JP2003323916A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003323916A
JP2003323916A JP2002128717A JP2002128717A JP2003323916A JP 2003323916 A JP2003323916 A JP 2003323916A JP 2002128717 A JP2002128717 A JP 2002128717A JP 2002128717 A JP2002128717 A JP 2002128717A JP 2003323916 A JP2003323916 A JP 2003323916A
Authority
JP
Japan
Prior art keywords
battery
water
positive electrode
entry
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002128717A
Other languages
Japanese (ja)
Inventor
Tomohito Fukuhara
福原  智人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002128717A priority Critical patent/JP2003323916A/en
Publication of JP2003323916A publication Critical patent/JP2003323916A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of preventing battery degradation caused by entry of water into a battery case. <P>SOLUTION: In the battery case, a porous member having pores with a pore diameter allowing entry of a water molecule and prohibiting entry of a molecule grater than the water molecule. This structure avoids disturbing water absorption by entry of nonaqueous solvent and the like into the pores, thus realizing efficient water removal. This effectively prevents battery degradation. By using synthetic zeolite as the porous member, even if entered water and lithium salt are reacted to produce hydrogen fluororide acid, the hydrogen fluoride acid can be removed by chemisorption. Moreover, providing the porous member within a positive electrode active material prevents degradation of charge collectors caused by the hydrogen fluoride acid, thus effectively preventing battery degradation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池においては、活
物質としてリチウム化合物を用いるため、リチウムとの
反応性の高い水系の溶媒を使用することができない。こ
のため、リチウムと化学反応しない非水系溶媒にリチウ
ム塩を溶解した非水電解液が用いられている。
2. Description of the Related Art In a lithium ion secondary battery, since a lithium compound is used as an active material, it is impossible to use an aqueous solvent having high reactivity with lithium. Therefore, a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent that does not chemically react with lithium is used.

【0003】[0003]

【発明が解決しようとする課題】ところが、非水系溶媒
には、僅かながら水が混入していることが通常であっ
て、電池の製造段階でこの水を完全に除去することは困
難である。また、電池の組み立て後においても、電池ケ
ースにおける封入口の隙間等から、外部環境中の水が電
池内に進入してくる場合がある。
However, it is usual that a small amount of water is mixed in the non-aqueous solvent, and it is difficult to completely remove this water at the manufacturing stage of the battery. Further, even after the battery is assembled, water in the external environment may enter the battery through the gap of the sealing port in the battery case.

【0004】特に、リチウム塩としてLiBF,Li
PF等のフッ素系化合物を使用している場合には、こ
のフッ素化合物と水とが反応してフッ化水素酸を生じさ
せる場合がある。このフッ化水素酸は、集電体や電池ケ
ースに用いられるアルミニウム等の金属を腐食するた
め、電池の劣化の原因となる。
Particularly, as the lithium salt, LiBF 4 , Li
When a fluorine compound such as PF 6 is used, the fluorine compound may react with water to generate hydrofluoric acid. This hydrofluoric acid corrodes metals such as aluminum used for the current collector and the battery case, which causes deterioration of the battery.

【0005】本発明は上記のような事情に鑑みてなされ
たものであり、その目的は、電池ケース内への水の混入
による電池の劣化を防止できる非水電解質二次電池を提
供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery capable of preventing deterioration of the battery due to mixing of water in the battery case. is there.

【0006】[0006]

【課題を解決するための手段】本発明者は、電池ケース
内への水の混入による電池の劣化を防止できる非水電解
質二次電池を提供すべく鋭意研究してきたところ、水を
吸着可能な細孔を備えた多孔質体を、電池ケースの内部
に配しておくことが効果的であることを見出した。特
に、細孔の孔径を、水分子は進入可能であるが水分子よ
りも大きな分子が進入できない大きさとすることによ
り、細孔内に非水溶媒等の分子が進入して水の吸着を妨
害することを回避して、効率よく水を除去できることを
見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has been earnestly studied to provide a non-aqueous electrolyte secondary battery capable of preventing deterioration of the battery due to mixing of water in the battery case. It has been found that it is effective to dispose a porous body having pores inside the battery case. In particular, by making the pore size of the pores large enough to allow water molecules to enter but not larger than water molecules, molecules such as non-aqueous solvents enter the pores and interfere with water adsorption. It was found that water can be removed efficiently by avoiding the above-mentioned problems, and the present invention has been completed.

