JP2007213875A - Lithium secondary battery and its manufacturing method - Google Patents

Lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2007213875A
JP2007213875A JP2006030429A JP2006030429A JP2007213875A JP 2007213875 A JP2007213875 A JP 2007213875A JP 2006030429 A JP2006030429 A JP 2006030429A JP 2006030429 A JP2006030429 A JP 2006030429A JP 2007213875 A JP2007213875 A JP 2007213875A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
electrode current
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006030429A
Other languages
Japanese (ja)
Inventor
Atsushi Fukui
厚史 福井
Hiroyuki Minami
博之 南
Yasuyuki Kusumoto
靖幸 樟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006030429A priority Critical patent/JP2007213875A/en
Publication of JP2007213875A publication Critical patent/JP2007213875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having high energy density and excelling in a charge-discharge cycle characteristic; and to provide its manufacturing method. <P>SOLUTION: This lithium secondary battery is provided with: a positive electrode 2 composed by arranging a positive electrode active material layer 23 on a surface of a positive electrode collector 20 made of conductive metal foil; a negative electrode composed by arranging a negative electrode active material layer containing silicon on a negative electrode collector made of conductive metal foil; a separator arranged between the positive electrode and the negative electrode; a battery case for housing a cylindrical electrode body formed by facing the positive electrode and the negative electrode to each other through the separator and by spirally rolling them; a positive electrode collector tab 7 connected to the positive electrode collector 20 and extracted from the electrode body; a negative electrode collector tab connected to the negative electrode collector and extracted from the electrode body; and a nonaqueous electrolyte. The lithium secondary battery is characterized in that the positive electrode collector tab 7 is formed out of the positive electrode collector 20, and the negative electrode collector tab is formed out of the negative electrode collector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池及びその製造方法に関するものである。   The present invention relates to a lithium secondary battery and a method for manufacturing the same.

近年、高出力、高エネルギー密度の新型二次電池の1つとして、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が利用されている。   In recent years, as one of new secondary batteries with high output and high energy density, there has been a lithium secondary battery that uses a non-aqueous electrolyte and moves lithium ions between a positive electrode and a negative electrode for charging and discharging. It's being used.

リチウム二次電池は、携帯電話やノート型パソコンなどの情報技術関連のエレクトロニクス携帯機器の電源として実用化され、広く普及している。今後、これらの携帯機器のさらなる小型化、高機能化により、電源であるリチウム二次電池への負荷が大きくなっていくことが予想され、リチウム二次電池の高エネルギー密度化への要求は非常に高いものとなっている。   Lithium secondary batteries have been put into practical use as power sources for information technology-related portable electronic devices such as mobile phones and laptop computers, and are widely used. In the future, with the further miniaturization and higher functionality of these portable devices, it is expected that the load on the lithium secondary battery, which is the power source, will increase, and the demand for higher energy density of the lithium secondary battery is extremely high It is very expensive.

電池の高エネルギー密度化には、活物質に大きなエネルギー密度を有する材料を用いることが有効な手段である。そこで、最近、リチウム二次電池においては、高エネルギー密度を有する負極活物質として、実用化されている黒鉛に代わり、リチウムとの合金化反応によってリチウムを吸蔵するAl、Sn、Siなどの元素の合金材料が提案され、検討されている。   An effective means for increasing the energy density of a battery is to use a material having a large energy density as an active material. Therefore, recently, in a lithium secondary battery, as a negative electrode active material having a high energy density, instead of graphite which has been put into practical use, an element such as Al, Sn, or Si that occludes lithium by an alloying reaction with lithium is used. Alloy materials have been proposed and studied.

しかしながら、リチウムと合金化する材料を活物質として用いた電極においては、リチウムの吸蔵・放出の際に、活物質の体積が膨張・収縮するため、活物質の微粉化や、集電体からの剥離を生じ、電極内への集電性が低下し、充放電サイクル特性が劣化するという問題がある。   However, in an electrode using a material that is alloyed with lithium as an active material, the volume of the active material expands / contracts when lithium is occluded / released. There is a problem in that peeling occurs, current collection into the electrode is reduced, and charge / discharge cycle characteristics are deteriorated.

本出願人は、リチウムと合金化する負極活物質としてケイ素を含む材料を用いた負極において、表面に凹凸を有する導電性金属箔の集電体の上に、ケイ素を含む材料からなる活物質薄膜を形成した電極が、電極内によって高い集電性を発現し、良好な充放電サイクル特性が得られることを見出している(特許文献1など)。また、ケイ素を含む材料からなる活物質とバインダーとを含む合剤層を非酸化性雰囲気下で焼結して配置した電極が、合剤層と集電体との高い密着性によって電極内に高い集電性が発現し、良好な充放電サイクル特性が得られることを見出している(特許文献2など)。   In the negative electrode using a material containing silicon as a negative electrode active material to be alloyed with lithium, the present applicant has an active material thin film made of a material containing silicon on a current collector of a conductive metal foil having irregularities on the surface. It has been found that the electrode in which the electrode is formed exhibits a high current collecting property in the electrode and good charge / discharge cycle characteristics can be obtained (Patent Document 1, etc.). In addition, an electrode in which a mixture layer containing an active material composed of a silicon-containing material and a binder is sintered in a non-oxidizing atmosphere is disposed in the electrode due to high adhesion between the mixture layer and the current collector. It has been found that high current collecting properties are exhibited and good charge / discharge cycle characteristics can be obtained (Patent Document 2, etc.).

また、電池の高エネルギー密度化を達成するためには、上記のように高いエネルギー密度を有する活物質材料を利用するだけでなく、決められた大きさの電池容器内においてできる限り多くの正極活物質及び負極活物質を詰め込むことも必要である。一般に用いられている電池においては、正極と負極を樹脂製の多孔質セパレータを介して対向させ、扁平型や円筒型に巻回した電極体を、角型や円筒型の容器内に収納することにより、高エネルギー密度化を達成している。   Further, in order to achieve a higher energy density of the battery, not only the active material having a high energy density as described above is used, but also as many positive electrode actives as possible in a battery container of a predetermined size. It is also necessary to pack the material and the negative electrode active material. In a commonly used battery, a positive electrode and a negative electrode are opposed to each other via a resin porous separator, and an electrode body wound in a flat shape or a cylindrical shape is stored in a rectangular or cylindrical container. As a result, high energy density is achieved.

しかしながら、ケイ素を含む材料を負極活物質に用いた円筒型の電池においては、リチウム吸蔵時に負極活物質の体積が大きく増加することにより応力が生じ、この応力が正極や負極に比べ外力による変形が生じ易い樹脂製の多孔質セパレータに多く加わるため、セパレータが圧縮されて目詰まりを生じ、正極と負極の間のリチウムイオンの伝導性が大きく低下し、充放電特性が低下する問題が生じる。   However, in a cylindrical battery using a material containing silicon as a negative electrode active material, stress is generated due to a large increase in the volume of the negative electrode active material during occlusion of lithium, and this stress is deformed by external force compared to the positive electrode and the negative electrode. Since many separators are easily added to the porous separator made of resin, the separator is compressed and clogged, the lithium ion conductivity between the positive electrode and the negative electrode is greatly reduced, and the charge / discharge characteristics are deteriorated.

本出願人は、上記のようなケイ素負極活物質を含む合剤層と、集電体が高い密着性を有する負極を用いた円筒型の電池において、正極と負極がセパレータを介して対向する部分の曲率半径が1.5mm以上である渦巻き状の円筒型電極体を用いることにより、サイクル特性が向上することを見出している(特許文献3)。   In the cylindrical battery using the mixture layer containing the silicon negative electrode active material as described above and the negative electrode having a current collector with high adhesion, a portion where the positive electrode and the negative electrode face each other with a separator interposed therebetween. It has been found that cycle characteristics are improved by using a spiral cylindrical electrode body having a curvature radius of 1.5 mm or more (Patent Document 3).

このような方法によればサイクル特性をある程度向上させることができるが、さらなるサイクル特性の向上が求められている。
特開2002−83594号公報 特開2002−260637号公報 特開2005−166530号公報
Although such a method can improve the cycle characteristics to some extent, further improvement of the cycle characteristics is required.
JP 2002-83594 A Japanese Patent Laid-Open No. 2002-260637 JP 2005-166530 A

本発明は、高エネルギー密度を有し、かつ充放電サイクル特性に優れたリチウム二次電池及びその製造方法を提供することにある。   It is an object of the present invention to provide a lithium secondary battery having a high energy density and excellent charge / discharge cycle characteristics and a method for producing the same.

本発明は、導電性金属箔からなる正極集電体の表面上に正極活物質層を配置した正極と、導電性金属箔からなる負極集電体上にケイ素を含む負極活物質層を配置した負極と、正極と負極の間に配置されるセパレータと、正極と負極を前記セパレータを介して対向させ渦巻き状に巻回させてなる円筒型の電極体を収納する電池容器と、正極集電体に接続され電極体から引き出される正極集電タブと、負極集電体に接続され電極体から引き出される負極集電タブと、非水電解質とを備えるリチウム二次電池であって、正極集電タブが正極集電体から形成されており、負極集電タブが負極集電体から形成されていることを特徴としている。   In the present invention, a positive electrode in which a positive electrode active material layer is arranged on the surface of a positive electrode current collector made of a conductive metal foil, and a negative electrode active material layer containing silicon is arranged on a negative electrode current collector made of a conductive metal foil. A battery container containing a negative electrode, a separator disposed between the positive electrode and the negative electrode, a cylindrical electrode body in which the positive electrode and the negative electrode are opposed to each other with the separator interposed between them, and a positive electrode current collector A lithium secondary battery comprising: a positive current collector tab connected to the electrode body and drawn from the electrode body; a negative electrode current collector tab connected to the negative electrode current collector and drawn from the electrode body; and a non-aqueous electrolyte. Is formed from a positive electrode current collector, and the negative electrode current collector tab is formed from a negative electrode current collector.

本発明においては、正極集電タブ及び負極集電タブが、それぞれ正極集電体及び負極集電体から形成されているので、従来のように集電タブをAl板またはNi板のような金属板から形成する場合と異なり、充電時のケイ素活物質の変形に伴い電極体にスムーズな変形を生じさせることができる。このため、セパレータの圧縮による目詰まりが生じるのを抑制することができ、優れた充放電サイクル特性を得ることができる。   In the present invention, since the positive electrode current collector tab and the negative electrode current collector tab are formed from the positive electrode current collector and the negative electrode current collector, respectively, the current collector tab is made of a metal such as an Al plate or Ni plate as in the prior art. Unlike the case of forming from a plate, the electrode body can be smoothly deformed with deformation of the silicon active material during charging. For this reason, clogging due to the compression of the separator can be suppressed, and excellent charge / discharge cycle characteristics can be obtained.

また、本発明において、正極集電タブ及び負極集電タブは、正極及び負極のそれぞれの端部に形成されていることが好ましい。電極の形が、円筒型電池において一般的に用いられている長方形である場合には、その長手方向の端部において集電タブが形成されていることが好ましい。長手方向の端部に集電タブを形成することにより、電極体の巻取り工程を容易にするとことができる。   Moreover, in this invention, it is preferable that the positive electrode current collection tab and the negative electrode current collection tab are formed in each edge part of a positive electrode and a negative electrode. When the shape of the electrode is a rectangle generally used in a cylindrical battery, a current collecting tab is preferably formed at the end in the longitudinal direction. By forming the current collecting tab at the end in the longitudinal direction, the winding process of the electrode body can be facilitated.

また、本発明において、正極集電タブ及び負極集電タブは、正極及び負極のそれぞれの電極面積の5%以下の面積であることが好ましい。正極集電タブ及び負極集電タブの面積が、正極及び負極のそれぞれの電極面積の5%を超える場合には、充放電時の電極体のスムーズな変形が生じにくくなり、セパレータの目詰まりが生じ易くなり、充放電特性が低下する場合がある。   Moreover, in this invention, it is preferable that a positive electrode current collection tab and a negative electrode current collection tab are the area of 5% or less of each electrode area of a positive electrode and a negative electrode. When the area of the positive electrode current collector tab and the negative electrode current collector tab exceeds 5% of the electrode area of each of the positive electrode and the negative electrode, smooth deformation of the electrode body during charge / discharge is less likely to occur, and the separator is clogged. It tends to occur and the charge / discharge characteristics may deteriorate.

本発明の負極は、ケイ素を含む負極活物質粒子と負極バインダーとを含む負極合剤層を導電性金属箔負極集電体の表面上で焼結して配置したものであることが好ましい。このような負極を用いることにより、リチウムの吸蔵の際に大きな体積膨張を伴うケイ素を含む材料を負極活物質として用いた場合においても、焼結の効果によって負極活物質粒子間の密着性及び負極合剤層と負極集電体間の密着性が大きく向上されており、負極内に高い集電性が保持されているので、高エネルギー密度かつ優れた充放電サイクル特性を有する電池を得ることができる。   The negative electrode of the present invention is preferably one in which a negative electrode mixture layer containing negative electrode active material particles containing silicon and a negative electrode binder is sintered on the surface of a conductive metal foil negative electrode current collector. By using such a negative electrode, even when a material containing silicon with large volume expansion during occlusion of lithium is used as the negative electrode active material, the adhesion between the negative electrode active material particles and the negative electrode can be reduced due to the effect of sintering. Adhesion between the mixture layer and the negative electrode current collector is greatly improved, and high current collection is maintained in the negative electrode, so that a battery having a high energy density and excellent charge / discharge cycle characteristics can be obtained. it can.

この場合、負極バインダーとしては、高い機械的強度を有し、さらには弾性に優れていることが好ましい。バインダーが優れた機械的強度を有していることにより、リチウムの吸蔵・放出時に、ケイ素負極活物質の体積変化が生じた場合でもバインダーの破壊が生じず、ケイ素活物質の体積変化に追随した合剤層の変形が可能となるので、電極内の集電性が保持され、優れた充放電サイクル特性を得ることができる。このように、高い機械的強度を有したバインダーとしては、ポリイミド樹脂を好ましく用いることができる。また、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系樹脂も好ましく用いることができる。   In this case, the negative electrode binder preferably has high mechanical strength and is excellent in elasticity. Due to the excellent mechanical strength of the binder, the destruction of the binder did not occur even when the volume of the silicon negative electrode active material changed during the insertion and release of lithium, and the volume change of the silicon active material followed. Since the mixture layer can be deformed, the current collecting property in the electrode is maintained, and excellent charge / discharge cycle characteristics can be obtained. Thus, a polyimide resin can be preferably used as the binder having high mechanical strength. Moreover, fluorine-type resins, such as polyvinylidene fluoride and polytetrafluoroethylene, can also be used preferably.

また、負極バインダーとしては、熱可塑性であることが特に好ましい。例えば、負極バインダーがガラス転移温度や融点を有する場合、ガラス転移温度や融点より高い温度で負極合剤層を負極集電表面上に焼結して配置するための熱処理を行うことにより、バインダーが活物質粒子や集電体と熱融着し、活物質粒子間や合剤層と集電体との密着性がさらに大きく向上し、電極内の集電性を大きく向上させることができ、さらに優れた充放電サイクル特性を得ることができる。   The negative electrode binder is particularly preferably thermoplastic. For example, when the negative electrode binder has a glass transition temperature or a melting point, the binder is obtained by performing a heat treatment to sinter and dispose the negative electrode mixture layer on the negative electrode current collector surface at a temperature higher than the glass transition temperature or the melting point. It can be heat-sealed with the active material particles and the current collector, the adhesion between the active material particles and between the mixture layer and the current collector can be further improved, and the current collection in the electrode can be greatly improved. Excellent charge / discharge cycle characteristics can be obtained.

また、この場合、負極バインダーは負極合剤層を負極集電体表面上に焼結して配置するための熱処理後も完全に分解せずに残存しているものが好ましい。熱処理後に、バインダーが完全に分解された場合、バインダーによる結着効果が失われてしまうため、電極内の集電性が大きく低下し、劣悪な充放電サイクル特性となってしまう。   In this case, it is preferable that the negative electrode binder remains without being completely decomposed after the heat treatment for disposing the negative electrode mixture layer on the surface of the negative electrode current collector. When the binder is completely decomposed after the heat treatment, the binding effect of the binder is lost, so that the current collecting property in the electrode is greatly lowered, resulting in poor charge / discharge cycle characteristics.

本発明のリチウム二次電池における負極バインダーの量は、負極合剤層の総重量の5重量%以上、バインダーの占める体積が負極合剤層の総体積の5%以上であることが好ましい。ここで、負極合剤層の総体積とは,合剤層内に含まれる活物質やバインダーなどの材料それぞれの体積を総和したものであり、合剤層内に空隙が存在する場合には、この空隙が占める体積を含まないものとする。バインダー量が合剤層の総重量の5重量%未満、バインダーの占める体積が合剤層の総体積の5%未満である場合、負極活物質粒子に対してバインダー量が少な過ぎるために、バインダーによる電極内の密着性が不十分となる。また、これに対し、バインダー量を増加させ過ぎた場合、電極内の抵抗が増加するため、初期の充電が困難になる。従って、負極バインダー量が負極合剤層の総重量の50重量%以下、バインダーの占める体積が負極合剤層の総体積の50%以下であることが好ましい。   The amount of the negative electrode binder in the lithium secondary battery of the present invention is preferably 5% by weight or more of the total weight of the negative electrode mixture layer, and the volume occupied by the binder is preferably 5% or more of the total volume of the negative electrode mixture layer. Here, the total volume of the negative electrode mixture layer is the sum of the volumes of materials such as the active material and the binder contained in the mixture layer, and when there are voids in the mixture layer, The volume occupied by this void is not included. When the binder amount is less than 5% by weight of the total weight of the mixture layer and the volume of the binder is less than 5% of the total volume of the mixture layer, the binder amount is too small with respect to the negative electrode active material particles. Due to this, the adhesion in the electrode becomes insufficient. On the other hand, if the amount of the binder is excessively increased, the resistance in the electrode increases, so that initial charging becomes difficult. Therefore, the amount of the negative electrode binder is preferably 50% by weight or less of the total weight of the negative electrode mixture layer, and the volume occupied by the binder is preferably 50% or less of the total volume of the negative electrode mixture layer.

本発明のリチウム二次電池における負極活物質としては、上記のように負極が負極活物質粒子と負極バインダーとを含む負極合剤層を導電性金属箔負極集電体の表面上で焼結して配置したものである場合、ケイ素及び/またはケイ素合金を含む粒子であることが好ましい。この場合、ケイ素合金としては、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共結晶合金などが挙げられる。合金の作製方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。特に、液体急冷法としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が挙げられる。   As the negative electrode active material in the lithium secondary battery of the present invention, the negative electrode is sintered on the surface of the conductive metal foil negative electrode current collector as described above, with the negative electrode mixture layer containing the negative electrode active material particles and the negative electrode binder. The particles are preferably particles containing silicon and / or a silicon alloy. In this case, the silicon alloy includes a solid solution of silicon and one or more other elements, an intermetallic compound of silicon and one or more other elements, and a co-crystal alloy of silicon and one or more other elements. Etc. Examples of the method for producing the alloy include an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, and a firing method. In particular, examples of the liquid quenching method include a single roll quenching method, a twin roll quenching method, and various atomizing methods such as a gas atomizing method, a water atomizing method, and a disk atomizing method.

また、本発明のリチウム二次電池における負極活物質としては、ケイ素及び/またはケイ素合金を含む粒子の表面を金属等で被覆したものを用いてもよい。被覆方法としては、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などが挙げられる。   Moreover, as a negative electrode active material in the lithium secondary battery of this invention, you may use what coat | covered the surface of the particle | grains containing a silicon and / or a silicon alloy with a metal. Examples of the coating method include an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, and a chemical vapor deposition method.

また、本発明のリチウム二次電池における負極活物質としては、ケイ素単体の粒子も好ましく用いることができる。   Moreover, as a negative electrode active material in the lithium secondary battery of the present invention, particles of silicon alone can be preferably used.

本発明のリチウム二次電池における負極活物質粒子の平均粒子径は、特に限定されないが、100μm以下であることが好ましく、さらに好ましくは50μm以下、最も好ましくは15μm以下である。粒径の小さい活物質粒子を用いた場合、充放電でのリチウムの吸蔵・放出に伴う活物質粒子の体積の膨張・収縮の絶対量が小さくなるので、負極バインダーの破壊が生じにくくなり、電極内の集電性の低下を抑制することができ、優れた充放電サイクル特性を得ることができる。   The average particle diameter of the negative electrode active material particles in the lithium secondary battery of the present invention is not particularly limited, but is preferably 100 μm or less, more preferably 50 μm or less, and most preferably 15 μm or less. When using active material particles with a small particle size, the absolute amount of volume expansion / contraction of the active material particles associated with insertion / extraction of lithium during charging / discharging is reduced, so that the negative electrode binder is less likely to be destroyed, and the electrode It is possible to suppress a decrease in the current collecting ability, and to obtain excellent charge / discharge cycle characteristics.

また、本発明のリチウム二次電池における負極活物質粒子の粒度分布は、できる限り狭いことが好ましい。幅広い粒度分布である場合、粒径が大きく異なる活物質粒子間において、リチウムの吸蔵・放出に伴う体積の膨張・収縮の絶対量に大きな差が残存することになるため、合剤層内で歪みが生じ、バインダーの破壊が生じる。従って、電極内の集電性が低下し、充放電サイクル特性が低下する。   The particle size distribution of the negative electrode active material particles in the lithium secondary battery of the present invention is preferably as narrow as possible. In the case of a wide particle size distribution, there is a large difference in the absolute volume expansion and contraction associated with the insertion and extraction of lithium between active material particles with greatly different particle sizes, so that distortion occurs in the mixture layer. And the binder breaks down. Therefore, the current collecting property in the electrode is lowered, and the charge / discharge cycle characteristics are lowered.

本発明のリチウム二次電池における負極集電体としての導電性金属箔は、負極合剤層が配置される面の表面粗さRaが0.2μm以上であることが好ましい。このような表面粗さRaを有する導電性金属箔を負極集電体として用いることにより、集電体の表面凹凸部分にバインダーが入り込み、バインダーと集電体間にアンカー効果が発現しても高い密着性が得られるため、リチウムの吸蔵・放出に伴う活物質粒子の体積変化を生じても、合剤層の集電体からの剥離が抑制される。集電体の両面に負極合剤層を配置する場合には、集電体の両面の表面粗さRaが0.2μm以上であることが好ましい。   The conductive metal foil as the negative electrode current collector in the lithium secondary battery of the present invention preferably has a surface roughness Ra of 0.2 μm or more on the surface on which the negative electrode mixture layer is disposed. Even when the conductive metal foil having such a surface roughness Ra is used as the negative electrode current collector, the binder enters the surface irregularities of the current collector and the anchor effect is exhibited between the binder and the current collector. Since adhesiveness is obtained, even if the volume change of the active material particles due to insertion and extraction of lithium occurs, peeling of the mixture layer from the current collector is suppressed. When the negative electrode mixture layers are disposed on both sides of the current collector, the surface roughness Ra on both sides of the current collector is preferably 0.2 μm or more.

上記の表面粗さRa及び局部山頂の平均間隔Sは100Ra≧Sの関係を有することが好ましい。表面粗さRa及び局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば、表面粗さ計により測定することができる。   The surface roughness Ra and the average distance S between the local peaks are preferably 100Ra ≧ S. The surface roughness Ra and the average interval S between the local peaks are defined in Japanese Industrial Standard (JIS B 0601-1994), and can be measured, for example, with a surface roughness meter.

導電性金属箔の表面粗さRaを0.2μm以上とするためには、導電性金属箔に粗面化処理を施してもよい。このような粗面化処理としては、めっき法、気相成長法、エッチング法、及び研磨法などが挙げられる。めっき法及び気相成長法は、金属箔の表面上に凹凸を有する薄膜層を形成することにより、表面を粗面化する方法である。めっき法としては、電解めっき法及び無電解めっき法が挙げられる。また、気相成長法としては、スパッタリング法、化学気相成長法、蒸着法などが挙げられる。エッチング法としては、物理的エッチングや化学的エッチングによる方法が挙げられる。また、研磨法としては、サンドペーパーによる研磨やブラスト法による研磨などが挙げられる。   In order to set the surface roughness Ra of the conductive metal foil to 0.2 μm or more, the conductive metal foil may be roughened. Examples of such roughening treatment include a plating method, a vapor phase growth method, an etching method, and a polishing method. The plating method and the vapor phase growth method are methods for roughening the surface by forming a thin film layer having irregularities on the surface of the metal foil. Examples of the plating method include an electrolytic plating method and an electroless plating method. Examples of the vapor deposition method include sputtering, chemical vapor deposition, and vapor deposition. Examples of the etching method include a physical etching method and a chemical etching method. Examples of the polishing method include sandpaper polishing and blasting.

本発明における導電性金属箔負極集電体としては、例えば、銅、ニッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせからなる合金の箔が挙げられる。   Examples of the conductive metal foil negative electrode current collector in the present invention include foils of metals made of metals such as copper, nickel, iron, titanium, cobalt, or combinations thereof.

また、本発明における導電性金属箔負極集電体は、高い機械的強度を有していることが好ましい。集電体が高い機械的強度を有していることにより、リチウムの吸蔵・放出時に、ケイ素負極活物質の体積変化によって発生する応力が集電体に加えられた場合でも、集電体が破壊や塑性変形を生じることなくこれを緩和できるため、合剤層の集電体からの剥離が抑制され、電極内の集電性が保持され、優れた充放電サイクル特性を得ることができる。   Moreover, it is preferable that the electroconductive metal foil negative electrode collector in this invention has high mechanical strength. Due to the high mechanical strength of the current collector, the current collector is destroyed even when stress generated by the volume change of the silicon negative electrode active material is applied to the current collector during insertion and extraction of lithium. Since this can be alleviated without causing plastic deformation, separation of the mixture layer from the current collector is suppressed, current collection in the electrode is maintained, and excellent charge / discharge cycle characteristics can be obtained.

本発明における導電性金属箔負極集電体の厚みは、特に限定されものではないが、10μm〜100μmの範囲であることが好ましい。   Although the thickness of the electroconductive metal foil negative electrode collector in this invention is not specifically limited, It is preferable that it is the range of 10 micrometers-100 micrometers.

本発明における導電性金属箔負極集電体の表面粗さRaの上限は、特に限定されものではないが、上記のように導電性金属箔の厚みが10μm〜100μmの範囲にあることが好ましいので、実質的には表面粗さRaの上限は10μm以下である。   The upper limit of the surface roughness Ra of the conductive metal foil negative electrode current collector in the present invention is not particularly limited, but the thickness of the conductive metal foil is preferably in the range of 10 μm to 100 μm as described above. The upper limit of the surface roughness Ra is substantially 10 μm or less.

本発明の負極においては、負極合剤層の厚みXが、負極導電性金属箔の厚みY及び表面粗さRaと、5Y≧X,250Ra≧Xの関係を有することが好ましい。合剤層の厚みXが5Yまたは250Ra以上の場合、充放電時の合剤層の体積の膨張・収縮が大きいために、金属箔集電体表面上の凹凸によっては合剤層と集電体との密着性が保てられなくなり、合剤層の集電体からの剥離が生じる。   In the negative electrode of the present invention, the thickness X of the negative electrode mixture layer preferably has a relationship of 5Y ≧ X, 250Ra ≧ X with the thickness Y and surface roughness Ra of the negative electrode conductive metal foil. When the thickness X of the mixture layer is 5Y or 250 Ra or more, the volume of the mixture layer during expansion / contraction during charging / discharging is large, so depending on the irregularities on the surface of the metal foil collector, the mixture layer and the collector The adhesive layer cannot be maintained and peeling of the mixture layer from the current collector occurs.

本発明における負極合剤層の厚みXは、特に限定されものではないが、1000μm以下が好ましく、さらに好ましくは10μm〜100μmである。   Although the thickness X of the negative mix layer in this invention is not specifically limited, 1000 micrometers or less are preferable, More preferably, they are 10 micrometers-100 micrometers.

本発明の負極においては、合剤層内に導電性粉末を混合してもよい。導電性粉末を混合することにより、活物質粒子の周囲に導電性粉末による導電性ネットワークが形成されるので、電極内の集電性をさらに向上させることができる。導電性粉末としては上記導電性金属箔と同様の材質のものを好ましく用いることができる。具体的には、銅、ニッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせからなる合金または混合物である。特に、金属粉末としては銅粉末が好ましく用いられる。また、導電性カーボン粉末も好ましく用いることができる。   In the negative electrode of the present invention, conductive powder may be mixed in the mixture layer. By mixing the conductive powder, a conductive network of the conductive powder is formed around the active material particles, so that the current collecting property in the electrode can be further improved. As the conductive powder, a material similar to that of the conductive metal foil can be preferably used. Specifically, it is an alloy or a mixture made of a metal such as copper, nickel, iron, titanium, cobalt, or a combination thereof. In particular, copper powder is preferably used as the metal powder. Also, conductive carbon powder can be preferably used.

負極合剤層内への導電性粉末の混合量は、負極活物質との総重量の50重量%以下、導電性粉末の占める体積が負極合剤層の総体積の20%以下であることが好ましい。導電性粉末の混合量が多過ぎると、負極合剤層内の負極活物質の割合が相対的に少なくなるので、負極の充放電容量が小さくなる。また、この場合、合剤層内での活物質と導電剤との総量に比べたバインダー量の割合が低下するため、合剤層の強度が低下し、充放電サイクル特性が低下する。   The mixing amount of the conductive powder in the negative electrode mixture layer is 50% by weight or less of the total weight with the negative electrode active material, and the volume occupied by the conductive powder is 20% or less of the total volume of the negative electrode mixture layer. preferable. When there is too much mixing amount of electroconductive powder, since the ratio of the negative electrode active material in a negative mix layer becomes relatively small, the charge / discharge capacity of a negative electrode becomes small. Moreover, in this case, since the ratio of the binder amount compared to the total amount of the active material and the conductive agent in the mixture layer is reduced, the strength of the mixture layer is reduced and charge / discharge cycle characteristics are reduced.

導電性粉末の平均粒径は、特に限定されものではないが、100μm以下であることが好ましく、さらに好ましくは50μm以下、最も好ましくは10μm以下である。   The average particle size of the conductive powder is not particularly limited, but is preferably 100 μm or less, more preferably 50 μm or less, and most preferably 10 μm or less.

本発明のリチウム二次電池における正極活物質としては、リチウム遷移金属複合酸化物が好ましい。リチウム遷移金属複合酸化物としては、LiCoO、LiNiO、LiMn、LiMnO、LiCo0.5Ni0.5、LiNi0.33Co0.33Mn0.34などが例示されるが、特には、層状構造を有するLiとNiとMnとCoを含むリチウム遷移金属複合酸化物とLiCoOとを好ましく用いることができる。 The positive electrode active material in the lithium secondary battery of the present invention is preferably a lithium transition metal composite oxide. Examples of the lithium transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.33 Co 0.33 Mn 0.34 O 2 and the like. In particular, a lithium transition metal composite oxide containing Li, Ni, Mn and Co having a layered structure and LiCoO 2 can be preferably used.

リチウム遷移金属複合酸化物のBET比表面積は、3m/g以下であることが好ましい。3m/gを超える場合、非水電解質との接触面積が大きくなるため、充放電時に副反応を生じ、充放電特性が低下するため、好ましくない。 The BET specific surface area of the lithium transition metal composite oxide is preferably 3 m 2 / g or less. When exceeding 3 m < 2 > / g, since a contact area with a nonaqueous electrolyte becomes large, a side reaction will be produced at the time of charging / discharging, and it is unpreferable since a charging / discharging characteristic falls.

また、リチウム遷移金属複合酸化物の平均粒子径(二次粒子の平均粒子径)は、20μm以下であることが好ましい。平均粒子径が20μmを超える場合、リチウム遷移金属複合酸化物粒子内のリチウムの移動距離が大きくなるため、充放電サイクル特性が低下する。   Moreover, it is preferable that the average particle diameter (average particle diameter of a secondary particle) of lithium transition metal complex oxide is 20 micrometers or less. When the average particle diameter exceeds 20 μm, the movement distance of lithium in the lithium transition metal composite oxide particles is increased, so that the charge / discharge cycle characteristics are deteriorated.

本発明のリチウム二次電池の正極においては、正極合剤層中に正極導電剤が含まれていることが好ましい。正極導電剤としては、公知の様々な導電剤を用いることができ、例えば、導電性の炭素材料を好ましく用いることができ、特には、アセチレンブラックやケッチェンブラックを好ましく用いることができる。   In the positive electrode of the lithium secondary battery of the present invention, it is preferable that a positive electrode conductive agent is contained in the positive electrode mixture layer. As the positive electrode conductive agent, various known conductive agents can be used. For example, a conductive carbon material can be preferably used, and in particular, acetylene black or ketjen black can be preferably used.

正極導電剤の量は、正極合剤層の1重量%以上、5重量%以下であることが好ましい。正極導電剤の量が正極合剤層の1重量%未満である場合、導電剤の量が少な過ぎるために、正極活物質の周りに十分な導電ネットワークが形成されず、正極合剤層内の集電性がて化し、充放電特性が低下する。また、正極導電剤の量が正極合剤層の5重量%を超える場合、導電剤の量が多過ぎるため、導電剤の接着のためにバインダーが消費され、正極活物質粒子間や正極集電体に対する正極活物質の密着性が低下して、正極活物質の脱離が生じ易くなり、充放電特性が低下する。   The amount of the positive electrode conductive agent is preferably 1% by weight or more and 5% by weight or less of the positive electrode mixture layer. When the amount of the positive electrode conductive agent is less than 1% by weight of the positive electrode mixture layer, the amount of the conductive agent is too small, so that a sufficient conductive network is not formed around the positive electrode active material, The current collecting property is reduced and the charge / discharge characteristics are deteriorated. In addition, when the amount of the positive electrode conductive agent exceeds 5% by weight of the positive electrode mixture layer, the amount of the conductive agent is too large, so that the binder is consumed for adhesion of the conductive agent, and between the positive electrode active material particles and the positive electrode current collector. The adhesion of the positive electrode active material to the body is reduced, the positive electrode active material is easily detached, and the charge / discharge characteristics are deteriorated.

本発明のリチウム二次電池における正極バインダーとしては、公知の様々なバインダーにおいて、本発明における非水電解質の溶媒に溶解しないものであれば制限なく用いることができ、例えば、ポリフッ化ビニリデン等のフッ素系樹脂、ポリイミド系樹脂、ポリアクリロニトリルなどを好ましく用いることができる。   As the positive electrode binder in the lithium secondary battery of the present invention, various known binders can be used without limitation as long as they do not dissolve in the non-aqueous electrolyte solvent of the present invention. For example, fluorine such as polyvinylidene fluoride can be used. A resin, a polyimide resin, polyacrylonitrile, or the like can be preferably used.

正極バインダーの量は、正極合剤層の1重量%以上、5重量%以下であることが好ましい。正極バインダーの量は、正極合剤層の1重量%以上、5重量%以下であることが好ましい。正極バインダーの量が正極合剤層の1重量%未満である場合、正極活物質粒子間の接触面積が増えて接触抵抗は低下するが、バインダーの量が少な過ぎるために、正極活物質粒子間や正極集電体に対する正極活物質の密着性が低下して、正極活物質の脱離が生じ易くなり、充放電特性が低下する。また、正極バインダーの量が正極合剤層の5重量%を超える場合、正極活物質粒子間や正極集電体に対する正極活物質の密着性は向上するが、バインダーの量が多過ぎるために、正極活物質粒子間の接触面積が減り接触抵抗が増加し、充放電特性が低下する。   The amount of the positive electrode binder is preferably 1% by weight or more and 5% by weight or less of the positive electrode mixture layer. The amount of the positive electrode binder is preferably 1% by weight or more and 5% by weight or less of the positive electrode mixture layer. When the amount of the positive electrode binder is less than 1% by weight of the positive electrode mixture layer, the contact area between the positive electrode active material particles increases and the contact resistance decreases, but the amount of the binder is too small, so Further, the adhesion of the positive electrode active material to the positive electrode current collector is reduced, the positive electrode active material is easily detached, and the charge / discharge characteristics are deteriorated. Further, when the amount of the positive electrode binder exceeds 5% by weight of the positive electrode mixture layer, the adhesion of the positive electrode active material between the positive electrode active material particles and the positive electrode current collector is improved, but the amount of the binder is too large. The contact area between the positive electrode active material particles decreases, the contact resistance increases, and the charge / discharge characteristics deteriorate.

本発明のリチウム二次電池における正極集電体としての導電性金属箔としては、充放電時に正極に加わる電位において、非水電解質に溶解せずに安定に存在するものであれば制限なく用いることができ、例えばAl箔を好ましく用いることができる。   The conductive metal foil as the positive electrode current collector in the lithium secondary battery of the present invention can be used without limitation as long as it is stably present without being dissolved in the nonaqueous electrolyte at the potential applied to the positive electrode during charging and discharging. For example, an Al foil can be preferably used.

本発明における正極合剤層の密度は、3.0g/cm以上であることが好ましい。正極合剤層の密度が3.0g/cm以上である場合、正極活物質間の接触面積が増加して、正極合剤層内の集電性が向上するため、優れた充放電特性を得ることができる。 The density of the positive electrode mixture layer in the present invention is preferably 3.0 g / cm 3 or more. When the density of the positive electrode mixture layer is 3.0 g / cm 3 or more, the contact area between the positive electrode active materials is increased, and the current collecting property in the positive electrode mixture layer is improved. Obtainable.

本発明のリチウム二次電池における非水電解質の溶媒は、特に限定されものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートや酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトンなどのエステル類や、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、2−メチルテトラヒドロフランなどのエーテル類や、アセトニトリル等のニトリル類や、ジメチルホルムアミド等のアミド類などを用いることができ、これらを単独でまたは複数組み合わせて使用することができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を好ましく用いることができる。   The non-aqueous electrolyte solvent in the lithium secondary battery of the present invention is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. Chain carbonates and esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1, Ethers such as 2-dioxane and 2-methyltetrahydrofuran, nitriles such as acetonitrile, amides such as dimethylformamide, and the like can be used alone or in combination. It is possible to use. In particular, a mixed solvent of a cyclic carbonate and a chain carbonate can be preferably used.

また、本発明における非水電解質の溶媒としては、特に限定されものではないが、LiPF、LiBF、LiAsFなどの化学式LiXF(式中、XはP、As、Sb、B、Bi、Al、Ga、またはInであり、XがP、AsまたはSbのときyは6であり、XがB、Bi、Al、Ga、またはInのときyは4である)で表されるものや、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiClO、Li10Cl10、Li12Cl12などのリチウム化合物を用いることができる。これらの中でも特にLiPFを好ましく用いることができる。 Further, the nonaqueous electrolyte solvent in the present invention is not particularly limited, but is a chemical formula LiXF y such as LiPF 6 , LiBF 4 , LiAsF 6 (wherein X is P, As, Sb, B, Bi, Y is 6 when X is P, As, or Sb, and y is 4 when X is B, Bi, Al, Ga, or In. , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12, and other lithium compounds can be used. Among these, LiPF 6 can be particularly preferably used.

また、本発明における非水電解質は、二酸化炭素を溶存していることが好ましい。非水電解質に二酸化炭素を溶存されていることにより、正負活物質表面上でのリチウムの吸蔵・放出反応が円滑に生じ、さらに優れた充放電サイクル特性を得ることができる。   Moreover, it is preferable that the nonaqueous electrolyte in the present invention dissolves carbon dioxide. Since carbon dioxide is dissolved in the non-aqueous electrolyte, lithium occlusion / release reactions occur smoothly on the surface of the positive and negative active materials, and more excellent charge / discharge cycle characteristics can be obtained.

さらに、本発明における非水電解質としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質が挙げられる。本発明における非水電解質は、リチウムイオン導電性を発現させる溶質としてのリチウム化合物と、これを溶解、保持する溶媒が電池の充放電時あるいは保存時に分解しない限り、制約なく用いることができる。 Furthermore, examples of the non-aqueous electrolyte in the present invention include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide and polyacrylonitrile is impregnated with an electrolytic solution, and inorganic solid electrolytes such as LiI and Li 3 N. The non-aqueous electrolyte in the present invention can be used without limitation as long as the lithium compound as a solute that develops lithium ion conductivity and the solvent that dissolves and retains the lithium compound do not decompose during charge / discharge or storage of the battery.

本発明のリチウム二次電池の製造方法は、上記本発明のリチウム二次電池を製造することができる方法であって、正極集電タブ及び負極集電タブをそれぞれ、正極集電体及び負極集電体から形成する工程と、正極と負極をセパレータを介して対向させ渦巻き状に巻回させて円筒型の電極体を作製する工程と、該電極体を電池容器内に収納する工程とを備えることを特徴としている。   The method for producing a lithium secondary battery of the present invention is a method for producing the lithium secondary battery of the present invention, wherein the positive electrode current collector tab and the negative electrode current collector tab are respectively connected to the positive electrode current collector and the negative electrode current collector. A step of forming the electrode body, a step of producing a cylindrical electrode body by causing the positive electrode and the negative electrode to face each other through a separator and spirally winding the electrode body, and a step of storing the electrode body in a battery container. It is characterized by that.

本発明のリチウム二次電池においては、上記のように負極がケイ素を含む負極活物質粒子と負極バインダーとを含む負極合剤層を負極集電体の表面上で焼結して配置したものであることが好ましいが、この場合の負極の製造方法としては、負極バインダーの溶液中に負極活物質粒子を均一に混合し分散させたスラリーを負極集電体の表面上に塗布することにより、負極合剤層を配置し、負極合剤層を負極集電体の表面上に配置した状態で非酸化性雰囲気下に焼結する工程を備えることが好ましい。   In the lithium secondary battery of the present invention, as described above, the negative electrode mixture layer including the negative electrode active material particles containing silicon and the negative electrode binder is sintered and disposed on the surface of the negative electrode current collector. Preferably, the negative electrode in this case is produced by applying a slurry in which negative electrode active material particles are uniformly mixed and dispersed in a negative electrode binder solution onto the surface of the negative electrode current collector. It is preferable to provide a step of sintering in a non-oxidizing atmosphere in a state where the mixture layer is disposed and the negative electrode mixture layer is disposed on the surface of the negative electrode current collector.

この場合、負極の作製における焼結は、例えば、真空下または窒素雰囲気下またはアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。また、水素雰囲気などの還元性雰囲気下で行ってもよい。焼結する際の熱処理の温度は、導電剤金属箔集電体及び活物質粒子の融点以下の温度であることが好ましい。例えば、導電性金属箔として銅箔を用いた場合には、融点1083℃以下であることが好ましい。また、上記のように、負極バインダーが完全に分解しない温度で焼結のための熱処理が行われることも負極の集電性向上の観点から好ましい。このため、さらに好ましくは、200〜500℃であり、より好ましくは300〜450℃である。また、負極の焼結は、大気中などの酸化性雰囲気下で行ってもよいが、この場合、焼結のための熱処理の温度は300℃以下であることが好ましい。また、焼結の方法としては、放電プラズマ焼結法や、ホットプレス法を用いてもよい。   In this case, the sintering in the production of the negative electrode is preferably performed in, for example, a vacuum, a nitrogen atmosphere, or an inert gas atmosphere such as argon. Further, it may be performed in a reducing atmosphere such as a hydrogen atmosphere. The temperature of the heat treatment at the time of sintering is preferably a temperature equal to or lower than the melting point of the conductive agent metal foil current collector and the active material particles. For example, when a copper foil is used as the conductive metal foil, the melting point is preferably 1083 ° C. or lower. In addition, as described above, it is also preferable from the viewpoint of improving the current collecting property of the negative electrode that the heat treatment for sintering is performed at a temperature at which the negative electrode binder is not completely decomposed. For this reason, More preferably, it is 200-500 degreeC, More preferably, it is 300-450 degreeC. Moreover, although sintering of a negative electrode may be performed in oxidizing atmospheres, such as air | atmosphere, it is preferable that the temperature of the heat processing for sintering is 300 degrees C or less in this case. Further, as a sintering method, a discharge plasma sintering method or a hot press method may be used.

また、本発明の製造方法においては、集電体の上に合剤層を形成した後、焼結する前に、この合剤層を集電体と共に圧延することが好ましい。この圧延により、合剤層の充填密度を高めることができ、合剤層の厚みの低減及び活物質粒子間の密着性及び合剤層と集電体との密着性を高めることができる。このため、高エネルギー密度であり、かつ充放電サイクル特性に優れた電池とすることができる。   Moreover, in the manufacturing method of this invention, after forming a mixture layer on a collector, it is preferable to roll this mixture layer with a collector before sintering. By this rolling, the packing density of the mixture layer can be increased, the thickness of the mixture layer can be reduced, the adhesion between the active material particles, and the adhesion between the mixture layer and the current collector can be enhanced. For this reason, it can be set as the battery which is high energy density and was excellent in charging / discharging cycling characteristics.

本発明によれば、高エネルギー密度を有し、かつ充放電サイクル特性に優れたリチウム二次電池とすることができる。   According to the present invention, a lithium secondary battery having a high energy density and excellent charge / discharge cycle characteristics can be obtained.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. It is.

(実験1)
〔正極の作製〕
LiCOとCoCOとを、LiとCoのモル比が1:1になるように乳鉢にて混合した後、空気雰囲気中にて800℃で24時間熱処理し、これを粉砕して平均粒子径約7μmのLiCoOで表されるリチウムコバルト複合酸化物を得た。得られたリチウムコバルト複合酸化物のBET比表面積では0.49m/gであった。
(Experiment 1)
[Production of positive electrode]
Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1, and then heat-treated at 800 ° C. for 24 hours in an air atmosphere. A lithium cobalt composite oxide represented by LiCoO 2 having a particle size of about 7 μm was obtained. The BET specific surface area of the obtained lithium cobalt composite oxide was 0.49 m 2 / g.

分散媒としてのN−メチル−2−ピロリドンに、正極活物質としてのLiCoO粉末と、正極導電剤としての炭素材料粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、活物質と導電剤とバインダーとの重量比が94:3:3となるように加えた後、混練し、正極合剤スラリーとした。 N-methyl-2-pyrrolidone as a dispersion medium, LiCoO 2 powder as a positive electrode active material, carbon material powder as a positive electrode conductive agent, and polyvinylidene fluoride as a positive electrode binder, an active material, a conductive agent, and a binder Was added so that the weight ratio was 94: 3: 3, and then kneaded to obtain a positive electrode mixture slurry.

この正極合剤スラリーを、正極集電体としての厚み15μm、長さ460mm、幅40mmのアルミニウム箔の両面に、塗布部が表面及び裏面ともに長さ410mm、幅40mmとなるように塗布し、乾燥した後、圧延した。   This positive electrode mixture slurry was applied to both sides of an aluminum foil having a thickness of 15 μm, a length of 460 mm, and a width of 40 mm as a positive electrode current collector so that the coated portion had a length of 410 mm and a width of 40 mm on both the front and back surfaces. And then rolled.

集電体上の合剤層量は53mg/cmであり、厚みは160μmであった。 The amount of the mixture layer on the current collector was 53 mg / cm 2 and the thickness was 160 μm.

図1は、このようにして得られた正極2の集電体20の長手方向の端部21に、正極集電タブ7を形成した状態を示す平面図である。正極集電体20の上には、正極合剤層23が形成されており、正極集電体20の長手方向の端部21から距離A=26mmまでの部分には、正極合剤層23が形成されておらず、未塗布部22となっている。正極集電体20の端部21には、正極集電タブ7が形成されている。正極集電タブ7は、図2に示すように、正極集電体20の端部21に切込み24を形成し、折り曲げ部24aで折り曲げることにより形成されている。正極集電タブ7が正極集電体20から突き出た部分の距離Cは8mmであり、正極集電タブ7の幅Dは4mmである。正極集電タブ7と正極集電体20が重なっている部分の長さBは5mmである。   FIG. 1 is a plan view showing a state in which the positive electrode current collecting tab 7 is formed at the longitudinal end portion 21 of the current collector 20 of the positive electrode 2 obtained as described above. A positive electrode mixture layer 23 is formed on the positive electrode current collector 20, and the positive electrode mixture layer 23 is formed in a portion from the end 21 in the longitudinal direction of the positive electrode current collector 20 to a distance A = 26 mm. It is not formed and is an uncoated portion 22. A positive electrode current collecting tab 7 is formed at the end 21 of the positive electrode current collector 20. As shown in FIG. 2, the positive electrode current collector tab 7 is formed by forming a notch 24 at an end 21 of the positive electrode current collector 20 and bending it at a bent portion 24a. The distance C of the portion where the positive electrode current collecting tab 7 protrudes from the positive electrode current collector 20 is 8 mm, and the width D of the positive electrode current collecting tab 7 is 4 mm. The length B of the portion where the positive electrode current collector tab 7 and the positive electrode current collector 20 overlap is 5 mm.

〔負極の作製〕
分散媒としてのN−メチル−2−ピロリドンに、負極活物質としての平均粒子径5.5μmのケイ素粉末(純度99.9%)と、負極バインダーとしてのガラス転移温度190℃、密度1.1g/cmの熱可塑性ポリイミドとを、活物質と導電剤とバインダーとの重量比が90:10となるように混合し、負極合剤スラリーを作製した。
(Production of negative electrode)
N-methyl-2-pyrrolidone as a dispersion medium, silicon powder having an average particle size of 5.5 μm as a negative electrode active material (purity 99.9%), glass transition temperature 190 ° C. as a negative electrode binder, density 1.1 g / Cm 3 of thermoplastic polyimide was mixed so that the weight ratio of the active material, the conductive agent and the binder was 90:10 to prepare a negative electrode mixture slurry.

この負極合剤スラリーを、負極集電体である表面粗さRaが1.0μmである厚み25μm、長さ460mm、幅42mmのCu−0.03重量%Zr合金箔の両面上に塗布し、乾燥した後、圧延した。   This negative electrode mixture slurry was applied on both sides of a Cu-0.03% wt Zr alloy foil having a thickness of 25 μm, a length of 460 mm, and a width of 42 mm with a surface roughness Ra of 1.0 μm, which is a negative electrode current collector, After drying, it was rolled.

次に、アルゴン雰囲気下で400℃で10時間熱処理し焼結した。集電体上の合剤層の量は5.6mg/cm、厚みは60μmであった。 Next, it was heat-treated at 400 ° C. for 10 hours in an argon atmosphere and sintered. The amount of the mixture layer on the current collector was 5.6 mg / cm 2 and the thickness was 60 μm.

図3は、以上のようにして作製した負極を示す平面図である。負極3の負極集電体30の端部31には、負極集電タブ8が形成されている。負極集電タブ8は、図1に示す正極集電タブ7と同様に、負極集電体30の端部31に切込みを形成し、この切込みを折り曲げることにより形成している。負極集電タブ8が、負極集電体30から突き出た部分の長さFは10mmであり、幅Gは4mmである。また、負極集電タブ8と負極集電体30の重なり部分の長さEは5mmである。   FIG. 3 is a plan view showing the negative electrode produced as described above. A negative electrode current collecting tab 8 is formed at the end 31 of the negative electrode current collector 30 of the negative electrode 3. Similarly to the positive electrode current collector tab 7 shown in FIG. 1, the negative electrode current collector tab 8 is formed by forming a cut at the end 31 of the negative electrode current collector 30 and bending the cut. The length F of the portion of the negative electrode current collector tab 8 protruding from the negative electrode current collector 30 is 10 mm, and the width G is 4 mm. Moreover, the length E of the overlapping part of the negative electrode current collection tab 8 and the negative electrode current collector 30 is 5 mm.

〔電解液の作製〕
エチレンカーボネートとジエチルカーボネートを体積比3:7で混合した溶媒に対し、LiPFを1モル/リットル溶解させたものに、二酸化炭素を飽和状態となるまで吹き込み、二酸化炭素を溶解させて電解液とした。
(Preparation of electrolyte)
Into a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7, LiPF 6 is dissolved at 1 mol / liter, and carbon dioxide is blown to a saturated state to dissolve the carbon dioxide. did.

〔電極体の作製〕
上記正極を1枚、上記負極を1枚、厚さ22μm、長さ500mm、幅44mmのポリエチレン多孔質体のセパレータ2枚を用いて電極体を作製した。
(Production of electrode body)
An electrode body was prepared using one positive electrode, one negative electrode, two polyethylene porous separators having a thickness of 22 μm, a length of 500 mm, and a width of 44 mm.

図4に示すように、正極2と負極3の間に1枚のセパレータ4を挟み、負極3の上にさらに1枚のセパレータ4を載せ、正極集電タブ7が最内周となるようにXで示す巻き取り方向に渦巻き状に巻回し、直径12.8mm、高さ4mmの円筒型の電極体を作製した。なお、図4において距離Hは21mmとする。   As shown in FIG. 4, one separator 4 is sandwiched between the positive electrode 2 and the negative electrode 3, and another separator 4 is placed on the negative electrode 3 so that the positive electrode current collecting tab 7 becomes the innermost circumference. A cylindrical electrode body having a diameter of 12.8 mm and a height of 4 mm was produced by spirally winding in the winding direction indicated by X. In FIG. 4, the distance H is 21 mm.

図5は、作製した円筒型の電極体を示す斜視図である。図5に示すように、電極体5から上方に突き出るように正極集電タブ7が、下方に突き出るように負極集電タブ8が設けられている。   FIG. 5 is a perspective view showing the produced cylindrical electrode body. As shown in FIG. 5, a positive electrode current collecting tab 7 is provided so as to protrude upward from the electrode body 5, and a negative electrode current collecting tab 8 is provided so as to protrude downward.

〔電池の作製〕
上記電極体を、常温及び常圧の二酸化炭素雰囲気下でステンレス(SUS製)の円筒型外装体に挿入し、この外装体に電解液を注入して、図6に示すリチウム二次電池A1を作製した。リチウム二次電池の直径は14mmであり、高さは50mmである。
[Production of battery]
The above electrode body is inserted into a stainless steel (SUS) cylindrical outer casing under a carbon dioxide atmosphere at normal temperature and normal pressure, and an electrolytic solution is injected into the outer casing to obtain a lithium secondary battery A1 shown in FIG. Produced. The diameter of the lithium secondary battery is 14 mm, and the height is 50 mm.

図6は、円筒型電池A1の模式的断面図を示している。図6に示すように、円筒型電池A1は、上方に開口部を有する円筒型の金属外装缶1と、正極2及び負極3をセパレータ4を介して対向させ、渦巻き状に巻回させてなる電極体5と、電極体5内に含浸された非水電解液と、上記金属外装缶1の開口部を封口する封口蓋6等から構成されている。封口蓋6が正極端子、金属外装缶1が負極端子となっており、電極体5の上面側に取り付けられている正極集電タブ7が封口蓋6と、下面側に取り付けられている負極集電タブ8が金属外装缶1と接続されている。電池容器は、金属外装缶1と封口蓋6とから構成されている。電極体5の上面及び下面は、電極体5と金属外装缶1とを絶縁するための上部絶縁板9及び下部絶縁板10で覆われている。封口蓋6は、金属外装缶1の開口部に絶縁パッキング11を介してかしめられて固定されている。   FIG. 6 shows a schematic cross-sectional view of the cylindrical battery A1. As shown in FIG. 6, the cylindrical battery A <b> 1 is formed by winding a cylindrical metal outer can 1 having an opening on the upper side, a positive electrode 2, and a negative electrode 3 through a separator 4 and winding them in a spiral shape. The electrode body 5 includes a nonaqueous electrolyte impregnated in the electrode body 5, a sealing lid 6 that seals the opening of the metal outer can 1, and the like. The sealing lid 6 is a positive electrode terminal, the metal outer can 1 is a negative electrode terminal, and a positive electrode current collecting tab 7 attached to the upper surface side of the electrode body 5 is connected to the sealing lid 6 and a negative electrode collector attached to the lower surface side. An electric tab 8 is connected to the metal outer can 1. The battery container includes a metal outer can 1 and a sealing lid 6. The upper and lower surfaces of the electrode body 5 are covered with an upper insulating plate 9 and a lower insulating plate 10 for insulating the electrode body 5 from the metal outer can 1. The sealing lid 6 is caulked and fixed to the opening of the metal outer can 1 via an insulating packing 11.

(実験2)
実験1において、正極集電タブ及び負極集電タブとして、従来から用いられているアルミニウム平板及びニッケル平板をそれぞれ用いて比較電池B1を作製した。図7に示すように、正極2の正極集電体20の端部21近傍に、厚み70μm、長さ38mm、幅4mmのアルミニウム平板を、超音波溶着法により取り付けた。距離Aは30mmであり、距離Bは30mmであり、距離Cは8mmであり、幅Dは4mmである。
(Experiment 2)
In Experiment 1, a comparative battery B1 was manufactured using a conventionally used aluminum flat plate and nickel flat plate as the positive electrode current collecting tab and the negative electrode current collecting tab, respectively. As shown in FIG. 7, an aluminum flat plate having a thickness of 70 μm, a length of 38 mm, and a width of 4 mm was attached near the end 21 of the positive electrode current collector 20 of the positive electrode 2 by an ultrasonic welding method. The distance A is 30 mm, the distance B is 30 mm, the distance C is 8 mm, and the width D is 4 mm.

また、負極集電タブとして、従来から用いられているニッケル平板を用い、図8に示すように負極集電タブ8を負極集電体30に取り付けた。図8を参照して、負極3の負極集電体30の端部31に近傍に、厚み70μm、長さ40mm、幅4mmのニッケル平板をぐさり法で取り付けた。距離Eは30mmであり、距離Fは10mmであり、幅Gは4mmである。   Further, a conventionally used nickel flat plate was used as the negative electrode current collecting tab, and the negative electrode current collecting tab 8 was attached to the negative electrode current collector 30 as shown in FIG. Referring to FIG. 8, a nickel flat plate having a thickness of 70 μm, a length of 40 mm, and a width of 4 mm was attached to the end portion 31 of the negative electrode current collector 30 of the negative electrode 3 by a spotting method. The distance E is 30 mm, the distance F is 10 mm, and the width G is 4 mm.

上記のようにして作製した正極2及び負極3を用いて、図9に示すように、実験1と同様にして電極体を作製し、この電極を用いてリチウム二次電池B1を作製した。なお、図9において距離Hは25mmである。   Using the positive electrode 2 and the negative electrode 3 produced as described above, as shown in FIG. 9, an electrode body was produced in the same manner as in Experiment 1, and a lithium secondary battery B1 was produced using this electrode. In FIG. 9, the distance H is 25 mm.

〔充放電サイクル特性の評価〕
上記の電池A1及びB1について、充放電サイクル特性を評価した。各電池を、25℃において、電流値1000mAで4.2Vまで充電し、続けて4.2Vに保持したまま電流値50mAになるまで充電した後、電流値1000mAで2.75Vまで放電し、これを1サイクルの充放電とした。1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、サイクル寿命とした。なお、各電池のサイクル寿命は、電池A1のサイクル寿命を100とした指数である。
[Evaluation of charge / discharge cycle characteristics]
Charge / discharge cycle characteristics of the batteries A1 and B1 were evaluated. Each battery was charged to 4.2 V at a current value of 1000 mA at 25 ° C., and continuously charged to a current value of 50 mA while being held at 4.2 V, and then discharged to 2.75 V at a current value of 1000 mA. Was one cycle of charge and discharge. The number of cycles to reach 80% of the discharge capacity at the first cycle was measured and defined as the cycle life. The cycle life of each battery is an index with the cycle life of the battery A1 as 100.

電池A1及びB1のサイクル寿命を表1に示す。   Table 1 shows the cycle life of the batteries A1 and B1.

表1に示す結果から明らかなように、本発明に従い、正極集電タブ及び負極集電タブを、正極集電体及び負極集電体から形成した電池A1は、従来の金属板を集電タブとした電池B1に比べ、優れたサイクル寿命を示している。これは、集電体上に集電タブとして金属板が取り付けられた従来の電池B1においては、金属板のタブ自体が有する機械的強度により、充電時のケイ素活物質の体積膨張に伴う電極体のスムーズな変形が抑制され、ケイ素活物質の膨張に伴う応力がセパレータに多く加わったため、セパレータの圧縮による目詰まりが生じて、正極及び負極の間のリチウムイオンの伝導性が大きく低下し、充放電特性が大きく低下することによるものと思われる。これに対し、本発明に従い、正極集電タブ及び負極集電タブを正極集電体及び負極集電体から形成すると、充電時にケイ素活物質の膨張が生じ、これに伴い電極体が変形しようとした場合に、この電極体の変形がスムーズに生じ、セパレータの目詰まりの発生を抑制することができ、優れた充放電特性が得られると考えられる。   As is apparent from the results shown in Table 1, according to the present invention, the battery A1 in which the positive electrode current collector tab and the negative electrode current collector tab were formed from the positive electrode current collector and the negative electrode current collector was obtained by using the conventional metal plate as the current collector tab. Compared to the battery B1, the cycle life is excellent. This is because, in the conventional battery B1 in which a metal plate is attached as a current collecting tab on the current collector, the electrode body accompanying the volume expansion of the silicon active material during charging due to the mechanical strength of the tab of the metal plate itself Smooth deformation is suppressed, and the separator is subjected to a lot of stress associated with the expansion of the silicon active material, resulting in clogging due to the compression of the separator, greatly reducing the lithium ion conductivity between the positive electrode and the negative electrode. This is probably because the discharge characteristics are greatly reduced. On the other hand, when the positive electrode current collector tab and the negative electrode current collector tab are formed from the positive electrode current collector and the negative electrode current collector according to the present invention, expansion of the silicon active material occurs during charging, and the electrode body tends to be deformed accordingly. In this case, it is considered that the electrode body is smoothly deformed, the occurrence of clogging of the separator can be suppressed, and excellent charge / discharge characteristics can be obtained.

本発明に従う一実施例における正極を示す平面図。The top view which shows the positive electrode in one Example according to this invention. 本発明に従う一実施例において正極集電体に正極集電タブを形成するための切込みを示す平面図。The top view which shows the notch for forming the positive electrode current collection tab in the positive electrode current collector in one Example according to this invention. 本発明に従う一実施例における負極を示す平面図。The top view which shows the negative electrode in one Example according to this invention. 本発明に従う一実施例においてセパレータを介して正極と負極を対向させる渦巻き状に巻回するときの状態を説明するための平面図。The top view for demonstrating the state when winding in the spiral shape which makes a positive electrode and a negative electrode oppose through a separator in one Example according to this invention. 本発明に従う一実施例における電極体を示す斜視図。The perspective view which shows the electrode body in one Example according to this invention. 本発明に従う一実施例において作製したリチウム二次電池を示す模式的断面図。The typical sectional view showing the lithium secondary battery produced in one example according to the present invention. 比較例の正極を示す平面図。The top view which shows the positive electrode of a comparative example. 比較例の負極を示す平面図。The top view which shows the negative electrode of a comparative example. 比較例においてセパレータを介して正極と負極を対向させたときの状態を示す平面図。The top view which shows a state when a positive electrode and a negative electrode are made to oppose through a separator in a comparative example.

符号の説明Explanation of symbols

1…金属外装缶
2…正極
3…負極
4…セパレータ
5…電極体
6…封口蓋
7…正極集電タブ
8…負極集電タブ
9…上部絶縁板
10…下部絶縁板
11…絶縁パッキング
20…正極集電体
21…正極集電体の端部
30…負極集電体
31…負極集電体の端部
DESCRIPTION OF SYMBOLS 1 ... Metal exterior can 2 ... Positive electrode 3 ... Negative electrode 4 ... Separator 5 ... Electrode body 6 ... Sealing lid 7 ... Positive electrode current collection tab 8 ... Negative electrode current collection tab 9 ... Upper insulating plate 10 ... Lower insulating plate 11 ... Insulating packing 20 ... Positive electrode current collector 21 ... End of positive electrode current collector 30 ... Negative electrode current collector 31 ... End of negative electrode current collector

Claims (4)

導電性金属箔からなる正極集電体の表面上に正極活物質層を配置した正極と、導電性金属箔からなる負極集電体上にケイ素を含む負極活物質層を配置した負極と、前記正極と前記負極の間に配置されるセパレータと、前記正極と前記負極を前記セパレータを介して対向させ渦巻き状に巻回させてなる円筒型の電極体を収納する電池容器と、前記正極集電体に接続され前記電極体から引き出される正極集電タブと、前記負極集電体に接続され前記電極体から引き出される負極集電タブと、非水電解質とを備えるリチウム二次電池であって、
前記正極集電タブが前記正極集電体から形成されており、前記負極集電タブが前記負極集電体から形成されていることを特徴とするリチウム二次電池。
A positive electrode in which a positive electrode active material layer is disposed on a surface of a positive electrode current collector made of a conductive metal foil; a negative electrode in which a negative electrode active material layer containing silicon is disposed on a negative electrode current collector made of a conductive metal foil; and A separator disposed between a positive electrode and the negative electrode; a battery container containing a cylindrical electrode body in which the positive electrode and the negative electrode are opposed to each other with the separator interposed therebetween; and the positive current collector A lithium secondary battery comprising a positive electrode current collector tab connected to a body and drawn from the electrode body, a negative electrode current collector tab connected to the negative electrode current collector and drawn from the electrode body, and a nonaqueous electrolyte,
The lithium secondary battery, wherein the positive electrode current collector tab is formed from the positive electrode current collector, and the negative electrode current collector tab is formed from the negative electrode current collector.
前記正極集電タブ及び前記負極集電タブが、前記正極及び前記負極のそれぞれの端部に形成されていることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the positive electrode current collecting tab and the negative electrode current collecting tab are formed at respective end portions of the positive electrode and the negative electrode. 前記負極が、ケイ素を含む負極活物質粒子と負極バインダーを含む負極合剤層を前記負極集電体の表面上で焼結して配置したことを特徴とする請求項1または2に記載のリチウム二次電池。   3. The lithium according to claim 1, wherein the negative electrode is formed by sintering a negative electrode mixture layer containing negative electrode active material particles containing silicon and a negative electrode binder on the surface of the negative electrode current collector. Secondary battery. 請求項1〜3のいずれか1項に記載のリチウム二次電池を製造する方法であって、
前記正極集電タブ及び前記負極集電タブを、それぞれ前記正極集電体及び前記負極集電体から形成する工程と、
前記正極と前記負極を前記セパレータを介して対向させ渦巻き状に巻回させて前記円筒型の電極体を作製する工程と、
前記電極体を前記電池容器内に収納する工程とを備えことを特徴とするリチウム二次電池の製造方法。
A method for producing the lithium secondary battery according to any one of claims 1 to 3,
Forming the positive electrode current collector tab and the negative electrode current collector tab from the positive electrode current collector and the negative electrode current collector, respectively;
Producing the cylindrical electrode body by causing the positive electrode and the negative electrode to face each other through the separator and spirally wound;
And a step of housing the electrode body in the battery container.
JP2006030429A 2006-02-08 2006-02-08 Lithium secondary battery and its manufacturing method Pending JP2007213875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030429A JP2007213875A (en) 2006-02-08 2006-02-08 Lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030429A JP2007213875A (en) 2006-02-08 2006-02-08 Lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007213875A true JP2007213875A (en) 2007-08-23

Family

ID=38492127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030429A Pending JP2007213875A (en) 2006-02-08 2006-02-08 Lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007213875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2010108907A (en) * 2008-11-03 2010-05-13 Imara Corp Lithium secondary battery having positive electrode composition and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245839A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2010108907A (en) * 2008-11-03 2010-05-13 Imara Corp Lithium secondary battery having positive electrode composition and method for manufacturing the same
US9099738B2 (en) 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing

Similar Documents

Publication Publication Date Title
JP4942319B2 (en) Lithium secondary battery
JP4497904B2 (en) Lithium secondary battery and manufacturing method thereof
JP5219339B2 (en) Lithium secondary battery
JP4868786B2 (en) Lithium secondary battery
JP4739781B2 (en) Lithium secondary battery
JP5147170B2 (en) Lithium secondary battery
KR101195672B1 (en) Lithium Secondary Battery
JP2009099523A (en) Lithium secondary battery
JP2007095568A (en) Lithium secondary battery and method of manufacturing same
JP2007273320A (en) Lithium secondary battery
JP2007207490A (en) Lithium secondary battery
JP2006253126A (en) Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JP5030369B2 (en) Lithium secondary battery
US20070072062A1 (en) Lithium secondary battery and method of manufacturing the same
JP4744076B2 (en) Lithium secondary battery and manufacturing method thereof
JP4953557B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4739788B2 (en) Method for manufacturing lithium secondary battery
JP2006252999A (en) Lithium secondary battery
JP2008153015A (en) Anode and battery
JP5267976B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2008305573A (en) Anode and battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP2007213875A (en) Lithium secondary battery and its manufacturing method
JP2007273120A (en) Lithium secondary battery
JP2005268120A (en) Lithium secondary battery and its manufacturing method