JP4187653B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP4187653B2 JP4187653B2 JP2003539127A JP2003539127A JP4187653B2 JP 4187653 B2 JP4187653 B2 JP 4187653B2 JP 2003539127 A JP2003539127 A JP 2003539127A JP 2003539127 A JP2003539127 A JP 2003539127A JP 4187653 B2 JP4187653 B2 JP 4187653B2
- Authority
- JP
- Japan
- Prior art keywords
- trifluoromethylsulfonyl
- secondary battery
- aqueous electrolyte
- test cell
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 55
- 150000003839 salts Chemical class 0.000 claims description 22
- 229910003002 lithium salt Inorganic materials 0.000 claims description 18
- 159000000002 lithium salts Chemical group 0.000 claims description 18
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 claims description 17
- CFYBHDCZEADVJH-UHFFFAOYSA-N 2,2,2-trifluoro-n-(trifluoromethylsulfonyl)acetamide Chemical compound FC(F)(F)C(=O)NS(=O)(=O)C(F)(F)F CFYBHDCZEADVJH-UHFFFAOYSA-N 0.000 claims description 13
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- GSBKRFGXEJLVMI-UHFFFAOYSA-N Nervonyl carnitine Chemical compound CCC[N+](C)(C)C GSBKRFGXEJLVMI-UHFFFAOYSA-N 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 239000011889 copper foil Substances 0.000 claims description 7
- HTKPDYSCAPSXIR-UHFFFAOYSA-N octyltrimethylammonium ion Chemical compound CCCCCCCC[N+](C)(C)C HTKPDYSCAPSXIR-UHFFFAOYSA-N 0.000 claims description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- XTPRURKTXNFVQT-UHFFFAOYSA-N hexyl(trimethyl)azanium Chemical compound CCCCCC[N+](C)(C)C XTPRURKTXNFVQT-UHFFFAOYSA-N 0.000 claims description 5
- 150000003949 imides Chemical class 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 229910013372 LiC 4 Inorganic materials 0.000 claims description 3
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 claims description 3
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- YOMFVLRTMZWACQ-UHFFFAOYSA-N ethyltrimethylammonium Chemical compound CC[N+](C)(C)C YOMFVLRTMZWACQ-UHFFFAOYSA-N 0.000 claims description 2
- RCUJOMHFVHMLQU-UHFFFAOYSA-N 2-(trifluoromethylsulfonyl)acetamide Chemical compound NC(=O)CS(=O)(=O)C(F)(F)F RCUJOMHFVHMLQU-UHFFFAOYSA-N 0.000 claims 1
- 208000024891 symptom Diseases 0.000 claims 1
- AEXDMFVPDVVSQJ-UHFFFAOYSA-N trifluoro(trifluoromethylsulfonyl)methane Chemical group FC(F)(F)S(=O)(=O)C(F)(F)F AEXDMFVPDVVSQJ-UHFFFAOYSA-N 0.000 claims 1
- 238000007599 discharging Methods 0.000 description 29
- 239000008151 electrolyte solution Substances 0.000 description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 4
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- SEACXNRNJAXIBM-UHFFFAOYSA-N triethyl(methyl)azanium Chemical compound CC[N+](C)(CC)CC SEACXNRNJAXIBM-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- -1 trimethylpropyl Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/002—Inorganic electrolyte
- H01M2300/0022—Room temperature molten salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/166—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
この発明は非水電解質二次電池に係り、特に、非水電解質を改善して非水電解質二次電池における安全性を高めた点に特徴を有するものである。 The present invention relates to a non-aqueous electrolyte secondary battery, and is particularly characterized in that the non-aqueous electrolyte is improved to improve the safety of the non-aqueous electrolyte secondary battery.
近年、高出力,高エネルギー密度の新型二次電池の1つとして、非水電解質を用い、リチウムの酸化,還元を利用した高起電力の非水電解質二次電池が利用されるようになった。 In recent years, non-aqueous electrolyte secondary batteries using non-aqueous electrolyte and utilizing lithium oxidation and reduction have been used as one of the new secondary batteries with high output and high energy density. .
ここで、このような非水電解質二次電池においては、非水電解質として、一般に、エチレンカーボネートやジエチルカーボネート等の有機溶媒に、LiBF4やLiPF6等のリチウム塩からなる溶質を溶解させたものが使用されている。 Here, in such a non-aqueous electrolyte secondary battery, as a non-aqueous electrolyte, generally, a solute composed of a lithium salt such as LiBF 4 or LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate. Is used.
しかし、非水電解質に用いる上記のような有機溶媒は可燃性であり、過充電等の異常な操作時には燃えるおそれがあり、このため、従来においては、過充電されないように保護回路を設けるようにしており、これによりコストが高く付く等の問題があった。 However, organic solvents such as those used in non-aqueous electrolytes are flammable and may burn during abnormal operations such as overcharging. For this reason, a protection circuit is conventionally provided to prevent overcharging. As a result, there are problems such as high costs.
この発明は、非水電解質二次電池における上記のような問題を解決することを課題とするものである。すなわち、この発明は、非水電解質二次電池における非水電解質を改善し、過充電等の異常な操作時においても燃えるということがなく、保護回路等を設けなくても安全に使用できる非水電解質二次電池を提供することを目的としている。 This invention makes it a subject to solve the above problems in a nonaqueous electrolyte secondary battery. That is, the present invention improves the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery, does not burn even during abnormal operation such as overcharge, and can be used safely without providing a protective circuit or the like. An object is to provide an electrolyte secondary battery.
この発明においては、正極と負極と非水電解質とを備えた非水電解質二次電池において、上記負極として表面が粗面化された銅箔にシリコン薄膜が形成されたものを用いると共に、融点が60℃以下の第4級アンモニウム塩からなる室温溶融塩と、LiCF3SO3、LiC4F9SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2 、LiN(CF3 SO2)(COCF3)から選択される少なくとも1種のリチウム塩とを含む非水電解質を用い、上記の融点が60℃以下の第4級アンモニウム塩からなる室温溶融塩に、トリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド、トリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド、トリメチルアリルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド、トリメチルヘキシルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド、トリメチルエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド、トリメチルアリルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド、トリメチルプロピルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド、テトラエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド、トリエチルメチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミドから選択される少なくとも1種を用いるようにしたのである。 In the present invention, in a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, the negative electrode used is a copper foil having a roughened surface and a silicon thin film formed thereon, and has a melting point. A room temperature molten salt composed of a quaternary ammonium salt of 60 ° C. or lower, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( Using a non-aqueous electrolyte containing at least one lithium salt selected from CF 3 SO 2 ) (COCF 3 ), trimethylpropyl is added to a room temperature molten salt composed of a quaternary ammonium salt having a melting point of 60 ° C. or lower. Ammonium bis (trifluoromethylsulfonyl) imide, trimethyloctylammonium bis (trifluoromethylsulfonyl) imide, trimethylallylammonium bi (Trifluoromethylsulfonyl) imide, trimethylhexylammonium bis (trifluoromethylsulfonyl) imide, trimethylethylammonium-2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide, trimethylallylammonium-2 2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide, trimethylpropylammonium · 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide, tetraethylammonium · 2,2,2-trimethyl At least selected from fluoro-N- (trifluoromethylsulfonyl) acetamide, triethylmethylammonium-2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide We had to use a one.
そして、この発明における非水電解質二次電池のように、融点が60℃以下の室温溶融塩とリチウム塩とを含む非水電解質を用いると、上記のリチウム塩によって、リチウムイオンが正極と負極との間で移動して充放電が行える。また、上記の室温溶融塩はイオンのみからなる液体で、蒸気圧がなく難燃性であるため、過充電等の異常な操作時においても分解したり、燃えたりするということがなく、さらに酸素ラジカルによっても燃えることがなく、保護回路等を設けなくても安全に使用できるようになる。なお、上記のように室温溶融塩にリチウム塩を加えた場合、その融点は2種の塩単独の融点より低下すると考えられ、これらは液体状態で保たれる。 When a non-aqueous electrolyte containing a room temperature molten salt having a melting point of 60 ° C. or lower and a lithium salt is used as in the non-aqueous electrolyte secondary battery in the present invention, lithium ions are converted into positive and negative electrodes by the lithium salt. It is possible to charge and discharge by moving between. In addition, the above room temperature molten salt is a liquid consisting only of ions and has no vapor pressure and is incombustible. Therefore, it does not decompose or burn even during abnormal operations such as overcharging, and oxygen It does not burn even with radicals and can be used safely without providing a protective circuit or the like. In addition, when lithium salt is added to room temperature molten salt as mentioned above, it is thought that the melting | fusing point falls from melting | fusing point of 2 types of salts independently, and these are kept in a liquid state.
ここで、上記の室温溶融塩としては、リチウム塩を混合した状態で広い温度範囲で液体であることが必要であり、一般には、−20℃〜60℃の範囲で液体であれば使用することができ、また導電率が10-4S/cm以上であることが望ましい。また、上記の室温溶融塩は、還元電位が卑である一方、酸化電位が貴であることが望ましく、Liイオンの挿入・離脱が可能な負極の作動電位は一般に0.5〜0V(vs.Li/Li+ )であるので、還元電位は0V(vs.Li/Li+ )以下であることが望ましく、酸化電位は高い方がよいが、過充電時のことを考慮して、5V(vs.Li/Li+ )以上であることが望ましく、より望ましくは5.5V(vs.Li/Li+ )以上である。 Here, the above room temperature molten salt needs to be liquid in a wide temperature range with lithium salt mixed, and generally used if it is liquid in the range of -20 ° C to 60 ° C. It is desirable that the conductivity be 10 −4 S / cm or more. In addition, the room temperature molten salt described above preferably has a low reduction potential, but preferably has a noble oxidation potential, and the operating potential of the negative electrode capable of inserting and removing Li ions is generally 0.5 to 0 V (vs. since a Li / Li +), the reduction potential is desirably less than 0V (vs.Li/Li +), but the oxidation potential good is higher, considering that at the time of overcharge, 5V (vs it is desirably .Li / Li +) or more, and more preferably 5.5V (vs.Li/Li +) or more.
そして、このような室温溶融塩としては、上記のトリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C3H7)N−(CF3SO2)2、トリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C8H17)N−(CF3SO2)2 、トリメチルアリルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(Allyl)N−(CF3SO2)2、トリメチルヘキシルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C6H13)N−(CF3SO2)2、トリメチルエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(CH3)3N+(C2H5)(CF3CO)N−(CF3SO2)、トリメチルアリルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(CH3)3N+(Allyl)(CF3CO)N−(CF3SO2)、トリメチルプロピルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(CH3)3N+(C3H7)(CF3CO)N−(CF3SO2)、テトラエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)4N+(CF3CO)N−(CF3SO2)、トリエチルメチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)3N+(CH3)(CF3CO)N−(CF3SO2)、1−エチル−3−メチルイミダゾリウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)(C3H3N2)+(CH3)(CF3CO)N−(CF3SO2)から選択される少なくとも1種を用いることができる。
And, as such room temperature molten salt, the above trimethylpropylammonium · bis (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 3 H 7) N - (CF 3 SO 2) 2, trimethyl octyl ammonium bis (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 8 H 17) N - (CF 3 SO 2) 2, trimethyl allyl ammonium bis (trifluoromethylsulfonyl) imide (CH 3) 3 N + (Allyl) N - ( CF 3 SO 2) 2, trimethyl hexyl ammonium bis (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 6 H 13) N - (CF 3 SO 2) 2, Trimethylethylammonium 2,2,2-trifluoro-N- (trifluoro Methylsulfonyl) acetamide (CH 3) 3 N + ( C 2 H 5) (CF 3 CO) N - (CF 3 SO 2),
一方、このような室温溶融塩と混合させるリチウム塩としては、上記のようにLiCF 3 SO 3 、LiC 4 F 9 SO 3 、LiN(CF 3 SO 2 ) 2 、LiN(C 2 F 5 SO 2 ) 2 、LiN(CF 3 SO 2 )(COCF 3 )から選択される少なくとも1種を用いることができる。
On the other hand, as the lithium salt to be mixed with such room temperature molten salt, LiCF as above 3 SO 3, LiC 4 F 9
また、この発明における非水電解質二次電池において、その正極の材料にはリチウム含有酸化物を使用することができる。そして、このリチウム含有酸化物としては、従来の非水電解液二次電池において一般に使用されているものを用いることができる。また、正極における正極集電体としては、高電位に耐えることができるアルミニウム箔やタンタル箔を使用することができる。 In the nonaqueous electrolyte secondary battery according to the present invention, a lithium-containing oxide can be used as a material for the positive electrode. And as this lithium containing oxide, what is generally used in the conventional nonaqueous electrolyte secondary battery can be used. As the positive electrode current collector in the positive electrode, an aluminum foil or a tantalum foil that can withstand a high potential can be used.
また、この発明における非水電解質二次電池において、その負極の材料にはリチウムを吸蔵・放出する材料である黒鉛等の炭素材料を使用することができる。特に、高いエネルギー密度になった非水電解質二次電池を得るためには、本出願人の先の出願である特願2000−321200号及び特願2000−321201号に示したように、容量の大きなケイ素を用いることが望ましい。また、ケイ素に銅を拡散させたものを用いると、リチウム吸蔵時における応力が緩和されて、サイクル性能が向上する。また、この負極における負極集電体には銅箔を用いることができる。特に、負極の材料との密着性を高めるために、電解によって得られる表面が粗面化された銅箔を用いることが好ましい。 In the non-aqueous electrolyte secondary battery according to the present invention, a carbon material such as graphite, which is a material that absorbs and releases lithium, can be used as the negative electrode material. In particular, in order to obtain a non-aqueous electrolyte secondary battery having a high energy density, as shown in Japanese Patent Application No. 2000-321200 and Japanese Patent Application No. 2000-321201 which are earlier applications of the present applicant, It is desirable to use large silicon. Moreover, when the thing which diffused copper to the silicon is used, the stress at the time of lithium occlusion will be relieved and cycling performance will improve. Moreover, copper foil can be used for the negative electrode current collector in this negative electrode. In particular, it is preferable to use a copper foil having a roughened surface obtained by electrolysis in order to improve adhesion to the negative electrode material.
以下、この発明に係る非水電解質二次電池について、実施例を挙げて具体的に説明する。なお、この発明における非水電解質二次電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。 Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples. In addition, the nonaqueous electrolyte secondary battery in this invention is not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.
(実施例1)
実施例1においては、非水電解質として、室温溶融塩であるトリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C8H17)N−(CF3 SO2)2 に、リチウム塩としてLiN(CF3SO2)2 を1mol/lの濃度になるように溶解させた非水電解液を用いた。なお、この非水電解液の導電率を測定したところ、25℃で0.111mS/cmであり、充放電するのに必要な導電率を有していた。
(Example 1)
In Example 1, as the non-aqueous electrolyte, trimethyl octyl ammonium bis room temperature molten salt (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 8 H 17) N - (
また、負極としては、表面を電解処理した銅箔上にスパッタ法によりアモルファスシリコン薄膜を形成し、大きさ2cm×2cmに成形したものを用いた。 As the negative electrode, an amorphous silicon thin film was formed by sputtering on a copper foil whose surface was subjected to electrolytic treatment, and formed into a size of 2 cm × 2 cm.
そして、第1図に示すように、試験セル容器10内に上記の非水電解液14を注液させると共に、作用極に上記の負極11を使用する一方、対極となる正極12a及び参照極13にそれぞれリチウム金属を用いて実施例1の試験セルを作製した。
As shown in FIG. 1, the
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が0.0V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、この1サイクル目の充電時及び放電時における負極11の電位と容量との関係を調べ、その結果を第2図に示した。
Next, using the test cell thus prepared, the battery was charged at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例1の試験セルにおいて、上記の負極11における1サイクル目の充電容量は3346mAh/g、1サイクル目の放電容量は2976mAh/gであり、理論容量値の4200mAh/gに近い値になっており、高い容量で充放電が行えた。
As a result, in the test cell of Example 1, the charge capacity in the first cycle in the
さらに、この実施例1の試験セルを使用し、上記のようにして充放電を繰り返して行い、各サイクルにおける充電容量Qa(mAh/g)と放電容量Qb(mAh/g)とを測定した。そして、下記の式により各サイクルにおける充放電効率(%)を求め、その結果を第3図に示した。なお、第3図においては、各サイクルにおける放電容量(mAh/g)を○と実線で、各サイクルにおける充放電効率(%)を△と破線で示した。 Furthermore, using the test cell of this Example 1, charge and discharge were repeated as described above, and the charge capacity Qa (mAh / g) and the discharge capacity Qb (mAh / g) in each cycle were measured. And the charging / discharging efficiency (%) in each cycle was calculated | required with the following formula, The result was shown in FIG. In FIG. 3, the discharge capacity (mAh / g) in each cycle is indicated by a circle and a solid line, and the charge / discharge efficiency (%) in each cycle is indicated by a triangle and a broken line.
充放電効率(%)=(Qb/Qa)×100 Charging / discharging efficiency (%) = (Qb / Qa) × 100
この結果、上記の実施例1の試験セルにおいては、2サイクル目以降においても約2400mAh/gの高い放電容量が得られ、また充放電効率も非常に高い値を示していた。 As a result, in the test cell of Example 1 above, a high discharge capacity of about 2400 mAh / g was obtained even after the second cycle, and the charge / discharge efficiency was also very high.
(実施例2)
実施例2においては、非水電解質として、室温溶融塩であるトリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C3H7)N−(CF3SO2)2に、リチウム塩としてLiN(CF3SO2)2を0.3mol/lの濃度になるように溶解させた非水電解液を用いた。なお、この非水電解液の導電率を測定したところ、25℃で2.75mS/cmであり、充放電するのに必要な導電率を有していた。
(Example 2)
In Example 2, as the non-aqueous electrolyte, trimethylpropylammonium · bis room temperature molten salt (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 3 H 7) N - (
そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にして、実施例2の試験セルを作製した。 And the test cell of Example 2 was produced like the case of said Example 1 except using this non-aqueous electrolyte.
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が0.0V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、この1サイクル目の充電時及び放電時における負極11の電位と容量との関係を調べ、その結果を第4図に示した。
Next, using the test cell thus prepared, the battery was charged at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例2の試験セルにおいて、上記の負極11における1サイクル目の充電容量は3370mAh/g、1サイクル目の放電容量は2989mAh/gであり、理論容量値の4200mAh/gに近い値になっており、高い容量で充放電が行えた。
As a result, in the test cell of Example 2, the first cycle charge capacity of the
さらに、この実施例2の試験セルを使用し、上記のようにして充放電を繰り返して行い、各サイクルにおける充電容量Qa(mAh/g)と放電容量Qb(mAh/g)とを測定し、上記の実施例1の試験セルの場合と同様にして、各サイクルにおける充放電効率(%)を求め、その結果を第5図に示した。なお、第5図においては、各サイクルにおける放電容量(mAh/g)を○と実線で、各サイクルにおける充放電効率(%)を△と破線で示した。 Further, using the test cell of Example 2, charging and discharging were repeated as described above, and the charge capacity Qa (mAh / g) and the discharge capacity Qb (mAh / g) in each cycle were measured. The charge / discharge efficiency (%) in each cycle was determined in the same manner as in the test cell of Example 1 above, and the results are shown in FIG. In FIG. 5, the discharge capacity (mAh / g) in each cycle is indicated by a circle and a solid line, and the charge / discharge efficiency (%) in each cycle is indicated by a triangle and a broken line.
この結果、上記の実施例2の試験セルにおいては、9サイクル目においても3183mAh/gの高い放電容量が得られ、また充放電効率も非常に高い値を示していた。 As a result, in the test cell of Example 2, a high discharge capacity of 3183 mAh / g was obtained even in the ninth cycle, and the charge / discharge efficiency was also very high.
(実施例3)
実施例3においては、非水電解質として、室温溶融塩であるトリメチルヘキシルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C6H13)N−(CF3SO2)2 に、リチウム塩としてLiN(CF3SO2)2を0.5mol/lの濃度になるように溶解させた非水電解液を用いた。
(Example 3)
In Example 3, as the non-aqueous electrolyte, trimethyl hexyl ammonium bis room temperature molten salt (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 6 H 13) N - (
そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にして、実施例3の試験セルを作製した。 And the test cell of Example 3 was produced like the case of said Example 1 except using this non-aqueous electrolyte.
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が0.0V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、この1サイクル目の充電時及び放電時における負極11の電位と容量との関係を調べ、その結果を第6図に示した。
Next, using the test cell thus prepared, the battery was charged at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例3の試験セルにおいて、上記の負極11における1サイクル目の充電容量は3133mAh/g、1サイクル目の放電容量は2778mAh/gであり、理論容量値の4200mAh/gに近い値になっており、高い容量で充放電が行えた。
As a result, in the test cell of Example 3, the charge capacity of the first cycle in the
さらに、この実施例3の試験セルを使用し、上記のようにして充放電を繰り返して行い、各サイクルにおける充電容量Qa(mAh/g)と放電容量Qb(mAh/g)とを測定し、上記の実施例1の試験セルの場合と同様にして、各サイクルにおける充放電効率(%)を求め、その結果を第7図に示した。なお、第7図においては、各サイクルにおける放電容量(mAh/g)を○と実線で、各サイクルにおける充放電効率(%)を△と破線で示した。 Furthermore, using the test cell of Example 3, charging and discharging were repeated as described above, and the charge capacity Qa (mAh / g) and the discharge capacity Qb (mAh / g) in each cycle were measured. The charge / discharge efficiency (%) in each cycle was determined in the same manner as in the test cell of Example 1 above, and the results are shown in FIG. In FIG. 7, the discharge capacity (mAh / g) in each cycle is indicated by a circle and a solid line, and the charge / discharge efficiency (%) in each cycle is indicated by a triangle and a broken line.
この結果、上記の実施例3の試験セルにおいては、9サイクル目においても3411mAh/gの高い放電容量が得られ、また充放電効率も非常に高い値を示していた。 As a result, in the test cell of Example 3 described above, a high discharge capacity of 3411 mAh / g was obtained even in the ninth cycle, and the charge / discharge efficiency was also very high.
(実施例4)
実施例4においては、非水電解質として、室温溶融塩であるトリエチルメチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)3N+(CH3)(CF3CO)N−(CF3SO2)に、リチウム塩としてLiN(CF3SO2)2を0.5mol/lの濃度になるように溶解させた非水電解液を用いた。
Example 4
In Example 4, as a nonaqueous electrolyte, triethylmethylammonium · 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide (C 2 H 5 ) 3 N + (CH 3 ) (CF 3 CO) N - the (CF 3 sO 2), was used a LiN (CF 3 sO 2) 2 as a lithium salt was dissolved to a concentration of 0.5 mol / l non-aqueous electrolyte.
そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にして、実施例4の試験セルを作製した。 And the test cell of Example 4 was produced like the case of said Example 1 except using this non-aqueous electrolyte.
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が0.0V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、この1サイクル目の充電時及び放電時における負極11の電位と容量との関係を調べ、その結果を第8図に示した。
Next, using the test cell thus prepared, the battery was charged at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例4の試験セルにおいて、上記の負極11における1サイクル目の充電容量は10504mAh/g、1サイクル目の放電容量は1376mAh/gであり、充放電が行えた。
As a result, in the test cell of Example 4, the charge capacity at the first cycle in the
(実施例5)
実施例5においては、非水電解質として、室温溶融塩である1−エチル−3−メチルイミダゾリウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)(C3H3N2)+(CH3)(CF3CO)N−(CF3SO2)に、リチウム塩としてLiN(CF3SO2)2を0.5mol/lの濃度になるように溶解させた非水電解液を用いた。
(Example 5)
In Example 5, 1-ethyl-3-methylimidazolium · 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide (C 2 H 5 ), which is a room temperature molten salt, is used as the nonaqueous electrolyte. (C 3 H 3 N 2 ) + (CH 3 ) (CF 3 CO) N − (CF 3 SO 2 ) and LiN (CF 3 SO 2 ) 2 as a lithium salt to a concentration of 0.5 mol / l A nonaqueous electrolytic solution dissolved in was used.
そして、この非水電解液を用いる以外は、上記の実施例1の場合と同様にして、実施例5の試験セルを作製した。 And the test cell of Example 5 was produced like the case of said Example 1 except using this non-aqueous electrolyte.
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が0.0V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する負極11の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、この1サイクル目の充電時及び放電時における負極11の電位と容量との関係を調べ、その結果を第9図に示した。
Next, using the test cell thus prepared, the battery was charged at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例5の試験セルにおいて、上記の負極11における1サイクル目の充電容量は16585mAh/g、1サイクル目の放電容量は1537mAh/gであり、充放電が行えた。
As a result, in the test cell of Example 5, the charge capacity in the first cycle in the
そして、上記の実施例1〜実施例5の結果から、ケイ素を用いた負極11と、室温溶融塩であるトリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C8H17)N−(CF3SO2)2 や、トリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C3H7)N−(CF3SO2)2 や、トリメチルヘキシルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C6H13)N−(CF3SO2)2や、トリエチルメチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)3N+(CH3)(CF3CO)N−(CF3SO2)や、1−エチル−3−メチルイミダゾリウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド(C2H5)(C3H3N2)+(CH3)(CF3CO)N−(CF3SO2)にリチウム塩のLiN(CF3SO2)2を溶解させた非水電解液14とを用いて非水電解質二次電池を作製した場合においても、適切に充放電が行えると考えられる。
Then, from the results of Examples 1 to Example 5, a
(実施例6)
実施例6においては、正極の材料にLiCoO2粉末を用い、このLiCoO2粉末と結着剤のポリフッ化ビニリデンとが95:5の重量比になるようにして、LiCoO2粉末にポリフッ化ビニリデンが5重量%のN−メチル−2−ピロリドン溶液を加え、これをらいかい機で30分間らいかいしてスラリーを調製し、このスラリーを厚み20μmのアルミニウム箔の両面にドクターブレード法により塗布し、これを乾燥させて正極を作製した。
(Example 6)
In Example 6, using the LiCoO 2 powder material of the positive electrode, the LiCoO 2 powder and a binder polyvinylidene fluoride and 95: as a weight ratio of 5, polyvinylidene fluoride to LiCoO 2 powder A 5% by weight N-methyl-2-pyrrolidone solution was added, and this was ground for 30 minutes with a cracking machine to prepare a slurry. This slurry was applied to both sides of an aluminum foil having a thickness of 20 μm by the doctor blade method, This was dried to produce a positive electrode.
また、非水電解質としては、上記の実施例1の場合と同様に、トリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C8H17)N−(CF3SO2)2 にLiN(CF3SO2)2を1mol/lの濃度になるように溶解させた非水電解液を用いた。 As the non-aqueous electrolyte, as in Example 1 above, trimethyloctylammonium bis (trifluoromethylsulfonyl) imide (CH 3 ) 3 N + (C 8 H 17 ) N − (CF 3 SO 2) was used LiN (CF 3 sO 2) 2 the non-aqueous electrolytic solution obtained by dissolving to a concentration of 1 mol / l to 2.
そして、第10図に示すように、試験セル容器10内に上記の非水電解液14を注液させると共に、作用極に上記の正極12を使用する一方、対極となる負極11a及び参照極13にそれぞれリチウム金属を用いて実施例6の試験セルを作製した。
Then, as shown in FIG. 10, the
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する正極12の電位が4.3V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する正極12の電位が2.75V(vs.Li/Li+ )になるまで放電を行い、初期の充電時及び初期の放電時における正極12の電位と容量との関係を調べ、その結果を第11図に示した。
Next, using the test cell thus prepared, after charging at a current density of 0.025 mA / cm 2 until the potential of the
この結果、この実施例6の試験セルにおいては、上記の正極12における初期充電容量が29.8mAh/g、初期放電容量が25.8mAh/gであり、充放電が行えた。
As a result, in the test cell of Example 6, the
(実施例7)
実施例7においては、正極にはアルミニウム箔の上にスパッタリングによってLiCoO2の層を形成したものを用いた。
(Example 7)
In Example 7, a positive electrode in which a LiCoO 2 layer was formed on an aluminum foil by sputtering was used.
また、非水電解質としては、上記の実施例2の場合と同様に、室温溶融塩であるトリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C3H7)N−(CF3SO2)2に、リチウム塩としてLiN(CF3SO2)2を0.3mol/lの濃度になるように溶解させた非水電解液を用いた。 As the non-aqueous electrolyte, as in the case of Example 2, the room temperature molten salt trimethylpropylammonium bis (trifluoromethylsulfonyl) imide (CH 3 ) 3 N + (C 3 H 7 ) N - the (CF 3 sO 2) 2, was used LiN (CF 3 sO 2) 2 was dissolved to a concentration of 0.3 mol / l aqueous electrolyte solution as the lithium salt.
そして、上記の実施例6の場合と同様に、試験セル容器10内に上記の非水電解液14を注液させると共に、作用極に上記の正極12を使用する一方、対極となる負極11a及び参照極13にそれぞれリチウム金属を用いて実施例7の試験セルを作製した。
As in the case of Example 6, the
次いで、このように作製した試験セルを使用し、電流密度0.025mA/cm2 で参照極13に対する正極12の電位が4.2V(vs.Li/Li+ )になるまで充電させた後、電流密度0.025mA/cm2 で参照極13に対する正極12の電位が2.0V(vs.Li/Li+ )になるまで放電を行い、初期の充電時及び初期の放電時における正極12の電位と容量との関係を調べ、その結果を第12図に示した。
Next, using the test cell thus produced, after charging until the potential of the
この結果、この実施例7の試験セルにおいては、上記の正極12における初期充電容量が104mAh/g、初期放電容量が104mAh/gであり、充放電が行えた。
As a result, in the test cell of Example 7, the
さらに、この実施例7の試験セルを使用し、上記のようにして充放電を繰り返して行い、各サイクルにおける充電容量Qa(mAh/g)と放電容量Qb(mAh/g)とを測定し、上記の実施例1の試験セルの場合と同様にして、各サイクルにおける充放電効率(%)を求め、その結果を第13図に示した。なお、第13図においては、各サイクルにおける放電容量(mAh/g)を○と実線で、各サイクルにおける充放電効率(%)を△と破線で示した。 Further, using the test cell of Example 7, charging and discharging were repeated as described above, and the charge capacity Qa (mAh / g) and the discharge capacity Qb (mAh / g) in each cycle were measured. The charge / discharge efficiency (%) in each cycle was determined in the same manner as in the case of the test cell of Example 1, and the results are shown in FIG. In FIG. 13, the discharge capacity (mAh / g) in each cycle is indicated by a circle and a solid line, and the charge / discharge efficiency (%) in each cycle is indicated by a triangle and a broken line.
この結果、上記の実施例7の試験セルにおいては、7サイクル目においても95mAh/gの高い放電容量が得られ、また充放電効率も非常に高い値を示していた。 As a result, in the test cell of Example 7 described above, a high discharge capacity of 95 mAh / g was obtained even in the seventh cycle, and the charge / discharge efficiency was also very high.
そして、上記の実施例6及び実施例7の結果から、LiCoO2を用いた正極と、室温溶融塩であるトリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C8H17)N−(CF3SO2)2 や、トリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド(CH3)3N+(C3H7)N−(CF3SO2)2 にリチウム塩のLiN(CF3SO2)2 を溶解させた非水電解液14とを用いて非水電解質二次電池を作製した場合においても、適切に充放電が行えると考えられる。
From the results of Examples 6 and 7, the positive electrode using LiCoO 2 and the room temperature molten salt trimethyloctylammonium bis (trifluoromethylsulfonyl) imide (CH 3 ) 3 N + (C 8 H 17) N - (CF 3 SO 2) 2 and, trimethylpropylammonium · bis (trifluoromethylsulfonyl) imide (CH 3) 3 N + ( C 3 H 7) N - (
また、上記の実施例1〜実施例7に示すような室温溶融塩に、リチウム塩のLiN(CF3SO2)2を溶解させた非水電解液を用いると、過充電等の異常な操作時においても、非水電解液が分解したり、燃えたりするということがない。 Further, when a non-aqueous electrolyte in which a lithium salt LiN (CF 3 SO 2 ) 2 is dissolved in a room temperature molten salt as shown in Examples 1 to 7 above, abnormal operation such as overcharging is performed. Even at times, the non-aqueous electrolyte does not decompose or burn.
以上詳述したように、この発明における非水電解質二次電池においては、融点が60℃以下の室温溶融塩とリチウム塩とを含む非水電解質を用いたため、上記のリチウム塩によってリチウムが正極と負極との間で移動して充放電が行えるようになると共に、過充電等の異常な操作時においても非水電解質が分解したり、燃えたりするということがなく、保護回路等を設けなくても安全に使用できるようになった。 As described above in detail, in the non-aqueous electrolyte secondary battery according to the present invention, since the non-aqueous electrolyte containing a room temperature molten salt having a melting point of 60 ° C. or less and a lithium salt is used, the lithium salt is used as a positive electrode. It is possible to charge and discharge by moving between the negative electrode and non-aqueous electrolyte will not be decomposed or burned even during abnormal operation such as overcharge, and no protective circuit etc. are provided Can now be used safely.
10 試験セル容器10 Test cell container
11,11a 負極11,11a Negative electrode
12,12a 正極12,12a positive electrode
13 参照極13 Reference pole
14 非水電解液14 Non-aqueous electrolyte
Claims (3)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327418 | 2001-10-25 | ||
JP2001327418 | 2001-10-25 | ||
JP2002125662 | 2002-04-26 | ||
JP2002125662 | 2002-04-26 | ||
PCT/JP2002/010901 WO2003036751A1 (en) | 2001-10-25 | 2002-10-21 | Non-aqueous electrolyte secondary cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2003036751A1 JPWO2003036751A1 (en) | 2005-02-17 |
JP4187653B2 true JP4187653B2 (en) | 2008-11-26 |
Family
ID=26624094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003539127A Expired - Fee Related JP4187653B2 (en) | 2001-10-25 | 2002-10-21 | Nonaqueous electrolyte secondary battery |
Country Status (5)
Country | Link |
---|---|
US (1) | US7407725B2 (en) |
JP (1) | JP4187653B2 (en) |
KR (1) | KR20040036896A (en) |
CN (1) | CN1298073C (en) |
WO (1) | WO2003036751A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070092801A1 (en) * | 2005-10-25 | 2007-04-26 | Andrew Tipton | Molten Salt Electrolyte for a Battery and Electrochemical Capacitor |
JP5002952B2 (en) * | 2005-12-06 | 2012-08-15 | ソニー株式会社 | battery |
JP2008130229A (en) * | 2006-11-16 | 2008-06-05 | National Institute Of Advanced Industrial & Technology | Lithium secondary battery |
CN101488568B (en) * | 2008-01-14 | 2011-05-04 | 中国科学院物理研究所 | Surface modification process used for lithium secondary battery positive pole active material |
JP5012909B2 (en) | 2008-01-24 | 2012-08-29 | トヨタ自動車株式会社 | Lithium ion secondary battery, assembled battery, vehicle, battery-equipped device, battery system, and method for detecting deterioration of lithium ion secondary battery |
US9142856B2 (en) | 2010-01-12 | 2015-09-22 | Toyota Jidosha Kabushiki Kaisha | Liquid hydrophobic phase transition substance, and battery comprising same |
JP5779050B2 (en) * | 2010-11-30 | 2015-09-16 | 住友電気工業株式会社 | Molten salt battery |
JP5858234B2 (en) * | 2012-03-21 | 2016-02-10 | 国立研究開発法人産業技術総合研究所 | Lithium-ion battery electrolyte |
US20150132649A1 (en) * | 2013-11-13 | 2015-05-14 | Semiconductor Energy Laboratory Co., Ltd. | Negative electrode for power storage device, power storage device, and electrical device |
CN117105827A (en) | 2017-03-27 | 2023-11-24 | 魁北克电力公司 | Salts for use in electrolyte compositions or as electrode additives |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1242483A (en) * | 1983-10-26 | 1988-09-27 | Toshikazu Shishikura | Secondary battery |
JP3620559B2 (en) | 1997-01-17 | 2005-02-16 | 株式会社ユアサコーポレーション | Non-aqueous electrolyte battery |
CN1145231C (en) * | 1997-01-28 | 2004-04-07 | 佳能株式会社 | Electrode structure body, chargeable cell and its producing method |
JPH10265673A (en) * | 1997-03-25 | 1998-10-06 | Mitsubishi Chem Corp | Polymer compound composite material and its production |
JP3817045B2 (en) * | 1997-09-12 | 2006-08-30 | 四国化成工業株式会社 | Molten salt type polymer electrolyte |
EP1044478A1 (en) * | 1997-12-10 | 2000-10-18 | Minnesota Mining And Manufacturing Company | Bis(perfluoroalkylsulfonyl)imide surfactant salts in electrochemical systems |
JP3060107B2 (en) * | 1998-01-28 | 2000-07-10 | 三洋化成工業株式会社 | Flame retardant non-aqueous electrolyte and secondary battery using the same |
JP2981545B2 (en) * | 1998-04-03 | 1999-11-22 | 工業技術院長 | Room temperature molten salt |
JP3587982B2 (en) * | 1998-04-17 | 2004-11-10 | Tdk株式会社 | Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same |
JP4085473B2 (en) * | 1998-06-18 | 2008-05-14 | 宇部興産株式会社 | Non-aqueous secondary battery charging method |
JP3715436B2 (en) | 1998-06-30 | 2005-11-09 | 株式会社東芝 | Salt, electrolytic solution and electrochemical device using the same |
US6350545B2 (en) * | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
JP2000082494A (en) * | 1998-09-03 | 2000-03-21 | Sanyo Chem Ind Ltd | Flame-resistant nonaqueous electrolyte and secondary battery using the same |
JP2000228223A (en) * | 1999-02-05 | 2000-08-15 | Tokuyama Corp | Non-aqueous electrolyte secondary cell |
JP2001210315A (en) | 2000-01-25 | 2001-08-03 | Sanyo Electric Co Ltd | Electrode for lithium secondary battery and lithium secondary battery using it |
JP3869609B2 (en) | 2000-01-27 | 2007-01-17 | 三洋電機株式会社 | Method for producing electrode for lithium secondary battery |
WO2001086748A1 (en) | 2000-05-12 | 2001-11-15 | Yuasa Corporation | Nonaqueous electrolyte lithium secondary cell |
JP2002110230A (en) * | 2000-10-04 | 2002-04-12 | Yuasa Corp | Non-acqueous electrolyte lithium secondary battery |
JP4165854B2 (en) * | 2000-10-04 | 2008-10-15 | 株式会社ジーエス・ユアサコーポレーション | Nonaqueous electrolyte, method for producing nonaqueous electrolyte, and nonaqueous electrolyte lithium secondary battery |
JP2002251917A (en) | 2001-02-23 | 2002-09-06 | Nippon Mitsubishi Oil Corp | Ion conductive sheet |
JP4016607B2 (en) * | 2001-04-25 | 2007-12-05 | 株式会社ジーエス・ユアサコーポレーション | Non-aqueous electrolyte battery |
JP2003203674A (en) * | 2001-10-29 | 2003-07-18 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary cell |
US20040038127A1 (en) * | 2002-08-20 | 2004-02-26 | Schlaikjer Carl Roger | Small cation/delocalizing anion as an ambient temperature molten salt in electrochemical power sources |
-
2002
- 2002-10-21 JP JP2003539127A patent/JP4187653B2/en not_active Expired - Fee Related
- 2002-10-21 KR KR10-2004-7000210A patent/KR20040036896A/en not_active Application Discontinuation
- 2002-10-21 US US10/487,213 patent/US7407725B2/en not_active Expired - Fee Related
- 2002-10-21 CN CNB028197011A patent/CN1298073C/en not_active Expired - Fee Related
- 2002-10-21 WO PCT/JP2002/010901 patent/WO2003036751A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20040036896A (en) | 2004-05-03 |
CN1298073C (en) | 2007-01-31 |
US7407725B2 (en) | 2008-08-05 |
JPWO2003036751A1 (en) | 2005-02-17 |
US20040241543A1 (en) | 2004-12-02 |
CN1650465A (en) | 2005-08-03 |
WO2003036751A1 (en) | 2003-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101299880B1 (en) | N-oxide redox shuttles for rechargeable lithium-ion cell | |
JP3675460B2 (en) | Organic electrolyte and lithium battery using the same | |
JP5094084B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2011526057A (en) | Non-aqueous electrolyte for high voltage lithium battery | |
JP4050251B2 (en) | Organic electrolyte and lithium battery using the same | |
JP2003203674A (en) | Nonaqueous electrolyte secondary cell | |
JP4056117B2 (en) | Lithium secondary battery | |
JP2020102348A (en) | Manufacturing method of lithium ion battery, and lithium ion battery | |
JP2001223024A (en) | Electrolyte for lithium secondary battery | |
JP2002110225A (en) | Non-acqueous electrolyte lithium secondary battery | |
JP4187653B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20040084858A (en) | Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same | |
US7422827B2 (en) | Nonaqueous electrolyte | |
JPS59134568A (en) | Electrolyte for lithium battery | |
JP2000228216A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP2005190978A (en) | Nonaqueous electrolyte secondary battery | |
JP2003288939A (en) | Nonaqueous electrolyte battery | |
JP2020061206A (en) | Electrolyte for incombustible or self-extinguishing lithium ion battery and lithium ion battery | |
JP2003109662A (en) | Method of manufacturing secondary battery | |
JP2001196094A (en) | Non-aqueous electrolytic secondary battery | |
JP3831599B2 (en) | Lithium secondary battery | |
JP2009043535A (en) | Manufacturing method of nonaqueous electrolyte battery | |
JPH05326017A (en) | Nonaqueous solvent type lithium secondary battery | |
JP2000188132A5 (en) | ||
JP2000306610A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080909 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |