JPH10116628A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10116628A
JPH10116628A JP8269625A JP26962596A JPH10116628A JP H10116628 A JPH10116628 A JP H10116628A JP 8269625 A JP8269625 A JP 8269625A JP 26962596 A JP26962596 A JP 26962596A JP H10116628 A JPH10116628 A JP H10116628A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
negative electrode
positive electrode
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8269625A
Other languages
Japanese (ja)
Inventor
Hidetoshi Honbou
英利 本棒
Takeo Yamagata
武夫 山形
Yasushi Muranaka
康 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8269625A priority Critical patent/JPH10116628A/en
Publication of JPH10116628A publication Critical patent/JPH10116628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a lithium secondary battery having high energy density. SOLUTION: Positive electrode 10 active material contains compounds whose chemical formulas are shown as follows. Li1+x Mn2 O4 , Li4+x Mn5 O12 , Li2+x Mn4 O9 , Lix V2 O5 , Lix V6 O13 , Li1+x V3 O8 , Lix Fe2 (SO4 )3 (where (x) is in a rage of 0<=x<=12). Negative electrode 12 active material contains a compound whose chemical formula is shown by Li3-y-z My2 N (where M is any of Cu, Co, Ni, (y) is in a range of 0<y<=1.5, and (z) is in a range of 0<=y<=1.5).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関する。
[0001] The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】高エネルギ密度が実現できるリチウム二
次電池は、従来の鉛蓄電池あるいはニッケルカドミニウ
ム電池の代替電池として、最近盛んに研究開発が進めら
れている。リチウム二次電池の負極材料は、リチウム金
属が最もエネルギ密度が高いとされているが、充放電を
繰り返し行った場合、負極上に樹枝状(デンドライト)
のリチウムが析出し、このデンドライト状のリチウムが
正極に伸び、内部短絡が生じてしまい安全性の面で重大
な問題があった。
2. Description of the Related Art A lithium secondary battery capable of realizing a high energy density has been actively researched and developed recently as an alternative battery to a conventional lead storage battery or nickel cadmium battery. Lithium metal is considered to have the highest energy density as the negative electrode material for lithium secondary batteries. However, when charge and discharge are repeated, dendrites are formed on the negative electrode.
Of lithium, and this dendrite-like lithium extends to the positive electrode, causing an internal short circuit, which is a serious problem in terms of safety.

【0003】これに対し近年、リチウムイオンを吸蔵放
出できる炭素材料を負極活物質に用いることが検討され
ている。充放電時の負極反応が炭素層間へのリチウムイ
オンの吸蔵,放出反応であるため、負極上でのリチウム
イオンの金属状の析出が起こりにくく、上述の問題は本
質的に回避されつつある。正極材料はLiCoO2 が用
いられ、炭素負極と組み合わせたリチウム二次電池が開
発されている。
On the other hand, in recent years, it has been studied to use a carbon material capable of inserting and extracting lithium ions as a negative electrode active material. Since the negative electrode reaction at the time of charge and discharge is an occlusion and release reaction of lithium ions between carbon layers, metallic precipitation of lithium ions on the negative electrode is unlikely to occur, and the above problem is being essentially avoided. A lithium secondary battery using LiCoO 2 as a positive electrode material and combining with a carbon negative electrode has been developed.

【0004】[0004]

【発明が解決しようとする課題】LiCoO2 を正極活
物質とし、これに結着剤,導電助剤を加えて作製した正
極のリチウム吸蔵放出容量、すなわち、充放電の容量
は、体積当たり270から330Ah/l程度である。
一方、炭素材料を負極活物質とし、これに結着剤を加え
て作製した負極の充放電の容量は、体積当たり300か
ら400Ah/l程度である。これらの正極及び負極に
よって構成した電池では、体積当たり240から280
Wh/lの範囲でのエネルギ密度の実現がなされてい
る。
The lithium occlusion / release capacity of a positive electrode prepared by using LiCoO 2 as a positive electrode active material and adding a binder and a conductive auxiliary agent, that is, the charge / discharge capacity, is 270 to 270 per volume. It is about 330 Ah / l.
On the other hand, the charge / discharge capacity of a negative electrode produced by using a carbon material as a negative electrode active material and adding a binder thereto is about 300 to 400 Ah / l per volume. In a battery constituted by these positive and negative electrodes, 240 to 280
Energy densities in the range of Wh / l have been achieved.

【0005】しかし、近年のポータブル機器の小型化軽
量化はめざましいため、リチウム二次電池に比べ、さら
に高エネルギ密度の二次電池の開発が期待されている。
However, since portable devices have been remarkably reduced in size and weight in recent years, development of secondary batteries having a higher energy density than lithium secondary batteries is expected.

【0006】本発明の目的は、携帯電話やノート型パソ
コン等のポータブル機器や、電気自動車の駆動電源,電
力貯蔵用電源に用い得るに好適な高エネルギのリチウム
二次電池を提供することにある。
An object of the present invention is to provide a high-energy lithium secondary battery suitable for use in portable equipment such as a mobile phone or a notebook personal computer, or a drive power supply or an electric power storage power supply for an electric vehicle. .

【0007】[0007]

【課題を解決するための手段】本発明の目的を達成する
リチウム二次電池は、リチウムイオンを可逆的に吸蔵放
出する正極と負極及び前記リチウムイオンを含む電解液
を具備するリチウム二次電池において、正極活物質とし
て、少なくとも、化学式がLi1+xMn24 ,Li4+x
512,Li2+xMn49,Lix25,Lix
613,Li1+x38,LixFe2(SO4)3(但しxは0
≦x≦12の範囲)で示される化合物を含み、かつ、負
極活物質として化学式がLi3-y-zyN(但しMはC
u,Co,Niのいずれかであり、yは0<y≦1.5
の範囲、かつzは0≦y≦1.5の範囲)で示される化
合物を含む。
A lithium secondary battery which achieves the object of the present invention is a lithium secondary battery comprising a positive electrode and a negative electrode for reversibly inserting and extracting lithium ions, and an electrolytic solution containing the lithium ions. At least, as a positive electrode active material, the chemical formula is Li 1 + x Mn 2 O 4 , Li 4 + x M
n 5 O 12, Li 2 + x Mn 4 O 9, Li x V 2 O 5, Li x V
6 O 13 , Li 1 + x V 3 O 8 , Li x Fe 2 (SO 4 ) 3 (where x is 0
≦ x comprise a compound represented by ≦ 12 range), and the chemical formula Li 3-yz M y N (where M as the negative electrode active material C
u, Co, or Ni, and y is 0 <y ≦ 1.5.
And z is in the range of 0 ≦ y ≦ 1.5).

【0008】ここで、本発明による電池の電解液は、プ
ロレンカーボネート,エチレンカーボネート,プロピレ
ンカーボネート,ジメチルカーボネート,ジエチルカー
ボネート,メチルエチルカーボネート,γ−ブチロラク
トン,酢酸メチル,酢酸エチル,プロピオン酸メチル,
プロピオン酸エチル,ジメトキシエタンの少なくとも1
種類を溶媒,LiPF6,LiBF4 ,LiClO4,L
iCF3SO3を電解質として用いることが、充放電のサ
イクル特性に優れ望ましい。
Here, the electrolytic solution of the battery according to the present invention comprises prolene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl acetate, ethyl acetate, methyl propionate,
At least one of ethyl propionate and dimethoxyethane
The type is solvent, LiPF 6 , LiBF 4 , LiClO 4 , L
It is desirable to use iCF 3 SO 3 as an electrolyte because of its excellent charge-discharge cycle characteristics.

【0009】このように、LiCoO2 を正極活物質及
び炭素材料を負極活物質に用いたリチウム二次電池の体
積エネルギ密度は、240から280Wh/l程度と小
さい。これは、LiCoO2 の充電反応がリチウム参照
極に対して3.9V 以上の高い電位で起こるため、電解
液が電気分解しない範囲で充放電を行う場合、LiCoO2
リチウムイオンの吸蔵放出する量、換言すれば正極活物
質の利用率が低くくなるためである。具体的には、電解
液が電気分解しないとされる4.2V を充電終止電圧と
して充放電を行った場合、LiCoO2 活物質の利用率
は50%程度となる。
As described above, the volume energy density of a lithium secondary battery using LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode active material is as small as about 240 to 280 Wh / l. This is because the charge reaction of LiCoO 2 occurs at a high potential of 3.9 V or higher with respect to the lithium reference electrode. Therefore, when charging and discharging are performed within a range where the electrolytic solution is not electrolyzed, the amount of LiCoO 2 absorbed and released by lithium ions is considered. In other words, this is because the utilization rate of the positive electrode active material decreases. Specifically, when the charging and discharging are performed with a charging end voltage of 4.2 V at which the electrolytic solution is not electrolyzed, the utilization rate of the LiCoO 2 active material is about 50%.

【0010】これに加え、炭素材料は比重が小さいため
負極合剤が嵩高くなり、決められた容積に充填できる負
極量が限られ、高エネルギ密度のリチウム電池が構成で
きない一因となっている。
In addition, since the carbon material has a low specific gravity, the negative electrode mixture becomes bulky, and the amount of the negative electrode that can be filled in a predetermined volume is limited, which is one reason that a high energy density lithium battery cannot be formed. .

【0011】これに対し、本発明では、リチウム二次電
池に用い得るLi1+xMn24 ,Li4+xMn512,Li
2+xMn49,Lix25,Lix613,Li1+x3
8,LixFe2(SO4)3等の正極活物質は、LiCo
2 に比べ低い電圧範囲でリチウムの吸蔵放出反応が起
きるため、電解液が分解しない範囲で、高い利用率で正
極が充放電できる。
On the other hand, in the present invention, Li 1 + x Mn 2 O 4 , Li 4 + x Mn 5 O 12 , Li which can be used for a lithium secondary battery.
2 + x Mn 4 O 9, Li x V 2 O 5, Li x V 6 O 13, Li 1 + x V 3
Positive electrode active materials such as O 8 and Li x Fe 2 (SO 4 ) 3 are LiCo
Since the occlusion and release reaction of lithium occurs in a voltage range lower than that of O 2 , the positive electrode can be charged and discharged at a high utilization rate within a range in which the electrolyte does not decompose.

【0012】また、負極として用いるLi3-y-zCu
yN,Li3-y-zCoyN,Li3-y-zNiyN等はリチウムイ
オンを可逆的に吸蔵放出することができ、また、炭素材
料に比べ比重が大きいため電極合剤の高密度充填が可能
である。したがって、上述の電池材料を正極及び負極に
用いた本発明のリチウム二次電池では、LiCoO2
び炭素材料を正,負極活物質に用いた電池に比べ、高エ
ネルギ密度のリチウム二次電池が実現できる。
Also, Li 3-yz Cu used as a negative electrode
y N, Li 3-yz Co y N, Li 3-yz Ni y N, etc. can reversibly store and release lithium ions, and have a higher specific gravity than carbon materials, so that high density filling of electrode mixture is possible. Is possible. Therefore, in the lithium secondary battery of the present invention using the above-described battery material for the positive electrode and the negative electrode, a lithium secondary battery having a higher energy density is realized as compared with a battery using LiCoO 2 and a carbon material for the positive and negative electrode active materials. it can.

【0013】[0013]

【発明の実施の形態】本発明による実施例について図面
を参照し説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0014】図1は本発明による一実施例のコイン型リ
チウム二次電池を示す断面図である。正極10,セパレ
ータ11,負極12の順で積層して、ガスケット13を
介して電池蓋14及び電池缶15でかしめ合わせて密
閉,封止している。
FIG. 1 is a sectional view showing a coin-type lithium secondary battery according to one embodiment of the present invention. The positive electrode 10, the separator 11, and the negative electrode 12 are stacked in this order, and are caulked with a battery lid 14 and a battery can 15 via a gasket 13 to hermetically seal and seal.

【0015】以下、本発明によって具体的に作製したリ
チウム二次電池の実施例について説明する。
Hereinafter, examples of the lithium secondary battery specifically manufactured according to the present invention will be described.

【0016】(実施例1)図1に示した実施例のリチウ
ム二次電池を以下のようにして作製した。正極活物質と
してLiMn24,Li4Mn512,Li2Mn49,V
25,LiV613,LiV38,Fe2(SO4)3 の7種
類、導電助剤として黒鉛粉末,結着剤としてポリフッ化
ビニリデン(PVDF)を用い、それぞれ重量比88
%,7%,5%の割合で配合して、溶剤としてN−メチ
ル−2−ピロリドン(NMP)を加え、十分に混合して
正極合剤を調製した。この正極合剤を厚みが20μmの
Al箔の片面に塗布して、NMPを乾燥後、ロールプレ
スで成形して正極シートを作製した。この正極シートを
直径15mmの大きさに打ち抜き正極を作製した。正極作
製と同様に、負極活物質としてLi2CuN,Li2Co
N,Li2NiN の5種類、導電助剤として黒鉛粉末、
結着剤としてポリフッ化ビニリデン(PVDF)を用い、そ
れぞれ重量比80%,15%,5%の割合で配合して、
溶剤としてN−メチル−2−ピロリドン(NMP)を加
え、十分に混合して負極合剤を調製した。この負極合剤
を厚みが20μmのCu箔の片面に塗布して、NMPを
乾燥後、ロールプレスで成形して負極シートを作製し
た。この負極シートを直径16mmの大きさに打ち抜き負
極を作製した。
Example 1 A lithium secondary battery of the example shown in FIG. 1 was manufactured as follows. LiMn 2 O 4 , Li 4 Mn 5 O 12 , Li 2 Mn 4 O 9 , V
7 types of 2 O 5 , LiV 6 O 13 , LiV 3 O 8 , and Fe 2 (SO 4 ) 3 , graphite powder as a conductive aid, polyvinylidene fluoride (PVDF) as a binder, and a weight ratio of 88 each
%, 7% and 5%, and N-methyl-2-pyrrolidone (NMP) was added as a solvent and mixed well to prepare a positive electrode mixture. This positive electrode mixture was applied to one side of an Al foil having a thickness of 20 μm, and NMP was dried and then formed by a roll press to prepare a positive electrode sheet. This positive electrode sheet was punched out to a size of 15 mm in diameter to produce a positive electrode. As in the preparation of the positive electrode, Li 2 CuN, Li 2 Co is used as the negative electrode active material.
N, Li 2 NiN 5 types, graphite powder as conductive aid,
Using polyvinylidene fluoride (PVDF) as a binder, blended at a weight ratio of 80%, 15%, and 5%, respectively.
N-methyl-2-pyrrolidone (NMP) was added as a solvent and mixed well to prepare a negative electrode mixture. This negative electrode mixture was applied to one surface of a Cu foil having a thickness of 20 μm, NMP was dried, and then formed by a roll press to prepare a negative electrode sheet. This negative electrode sheet was punched out to a size of 16 mm in diameter to produce a negative electrode.

【0017】セパレータは厚みが25μm,直径が18
mmのポリエチレン製の微孔膜を用いた。
The separator has a thickness of 25 μm and a diameter of 18
A microporous membrane made of mm mm polyethylene was used.

【0018】電解液は、体積比が1:1のエチレンカー
ボネートとジエチルカーボネートの混合溶媒及びLiP
6 の電解質によって調製した濃度が1mol/l の溶液
を用いた。
The electrolyte is a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 and LiP
A solution having a concentration of 1 mol / l prepared with an electrolyte of F 6 was used.

【0019】正極,セパレータ,負極の順で積層して電
解液を含浸させた後、電池蓋及び電池缶でかしめ合わせ
て図1に示すリチウム電池を作製した。
A positive electrode, a separator, and a negative electrode were laminated in this order and impregnated with an electrolytic solution, and then caulked with a battery lid and a battery can to produce a lithium battery shown in FIG.

【0020】このリチウム二次電池を用いて、充放電電
流3mA,充電終止電圧を4.0V,放電終止電圧を1.
5 Vに設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current is 3 mA, the charge end voltage is 4.0 V, and the discharge end voltage is 1.0.
Charge and discharge were performed at 5 V.

【0021】(実施例2)実施例1でLiMn24を用
いて作製した正極及び負極活物質としてLi2.5Co0.5
N,Li1.8Co1.2N,Li1.5Co1.5Nを用い実施例
1と同様に作製した負極を用いて図1に示すリチウム電
池を作製した。
Example 2 Li 2.5 Co 0.5 was used as the positive and negative electrode active materials prepared in Example 1 using LiMn 2 O 4.
N, to produce a lithium battery shown in FIG. 1 using Li 1. 8 Co 1.2 N, the negative electrode produced in the same manner as in Example 1 using the Li 1.5 Co 1.5 N.

【0022】このリチウム二次電池を用いて、充放電電
流3mA,充電終止電圧を4.0V、放電終止電圧を1.
5V に設定して充放電を行った。
Using this lithium secondary battery, the charge / discharge current is 3 mA, the charge end voltage is 4.0 V, and the discharge end voltage is 1.0.
The charge and discharge were performed at 5 V.

【0023】(比較例1)正極活物質としてLiCoO
2 を用い、実施例1と同様に正極を作製した。一方、負
極活物質として黒鉛粉末、結着剤としてポリフッ化ビニ
リデン(PVDF)を用い、それぞれ重量比それぞれ90
%,10%の割合で配合して、溶剤としてN−メチル−
2−ピロリドン(NMP)を加え、十分に混合して負極
合剤を調製した。その後、実施例1と同様に負極を作製
し、図1に示すリチウム二次電池を作製した。
Comparative Example 1 LiCoO as a positive electrode active material
Using Example 2 , a positive electrode was produced in the same manner as in Example 1. On the other hand, graphite powder was used as the negative electrode active material, and polyvinylidene fluoride (PVDF) was used as the binder.
%, 10%, and N-methyl-
2-Pyrrolidone (NMP) was added and mixed well to prepare a negative electrode mixture. Thereafter, a negative electrode was produced in the same manner as in Example 1, and a lithium secondary battery shown in FIG. 1 was produced.

【0024】このリチウム二次電池を用いて、充放電電
流3mA,充電終止電圧を4.2V,放電終止電圧を2.
8V に設定し充放電を行った。
Using this lithium secondary battery, the charge / discharge current is 3 mA, the charge end voltage is 4.2 V, and the discharge end voltage is 2.
The battery was charged and discharged at 8 V.

【0025】本発明によって作製したリチウム二次電池
を具体的に充放電した実施例と従来例との比較結果を表
1に示した。放電電力は放電時の平均電圧と放電容量を
乗じて求めた。本発明のリチウム二次電池は従来のリチ
ウム二次電池に比べ放電電力が大きく、高エネルギ密度
化が可能であることがわかった。
Table 1 shows the results of comparison between an example in which the lithium secondary battery produced according to the present invention was specifically charged and discharged and a conventional example. The discharge power was determined by multiplying the average voltage during discharge by the discharge capacity. It has been found that the lithium secondary battery of the present invention has higher discharge power than conventional lithium secondary batteries, and can achieve high energy density.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】充放電での正極活物質利用率が高く、か
つ、負極が高密度充填できるため高エネルギ密度のリチ
ウム二次電池が実現できる。
As described above, the utilization rate of the positive electrode active material during charging and discharging is high, and the negative electrode can be filled at a high density, so that a lithium secondary battery having a high energy density can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のリチウム二次電池の断面
図。
FIG. 1 is a cross-sectional view of a lithium secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…正極、11…セパレータ、12…負極、13…ガ
スケット、14…電池蓋、15…電池缶。
10: positive electrode, 11: separator, 12: negative electrode, 13: gasket, 14: battery cover, 15: battery can.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを可逆的に吸蔵放出する正
極と負極及び前記リチウムイオンを含む電解液を具備す
るリチウム二次電池において、正極活物質として、化学
式がLi1+xMn24,Li4+xMn512,Li2+xMn
49,Lix25,Lix613,Li1+x38,L
xFe2(SO4)3(但しxは0≦x≦12の範囲)で示
される化合物を含み、負極活物質として化学式がLi
3-y-zyN(但しMはCu,Co,Niのいずれかであ
り、yは0<y≦1.5 の範囲、かつzは0≦y≦1.
5 の範囲)で示される化合物を含むことを特徴とする
リチウム二次電池。
1. A lithium secondary battery comprising a positive electrode for reversibly inserting and extracting lithium ions, a negative electrode, and an electrolyte containing the lithium ions, wherein the positive electrode active material has a chemical formula of Li 1 + x Mn 2 O 4 , Li 4 + x Mn 5 O 12 , Li 2 + x Mn
4 O 9 , Li x V 2 O 5 , Li x V 6 O 13 , Li 1 + x V 3 O 8 , L
i x Fe 2 (SO 4) 3 ( where x is in the range of 0 ≦ x ≦ 12) include compounds represented by the chemical formula Li as an anode active material
3-yz M y N (where M is Cu, Co, is either Ni, y is the range of 0 <y ≦ 1.5 and z is 0 ≦ y ≦ 1,.
5) A lithium secondary battery comprising a compound represented by the following formula:
【請求項2】前記電解液が、プロレンカーボネート,エ
チレンカーボネート,プロピレンカーボネート,ジメチ
ルカーボネート,ジエチルカーボネート,メチルエチル
カーボネート,γ−ブチロラクトン,酢酸メチル,酢酸
エチル,プロピオン酸メチル、プロピオン酸エチル、ジ
メトキシエタンの少なくとも1種類を溶媒、LiPF6
LiBF4 ,LiClO4 ,LiCF3SO3の少なくと
も1種類を電解質としてそれぞれ含む請求項1に記載の
リチウム二次電池。
2. The method according to claim 1, wherein the electrolyte comprises prolene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethoxyethane. A solvent, LiPF 6 ,
LiBF 4, LiClO 4, LiCF 3 lithium secondary battery according to claim 1 each comprising at least one as an electrolyte SO 3.
JP8269625A 1996-10-11 1996-10-11 Lithium secondary battery Pending JPH10116628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269625A JPH10116628A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269625A JPH10116628A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10116628A true JPH10116628A (en) 1998-05-06

Family

ID=17474964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269625A Pending JPH10116628A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10116628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831715A1 (en) * 2001-10-25 2003-05-02 Centre Nat Rech Scient LITHIUM AND VANADIUM OXIDE, ITS USE AS AN ACTIVE ELECTRODE MATERIAL
JP2009266648A (en) * 2008-04-25 2009-11-12 Toyota Central R&D Labs Inc Lithium-ion secondary battery
KR101181848B1 (en) 2011-01-28 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
FR2987498A1 (en) * 2012-02-29 2013-08-30 Univ Picardie SULFATES USEFUL AS ELECTRODE MATERIALS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831715A1 (en) * 2001-10-25 2003-05-02 Centre Nat Rech Scient LITHIUM AND VANADIUM OXIDE, ITS USE AS AN ACTIVE ELECTRODE MATERIAL
WO2003036742A3 (en) * 2001-10-25 2003-09-25 Centre Nat Rech Scient Lithium and vanadium oxide, a preparation method thereof and the use of same as an active electrode material
JP2005506272A (en) * 2001-10-25 2005-03-03 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Lithium vanadium oxide, its preparation process and its use as electrode active material
US7396614B2 (en) 2001-10-25 2008-07-08 Centre National De La Recherche Scientifique Lithium and vanadium oxide, a preparation method thereof and the use of same as an active electrode material
JP2009266648A (en) * 2008-04-25 2009-11-12 Toyota Central R&D Labs Inc Lithium-ion secondary battery
KR101181848B1 (en) 2011-01-28 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
US8628883B2 (en) 2011-01-28 2014-01-14 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
FR2987498A1 (en) * 2012-02-29 2013-08-30 Univ Picardie SULFATES USEFUL AS ELECTRODE MATERIALS
WO2013128115A1 (en) * 2012-02-29 2013-09-06 Universite De Picardie Jules Verne Sulfates useful as electrode materials

Similar Documents

Publication Publication Date Title
EP2141759B1 (en) Secondary battery
EP2262037B1 (en) Lithium secondary battery using ionic liquid
US8697288B2 (en) High energy lithium ion secondary batteries
US6706447B2 (en) Lithium metal dispersion in secondary battery anodes
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPWO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
US20140134500A1 (en) Anode and battery using same
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH10208741A (en) Lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JPH10116628A (en) Lithium secondary battery
KR102475433B1 (en) Anode, Preparation Method Thereof and Lithium Secandary Battery Comprising Same
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2001223031A (en) Lithium secondary battery
JP3209319B2 (en) Secondary battery with non-aqueous solvent electrolyte
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
KR100277787B1 (en) Anode for Lithium Ion Secondary Battery
JP3124749B2 (en) Lithium ion secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery