JP2003288939A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2003288939A
JP2003288939A JP2002090146A JP2002090146A JP2003288939A JP 2003288939 A JP2003288939 A JP 2003288939A JP 2002090146 A JP2002090146 A JP 2002090146A JP 2002090146 A JP2002090146 A JP 2002090146A JP 2003288939 A JP2003288939 A JP 2003288939A
Authority
JP
Japan
Prior art keywords
aqueous
aqueous electrolyte
carbonate
electrolyte battery
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002090146A
Other languages
Japanese (ja)
Other versions
JP4056278B2 (en
Inventor
Yoshinori Kida
佳典 喜田
Akira Kinoshita
晃 木下
Masahide Miyake
雅秀 三宅
Masahisa Fujimoto
正久 藤本
Maruo Jinno
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002090146A priority Critical patent/JP4056278B2/en
Publication of JP2003288939A publication Critical patent/JP2003288939A/en
Application granted granted Critical
Publication of JP4056278B2 publication Critical patent/JP4056278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery with high safety and sufficient charge and discharge characteristics, having a positive electrode, a negative electrode, and a nonaqueous electrolyte prepared by dissolving a solute in a nonaqueous solvent. <P>SOLUTION: This nonaqueous electrolyte battery has a positive electrode 11, a negative electrode 12, and a nonaqueous electrolyte 14 prepared by dissolving a solute in a nonaqueous solvent, the nonaqueous solvent in the nonaqueous electrolyte 14 contains a melted salt at normal temperature and a carbonate, and 50 vol.% or more of the carbonate is contained in the nonaqueous solvent. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、正極と、負極
と、非水系溶媒に溶質が溶解された非水電解液とを備え
た非水電解質電池に係り、特に、非水電解液における非
水系溶媒を改善し、非水電解質電池における安全性を高
めると共に、充放電特性を向上させた点に特徴を有する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte in which a solute is dissolved in a non-aqueous solvent, and more particularly to a non-aqueous electrolyte in the non-aqueous electrolyte. It is characterized by improving the solvent, improving the safety in the non-aqueous electrolyte battery, and improving the charge / discharge characteristics.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、非水系溶媒に溶質が溶解された非水
電解液を用い、リチウムの酸化,還元を利用した高起電
力の非水電解質電池が利用されるようになった。
2. Description of the Related Art Recently, as one of new type batteries with high output and high energy density, a non-aqueous electrolyte in which a solute is dissolved in a non-aqueous solvent is used, and high electromotive force of non-electrolyte is utilized by oxidation and reduction of lithium. Water electrolyte batteries have come into use.

【0003】ここで、このような非水電解質電池におい
ては、その非水電解液として、一般にエチレンカーボネ
ートやジエチルカーボネート等の有機溶媒に、LiBF
4 やLiPF6 等のリチウム塩からなる溶質を溶解させ
たものが使用されている。
Here, in such a non-aqueous electrolyte battery, LiBF is generally used as the non-aqueous electrolytic solution in an organic solvent such as ethylene carbonate or diethyl carbonate.
A solution in which a solute composed of a lithium salt such as 4 or LiPF 6 is dissolved is used.

【0004】しかし、非水電解液に用いる上記のような
有機溶媒は可燃性であるため、過充電等の異常な操作時
に安全性に問題が生じるおそれがあり、このため、従来
においては、過充電されないように保護回路を設ける等
により安全性を高めるようにしていたが、この場合、コ
ストが高く付く等の問題があった。
However, since the above-mentioned organic solvent used for the non-aqueous electrolyte is flammable, there is a risk of safety problems during abnormal operation such as overcharging. The safety has been improved by providing a protection circuit so as not to be charged, but in this case, there is a problem that the cost is high.

【0005】このため、近年においては、非水電解液の
溶媒に、安全性に優れた常温溶融塩を用いることが検討
され、特開平11−260400号公報に示されるよう
に、環状及び/又は鎖状カーボネートを0.1〜30体
積%含有する常温溶融塩を溶媒として用いることが提案
されている。
Therefore, in recent years, it has been studied to use a room temperature molten salt having excellent safety as a solvent for the non-aqueous electrolyte solution, and as disclosed in JP-A No. 11-260400, a cyclic and / or cyclic salt is used. It has been proposed to use a room temperature molten salt containing 0.1 to 30% by volume of chain carbonate as a solvent.

【0006】しかし、このように環状及び/又は鎖状カ
ーボネートを0.1〜30体積%含有する常温溶融塩を
非水電解液の溶媒に用いた場合、この非水電解液の粘性
が高くなって、イオン導電率が低くなり、十分な充放電
特性が得られなくなるという問題があった。
However, when the room temperature molten salt containing 0.1 to 30% by volume of the cyclic and / or chain carbonate is used as the solvent of the non-aqueous electrolyte, the viscosity of the non-aqueous electrolyte becomes high. Then, there is a problem that the ionic conductivity becomes low and sufficient charge / discharge characteristics cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】この発明は、非水電解
質電池における上記のような問題を解決することを課題
とするものであり、非水電解液を改善し、安全性に優れ
ると共に、十分な充放電特性が得られる非水電解質電池
を提供することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems in a non-aqueous electrolyte battery, and improves a non-aqueous electrolytic solution, and is excellent in safety and sufficient. An object of the present invention is to provide a non-aqueous electrolyte battery capable of obtaining excellent charge / discharge characteristics.

【0008】[0008]

【課題を解決するための手段】この発明における非水電
解質電池においては、上記のような課題を解決するた
め、正極と、負極と、非水系溶媒に溶質が溶解された非
水電解液とを備えた非水電解質電池において、上記の非
水電解液における非水系溶媒が、常温溶融塩とカーボネ
ートとを含み、この非水系溶媒中にカーボネートが50
体積%以上含有されるようにしたのである。
In the non-aqueous electrolyte battery of the present invention, in order to solve the above problems, a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which a solute is dissolved in a non-aqueous solvent are provided. In the provided non-aqueous electrolyte battery, the non-aqueous solvent in the above-mentioned non-aqueous electrolytic solution contains a room temperature molten salt and a carbonate, and the carbonate is 50 in the non-aqueous solvent.
That is, it is contained in an amount of not less than volume%.

【0009】そして、この発明における非水電解質電池
においては、非水電解液における非水系溶媒が、常温溶
融塩とカーボネートとを含むようにしたため、上記の常
温溶融塩により、過充電等の異常な操作時における安全
性が高まり、またこの非水系溶媒中にカーボネートが5
0体積%以上含有されるようにしたため、非水電解液の
粘性が低下して、この非水電解液のイオン導電率が高ま
り、十分な充放電特性が得られるようになる。特に、安
全性を高めると共に、この非水電解液のイオン導電率を
高めて、充放電特性を向上させるためには、上記の非水
系溶媒中にカーボネートが50〜90体積%、より好ま
しくは70〜85体積%の範囲で含有されるようにする
ことが好ましい。
In the non-aqueous electrolyte battery according to the present invention, since the non-aqueous solvent in the non-aqueous electrolyte contains the room temperature molten salt and the carbonate, the room temperature molten salt causes abnormal charging such as overcharging. The safety during operation is improved, and 5% carbonate is contained in this non-aqueous solvent.
Since it is contained in an amount of 0% by volume or more, the viscosity of the nonaqueous electrolytic solution is lowered, the ionic conductivity of the nonaqueous electrolytic solution is increased, and sufficient charge / discharge characteristics can be obtained. In particular, in order to enhance the safety and the ionic conductivity of the non-aqueous electrolytic solution to improve the charge / discharge characteristics, the non-aqueous solvent contains 50 to 90% by volume of carbonate, more preferably 70% by volume. It is preferable that the content is in the range of up to 85% by volume.

【0010】ここで、上記の常温溶融塩としては、充電
時に負極と反応するのを抑制するため、テトラアルキル
四級アンモニウム塩を用いることが好ましい。
Here, as the above room temperature molten salt, it is preferable to use a tetraalkyl quaternary ammonium salt in order to suppress reaction with the negative electrode during charging.

【0011】そして、このテトラアルキル四級アンモニ
ウム塩におけるカチオンが、(CH 3 3 1 + (式
中、R1 は、炭素数が3〜8のアルキル基である。)か
らなるトリメチルアルキルアンモニウムであり、またこ
のテトラアルキル四級アンモニウム塩のアニオンが、
(CF3 SO2 2 - ,(C25SO2 2 -
(CF3 SO2 )(C4 9 SO2 )N- から選択され
る少なくとも1つであることが好ましく、具体的には、
トリメチルプロピルアンモニウム・ビス(トリフルオロ
メチルスルホニル)イミド、トリメチルオクチルアンモ
ニウム・ビス(トリフルオロメチルスルホニル)イミ
ド、トリメチルアリルアンモニウム・ビス(トリフルオ
ロメチルスルホニル)イミド、トリメチルヘキシルアン
モニウム・ビス(トリフルオロメチルスルホニル)イミ
ド、トリメチルエチルアンモニウム・2,2,2−トリ
フルオロ−N−(トリフルオロメチルスルホニル)アセ
トアミド、トリメチルアリルアンモニウム・2,2,2
−トリフルオロ−N−(トリフルオロメチルスルホニ
ル)アセトアミド、トリメチルプロピルアンモニウム・
2,2,2−トリフルオロ−N−(トリフルオロメチル
スルホニル)アセトアミド、テトラエチルアンモニウム
・2,2,2−トリフルオロ−N−(トリフルオロメチ
ルスルホニル)アセトアミド、トリエチルメチルアンモ
ニウム・2,2,2−トリフルオロ−N−(トリフルオ
ロメチルスルホニル)アセトアミド等のテトラアルキル
四級アンモニウム塩を用いることができる。
Then, this tetraalkyl quaternary ammonium
The cation in the um salt is (CH 3)3R1N+(formula
Medium, R1Is an alkyl group having 3 to 8 carbon atoms. )
Trimethylalkylammonium
The anion of the tetraalkyl quaternary ammonium salt of
(CF3SO2)2N-, (C2FFiveSO2)2N-
(CF3SO2) (CFourF9SO2) N-Selected from
Is preferably at least one, and specifically,
Trimethylpropyl ammonium bis (trifluoro
Methylsulfonyl) imide, trimethyloctyl ammonium
Nimium bis (trifluoromethylsulfonyl) imi
De, trimethylallylammonium bis (trifluoro)
Romethylsulfonyl) imide, trimethylhexyl ane
Monium bis (trifluoromethylsulfonyl) imi
De, trimethylethyl ammonium-2,2,2-tri
Fluoro-N- (trifluoromethylsulfonyl) acetate
Toamide, trimethylallylammonium ・ 2,2,2
-Trifluoro-N- (trifluoromethylsulfoni
Le) acetamide, trimethylpropyl ammonium
2,2,2-trifluoro-N- (trifluoromethyl
Sulfonyl) acetamide, tetraethylammonium
-2,2,2-trifluoro-N- (trifluoromethyi
Lusulfonyl) acetamide, triethylmethylammo
Nium ・ 2,2,2-trifluoro-N- (trifluoro
Tetraalkyl such as chloromethylsulfonyl) acetamide
Quaternary ammonium salts can be used.

【0012】また、上記のカーボネートとしては、例え
ば、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート等の環状炭酸エステルや、ジメチ
ルカーボネート、エチルメチルカーボネ―ト、ジエチル
カーボネート、メチルプロピルカーボネート、エチルプ
ロピルカーボネート、メチルイソプロピルカーボネート
等の鎖状炭酸エステルを使用することができ、これらを
単独又は複数組み合わせて使用することができ、一般
に、エチレンカーボネートとジエチルカーボネートとの
混合物を用いることが好ましい。
Examples of the above-mentioned carbonates include ethylene carbonate, propylene carbonate,
Cyclic carbonic acid esters such as butylene carbonate, and chain carbonic acid esters such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate can be used, and these can be used alone or Multiple combinations can be used and it is generally preferred to use a mixture of ethylene carbonate and diethyl carbonate.

【0013】また、上記の非水電解液における非水系溶
媒には、上記の常温溶融塩とカーボネート以外に、非水
電解液の特性を低下させない程度で、ジメトキシエタ
ン、ジエトキシエタン、テトラヒドロフラン、γ―ブチ
ロラクトン等の他の非水系溶媒を加えることもできる。
In addition to the above room temperature molten salt and carbonate, the non-aqueous solvent in the above non-aqueous electrolytic solution contains dimethoxyethane, diethoxyethane, tetrahydrofuran and γ, as long as the characteristics of the non-aqueous electrolytic solution are not deteriorated. -Other non-aqueous solvents such as butyrolactone can also be added.

【0014】また、上記の非水電解液における溶質とし
ては、従来の非水電解質電池において一般に使用されて
いるものを用いることができ、例えば、LiBF4 、L
iPF6 、LiClO4 、LiCF3 SO3 、LiC4
9 SO3 、LiN(CF3SO2 2 、LiN(C2
5 SO2 2 、LiAsF6 等から選択される少なく
とも1種を用いることができ、特に、二次電池として使
用する場合において、充放電効率を向上させるために
は、LiPF6 を含む溶質を用いることが好ましい。
As the solute in the above non-aqueous electrolyte solution, those commonly used in conventional non-aqueous electrolyte batteries can be used. For example, LiBF 4 , L
iPF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4
F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2
At least one selected from F 5 SO 2 ) 2 , LiAsF 6 and the like can be used. In particular, when used as a secondary battery, in order to improve charge / discharge efficiency, a solute containing LiPF 6 is used. It is preferable to use.

【0015】ここで、この発明における非水電解質電池
は、上記のような非水電解液を用いることを特徴とする
ものであり、それ以外の正極や負極については特に限定
されず、従来の非水電解質電池において一般に用いられ
ているものを使用することができる。
Here, the non-aqueous electrolyte battery according to the present invention is characterized by using the above-mentioned non-aqueous electrolyte solution, and the other positive electrodes and negative electrodes are not particularly limited, and the conventional non-aqueous electrolyte battery is not limited. What is generally used in a water electrolyte battery can be used.

【0016】そして、正極における正極活物質として
は、例えば、遷移金属の酸化物、硫化物、窒化物及びこ
れらにリチウムが含有された複合化合物を使用すること
ができ、具体的には、LiCoO2 、LiNiO2 、L
iMn2 4 、LiMnO2 、LiNix Co
1-x 2 、LiCo0.5 Ni0.3 Mn0.2 2 、MnO
2 等を使用することができる。
As the positive electrode active material in the positive electrode, for example, transition metal oxides, sulfides, nitrides, and composite compounds containing lithium therein can be used. Specifically, LiCoO 2 , LiNiO 2 , L
iMn 2 O 4 , LiMnO 2 , LiNi x Co
1-x O 2 , LiCo 0.5 Ni 0.3 Mn 0.2 O 2 , MnO
2 etc. can be used.

【0017】また、負極における負極活物質としては、
例えば、金属リチウムや、Li−Al,Li−In,L
i−Sn,Li−Pb,Li−Bi,Li−Ga,Li
−Sr,Li−Si,Li−Zn,Li−Cd,Li−
Ca,Li−Ba等のリチウム合金の他に、リチウムイ
オンの吸蔵,放出が可能な金属化合物や炭素材料等を用
いることができる。
Further, as the negative electrode active material in the negative electrode,
For example, metallic lithium, Li-Al, Li-In, L
i-Sn, Li-Pb, Li-Bi, Li-Ga, Li
-Sr, Li-Si, Li-Zn, Li-Cd, Li-
In addition to lithium alloys such as Ca and Li-Ba, metal compounds or carbon materials capable of inserting and extracting lithium ions can be used.

【0018】[0018]

【実施例】以下、この発明に係る非水電解質電池に使用
する非水電解液について、実験を行い、この発明の条件
を満たす非水電解液が適切なイオン導電率を示すことを
比較例を挙げて明らかにすると共に、この発明の実施例
に係る非水電解質電池において、適切に充放電が行える
ことを明らかにする。なお、この発明における非水電解
質電池は、下記の実施例に示したものに限定されず、そ
の要旨を変更しない範囲において適宜変更して実施でき
るものである。
EXAMPLES Hereinafter, experiments were conducted on the non-aqueous electrolyte solution used in the non-aqueous electrolyte battery according to the present invention, and it was confirmed that the non-aqueous electrolyte solution satisfying the conditions of the present invention showed appropriate ionic conductivity. It will be clarified by way of example and it will be clarified that the non-aqueous electrolyte battery according to the embodiment of the present invention can be appropriately charged and discharged. The non-aqueous electrolyte battery in the present invention is not limited to the ones shown in the following examples, and can be implemented by appropriately changing it without departing from the scope of the invention.

【0019】(実験1)非水電解液を作製するにあた
り、非水系溶媒として、常温溶融塩のビストリフルオロ
メチルスルホニルイミドトリメチルオクチルアンモニウ
ム(TMOATFSI)とジエチルカーボネート(DE
C)とを用い、これらを下記の表1に示した体積比で混
合させた混合溶媒を用いるようにした。
(Experiment 1) In preparing a non-aqueous electrolytic solution, as a non-aqueous solvent, bistrifluoromethylsulfonylimide trimethyloctyl ammonium (TMOATFSI) which is a room temperature molten salt and diethyl carbonate (DE) are used.
C) was used, and a mixed solvent prepared by mixing these in a volume ratio shown in Table 1 below was used.

【0020】そして、上記のような体積比になった各混
合溶媒に、それぞれ溶質としてLiN(CF3 SO2
2 を1mol/lの濃度になるように溶解させて、各非
水電解液を作製した。
Then, LiN (CF 3 SO 2 ) as a solute is added to each mixed solvent having the above volume ratio.
2 was dissolved to a concentration of 1 mol / l to prepare each non-aqueous electrolytic solution.

【0021】次いで、このように作製した各非水電解液
について、導電率測定装置(東亜社製)を用いて、それ
ぞれ−20℃、0℃、25℃、45℃、60℃における
イオン導電率(mS/cm)を測定し、その結果を下記
の表1に合わせて示した。
Next, with respect to each of the non-aqueous electrolytes thus produced, the ionic conductivity at -20 ° C, 0 ° C, 25 ° C, 45 ° C and 60 ° C was measured using a conductivity measuring device (manufactured by Toa). (MS / cm) was measured, and the results are also shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】この結果から明らかなように、常温溶融塩
のビストリフルオロメチルスルホニルイミドトリメチル
オクチルアンモニウム(TMOATFSI)とジエチル
カーボネート(DEC)とを用いた溶媒中において、ジ
エチルカーボネート(DEC)の体積比率が50体積%
以上になったこの発明の条件を満たす非水電解液は、ジ
エチルカーボネート(DEC)の体積比率が50体積%
未満の非水電解液に比べてイオン導電率が大きく向上し
ており、ジエチルカーボネート(DEC)の体積比率が
75体積%になった非水電解液においては、イオン導電
率がさらに大きく向上していた。
As is clear from these results, the volume ratio of diethyl carbonate (DEC) was 50 in a solvent containing bistrifluoromethylsulfonylimide trimethyloctyl ammonium (TMOATFSI) and diethyl carbonate (DEC) which are room temperature molten salts. volume%
The non-aqueous electrolyte satisfying the conditions of the present invention described above has a volume ratio of diethyl carbonate (DEC) of 50% by volume.
The ionic conductivity is greatly improved as compared with the non-aqueous electrolyte solution of less than 1%, and in the non-aqueous electrolyte solution in which the volume ratio of diethyl carbonate (DEC) is 75% by volume, the ionic conductivity is further greatly improved. It was

【0024】(実施例1,2)実施例1,2において
は、非水電解液を作製するにあたり、下記の表2に示す
ように、非水系溶媒として、常温溶融塩のビストリフル
オロメチルスルホニルイミドトリメチルオクチルアンモ
ニウム(TMOATFSI)と、エチレンカーボネート
(EC)と、ジエチルカーボネート(DEC)とを、1
5:15:70の体積比率で混合させた混合溶媒を用
い、この混合溶媒に溶質を溶解させるにあたり、実施例
1ではLiN(CF3 SO2 2 とLiPF6 とがそれ
ぞれ0.5mol/lの濃度になるようにし、実施例2
ではLiPF6 が1mol/lの濃度になるようにし
て、各非水電解液を作製した。
(Examples 1 and 2) In Examples 1 and 2, when a non-aqueous electrolytic solution was prepared, as shown in Table 2 below, as a non-aqueous solvent, a room temperature molten salt of bistrifluoromethylsulfonylimide was used. Trimethyloctylammonium (TMOATFSI), ethylene carbonate (EC) and diethyl carbonate (DEC)
Using a mixed solvent mixed in a volume ratio of 5:15:70, and dissolving the solute in this mixed solvent, in Example 1, LiN (CF 3 SO 2 ) 2 and LiPF 6 were each 0.5 mol / l. Example 2
Then, each non-aqueous electrolyte was prepared by adjusting LiPF 6 to a concentration of 1 mol / l.

【0025】また、正極を作製するにあたっては、正極
活物質のLiCoO2 と、導電剤の人造黒鉛と、結着剤
のポリフッ化ビニリデンとを、90:5:5の重量比で
混合し、これにN−メチル−2−ピロリドンを加えてス
ラリー作製し、このスラリーを厚みが20μmのアルミ
ニウム箔からなる正極集電体の片面にドクターブレード
法により塗布し、これを120℃で2時間真空乾燥さ
せ、圧延させた後、20mm×20mmの大きさに切断
して正極を作製した。
In producing the positive electrode, LiCoO 2 as the positive electrode active material, artificial graphite as the conductive agent, and polyvinylidene fluoride as the binder were mixed in a weight ratio of 90: 5: 5, and N-methyl-2-pyrrolidone is added to prepare a slurry, and this slurry is applied to one surface of a positive electrode current collector made of aluminum foil having a thickness of 20 μm by a doctor blade method, and this is vacuum dried at 120 ° C. for 2 hours. After rolling, it was cut into a size of 20 mm × 20 mm to prepare a positive electrode.

【0026】そして、図1に示すように、上記のように
して作製した各非水電解液14を、それぞれ試験セル容
器10内に注液させると共に、作用極に上記の正極11
を使用する一方、対極となる負極12と、参照極13と
にそれぞれリチウム金属を用いて、実施例1,2の各試
験用電池を作製した。なお、上記の負極12には30m
m×30mmの大きさになったリチウム金属を、上記の
参照極13には10mm×10mmの大きさになったリ
チウム金属を用いた。
Then, as shown in FIG. 1, each of the non-aqueous electrolytes 14 prepared as described above is injected into the test cell container 10 and the positive electrode 11 is applied to the working electrode.
On the other hand, each of the test batteries of Examples 1 and 2 was produced by using lithium metal for the negative electrode 12 serving as the counter electrode and the reference electrode 13 respectively. It should be noted that the negative electrode 12 is 30 m
A lithium metal having a size of m × 30 mm was used, and a lithium metal having a size of 10 mm × 10 mm was used for the reference electrode 13.

【0027】次に、上記のように作製して実施例1,2
の各試験用電池を使用し、充電電流0.25mA/cm
2 で4.3V(vs.Li/Li+ )まで充電した後、
放電電流0.25mA/cm2 で2.75V(vsLi
/Li+ )まで放電して、充電容量に対する放電容量の
比率(充放電効率)を求め、その結果を下記の表2に合
わせて示した。
Next, the first and second embodiments are manufactured as described above.
Using each test battery of, charging current 0.25mA / cm
After charging to 4.3 V (vs. Li / Li + ) with 2 ,
2.75 V (vs Li vs. discharge current 0.25 mA / cm 2
/ Li + ) to obtain the ratio of the discharge capacity to the charge capacity (charge / discharge efficiency), and the results are shown in Table 2 below.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果から明らかなように、常温溶融塩
のビストリフルオロメチルスルホニルイミドトリメチル
オクチルアンモニウム(TMOATFSI)と、ガーボ
ネートであるエチレンカーボネート(EC)と、ジエチ
ルカーボネート(DEC)とを用いた溶媒中において、
カーボネートの合計の体積比率が50体積%以上の85
体積%になった非水系溶媒に、LiPF6 を含む溶質を
溶解させた非水電解液を用いた実施例1,2の各試験用
電池においては、高い充放電効率が得られ、二次電池と
して有効に利用できることが分かった。
As is clear from these results, in a solvent containing bistrifluoromethylsulfonylimide trimethyloctylammonium (TMOATFSI), which is a room temperature molten salt, ethylene carbonate (EC), which is a garbonate, and diethyl carbonate (DEC). ,
85 whose total volume ratio of carbonate is 50 volume% or more
In each of the test batteries of Examples 1 and 2 using the nonaqueous electrolytic solution in which the solute containing LiPF 6 was dissolved in the nonaqueous solvent having a volume%, high charge / discharge efficiency was obtained, and the secondary battery was obtained. It turned out that it can be used effectively.

【0030】[0030]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、非水電解液における非水系
溶媒が常温溶融塩とカーボネートとを含むようにしたた
め、上記の常温溶融塩により、過充電等の異常な操作時
における安全性が高まり、またこの非水系溶媒中にカー
ボネートが50体積%以上含有されるようにしたため、
この非水電解液の粘性が低下して、非水電解液のイオン
導電率が高まり、十分な充放電特性が得られるようにな
った。
As described in detail above, in the non-aqueous electrolyte battery according to the present invention, the non-aqueous solvent in the non-aqueous electrolytic solution contains the room temperature molten salt and the carbonate. The safety during abnormal operation such as overcharging is enhanced, and since the nonaqueous solvent contains 50% by volume or more of carbonate,
The viscosity of the non-aqueous electrolyte was lowered, the ionic conductivity of the non-aqueous electrolyte was increased, and sufficient charge / discharge characteristics were obtained.

【0031】特に、上記の非水電解液にLiPF6 を含
む溶質を用いると、高い充放電効率が得られるようにな
り、安全性が高く、充放電特性に優れた非水電解質二次
電池が得られるようになった。
In particular, when a solute containing LiPF 6 is used in the above non-aqueous electrolyte, a high charge / discharge efficiency can be obtained, a non-aqueous electrolyte secondary battery with high safety and excellent charge / discharge characteristics can be obtained. I got it.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1,2において作製した試験
用電池の概略説明図である。
FIG. 1 is a schematic explanatory view of test batteries produced in Examples 1 and 2 of the present invention.

【符号の説明】[Explanation of symbols]

11 作用極(正極) 12 対極(負極) 13 参照極 14 非水電解液 11 Working electrode (positive electrode) 12 counter electrode (negative electrode) 13 reference pole 14 Non-aqueous electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 雅秀 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 神野 丸男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4H050 AA03 AB80 5H029 AJ02 AJ12 AK02 AK03 AL01 AL06 AL12 AM03 AM04 AM05 CJ08 HJ07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahide Miyake             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Masahisa Fujimoto             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Maruo Jinno             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 4H050 AA03 AB80                 5H029 AJ02 AJ12 AK02 AK03 AL01                       AL06 AL12 AM03 AM04 AM05                       CJ08 HJ07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、非水系溶媒に溶質が溶
解された非水電解液とを備えた非水電解質電池におい
て、上記の非水電解液における非水系溶媒が、常温溶融
塩とカーボネートとを含み、この非水系溶媒中にカーボ
ネートが50体積%以上含有されていることを特徴とす
る非水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which a solute is dissolved in a non-aqueous solvent, wherein the non-aqueous solvent in the non-aqueous electrolytic solution is a room temperature molten salt. A non-aqueous electrolyte battery containing a carbonate, wherein the non-aqueous solvent contains the carbonate in an amount of 50% by volume or more.
【請求項2】 請求項1に記載した非水電解質電池にお
いて、上記の常温溶融塩がテトラアルキル四級アンモニ
ウム塩であることを特徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the room temperature molten salt is a tetraalkyl quaternary ammonium salt.
【請求項3】 請求項1又は2に記載した非水電解質電
池において、上記の非水電解液における溶質にLiPF
6 が含まれていることを特徴とする非水電解質電池。
3. The nonaqueous electrolyte battery according to claim 1, wherein LiPF is used as a solute in the nonaqueous electrolyte solution.
A non-aqueous electrolyte battery characterized in that it contains 6 .
JP2002090146A 2002-03-28 2002-03-28 Non-aqueous electrolyte battery Expired - Fee Related JP4056278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090146A JP4056278B2 (en) 2002-03-28 2002-03-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090146A JP4056278B2 (en) 2002-03-28 2002-03-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003288939A true JP2003288939A (en) 2003-10-10
JP4056278B2 JP4056278B2 (en) 2008-03-05

Family

ID=29235510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090146A Expired - Fee Related JP4056278B2 (en) 2002-03-28 2002-03-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4056278B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043668A1 (en) * 2003-11-04 2005-05-12 Stella Chemifa Corporation Electrolyte solution and nonaqueous electrolyte lithium secondary battery
JP2005183270A (en) * 2003-12-22 2005-07-07 Honda Motor Co Ltd Nonaqueous electrolytic solution and secondary battery using same
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
WO2008035707A1 (en) * 2006-09-19 2008-03-27 Sony Corporation Electrode, method for manufacturing the electrode, and battery
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
KR100908571B1 (en) * 2005-11-15 2009-07-22 주식회사 엘지화학 Lithium secondary battery with excellent safety and low temperature output characteristics
WO2010084906A1 (en) 2009-01-23 2010-07-29 Necエナジーデバイス株式会社 Lithium ion cell
KR101066446B1 (en) 2003-03-03 2011-09-21 소니 주식회사 Battery
JP2014209475A (en) * 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Nonaqueous solvent, nonaqueous electrolyte, and power storage device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066446B1 (en) 2003-03-03 2011-09-21 소니 주식회사 Battery
KR100920555B1 (en) * 2003-11-04 2009-10-08 스텔라 케미파 코포레이션 Electrolyte solution and nonaqueous electrolyte lithium secondary battery
JPWO2005043668A1 (en) * 2003-11-04 2007-05-10 大塚化学株式会社 Electrolyte and non-aqueous electrolyte lithium secondary batteries
US7700243B2 (en) 2003-11-04 2010-04-20 Otsuka Chemical Co., Ltd. Electrolyte solution and nonaqueous electrolyte lithium secondary battery
WO2005043668A1 (en) * 2003-11-04 2005-05-12 Stella Chemifa Corporation Electrolyte solution and nonaqueous electrolyte lithium secondary battery
JP2005183270A (en) * 2003-12-22 2005-07-07 Honda Motor Co Ltd Nonaqueous electrolytic solution and secondary battery using same
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
KR100908571B1 (en) * 2005-11-15 2009-07-22 주식회사 엘지화학 Lithium secondary battery with excellent safety and low temperature output characteristics
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
WO2008035707A1 (en) * 2006-09-19 2008-03-27 Sony Corporation Electrode, method for manufacturing the electrode, and battery
US8507132B2 (en) 2006-09-19 2013-08-13 Sony Corporation Electrode and method of fabricating it, and battery
WO2010084906A1 (en) 2009-01-23 2010-07-29 Necエナジーデバイス株式会社 Lithium ion cell
US9343740B2 (en) 2009-01-23 2016-05-17 Nec Energy Devices, Ltd. Lithium ion battery
JP2014209475A (en) * 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Nonaqueous solvent, nonaqueous electrolyte, and power storage device

Also Published As

Publication number Publication date
JP4056278B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP6178320B2 (en) Nonaqueous electrolyte secondary battery
JP4448275B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2014017256A (en) Electrolyte for lithium sulfur battery and lithium sulfur battery using the same
JP6254091B2 (en) Nonaqueous electrolyte secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JP2011192402A (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2008091041A (en) Nonaqueous secondary battery
JP2004022523A (en) Nonaqueous electrolyte secondary battery
JP2005243321A (en) Nonaqueous secondary battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP3349399B2 (en) Lithium secondary battery
JP4056278B2 (en) Non-aqueous electrolyte battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP3869622B2 (en) Method for preventing breakage of positive electrode current collector for lithium secondary battery
JP2001052698A (en) Lithium secondary battery
JP2000021447A (en) Nonaqueous electrolyte battery
JP2006127933A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2001052752A (en) Lithium secondary battery
JP4127890B2 (en) Non-aqueous electrolyte battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP4204281B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees