JPH05326017A - Nonaqueous solvent type lithium secondary battery - Google Patents

Nonaqueous solvent type lithium secondary battery

Info

Publication number
JPH05326017A
JPH05326017A JP4149996A JP14999692A JPH05326017A JP H05326017 A JPH05326017 A JP H05326017A JP 4149996 A JP4149996 A JP 4149996A JP 14999692 A JP14999692 A JP 14999692A JP H05326017 A JPH05326017 A JP H05326017A
Authority
JP
Japan
Prior art keywords
lithium
battery
secondary battery
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4149996A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Masayasu Arakawa
正泰 荒川
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4149996A priority Critical patent/JPH05326017A/en
Publication of JPH05326017A publication Critical patent/JPH05326017A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous solvent lithium secondary battery which has high conductivity, high charge and discharge efficiency of lithium with less gas generation, is stable against heat as compared with a conventional battery system and thus has no possibility of igniting even in the case the temperature rises extremetly. CONSTITUTION:Regarding a nonaqueous solvent-type secondary battery having a negative pole which can discharge and charge lithium ion, a positive pole which can discharge and charge lithium ion, and an electrolytic solution consisting of a nonaqueous solvent and an ion-dissociative lithium salt dissolved in the solvent, as the nonaqueous solvent, a mixture of three kinds of solvents; ethylene carbonate, propylene carbonate, and sulfurane is used. As a result, a nonaqueous solvent-type lithium secondary battery having excellent charge- discharge characteristics, high safety and reliability is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水溶媒系リチウム
二次電池、さらに詳細には、リチウムイオンを充放電可
能な負極を有する電池に用いる非水溶媒系電解液に関す
るものである。
TECHNICAL FIELD The present invention relates to a non-aqueous solvent type lithium secondary battery, and more particularly to a non-aqueous solvent type electrolytic solution used in a battery having a negative electrode capable of charging and discharging lithium ions.

【0002】[0002]

【従来の技術及び問題点】電子機器の小型軽量化、携帯
化が進み、その電源として高エネルギー密度電池の開発
が要求されている。このような要求に答える電池とし
て、負極にリチウムイオンを充放電可能な高性能二次電
池の開発が期待されている。リチウムイオンが充電可能
な負極としては、例えば、リチウム金属、リチウムとア
ルミニウム等のリチウム金属合金、あるいは、リチウム
イオンを挿入、放出可能な化学物質(例えば、種々の炭
素材料、Nb25、WO3等)を用いることが試みられ
ている。本明細書では、これらのリチウムイオンを充放
電可能な電池のことをリチウム二次電池と称する。リチ
ウム二次電池には、(i)出力エネルギーが高いこと
(高率放電が可能なこと)、(ii)充放電サイクル寿
命が長いこと、の2点が要求される。これらの要求に答
えるため、多くの正極材料が検討されてきた。例えば、
結晶あるいは非晶質のV25、V613、Lix38
MnO2、LiCoO2、LiNiO2、MoO3等の金属
酸化物、MoS2、TiS2等の金属硫化物、NbSe3
等の金属硫化物、ポリアニリン、ポリピロール等の高分
子化合物、SO2等の硫黄化合物が提案されている。
2. Description of the Related Art As electronic devices are becoming smaller, lighter and more portable, the development of high energy density batteries is required as a power source. As a battery that meets such requirements, development of a high-performance secondary battery capable of charging and discharging lithium ions in the negative electrode is expected. Examples of the negative electrode that can be charged with lithium ions include lithium metal, lithium metal alloys such as lithium and aluminum, or chemical substances that can insert and release lithium ions (for example, various carbon materials, Nb 2 O 5 , WO 3 etc.) has been attempted. In the present specification, a battery capable of charging and discharging these lithium ions is referred to as a lithium secondary battery. The lithium secondary battery is required to have two points: (i) high output energy (capable of high-rate discharge) and (ii) long charge / discharge cycle life. Many positive electrode materials have been investigated to meet these demands. For example,
Crystalline or amorphous V 2 O 5 , V 6 O 13 , Li x V 3 O 8 ,
Metal oxides such as MnO 2 , LiCoO 2 , LiNiO 2 and MoO 3 , metal sulfides such as MoS 2 and TiS 2 , NbSe 3
And the like, polymer compounds such as polyaniline and polypyrrole, and sulfur compounds such as SO 2 have been proposed.

【0003】しかし、これらの正極を使用した電池を作
製すると、放電電流増加時に出力エネルギーが極端に低
下する、充放電サイクル数が少ない、等の問題点があ
り、高性能リチウム二次電池は実現されていない。これ
らの問題点の主たる原因は、電解液材料の選択にある。
つまり、リチウムは水と激しく反応するため、従来のニ
ッケルカドミウム二次電池や鉛蓄(二次)電池のように
水溶液系の電解液を使用できない。このため、非水溶媒
系の電解液を用いたリチウム電池用電解液の導電率は水
溶液に比較して1〜2桁低く、電池の取得電流値が低い
という本質的な問題点がある。
However, when a battery using these positive electrodes is manufactured, there are problems that the output energy is extremely reduced when the discharge current is increased, the number of charge and discharge cycles is small, etc., and a high performance lithium secondary battery is realized. It has not been. The main cause of these problems is the choice of electrolyte material.
That is, since lithium reacts violently with water, it is not possible to use an aqueous solution-type electrolyte unlike the conventional nickel-cadmium secondary battery or lead storage (secondary) battery. For this reason, the conductivity of the lithium battery electrolyte using the non-aqueous solvent electrolyte is one to two orders of magnitude lower than that of the aqueous solution, and there is an essential problem that the battery acquisition current value is low.

【0004】また、リチウムは反応性が高いため、熱力
学的には、ほとんどすべての非水溶媒系電解液が反応し
てしまうと考えられている。この電解液/リチウム反応
の生成物が固体とガスであり、固体生成物はリチウム表
面に膜として形成され、一次電池の場合、この膜がさら
なる電解液/Liの反応を抑制するが、リチウムの電析
(充電)、溶解(放電)を繰り返す二次電池の場合、こ
の膜の電気的性質(安定電圧範囲)、電子伝導性、イオ
ン伝導性等)、化学的性質(反応性等)、物理的性質
(多孔度等)、機械的性質(強度等)の性質がLiの充
放電効率に影響する。また、発生するガスは電気的絶縁
体であり、物理的にイオンの移動を阻害したり、電極活
物質を覆い、電極反応を阻害するという問題点がある。
したがって、リチウム二次電池用電解液には一次電池と
異なる電解液材料を使用することが必要となり、二次電
池用電解液は、導電率が高く、リチウムの充放電効率が
高く、ガス発生量が少ないものが必要とされている。ま
た、リチウム電池は従来電池系に比較して熱安定性に難
があり、極端に温度が上昇した場合、最悪の場合、電池
が発火する危険性がある。
Further, since lithium is highly reactive, it is considered thermodynamically that almost all non-aqueous solvent type electrolytic solutions will react. The products of this electrolyte / lithium reaction are solids and gases, the solid products are formed as a film on the lithium surface and in the case of primary batteries this film suppresses further electrolyte / Li reactions, In the case of a secondary battery that repeats electrodeposition (charging) and dissolution (discharging), the electrical properties (stable voltage range), electronic conductivity, ionic conductivity, etc., chemical properties (reactivity, etc.), physical properties of this film Properties (such as porosity) and mechanical properties (such as strength) affect the charge / discharge efficiency of Li. Further, the generated gas is an electrical insulator, and there is a problem that it physically hinders the movement of ions or covers the electrode active material and hinders the electrode reaction.
Therefore, it is necessary to use an electrolyte solution material different from that of the primary battery for the electrolyte solution for the lithium secondary battery, and the electrolyte solution for the secondary battery has high conductivity, high charge / discharge efficiency of lithium, and gas generation amount. There are few things that are needed. Further, a lithium battery has a difficulty in thermal stability as compared with a conventional battery system, and there is a risk that the battery may ignite in the worst case when the temperature rises extremely.

【0005】リチウム二次電池用電解液として、いくつ
かのものが提案されているが、上記の問題点は解決され
ていない。例えば、エチレンカーボネートとプロピレン
カーボネートの混合溶媒にLiAsF6を溶解させた電
解液は高いリチウムの充放電効率と導電率を示すが、充
放電を繰り返すと電解液の還元分解によるガス発生量が
多いという問題点がある。この発生ガスはプロピレンと
エチレンであり、その引火点は、−100℃以下と低
い。充放電に伴うガス発生が少ない電解液としてスルフ
ォランにLiAsF6を溶解した電解液が知られている
が、電解液の導電率が極端に低く、また、リチウムの充
放電効率も低いという欠点がある。したがって、導電率
が高く、安全性も高いリチウム二次電池用電解液の開発
が望まれている。
Several electrolytic solutions for lithium secondary batteries have been proposed, but the above problems have not been solved. For example, an electrolytic solution in which LiAsF 6 is dissolved in a mixed solvent of ethylene carbonate and propylene carbonate shows high charge / discharge efficiency and conductivity of lithium, but when the charge / discharge is repeated, a large amount of gas is generated due to reductive decomposition of the electrolytic solution. There is a problem. This generated gas is propylene and ethylene, and its flash point is as low as -100 ° C or lower. An electrolyte solution in which LiAsF 6 is dissolved in sulfolane is known as an electrolyte solution that generates less gas during charge and discharge, but has the drawback that the conductivity of the electrolyte solution is extremely low and the charge and discharge efficiency of lithium is also low. .. Therefore, development of an electrolytic solution for a lithium secondary battery having high conductivity and high safety is desired.

【0006】[0006]

【発明の特徴と従来の技術との差異】本発明による電池
は、リチウムイオンを放電および充電可能な負極および
リチウムイオンを放電および充電可能な正極、非水溶媒
にイオン解離性のリチウム塩を溶解した電解液を有する
非水溶媒系二次電池において、前記非水溶媒として、
(1)エチレンカーボネートと(2)プロピレンカーボ
ネートと(3)スルフォランの3種の溶媒を混合したも
のを用いることを特徴とする。
Features of the Invention and Differences from Prior Art A battery according to the present invention is a negative electrode capable of discharging and charging lithium ions, a positive electrode capable of discharging and charging lithium ions, and an ion dissociable lithium salt dissolved in a non-aqueous solvent. In the non-aqueous solvent-based secondary battery having the electrolytic solution, as the non-aqueous solvent,
It is characterized by using a mixture of three kinds of solvents of (1) ethylene carbonate, (2) propylene carbonate and (3) sulfolane.

【0007】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0008】本発明によるリチウム二次電池は、非水溶
媒にイオン解離性のリチウム塩を溶解した電解液を用い
る電池であり、非水溶媒として、(1)エチレンカーボ
ネートと(2)プロピレンカーボネートと(3)スルフ
ォランの3種の溶媒を混合したものを用いることを特徴
とするものである。
The lithium secondary battery according to the present invention is a battery using an electrolytic solution in which an ion dissociative lithium salt is dissolved in a non-aqueous solvent, and (1) ethylene carbonate and (2) propylene carbonate are used as the non-aqueous solvent. (3) It is characterized by using a mixture of three solvents of sulfolane.

【0009】エチレンカーボネートとプロピレンカーボ
ネートの混合溶媒は高い導電率と高いリチウムの充放電
効率という性能上での利点を有するが、電池の充放電サ
イクル数の増加に伴うガス発生が多すぎるという欠点を
有する。一方、スルフォランはガス発生が少なく、酸化
分解されにくく、その引火点も160℃と高く、安全性
に優れた特徴を有するが、電解液の導電率が低く、大電
流を流せず、電池のエネルギーが小さく、充放電サイク
ル寿命が短いという性能上での欠点を有する。これらの
3種の溶媒は、いずれも揮発性がなく、引火点も100
℃以上と高く、安価であり、電池生産時に扱いやすいと
いう実用上での長所も兼ね備えている。本発明では、こ
れらの3種の溶媒を混合することにより、3種の溶媒の
欠点を排除すると共に3種の溶媒の長所を兼ね備え、性
能も安全性も高い電解液を実現できる。
The mixed solvent of ethylene carbonate and propylene carbonate has advantages in terms of performance such as high conductivity and high charge / discharge efficiency of lithium, but has a drawback of generating too much gas as the number of charge / discharge cycles of the battery increases. Have. On the other hand, sulfolane has less gas generation, is less likely to be oxidized and decomposed, and has a high flash point of 160 ° C. and is excellent in safety. Is small and the charge / discharge cycle life is short. None of these three solvents are volatile and their flash points are 100
It has a practical advantage that it is as high as ℃ or more, it is cheap, and it is easy to handle during battery production. In the present invention, by mixing these three kinds of solvents, it is possible to eliminate the drawbacks of the three kinds of solvents, combine the advantages of the three kinds of solvents, and realize an electrolytic solution having high performance and safety.

【0010】本発明で使用するエチレンカーボネートと
スルフォランとプロピレンカーボネートの3種混合溶媒
において、エチレンカーボネートとスルフォランの体積
混合比は、それぞれ、混合溶媒中の1/3を最大とし
(つまり、プロピレンカーボネートの最小体積混合比は
1/3である)、さらに述べると、エチレンカーボネー
トの含有量が最も少ないことがより好ましい。これは、
溶媒の融点は、エチレンカーボネートが最も高く(36
℃)、次にスルフォランが高く(28℃)、エチレンカ
ーボネートとスルフォランの含有量が多いと0℃以下の
低温性能が実用上問題となるためであり(プロピレンカ
ーボネートの融点は−42℃と実用上、低温性能は問題
がない)、また、エチレンカーボネートは充放電に伴う
ガス発生量が最も多いという問題があるためである。し
たがって、上記のように3種の溶媒の体積混合比を設定
すれば、本発明の目的である性能と安全性共に優れたリ
チウム二次電池用電解液が実現できる。
In the mixed solvent of three kinds of ethylene carbonate, sulfolane and propylene carbonate used in the present invention, the volume mixing ratio of ethylene carbonate and sulfolane is respectively maximum at 1/3 in the mixed solvent (that is, propylene carbonate (The minimum volume mixing ratio is 1/3). Further, it is more preferable that the content of ethylene carbonate is the smallest. this is,
Ethylene carbonate has the highest melting point of the solvent (36
This is because the low temperature performance of 0 ° C. or less becomes a practical problem when the content of ethylene carbonate and sulfolane is high (28 ° C.), and then the sulfolane is high (28 ° C.). This is because there is no problem in low temperature performance), and ethylene carbonate has a problem that the amount of gas generated during charging and discharging is the largest. Therefore, by setting the volume mixing ratio of the three kinds of solvents as described above, it is possible to realize the electrolytic solution for a lithium secondary battery, which is an object of the present invention and is excellent in both performance and safety.

【0011】また、電解液に用いるリチウム塩として
は、リチウム電池に使用可能なものであれば特に限定さ
れないが、例えば、LiAsF6、LiPF6、LiSb
6、LiCF3SO3、LiN(CF3SO22、LiC
(CF3SO23、LiClO4、LiBF4、LiAl
Cl4等があげられ、これらのリチウム塩を、単独また
は2種以上混合して、0.5〜2.0モル/lの濃度範
囲で用いることができる。
The lithium salt used in the electrolytic solution is not particularly limited as long as it can be used in a lithium battery. For example, LiAsF 6 , LiPF 6 , LiSb.
F 6, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiC
(CF 3 SO 2 ) 3 , LiClO 4 , LiBF 4 , LiAl
Cl 4 and the like can be used, and these lithium salts can be used alone or as a mixture of two or more kinds in a concentration range of 0.5 to 2.0 mol / l.

【0012】本発明のリチウム二次電池は、充電可能な
電池であり、負極および正極に可逆な酸化還元反応を電
気化学的に行なう化学物質を使用し、両極の間にイオン
伝導性の電解液とセパレーターを設け、両極の直接接触
を抑え、外部回路に電気エネルギーを取り出す電池であ
る。リチウム二次電池は、負極に、リチウムイオンを放
電可能な化学物質を用い、リチウムイオンと可逆的な電
気化学反応を行なう化学物質を正極活物質とし、非水溶
媒にリチウム塩を溶解させたものを、リチウムイオン伝
導性の電解液として構成される電池である。例えば、負
極としては、リチウム金属、リチウムとアルミニウム等
のリチウム金属合金、あるいは、リチウムイオンを挿
入、放出可能な化学物質(例えば、種々の炭素材料、N
25、WO3等)を用いることができ、正極として
は、LixCoO2(0≦x≦1)、LixNiO2(0
≦x≦1)、LixMn24(0≦x≦1)、結晶ある
いは非晶質のV25、Lix38(0≦x≦1)、T
iS2、NbSe3等を用いることができる。
The lithium secondary battery of the present invention is a rechargeable battery that uses a chemical substance for electrochemically performing a reversible redox reaction in the negative electrode and the positive electrode, and uses an ion conductive electrolyte between both electrodes. This battery is equipped with a separator and suppresses direct contact between both electrodes, and takes out electrical energy to an external circuit. A lithium secondary battery uses a chemical substance capable of discharging lithium ions as a negative electrode, uses a chemical substance that undergoes a reversible electrochemical reaction with lithium ions as a positive electrode active material, and dissolves a lithium salt in a non-aqueous solvent. Is a lithium ion conductive electrolyte solution. For example, as the negative electrode, lithium metal, a lithium metal alloy such as lithium and aluminum, or a chemical substance capable of inserting and releasing lithium ions (for example, various carbon materials, N 2
b 2 O 5 , WO 3 etc.) can be used, and LixCoO 2 (0 ≦ x ≦ 1), Li x NiO 2 (0
≦ x ≦ 1), Li x Mn 2 O 4 (0 ≦ x ≦ 1), crystalline or amorphous V 2 O 5 , Li x V 3 O 8 (0 ≦ x ≦ 1), T
iS 2 , NbSe 3 or the like can be used.

【0013】[0013]

【実施例】負極としてリチウム金属を、正極として五酸
化バナジウム(V25)を、電解液として、1モル/l
のLiAsF6を本発明のエチレンカーボネート(以
下、ECと略記する)とプロピレンカーボネート(以
下、PCと略記する)とスルフォラン(以下、SLと略
記する)の混合溶媒(体積混合比、1:1:1)に溶解
したものを用いて、単三電池を2個作製した(これらの
電池を、”電池A”および”電池B”と称する)。この
電解液の25℃における導電率は、4.4×10−3S
/cmであり、1モル/lのLiAsF6をスルフォラ
ン単独溶媒に溶解した電解液の約2倍の高い導電率を示
した。
EXAMPLE Lithium metal was used as a negative electrode, vanadium pentoxide (V 2 O 5 ) was used as a positive electrode, and 1 mol / l was used as an electrolytic solution.
LiAsF 6 of the present invention is a mixed solvent of ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate (hereinafter abbreviated as PC) and sulfolane (hereinafter abbreviated as SL) of the present invention (volume mixing ratio, 1: 1: Two AA batteries were prepared using the one dissolved in 1) (these batteries are referred to as "Battery A" and "Battery B"). The conductivity of this electrolytic solution at 25 ° C. is 4.4 × 10 −3 S.
/ Cm, which is about twice as high as that of an electrolyte solution prepared by dissolving 1 mol / l of LiAsF 6 in a solvent of sulfolane alone.

【0014】さらに、本発明の効果を示すための、比較
例として、電解液以外は全く同一の単三電池を4個作製
した。これらの比較例の4個の電池を、それぞれ、電池
C、電池D、電池Eおよび電池Fと称する。電池Cと電
池Dの電解液は、1モル/lのLiAsF6をECとP
Cの混合溶媒(体積混合比、1:1)に溶解させたもの
を用いている。電池Eと電池Fの電解液は、1モル/l
のLiAsF6を溶解させたものを用いている。これら
の作製したすべての単三電池は、電池缶底部に電池内部
圧力が高まると開放する安全弁を有している。
Further, as a comparative example for showing the effect of the present invention, four identical AA batteries except for the electrolytic solution were prepared. The four batteries of these comparative examples are referred to as battery C, battery D, battery E and battery F, respectively. The electrolytes of batteries C and D were 1 mol / l of LiAsF 6 in EC and P.
What was dissolved in the mixed solvent of C (volume mixing ratio: 1: 1) was used. Electrolyte solution of battery E and battery F is 1 mol / l
It is used those obtained by dissolving the LiAsF 6. All of these produced AA batteries have a safety valve at the bottom of the battery can that opens when the internal pressure of the battery increases.

【0015】まず、電池A、電池Cおよび電池Eの3個
の電池について、60mAで放電した(放電下限電圧は
1.8V)後、60mAで充電する(充電上限電圧は
3.5V)充放電サイクルを50回繰り返した後、高温
放置試験を行なった。電池を170℃の密閉恒温槽中に
放置したところ、電池Aおよび電池Eは、安全弁か開放
せず、ガスの発生は全く見られなかった。また、電圧の
低下も見られず外観に何の変化も見られなかった。しか
し、電池Cは安全弁が開き、電池内に蓄積されていたガ
スが放出された。この結果から、本発明の電解液は、リ
チウムの融点(180℃)近くまで加熱してもガス発生
がなく、従来電解液に比較して、安全性、信頼性の観点
から優れた性能を示すことが明らかである。
First, three batteries, battery A, battery C and battery E, were discharged at 60 mA (the lower limit voltage of discharge was 1.8 V) and then charged at 60 mA (the upper limit voltage of charge was 3.5 V). After repeating the cycle 50 times, a high temperature storage test was performed. When the batteries were left in a sealed constant temperature bath at 170 ° C., the safety valves of the batteries A and E did not open, and no gas generation was observed. Further, no voltage drop was observed and no change was observed in the appearance. However, the safety valve of the battery C was opened, and the gas accumulated in the battery was released. From these results, the electrolytic solution of the present invention does not generate gas even when it is heated to near the melting point of lithium (180 ° C.), and exhibits excellent performance in terms of safety and reliability as compared with conventional electrolytic solutions. It is clear.

【0016】次に、電池B、電池Dおよび電池Fについ
て、600mAで放電した(放電下限電圧は1.8V)
後、100mAで充電する(充電上限電圧は3.5V)
サイクルを1サイクルとし、この充放電サイクルを、電
池の放電容量が第1回目の50%になるまで継続した。
表1に結果を示す。表1では、充放電サイクル寿命を表
す指標として、式(1)で表されるFOM(Figure of
Merit)を用いており、電池FのFOMの値を1とした
場合の相対比で電池Bおよび電池Dのサイクル寿命を表
している。このFOMは、電池のサイクル寿命を表す指
標であり、このFOMの値が大きいほど、サイクル寿命
が長い電池である。また、表1では、第1回目の放電容
量を示してある。放電容量も、電池Fの値を1とした場
合の相対値で表している。表1に示した結果からわかる
ように、本発明の電解液を用いた電池は、比較例の従来
技術による電解液を用いた電池に比較して、放電容量お
よび充放電サイクル寿命共に優れた特性を示した。
Next, the batteries B, D and F were discharged at 600 mA (the discharge lower limit voltage was 1.8 V).
After that, charge at 100 mA (upper limit charging voltage is 3.5 V)
The cycle was defined as one cycle, and this charge / discharge cycle was continued until the discharge capacity of the battery reached the first 50%.
The results are shown in Table 1. In Table 1, as an index showing the charge / discharge cycle life, the FOM (Figure of
Merit) is used, and the cycle life of the battery B and the battery D is represented by a relative ratio when the FOM value of the battery F is 1. This FOM is an index representing the cycle life of the battery, and the larger the value of this FOM, the longer the cycle life of the battery. In addition, Table 1 shows the first discharge capacity. The discharge capacity is also expressed as a relative value when the value of the battery F is 1. As can be seen from the results shown in Table 1, the battery using the electrolytic solution of the present invention has excellent discharge capacity and charge / discharge cycle life as compared with the battery using the electrolytic solution according to the prior art of the comparative example. showed that.

【0017】FOM=(充放電サイクルの積算放電容
量)/(電池に仕込んだリチウムの放電容量)=Σ(サ
イクル毎の放電容量)/(電池に仕込んだリチウムの放
電容量)
FOM = (cumulative discharge capacity of charge / discharge cycle) / (discharge capacity of lithium charged in battery) = Σ (discharge capacity per cycle) / (discharge capacity of lithium charged in battery)

【0018】 [0018]

【0019】EC:エチレンカーボネート、PC:プロ
ピレンカーボネート、 SL:スルフォラン
EC: ethylene carbonate, PC: propylene carbonate, SL: sulfolane

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
の電解液を使用することにより、充放電放電特性に優
れ、安全性、信頼性が高い非水溶媒電解液系リチウム二
次電池を実現できる。
As is clear from the above description, by using the electrolytic solution of the present invention, a non-aqueous solvent electrolytic solution type lithium secondary battery having excellent charge / discharge characteristics, high safety and high reliability can be obtained. realizable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを放電および充電可能な負
極およびリチウムイオンを放電および充電可能な正極、
非水溶媒にイオン解離性のリチウム塩を溶解した電解液
を有する非水溶媒系二次電池において、前記非水溶媒と
して、(1)エチレンカーボネートと(2)プロピレン
カーボネートと(3)スルフォランの3種の溶媒を混合
したものを用いることを特徴とする非水溶媒系リチウム
二次電池。
1. A negative electrode capable of discharging and charging lithium ions and a positive electrode capable of discharging and charging lithium ions,
In a non-aqueous solvent type secondary battery having an electrolytic solution in which an ion dissociative lithium salt is dissolved in a non-aqueous solvent, the non-aqueous solvent includes (1) ethylene carbonate, (2) propylene carbonate and (3) sulfolane. A non-aqueous solvent type lithium secondary battery characterized by using a mixture of different solvents.
JP4149996A 1992-05-18 1992-05-18 Nonaqueous solvent type lithium secondary battery Pending JPH05326017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4149996A JPH05326017A (en) 1992-05-18 1992-05-18 Nonaqueous solvent type lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4149996A JPH05326017A (en) 1992-05-18 1992-05-18 Nonaqueous solvent type lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05326017A true JPH05326017A (en) 1993-12-10

Family

ID=15487191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4149996A Pending JPH05326017A (en) 1992-05-18 1992-05-18 Nonaqueous solvent type lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05326017A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040091A (en) * 1997-07-10 2000-03-21 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary cell solvent
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040091A (en) * 1997-07-10 2000-03-21 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary cell solvent
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP4666540B2 (en) * 1999-11-25 2011-04-06 株式会社ブリヂストン Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US8697288B2 (en) High energy lithium ion secondary batteries
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
Tobishima et al. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JPH11339850A (en) Lithium-ion secondary battery
US6083475A (en) Method for making lithiated metal oxide
JP2003142078A (en) Nonaqueous electrolyte secondary battery
WO2003021707A1 (en) Nonaqueous electrolyte
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2000215909A (en) Nonaqueous electrolyte secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JP2000021447A (en) Nonaqueous electrolyte battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JPH1140199A (en) Lithium secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP3402233B2 (en) Non-aqueous electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
JP3086878B1 (en) Lithium metal secondary battery
JPH06236769A (en) Nonaqueous solvent lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees