thick rod-shaped polycrystalline silicon lump.

次に、この多結晶ケイ素塊を粉砕し、分級することにより、純度99%の、粒度が異なる4種類の多結晶ケイ素粒子a1、a2、a3及びa4を作製した。作製した多結晶ケイ素粒子a1、a2、a3及びa4の粒度分布を図1及び表1に示す。また、各多結晶ケイ素粒子のメディアン径(D50)を、表1に示す。メディアン径は、レーザー回折法により測定した。 Next, this polycrystalline silicon lump was pulverized and classified to prepare four types of polycrystalline silicon particles a1, a2, a3 and a4 having a purity of 99% and different particle sizes. The particle size distribution of the produced polycrystalline silicon particles a1, a2, a3 and a4 is shown in FIG. In addition, Table 1 shows the median diameter (D 50 ) of each polycrystalline silicon particle. The median diameter was measured by a laser diffraction method.

また、これらの多結晶ケイ素粒子においては、結晶子サイズは、32nmであった。結晶子サイズは、粉末X線回折パターンにおけるケイ素の(111)ピークの半値幅を用いて、scherrerの式により算出した。   In these polycrystalline silicon particles, the crystallite size was 32 nm. The crystallite size was calculated by the Scherrer equation using the half width of the (111) peak of silicon in the powder X-ray diffraction pattern.

Figure 0005361233
Figure 0005361233

〔負極合剤スラリーの作製〕
分散媒としてのNMP(N−メチル−2−ピロリドン)に、上記の多結晶ケイ素粒子a1とa3を、10:90の重量比で混合した。この混合粒子と、負極導電剤としての平均粒径3.5μmの黒鉛粉末と、負極バインダーとしての上記(化1)で示される分子構造を有する熱可塑性ポリイミド樹脂A(ガラス転移温度300℃、重量平均分子量50000)の前駆体ワニス(溶媒;NMP、濃度;熱処理後(ポリマー化+イミド化後)のポリイミド樹脂の量で47重量%)とを、負極活物質粉末と負極導電剤粉末とイミド化後のポリイミド樹脂との質量比が100:3:8.6となるように混合し、負極合剤スラリーとした。
[Preparation of negative electrode mixture slurry]
The above polycrystalline silicon particles a1 and a3 were mixed with NMP (N-methyl-2-pyrrolidone) as a dispersion medium at a weight ratio of 10:90. These mixed particles, graphite powder having an average particle size of 3.5 μm as a negative electrode conductive agent, and thermoplastic polyimide resin A having a molecular structure represented by the above (Chemical Formula 1) as a negative electrode binder (glass transition temperature 300 ° C., weight Precursor varnish (solvent: NMP, concentration: 47 wt% in terms of amount of polyimide resin after heat treatment (after polymerization and imidization)), negative electrode active material powder, negative electrode conductive agent powder, and imidization It mixed so that mass ratio with subsequent polyimide resin might be set to 100: 3: 8.6, and it was set as the negative mix slurry.

ポリイミド樹脂Aの前駆体のワニスは、以下の(化2)に示すm−フェニレンジアミンと、以下の(化3)に示す3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジエチルエステルとから作製することができる。また、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジエチルエステルは、以下の(化4)に示す3,3’,4,4’−ベンゾフェノンテトラカルボン酸に無水物二NMPの存在下、2当量のエタノールを反応させることにより作製することができる。   The precursor varnish of polyimide resin A is composed of m-phenylenediamine represented by the following (Chemical Formula 2) and 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester represented by the following (Chemical Formula 3). Can be produced. In addition, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester is 3,3 ′, 4,4′-benzophenone tetracarboxylic acid shown in the following (Chemical Formula 4) in the presence of anhydride 2NMP. It can be prepared by reacting 2 equivalents of ethanol.

Figure 0005361233
Figure 0005361233

Figure 0005361233
Figure 0005361233

Figure 0005361233
Figure 0005361233

〔負極の作製〕
上記の負極合剤スラリーを、厚さ18μmの銅合金箔(C7025合金箔、組成;Cu96.2重量%、Ni3重量%、Si0.65重量%、Mg0.15重量%)の両面を粗面化した負極集電体の表面上に、25℃の空気中で塗布し、120℃の空気中で乾燥した後、25℃の空気中で圧延した。なお、銅合金箔の粗面化は、めっき法により電解銅層を表面に形成することにより行い、表面粗さRa(JIS B0601−1994)が0.25μm、平均山間隔S(JIS B0601−1994)が0.85μmとなるように粗面化した。
(Production of negative electrode)
The negative electrode mixture slurry was roughened on both sides of an 18 μm thick copper alloy foil (C7025 alloy foil, composition: Cu 96.2 wt%, Ni 3 wt%, Si 0.65 wt%, Mg 0.15 wt%). The surface of the negative electrode current collector was applied in air at 25 ° C., dried in air at 120 ° C., and then rolled in air at 25 ° C. The roughening of the copper alloy foil is performed by forming an electrolytic copper layer on the surface by a plating method, the surface roughness Ra (JIS B0601-1994) is 0.25 μm, and the average peak interval S (JIS B0601-1994). ) Was roughened to 0.85 μm.

圧延処理した後、負極合剤層を設けた集電体を、長さ380mm、幅52mmの長方形に切り抜いた後、アルゴン雰囲気下で400℃10時間熱処理し、負極集電体の表面に負極活物質層が形成された負極を作製した。負極集電体上の負極合剤層の量は、5.6mg/cmであり、合剤層を両面に形成した負極集電体の厚みは56μmであった。 After the rolling treatment, the current collector provided with the negative electrode mixture layer was cut out into a rectangle having a length of 380 mm and a width of 52 mm, and then heat-treated in an argon atmosphere at 400 ° C. for 10 hours to form a negative electrode active material on the surface of the negative electrode current collector. A negative electrode on which a material layer was formed was produced. The amount of the negative electrode mixture layer on the negative electrode current collector was 5.6 mg / cm 2 , and the thickness of the negative electrode current collector having the mixture layer formed on both surfaces was 56 μm.

負極の端部に、負極集電タブとしてのニッケル板を接続し、負極を完成した。   A nickel plate as a negative electrode current collecting tab was connected to the end of the negative electrode to complete the negative electrode.

〔非水電解液の作製〕
エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、体積比3:7となるように混合した混合溶媒に、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解させた後、この溶液に、0.4重量%の二酸化炭素ガス、及び10重量%のフルオロエチレンカーボネートを添加し、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
After dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7, To this solution, 0.4 wt% carbon dioxide gas and 10 wt% fluoroethylene carbonate were added to prepare a non-aqueous electrolyte.

〔リチウム遷移金属複合酸化物の作製〕
LiCOとCoCOとを、LiとCoのモル比が1:1の割合となるように乳鉢で混合した後、空気雰囲気中にて、800℃で24時間熱処理した後、粉砕して、平均粒子径11μmのLiCoOで表わされるリチウムコバルト複合酸化物の粉末を得た。得られた正極活物質粉末のBET比表面積は、0.37m/gであった。
[Preparation of lithium transition metal composite oxide]
Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1, then heat-treated in an air atmosphere at 800 ° C. for 24 hours, and then pulverized. A powder of lithium cobalt composite oxide represented by LiCoO 2 having an average particle diameter of 11 μm was obtained. The obtained positive electrode active material powder had a BET specific surface area of 0.37 m 2 / g.

〔正極の作製〕
分散媒としてのNMPに、上記の正極活物質粉末と、正極導電剤としての平均粒子径30nmの炭素粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、活物質と導電剤とバインダーとの重量比が95:2.5:2.5となるように加えた後、混練し、正極合剤スラリーとした。
[Production of positive electrode]
NMP as a dispersion medium, the above positive electrode active material powder, carbon powder with an average particle diameter of 30 nm as a positive electrode conductive agent, and polyvinylidene fluoride as a positive electrode binder, the weight ratio of the active material, the conductive agent and the binder Was added so as to be 95: 2.5: 2.5, and then kneaded to obtain a positive electrode mixture slurry.

この正極合剤スラリーを、正極集電体としての厚み15μm、長さ402mm、幅50mmのアルミニウム箔の表面に、塗布部が表面で長さ340mm、幅50mm、裏面で長さ270mm、幅50mmとなるように塗布し、乾燥した後、圧延した。集電体の活物質層量及び正極の厚みは、両面に活物質が形成されている部分で、それぞれ45mg/cm、及び143μmであった。 This positive electrode mixture slurry was applied to the surface of an aluminum foil having a thickness of 15 μm, a length of 402 mm, and a width of 50 mm as a positive electrode current collector, with a coating portion having a length of 340 mm, a width of 50 mm, and a back surface of 270 mm and a width of 50 mm. After being coated, dried, and rolled. The amount of the active material layer of the current collector and the thickness of the positive electrode were 45 mg / cm 2 and 143 μm, respectively, where the active material was formed on both sides.

なお、正極の端部にある正極合剤層を塗布していない部分には、正極集電タブとしてアルミニウム板を接続した。   In addition, the aluminum plate was connected as a positive electrode current collection tab to the part which has not apply | coated the positive mix layer in the edge part of a positive electrode.

〔電極体の作製〕
上記正極を1枚、上記負極を1枚、厚さ20μm、長さ450mm、幅54.5mmであるポリエチレン製微多孔膜のセパレータを2枚用いて、正極と負極とをセパレータを介して対向させ、正極タブ及び負極タブが最外周になるようにして、直径18mmの巻芯で、渦巻き状に巻回した。巻回後、巻芯を引き抜いて、渦巻き状の電極体を作製した。この渦巻き状の電極体を押し潰して、扁平型の電極体を得た。
(Production of electrode body)
Using one sheet of the positive electrode, one sheet of the negative electrode, a polyethylene microporous membrane separator having a thickness of 20 μm, a length of 450 mm, and a width of 54.5 mm, the positive electrode and the negative electrode are opposed to each other with the separator interposed therebetween. The positive electrode tab and the negative electrode tab were wound on the outermost periphery in a spiral shape with a core having a diameter of 18 mm. After winding, the winding core was pulled out to produce a spiral electrode body. The spiral electrode body was crushed to obtain a flat electrode body.

図3は、作製した扁平型の電極体を示す斜視図である。電極体3からは、正極集電タブ1及び負極集電タブ2が外部に引き出されている。   FIG. 3 is a perspective view showing the produced flat electrode body. A positive electrode current collecting tab 1 and a negative electrode current collecting tab 2 are drawn out from the electrode body 3.

〔電池の作製〕
上記の扁平型の電極体及び上記の電解液を、25℃1気圧のCOの雰囲気下で、アルミニウムラミネート製の外装体内に挿入及び注入し、扁平型の本発明電池A1を作製した。
[Production of battery]
The above flat electrode body and the above electrolytic solution were inserted and injected into an aluminum laminate outer package in an atmosphere of CO 2 at 25 ° C. and 1 atm to produce a flat battery of the present invention A1.

図4は、作製した扁平型の本発明電池A1を示す平面図(a)及び断面図(b)である。断面図(b)は、平面図(a)のA−A線に沿う断面図である。   FIG. 4 is a plan view (a) and a cross-sectional view (b) showing the produced flat battery of the present invention A1. Sectional drawing (b) is sectional drawing which follows the AA line of top view (a).

図4に示すように、本発明電池A1は、アルミニウムラミネート製の外装体4内に、扁平型電極体3を挿入した後、電解液を外装体4内に入れ、ヒートシール閉口部5の部分で熱溶着することにより封着して形成されている。   As shown in FIG. 4, the battery A1 of the present invention is a part of the heat seal closing part 5 in which the flat electrode body 3 is inserted into the exterior body 4 made of aluminum laminate, and the electrolytic solution is then placed in the exterior body 4. It is formed by sealing by heat welding.

(実施例A2〜12及び比較例B1〜B12)
表2に示すように、ケイ素粒子Aとケイ素粒子Bを表2に示す所定の混合比に混合して得られた混合粒子を負極活物質として用いる以外は、上記本発明電池A1と同様にして負極スラリーを作製し、この負極スラリーを用い、上記本発明電池A1と同様にして、本発明電池A2〜A12及び比較電池B1〜B12を作製した。
(Examples A2 to 12 and Comparative Examples B1 to B12)
As shown in Table 2, in the same manner as in the present invention battery A1, except that the mixed particles obtained by mixing the silicon particles A and the silicon particles B in the predetermined mixing ratio shown in Table 2 are used as the negative electrode active material. A negative electrode slurry was prepared, and the present invention batteries A2 to A12 and comparative batteries B1 to B12 were prepared using the negative electrode slurry in the same manner as the present invention battery A1.

〔充放電サイクル特性の評価〕
上記の本発明電池A1〜A12及び比較電池B1〜B12について、下記の充放電サイクル条件で、充放電サイクル特性を評価した。容量維持率(nサイクル目の放電容量を、1サイクル目の放電容量で除した値)が80%になったときのサイクル数をサイクル寿命とした。
[Evaluation of charge / discharge cycle characteristics]
About said this invention battery A1-A12 and comparative battery B1-B12, the following charging / discharging cycling characteristics were evaluated on the following charging / discharging cycling conditions. The cycle number was defined as the cycle life when the capacity retention ratio (the value obtained by dividing the discharge capacity at the nth cycle by the discharge capacity at the first cycle) reached 80%.

(充放電サイクル条件)
・1サイクル目の充電条件
45mAの電流で4時間定電流充電を行った後、180mAの電流で電池電圧が4.2Vになるまで定電流充電を行い、さらに4.2Vの電圧で電流値が45mAとなるまで定電圧充電を行った。
(Charge / discharge cycle conditions)
-Charging condition in the first cycle After performing constant current charging for 4 hours at a current of 45 mA, constant current charging is performed until the battery voltage reaches 4.2 V at a current of 180 mA, and the current value is further increased at a voltage of 4.2 V. The constant voltage charge was performed until it became 45 mA.

・1サイクル目の放電条件
180mAの電流で電池電圧が2.75Vになるまで定電流充電を行った。
-First cycle discharge condition Constant current charging was performed at a current of 180 mA until the battery voltage reached 2.75V.

・2サイクル目以降の充電条件
900mAの電流で電池電圧が4.2Vになるまで定電流充電を行い、さらに4.2Vの電圧で電流値が45mAとなるまで定電圧充電を行った。
-Charging conditions after the 2nd cycle Constant current charging was performed until the battery voltage reached 4.2 V at a current of 900 mA, and further constant voltage charging was performed until the current value reached 45 mA at a voltage of 4.2 V.

・2サイクル目以降の放電条件
900mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
-Discharge conditions after the second cycle Constant current discharge was performed at a current of 900 mA until the battery voltage reached 2.75V.

本発明電池A1〜12及び比較電池B1〜B12のサイクル寿命を表2に示す。なお、本発明電池A1〜A12及び比較電池B1〜B12のサイクル寿命は、本発明電池A1のサイクル寿命を100とした指数である。   Table 2 shows the cycle life of the batteries A1 to 12 of the present invention and the comparative batteries B1 to B12. The cycle life of the present invention batteries A1 to A12 and the comparative batteries B1 to B12 is an index with the cycle life of the present invention battery A1 as 100.

Figure 0005361233
Figure 0005361233

表2に示すように、本発明に従い、ケイ素粒子Aとケイ素粒子Bを、重量比(粒子A:粒子B)が10:90〜25:75となるように混合した混合粒子を負極活物質粒子として用い、本発明のポリイミド樹脂からなるバインダーを用いた本発明電池A1〜A12は、比較電池B1〜B12に比べ優れたサイクル特性を示している。これは、以下のような作用効果に基づくものと思われる。   As shown in Table 2, in accordance with the present invention, mixed particles obtained by mixing silicon particles A and silicon particles B so that the weight ratio (particle A: particle B) is 10:90 to 25:75 are negative electrode active material particles. Inventive batteries A1 to A12 using the binder made of the polyimide resin of the present invention show excellent cycle characteristics as compared with comparative batteries B1 to B12. This seems to be based on the following effects.

すなわち、本発明電池A1〜A12においては、粒度分布が特定された大小2種類の活物質粒子を用い、大きな活物質粒子に対して小さな活物質粒子が少ない割合となるように混合し、かつケイ素との密着性を高く機械的強度に優れるバインダーを用いている。これにより、充放電に伴ってケイ素活物質粒子の体積変化が生じた際にも、負極合剤層において、大きな活物質粒子間の隙間に小さな活物質粒子が入り込む充填性の高い、すなわち粒子間の接触割合が高く、集電性の高い構造が保持されているためであると考えられる。   That is, in the present invention batteries A1 to A12, two kinds of large and small active material particles whose particle size distribution is specified are mixed so that the ratio of small active material particles is small with respect to large active material particles, and silicon Binders with high adhesive strength and excellent mechanical strength are used. As a result, even when the volume change of the silicon active material particles occurs due to charge / discharge, in the negative electrode mixture layer, the small active material particles have a high filling property that enters the gaps between the large active material particles, that is, between the particles. This is presumably because the contact ratio is high and a structure with high current collection is maintained.

図5〜図8は、ケイ素粒子Aとケイ素粒子Bを所定の割合で混合した混合粒子の粒度分布を示す図である。   5-8 is a figure which shows the particle size distribution of the mixed particle | grains which mixed the silicon particle A and the silicon particle B in the predetermined ratio.

図5〜図8において、100/0、95/5、90/10、80/20、75/25、及び70/30は、それぞれケイ素粒子B/ケイ素粒子Aのそれぞれの重量%の混合比を示している。   5 to 8, 100/0, 95/5, 90/10, 80/20, 75/25, and 70/30 are respectively the mixing ratios of the respective weight percentages of silicon particles B / silicon particles A. Show.

図5は、メディアン径9.6μmのケイ素粒子Bと、メディアン径3.5μmのケイ素粒子Aの混合粒子の粒度分布を示している。図6は、メディアン径9.6μmのケイ素粒子Bと、メディアン径が5.7μmのケイ素粒子Aの混合粒子の粒度分布を示し、図7は、メディアン径14.1μmのケイ素粒子Bと、メディアン径3.5μmのケイ素粒子Aの混合粒子の粒度分布を示し、図8は、メディアン径14.1μmのケイ素粒子Bと、メディアン径5.7μmのケイ素粒子Aの混合粒子の粒度分布を示している。   FIG. 5 shows the particle size distribution of mixed particles of silicon particles B having a median diameter of 9.6 μm and silicon particles A having a median diameter of 3.5 μm. FIG. 6 shows a particle size distribution of mixed particles of silicon particles B having a median diameter of 9.6 μm and silicon particles A having a median diameter of 5.7 μm. FIG. 7 shows silicon particles B having a median diameter of 14.1 μm, 8 shows the particle size distribution of mixed particles of silicon particles A having a diameter of 3.5 μm, and FIG. 8 shows the particle size distribution of mixed particles of silicon particles B having a median diameter of 14.1 μm and silicon particles A having a median diameter of 5.7 μm. Yes.

図5〜図8から明らかなように、本発明に従い混合した混合粒子の粒度分布においては、ケイ素粒子Bに基づくピークと、ケイ素粒子Aに基づくピークまたはショルダーが観察される。   As apparent from FIGS. 5 to 8, in the particle size distribution of the mixed particles mixed according to the present invention, a peak based on the silicon particles B and a peak or shoulder based on the silicon particles A are observed.

(比較例B13〜B36)
負極バインダーとして、以下の(化5)に示される分子構造を有するポリイミド樹脂Bを用いる以外は、上記実施例A1〜A12及び比較例B1〜B12と同様にして、比較電池B13〜B36を作製した。
(Comparative Examples B13 to B36)
Comparative batteries B13 to B36 were produced in the same manner as in Examples A1 to A12 and Comparative Examples B1 to B12 except that the polyimide resin B having the molecular structure represented by the following (Chemical Formula 5) was used as the negative electrode binder. .

Figure 0005361233
Figure 0005361233

ポリイミド樹脂Bのガラス転移温度は195℃であり、重量平均分子量は50000である。また、ポリイミド樹脂Bの形成には、ポリイミド樹脂Bのワニス(溶媒;NMP、濃度18重量%)を用いた。また、負極活物質粉末と負極導電剤粉末とポリイミド樹脂Bとの重量比は100:3:8.6となるように混合し、負極合剤スラリーを作製した。   Polyimide resin B has a glass transition temperature of 195 ° C. and a weight average molecular weight of 50,000. For the formation of the polyimide resin B, a varnish of the polyimide resin B (solvent; NMP, concentration 18% by weight) was used. Moreover, the negative electrode active material powder, the negative electrode conductive agent powder, and the polyimide resin B were mixed so that the weight ratio was 100: 3: 8.6 to prepare a negative electrode mixture slurry.

比較電池B13〜B36について、上記と同様にして充放電サイクル特性の評価を行い、評価結果を表3に示した。   For comparative batteries B13 to B36, the charge / discharge cycle characteristics were evaluated in the same manner as described above, and the evaluation results are shown in Table 3.

Figure 0005361233
Figure 0005361233

表3に示すように、ケイ素粒子Aとケイ素粒子Bを、本発明の範囲である重量比10:90〜25〜75の範囲で混合した混合粒子を負極活物質として用いても、バインダーとして、本発明のポリイミド樹脂以外のポリイミド樹脂を用いた場合には、充放電サイクル特性の向上が認められないことがわかる。   As shown in Table 3, even if the mixed particles obtained by mixing the silicon particles A and the silicon particles B in the range of the weight ratio of 10:90 to 25 to 75 which are the scope of the present invention are used as the negative electrode active material, When polyimide resin other than the polyimide resin of this invention is used, it turns out that the improvement of a charge / discharge cycle characteristic is not recognized.

これは、(化5)に示す構造のバインダーが、(化1)に示す構造のバインダーに比べて、ケイ素との密着性が低いために、充放電に伴ってケイ素活物質粒子の体積変化が生じた際に、負極合剤層構造の破壊が生じ、負極活物質の粒度制御による集電性の向上の効果が得られないためであると考えられる。   This is because the binder having the structure shown in (Chemical Formula 5) has lower adhesion to silicon than the binder having the structure shown in (Chemical Formula 1). When this occurs, it is considered that the negative electrode mixture layer structure is destroyed, and the effect of improving the current collecting property by controlling the particle size of the negative electrode active material cannot be obtained.

<実験2>
〔ケイ素負極活物質の作製〕
金属ケイ素塊を粉砕し、分級することにより、純度98%(Al;500重量ppm、Fe;200重量ppm)の、粒度が異なる金属ケイ素粒子b1、b2、b3及びb4を作製した。金属ケイ素粒子b1、b2、b3及びb4の粒度分布を図2及び表4に示す。表4には、メディアン径(D50)を示す。
<Experiment 2>
[Production of silicon negative electrode active material]
By pulverizing and classifying the metal silicon lump, metal silicon particles b1, b2, b3 and b4 having a purity of 98% (Al; 500 ppm by weight, Fe: 200 ppm by weight) and having different particle sizes were produced. The particle size distribution of the metal silicon particles b1, b2, b3 and b4 is shown in FIG. Table 4 shows the median diameter (D 50 ).

なお、これらの金属ケイ素粒子は、上記粒度においては、全て単結晶状態である。従って、結晶子サイズは、粒子径と同じサイズである。   These metal silicon particles are all in a single crystal state in the above particle size. Therefore, the crystallite size is the same size as the particle diameter.

Figure 0005361233
Figure 0005361233

(実施例C1〜C12及び比較例D1〜D12)
表5に示すように、上記の金属ケイ素粒子b1、b2、b3及びb4を、ケイ素粒子Aまたはケイ素粒子Bとして用い、これらを表5に示す所定の混合比で混合した粒子を、負極活物質として用いる以外は、実験1における本発明電池または比較電池と同様にして、本発明電池C1〜C12及び比較電池D1〜D12を作製した。
(Examples C1 to C12 and Comparative Examples D1 to D12)
As shown in Table 5, the metal silicon particles b1, b2, b3, and b4 described above were used as silicon particles A or silicon particles B, and particles mixed at a predetermined mixing ratio shown in Table 5 were used as negative electrode active materials. Inventive batteries C1 to C12 and comparative batteries D1 to D12 were produced in the same manner as the inventive battery or comparative battery in Experiment 1, except that the above were used.

〔充放電サイクル特性の評価〕
本発明電池C1〜C12及び比較電池D1〜D12について、実験1と同様にして、充放電サイクル特性を評価し、サイクル寿命を求めた。評価結果を表5に示す。なお、サイクル寿命は、本発明電池A1のサイクル寿命を100とした指数である。
[Evaluation of charge / discharge cycle characteristics]
About this invention battery C1-C12 and comparative battery D1-D12, it carried out similarly to the experiment 1, evaluated the charging / discharging cycle characteristic, and calculated | required cycle life. The evaluation results are shown in Table 5. The cycle life is an index with the cycle life of the present invention battery A1 as 100.

Figure 0005361233
Figure 0005361233

表5に示す結果から明らかなように、本発明に従い、ケイ素粒子Aとケイ素粒子Bを重量比90:10〜25:75の範囲で混合した混合粒子を負極活物質として用い、かつ(化1)に示す構造を有するポリイミド樹脂Aを負極バインダーとして用いた本発明電池C1〜C12は、比較電池D1〜D12に比べ、優れたサイクル特性を示している。   As is apparent from the results shown in Table 5, according to the present invention, mixed particles obtained by mixing silicon particles A and silicon particles B in a weight ratio of 90:10 to 25:75 are used as the negative electrode active material, and The batteries C1 to C12 of the present invention using the polyimide resin A having the structure shown in FIG. 5) as a negative electrode binder exhibit excellent cycle characteristics as compared with the comparative batteries D1 to D12.

しかしながら、本発明電池C1〜C12と、結晶子サイズが32nmと小さい多結晶ケイ素粒子を負極活物質として用いた本発明電池A1〜A12とを比較すると、結晶子サイズが32nmである多結晶ケイ素粒子を用いた本発明電池A1〜A12の方が充放電サイクル特性の向上が著しいことがわかる。これは、結晶子サイズが32nmと小さい多結晶ケイ素粒子では、表面に凹凸が多く存在するため、バインダーとのアンカー効果がより大きく得られるのに対し、結晶子サイズが粒子径とほぼ同じである金属ケイ素粒子では、表面に凹凸が少ないため、アンカー効果が小さく、多結晶ケイ素活物質の場合のような負極合剤層構造の安定性が得られなかったためであると考えられる。   However, when the present invention batteries C1 to C12 are compared with the present invention batteries A1 to A12 using the polycrystalline silicon particles having a small crystallite size of 32 nm as the negative electrode active material, the polycrystalline silicon particles having a crystallite size of 32 nm. It can be seen that the batteries A1 to A12 of the present invention using the remarkably improved charge / discharge cycle characteristics. This is because the polycrystalline silicon particles having a crystallite size as small as 32 nm have many irregularities on the surface, so that the anchor effect with the binder can be obtained more greatly, whereas the crystallite size is almost the same as the particle size. It is considered that the metal silicon particles have less irregularities on the surface, so the anchor effect is small, and the stability of the negative electrode mixture layer structure as in the case of the polycrystalline silicon active material cannot be obtained.

図9〜図12は、単結晶の金属ケイ素粒子b、b2、b3及びb4を所定の割合で混合した混合粒子の粒度分布を示す図である。   9 to 12 are diagrams showing particle size distributions of mixed particles obtained by mixing single crystal metal silicon particles b, b2, b3, and b4 at a predetermined ratio.

図5〜図8と同様に、100/0、95/5、90/10、80/20、75/25及び、70/30は、それぞれ、粒子径の大きい粒子B/粒子径の小さい粒子Aの混合割合を示している。   5 to 8, 100/0, 95/5, 90/10, 80/20, 75/25, and 70/30 are respectively a particle B having a large particle diameter and a particle A having a small particle diameter. The mixing ratio is shown.

図9は、メディアン径10.3μmの粒子b3と、メディアン径3.0μmの粒子b1とを混合した混合粒子の粒度分布を示しており、図10は、メディアン径10.3μmの粒子b3と、メディアン径5.9μmの粒子b2との混合粒子の粒度分布を示しており、図11は、メディアン径15.3μmの粒子b4と、メディアン径3.0μmの粒子b1との混合粒子の粒度分布を示しており、図12は、メディアン径15.3μmの粒子b4と、メディアン径5.9μmの粒子b2との混合粒子の粒度分布を示している。   FIG. 9 shows a particle size distribution of mixed particles obtained by mixing particles b3 having a median diameter of 10.3 μm and particles b1 having a median diameter of 3.0 μm. FIG. 10 shows particles b3 having a median diameter of 10.3 μm, FIG. 11 shows the particle size distribution of the mixed particles with the particle b2 having a median diameter of 5.9 μm, and FIG. 11 shows the particle size distribution of the mixed particles of the particle b4 having a median diameter of 15.3 μm and the particle b1 having a median diameter of 3.0 μm. FIG. 12 shows the particle size distribution of the mixed particles of the particle b4 having a median diameter of 15.3 μm and the particle b2 having a median diameter of 5.9 μm.

図9〜図12から明らかなように、本発明に従う混合粒子においては、相対的に粒径が大きい粒子Bに基づくピークと、相対的に粒径が小さい粒子Aに基づくピークまたはショルダーが認められる。     As is clear from FIGS. 9 to 12, in the mixed particles according to the present invention, a peak based on the particle B having a relatively large particle size and a peak or shoulder based on the particle A having a relatively small particle size are recognized. .

(比較例D13〜D36)
表6に示すように、ケイ素粒子A及びケイ素粒子Bとして、金属ケイ素粒子b1、b2、b3及びb4を用い、かつ負極バインダーとして、比較例B13〜B36と同様に、ポリイミド樹脂Bを用い、上記と同様にして、比較電池D13〜D36を作製し、充放電サイクル特性を評価した。評価結果を表6に示す。
(Comparative Examples D13 to D36)
As shown in Table 6, as silicon particles A and silicon particles B, metal silicon particles b1, b2, b3 and b4 were used, and as a negative electrode binder, as in Comparative Examples B13 to B36, polyimide resin B was used. Comparative batteries D13 to D36 were produced in the same manner as described above, and the charge / discharge cycle characteristics were evaluated. The evaluation results are shown in Table 6.

Figure 0005361233
Figure 0005361233

表6に示すように、ケイ素粒子として単結晶の金属ケイ素粒子を用いた場合にも、負極バインダーとして、本発明の範囲外であるポリイミド樹脂Bを用いた場合には、負極活物質の粒度制御による充填性向上の効果が得られないことがわかる。これは、上述のように、ポリイミド樹脂Bは、ケイ素との密着性が低いため、充放電に伴ってケイ素活物質粒子の体積変化が生じた際に、負極合剤層構造の破壊が生じるためであると思われる。   As shown in Table 6, even when single crystal metal silicon particles are used as the silicon particles, when the polyimide resin B which is outside the scope of the present invention is used as the negative electrode binder, the particle size control of the negative electrode active material is performed. It can be seen that the effect of improving the filling property by cannot be obtained. This is because, as described above, the polyimide resin B has low adhesion to silicon, and therefore, when the volume change of the silicon active material particles occurs due to charge / discharge, the negative electrode mixture layer structure is destroyed. It seems to be.

本発明に従う実施例において作製した多結晶ケイ素粒子の粒度分布を示す図。The figure which shows the particle size distribution of the polycrystalline silicon particle produced in the Example according to this invention. 本発明に従う実施例において作製した単結晶金属ケイ素粒子の粒度分布を示す図。The figure which shows the particle size distribution of the single crystal metal silicon particle produced in the Example according to this invention. 本発明に従う実施例において作製した電極体を示す斜視図。The perspective view which shows the electrode body produced in the Example according to this invention. 本発明に従う実施例において作製したリチウム二次電池を示す平面図(a)及び断面図(b)。The top view (a) and sectional drawing (b) which show the lithium secondary battery produced in the Example according to this invention. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example. 本発明に従う実施例及び比較例における混合粒子の粒度分布を示す図。The figure which shows the particle size distribution of the mixed particle in the Example according to this invention, and a comparative example.

符号の説明Explanation of symbols

1…正極集電タブ
2…負極集電タブ
3…電極体
4…外装体
5…外装体のヒートシール閉口部
DESCRIPTION OF SYMBOLS 1 ... Positive electrode current collection tab 2 ... Negative electrode current collection tab 3 ... Electrode body 4 ... Exterior body 5 ... Heat seal closing part of exterior body

Claims (4)

負極活物質粒子及び負極バインダーを含む負極活物質層が負極集電体の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、
メディアン径(D50)が3μm以上6μm以下であり、かつ粒径2μm以上7μm以下の範囲に60体積%以上存在する粒度分布を有する、ケイ素及び/またはケイ素合金を含む粒子Aと、メディアン径(D50)が9μm以上15μm以下であり、かつ粒径7μm以上17μm以下の範囲に60体積%以上存在する粒度分布を有する、ケイ素及び/またはケイ素合金を含む粒子Bとを、重量比(粒子A:粒子B)10:90〜25:75の範囲で混合した混合粒子を、前記負極活物質粒子として用い、
以下に示す構造を有するポリイミド樹脂を、前記負極バインダーとして用いることを特徴とするリチウム二次電池。
Figure 0005361233
A lithium secondary battery comprising a negative electrode in which a negative electrode active material layer containing negative electrode active material particles and a negative electrode binder is formed on the surface of a negative electrode current collector, a positive electrode, and a non-aqueous electrolyte,
A particle A containing silicon and / or a silicon alloy having a particle size distribution having a median diameter (D 50 ) of 3 μm or more and 6 μm or less and a particle size of 2 μm or more and 7 μm or less, and a median diameter ( D 50 ) having a particle size distribution having a particle size distribution of not less than 9 μm and not more than 15 μm and having a particle size of not less than 7 μm and not more than 17 μm and containing 60% by volume of silicon and / or a silicon alloy and a weight ratio (particle A : Particle B) Using mixed particles mixed in the range of 10:90 to 25:75 as the negative electrode active material particles,
A lithium secondary battery using a polyimide resin having the following structure as the negative electrode binder.
Figure 0005361233
前記負極活物質粒子の結晶子サイズが、100nm以下であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a crystallite size of the negative electrode active material particles is 100 nm or less. 前記負極活物質粒子のメディアン径(D50)が9μm以上14μm以下であり、粒径2μm以上7μm以下の範囲に9体積%以上20体積%以下、粒径7μm以上17μm以下の範囲に61体積%以上86体積%以下存在する粒度分布を前記負極活物質粒子が有することを特徴とする請求項1または2に記載のリチウム二次電池。 The median diameter (D 50 ) of the negative electrode active material particles is 9 μm or more and 14 μm or less, 9% by volume to 20% by volume in the range of 2 μm to 7 μm, and 61% by volume in the range of 7 μm to 17 μm. 3. The lithium secondary battery according to claim 1, wherein the negative electrode active material particles have a particle size distribution of 86% by volume or less. 請求項1〜3のいずれか1項に記載のリチウム二次電池を製造する方法であって、
ケイ素及び/またはケイ素合金を含む前記粒子Aと、ケイ素及び/またはケイ素合金を含む前記粒子Bとを前記重量比で混合して前記混合粒子を調製する工程と、
前記混合粒子を前記負極活物質として用い、前記ポリイミド樹脂を前記負極バインダーとして用いて前記負極を作製する工程と、
前記負極、前記正極、及び前記非水電解質を用いてリチウム二次電池を作製する工程とを備えることを特徴とするリチウム二次電池の製造方法。
A method for producing the lithium secondary battery according to any one of claims 1 to 3,
Mixing the particles A containing silicon and / or a silicon alloy with the particles B containing silicon and / or a silicon alloy at the weight ratio to prepare the mixed particles;
Using the mixed particles as the negative electrode active material and producing the negative electrode using the polyimide resin as the negative electrode binder;
And a step of producing a lithium secondary battery using the negative electrode, the positive electrode, and the non-aqueous electrolyte.
JP2008091513A 2008-03-31 2008-03-31 Lithium secondary battery and manufacturing method thereof Active JP5361233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091513A JP5361233B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091513A JP5361233B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009245773A JP2009245773A (en) 2009-10-22
JP5361233B2 true JP5361233B2 (en) 2013-12-04

Family

ID=41307435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091513A Active JP5361233B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5361233B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429529B2 (en) * 2008-05-15 2014-02-26 株式会社アイ.エス.テイ Electrode binder composition and electrode mixture slurry
JP5267976B2 (en) * 2008-05-27 2013-08-21 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2011070610A1 (en) * 2009-12-08 2011-06-16 株式会社アイ.エス.テイ Binder composition for electrodes and mixture slurry for electrodes
CN103238241B (en) 2010-11-30 2015-04-01 东丽株式会社 Binder for electrodes of lithium ion batteries, paste for negative electrodes of lithium ion batteries, and method for producing negative electrode of lithium ion battery
JP2013069684A (en) * 2011-09-09 2013-04-18 Hitachi Cable Ltd Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
JP2013069517A (en) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd Negative electrode paste, negative electrode and method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2013042610A1 (en) * 2011-09-22 2013-03-28 日本電気株式会社 Lithium-ion secondary battery
US9123955B2 (en) * 2012-04-06 2015-09-01 Samsung Sdi Co., Ltd. Negative active material, lithium battery including the material, and method for manufacturing the material
JP2014053134A (en) * 2012-09-06 2014-03-20 Sony Corp Secondary battery, process of manufacturing the same, battery pack, and electric vehicle
ES2703147T3 (en) 2013-07-09 2019-03-07 Evonik Degussa Gmbh Electroactive polymers, method of manufacturing them, electrode and use thereof
KR101825920B1 (en) 2013-07-16 2018-03-22 삼성에스디아이 주식회사 Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
US9997771B2 (en) 2013-12-05 2018-06-12 Hitachi, Ltd. Negative electrode material for lithium ion secondary battery and manufacturing method of the same, negative electrode for lithium ion secondary battery and manufacturing method of the same, and lithium ion secondary battery
JP6331463B2 (en) * 2014-02-25 2018-05-30 新日鐵住金株式会社 Negative electrode active material
WO2017099172A1 (en) 2015-12-09 2017-06-15 東レ株式会社 Resin, slurry, laminate using same, and production method for laminate
WO2017110710A1 (en) 2015-12-25 2017-06-29 東レ株式会社 Resin composition
JP6789138B2 (en) * 2017-01-30 2020-11-25 京セラ株式会社 Negative electrode material for storage batteries, negative electrode for storage batteries and storage batteries
CN110809607B (en) 2017-07-07 2022-05-17 东丽株式会社 Resin composition, laminate, method for producing same, electrode, secondary battery, and electric double layer capacitor
JP7377427B2 (en) * 2019-01-31 2023-11-10 株式会社日本スペリア社 Negative electrode material for lithium ion secondary battery and its manufacturing method
JP7451021B2 (en) 2020-01-30 2024-03-18 エルジー・ケム・リミテッド Binder composition for negative electrode, negative electrode containing the same, and lithium secondary battery
WO2024063554A1 (en) * 2022-09-21 2024-03-28 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery, comprising same, and lithium secondary battery comprising negative electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282546B2 (en) * 1997-07-09 2002-05-13 住友金属工業株式会社 Anode material for lithium ion secondary battery and its electrode
JP2007227138A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Electrode for nonaqueous secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5398962B2 (en) * 2006-06-30 2014-01-29 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4199813B2 (en) * 2007-01-29 2008-12-24 三菱化学株式会社 Carbonaceous or graphite particles

Also Published As

Publication number Publication date
JP2009245773A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5361233B2 (en) Lithium secondary battery and manufacturing method thereof
JP5219339B2 (en) Lithium secondary battery
JP5178508B2 (en) Lithium secondary battery
JP4979432B2 (en) Cylindrical lithium secondary battery
JP5398962B2 (en) Lithium secondary battery and manufacturing method thereof
JP4942319B2 (en) Lithium secondary battery
US8349491B2 (en) Lithium secondary battery and method of manufacturing the same
US8609283B2 (en) Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP5348706B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP4868786B2 (en) Lithium secondary battery
JP4201509B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP5147170B2 (en) Lithium secondary battery
JP2009099523A (en) Lithium secondary battery
US20090087731A1 (en) Lithium secondary battery
JP5931750B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
JP2010165471A (en) Lithium secondary battery
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
WO2013002369A1 (en) Non-aqueous electrolyte secondary cell, and method for producing same
WO2012124525A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2004335439A (en) Nonaqueous electrolyte secondary battery
JP6946536B1 (en) Lithium secondary battery
WO2014068969A1 (en) Nonaqueous electrolyte secondary cell
JP2005100876A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, and nonaqueous electrolyte battery
JP2007273120A (en) Lithium secondary battery
JP2007213875A (en) Lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R151 Written notification of patent or utility model registration

Ref document number: 5361233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250