【0007】すなわち、本発明は、正極と、負極と、非
水系溶媒に電解質を溶解させてなる非水電解液と、前記
正極、前記負極および前記非水電解液を収容する電池ケ
ースとを備えた非水電解質二次電池であって、前記電池
ケース内に、水分子の進入を許容する一方前記水分子よ
り大きな分子の進入を規制可能な孔径の細孔が形成され
た多孔質体が備えられていることを特徴とする。
That is, the present invention comprises a positive electrode, a negative electrode, a non-aqueous electrolytic solution prepared by dissolving an electrolyte in a non-aqueous solvent, and a battery case containing the positive electrode, the negative electrode and the non-aqueous electrolytic solution. A non-aqueous electrolyte secondary battery, wherein the battery case is provided with a porous body in which pores having a pore diameter capable of allowing water molecules to enter while restricting entry of molecules larger than the water molecules are formed. It is characterized by being.

【0008】本発明の多孔質体としては、水を吸着可能
な細孔を備え、かつ、リチウムや非水電解液等と反応し
ないものであれば特に制限はない。具体的には、細孔径
約3オングストロームのアルミナ焼成体、合成ゼオライ
ト、合成沸石等が挙げられる。
The porous material of the present invention is not particularly limited as long as it has pores capable of adsorbing water and does not react with lithium or a non-aqueous electrolyte. Specific examples include a calcined alumina body having a pore size of about 3 angstroms, synthetic zeolite, and synthetic zeolite.

【0009】また、多孔質体の形状および配置には特に
制限はなく、電池ケース内に混入する水と接触してその
水を細孔内に取り込むことが可能とされていればよい。
例えば、板状に形成されて電池ケース内に敷設されてい
てもよく、薄層状に形成されて電池ケースの内壁面に沿
って配されていてもよく、粒状に形成されて活物質層中
に混合されるか、あるいは非水電解液中に分散されてい
てもよい。
Further, the shape and arrangement of the porous body are not particularly limited as long as the porous body can be brought into contact with water mixed in the battery case and take the water into the pores.
For example, it may be formed in a plate shape and laid in the battery case, may be formed in a thin layer and arranged along the inner wall surface of the battery case, and may be formed in a granular shape in the active material layer. It may be mixed or dispersed in the non-aqueous electrolyte.

【0010】本発明は、リチウム塩としてLiBF
LiPF等のフッ素系化合物を使用している場合に特
に効果的である。これらのフッ素化合物は、水と反応し
て電池の劣化の原因となるフッ化水素酸を生じさせる
が、本発明の多孔質体を使用して水を吸着・除去するこ
とにより、フッ素化合物の発生を抑制することができる
ためである。このような場合には、多孔質体として、生
成したフッ化水素酸を化学吸着により除去する機能を併
せ持つものを使用することが好ましい。このような多孔
質体としては、例えばアルミナ焼成体、合成ゼオライ
ト、合成沸石等が挙げられる。
The present invention provides a lithium salt, LiBF 4 ,
It is particularly effective when a fluorine-based compound such as LiPF 6 is used. These fluorine compounds react with water to generate hydrofluoric acid, which causes deterioration of the battery. However, when the porous body of the present invention is used to adsorb and remove water, the generation of fluorine compounds occurs. This is because it is possible to suppress In such a case, it is preferable to use a porous body that also has a function of removing the generated hydrofluoric acid by chemisorption. Examples of such a porous material include calcined alumina, synthetic zeolite, and synthetic zeolite.

【0011】特に、正極側の集電体はアルミニウムによ
り形成されるのが通常であり、このアルミニウムはフッ
化水素酸により腐食されやすい。したがって、本発明の
多孔質体を正極活物質中に混合しておくことが好まし
い。このようにすれば、正極付近でのフッ化水素酸の発
生を抑制して集電体の腐食を防止し、電池の劣化を効果
的に防止することができる。
In particular, the current collector on the positive electrode side is usually made of aluminum, and this aluminum is easily corroded by hydrofluoric acid. Therefore, it is preferable to mix the porous body of the present invention into the positive electrode active material. By doing so, it is possible to suppress generation of hydrofluoric acid near the positive electrode, prevent corrosion of the current collector, and effectively prevent deterioration of the battery.

【0012】電池内に備えられる多孔質体の量は、電池
に使用する電解液の量、その電解液中に含まれる水の濃
度および多孔質体の水分吸収容量によって決めることが
できる。電解液重量と電解液中に含まれる水の濃度とか
ら、電解液内に存在する水の重量を求め、この水を完全
に吸収するのに必要な多孔質体の重量(Wg)を求める
ことができる。電池内の多孔質体の重量は、多ければ多
いほど、水を除去する効果がある。しかし、電池内の多
孔質体の重量が多くなると、その分だけ電池内の活物質
の重量が減少し、電池のエネルギー密度が低下する。実
際の電池においては、電解液のすべてが多孔質体と接触
しておらず、また、電解液以外の電極やセパレータから
も水が電池内に持ち込まれるため、Wgの5〜10倍の
多孔質体を電池内部に備えていることが好ましい。
The amount of the porous body provided in the battery can be determined by the amount of the electrolytic solution used in the battery, the concentration of water contained in the electrolytic solution and the water absorption capacity of the porous body. Obtaining the weight of water existing in the electrolyte from the weight of the electrolyte and the concentration of water contained in the electrolyte, and obtaining the weight (Wg) of the porous body required to completely absorb the water. You can The larger the weight of the porous body in the battery, the more effective it is to remove water. However, when the weight of the porous body in the battery increases, the weight of the active material in the battery decreases correspondingly, and the energy density of the battery decreases. In an actual battery, not all of the electrolytic solution is in contact with the porous body, and water is also brought into the battery from the electrodes and separators other than the electrolytic solution. It is preferable to have the body inside the battery.

【0013】[0013]

【発明の作用、及び発明の効果】本発明によれば、電池
ケース内に、水分子の進入を許容する一方前記水分子よ
り大きな分子の進入を規制可能な孔径を有する細孔が形
成された多孔質体が備えられている。このような構成に
よれば、水分子は細孔内に進入できるが、水分子よりも
嵩高い非水溶媒分子は細孔内に進入できない。したがっ
て、非水溶媒分子が細孔内に吸着されて水の吸着が妨害
されることを回避し、多孔質体に効率よく水を吸着させ
ることができる。これにより、電池の劣化を効果的に防
止することができる。
EFFECTS OF THE INVENTION AND EFFECTS OF THE INVENTION According to the present invention, pores are formed in the battery case, the pores having a pore size that allows the entry of water molecules while restricting the entry of molecules larger than the water molecules. A porous body is provided. According to this structure, water molecules can enter the pores, but non-aqueous solvent molecules that are bulkier than the water molecules cannot enter the pores. Therefore, it is possible to prevent non-aqueous solvent molecules from being adsorbed in the pores and hindering the adsorption of water, and to adsorb water efficiently to the porous body. Thereby, the deterioration of the battery can be effectively prevented.

【0014】また、多孔質体としてアルミナ焼成体を使
用する。これにより、混入した水とリチウム塩とが反応
してフッ化水素酸が生成した場合でも、このフッ化水素
酸を化学吸着により除去することができる。さらに、多
孔質体を正極活物質層内に混入しておくことにより、フ
ッ化水素酸による集電体の劣化を防止し、電池の劣化を
効果的に防止することができる。
An alumina fired body is used as the porous body. As a result, even when the mixed water reacts with the lithium salt to generate hydrofluoric acid, the hydrofluoric acid can be removed by chemisorption. Furthermore, by mixing the porous body in the positive electrode active material layer, deterioration of the current collector due to hydrofluoric acid can be prevented, and deterioration of the battery can be effectively prevented.

【0015】[0015]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0016】<実施例1> 1.原材料 多孔質体としては、細孔径3オングストロームのモレキ
ュラーシーブ3A(マナックス株式会社製)を使用し
た。
<Example 1> 1. A molecular sieve 3A (manufactured by Manax Co., Ltd.) having a pore size of 3 Å was used as the raw material porous body.

【0017】2.電池の作製 1)正極の作製 正極活物質としては、LiCoOを使用した。この正
極活物質91.0gと、結着剤としてのポリフッ化ビニ
リデン6.0gと、導電剤としてのアセチレンブラック
3.0gと、上記1のモレキュラーシーブ3A0.2g
とを混合し、Nーメチルピロリドンを加えて正極合剤ペ
ーストを調製した。このペーストを、厚さ20μmのア
ルミニウム箔からなる集電体の両面に均一に塗布し、乾
燥後、プレスを行った。このようにして、正極活物質層
を備えた帯状の正極シートを作製した。正極活物質層の
厚さは、両面合計で170μmであった。この正極シー
トの一端部に、厚さ100μmのアルミニウム片からな
る正極リードを溶接した。
2. Preparation of Battery 1) Preparation of Positive Electrode LiCoO 2 was used as the positive electrode active material. 91.0 g of this positive electrode active material, 6.0 g of polyvinylidene fluoride as a binder, 3.0 g of acetylene black as a conductive agent, and 0.2 g of the molecular sieve 3A described in 1 above.
Were mixed and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. This paste was uniformly applied on both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried and then pressed. In this way, a strip-shaped positive electrode sheet having the positive electrode active material layer was produced. The total thickness of the positive electrode active material layer was 170 μm on both sides. A positive electrode lead made of a 100 μm thick aluminum piece was welded to one end of this positive electrode sheet.

【0018】2)負極の作製 負極活物質としては、グラファイトを使用した。このグ
ラファイト92.0gと、結着剤としてのポリフッ化ビ
ニリデン8.0gとを混合し、Nーメチルピロリドンを
加えて負極合剤ペーストを調製した。このペーストを、
厚さ15μmの銅箔からなる集電体の両面に均一に塗布
し、上記正極シートと同様の方法により、帯状の負極シ
ートを作製した。負極活物質層の厚さは、両面合計で1
80μmであった。
2) Preparation of Negative Electrode Graphite was used as the negative electrode active material. 92.0 g of this graphite was mixed with 8.0 g of polyvinylidene fluoride as a binder, and N-methylpyrrolidone was added to prepare a negative electrode mixture paste. This paste
A strip-shaped negative electrode sheet was produced by uniformly applying both surfaces of a current collector made of a copper foil having a thickness of 15 μm, and by the same method as the above positive electrode sheet. The total thickness of the negative electrode active material layer is 1 on both sides.
It was 80 μm.

【0019】3)非水電解液の調製 エチレンカーボネート、およびジメチルカーボネート
を、体積比1:1の割合で混合して、非水溶媒を調製し
た。この非水溶媒に、電解質としてリチウム塩であるL
iPFを濃度1.2mol/lとなるように加え、非
水電解液を調製した。
3) Preparation of non-aqueous electrolyte solution Ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 to prepare a non-aqueous solvent. L, which is a lithium salt as an electrolyte, is added to this non-aqueous solvent.
iPF 6 was added to a concentration of 1.2 mol / l to prepare a non-aqueous electrolytic solution.

【0020】4)電池の作製 正極シート、セパレータ、負極シート、セパレータを、
正極リードおよび負極リードが溶接された側の端部がと
もに同じ側となるようにしつつ、この順に積層し、積層
体とした。この積層体を、ポリエチレン製の長方形状の
巻芯を中心として長円渦状に巻回し、発電素子を作製し
た。なお、セパレータとしては、ポリエチレン微多孔膜
を使用した。
4) Preparation of battery A positive electrode sheet, a separator, a negative electrode sheet and a separator are
The positive electrode lead and the negative electrode lead were laminated in this order with the end portions on the welded side on the same side, to obtain a laminated body. This laminated body was wound in an elliptical spiral shape around a polyethylene rectangular core as a center to manufacture a power generation element. A polyethylene microporous membrane was used as the separator.

【0021】この発電素子を、鉄製の角形電池ケース内
に収納し、正極リードおよび負極リードを、電池蓋に設
けられたそれぞれの端子と接続した。そして、電池ケー
スと蓋とをレーザー溶接で接合した後、電池蓋に設けら
れた注液口から、上記3)で調製した非水電解液5.4
mlを注液した。そして、注液口を封口した。このよう
にして、外形寸法幅34mm、高さ67mm、厚さ6.
2mmで、公称容量1000mAhの角形非水電解質二
次電池(以下電池Aと称する)を作製した。
The power generating element was housed in an iron prismatic battery case, and the positive electrode lead and the negative electrode lead were connected to respective terminals provided on the battery lid. Then, after the battery case and the lid are joined by laser welding, the non-aqueous electrolyte solution 5.4 prepared in 3) above is injected from the injection port provided in the battery lid.
ml was poured. Then, the liquid injection port was sealed. In this way, the outer dimensions are 34 mm wide, 67 mm high, and 6.
A rectangular non-aqueous electrolyte secondary battery (hereinafter referred to as battery A) having a nominal capacity of 1000 mAh with a size of 2 mm was produced.

【0022】3.充放電サイクル試験 10セルの電池Aについて、25℃において、次の条件
で充放電試験を行った。充電は、1000mA定電流で
4.1Vまで、さらに4.1V定電圧で、合計5時間行
い、放電は1000mA定電流で2.75Vまで行っ
た。この充放電を1サイクルとして、300サイクルの
充放電を行った。
3. Charge / Discharge Cycle Test A 10-cell battery A was subjected to a charge / discharge test at 25 ° C. under the following conditions. Charging was performed at a constant current of 1000 mA to 4.1 V, and at a constant voltage of 4.1 V for a total of 5 hours, and discharging was performed at a constant current of 1000 mA to 2.75 V. This charging / discharging was made into 1 cycle, and charging / discharging of 300 cycles was performed.

【0023】<実施例2>LiCoO91.0gと、
ポリフッ化ビニリデン6.0gと、アセチレンブラック
3.0gとを混合し、Nーメチルピロリドンを加えて正
極合剤ペーストを調製した。このペーストを用いて、実
施例1と同様に正極シートを作製した。グラファイト9
2.0gと、ポリフッ化ビニリデン8.0gと、モレキ
ュラーシーブ3A0.2gとを混合し、Nーメチルピロ
リドンを加えて負極合剤ペーストを調製した。このペー
ストを用いて、実施例1と同様の方法により、帯状の負
極シートを作製した。その他は、実施例1と同様にして
電池(以下、電池Bと称する)を作製し、試験を行っ
た。
Example 2 91.0 g of LiCoO 2 ,
6.0 g of polyvinylidene fluoride and 3.0 g of acetylene black were mixed and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. A positive electrode sheet was produced in the same manner as in Example 1 using this paste. Graphite 9
2.0 g, polyvinylidene fluoride 8.0 g, and molecular sieve 3A 0.2 g were mixed, and N-methylpyrrolidone was added to prepare a negative electrode mixture paste. Using this paste, a strip-shaped negative electrode sheet was produced in the same manner as in Example 1. A battery (hereinafter, referred to as battery B) was manufactured and tested in the same manner as in Example 1 except for the above.

【0024】<比較例1>正極シートを実施例2と同様
のものとし、負極シートを実施例1と同様のものとし
た。その他は、実施例1と同様にして電池(以下、電池
Cと称する)を作製し、試験を行った。
Comparative Example 1 The positive electrode sheet was the same as that in Example 2 and the negative electrode sheet was the same as in Example 1. A battery (hereinafter, referred to as battery C) was manufactured and tested in the same manner as in Example 1 except for the above.

【0025】<結果と考察>実施例および比較例の電池
についての1サイクル目の放電容量、300サイクル目
の放電容量、および放電容量維持率を表1に示した。こ
こで、「放電容量維持率」は、1サイクル目の放電容量
に対する300サイクル目の放電容量の比(%)で表し
た。また、表1のデータは、各電池について10セルの
測定値の平均値を示した。
<Results and Discussion> Table 1 shows the discharge capacity at the first cycle, the discharge capacity at the 300th cycle, and the discharge capacity retention rate of the batteries of Examples and Comparative Examples. Here, the "discharge capacity retention rate" is represented by the ratio (%) of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle. The data in Table 1 shows the average value of the measured values of 10 cells for each battery.

【0026】[0026]

【表1】 [Table 1]

【0027】また、図1に、各電池についての充放電サ
イクル数と放電容量との関係を示すグラフを示した。な
お、図1において、記号●は電池A、記号■は電池B、
記号▲は電池Cを示す。
FIG. 1 shows a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity of each battery. In FIG. 1, symbol ● is battery A, symbol ■ is battery B,
The symbol ▲ indicates the battery C.

【0028】表1および図1から、正極活物質層中にモ
レキュラーシーブ3Aを備えた電池A、および負極活物
質層中にモレキュラーシーブ3Aを備えた電池Bの放電
容量維持率は90%以上であったのに対し、電池ケース
内にモレキュラーシーブ3Aを備えていない電池Cの放
電容量維持率は80%以下となった。また、電池Aと電
池Bの比較では、放電容量維持率は電池Aの方が大き
く、モレキュラーシーブ3Aは正極活物質層中に配され
るのが最も好ましいことがわかった。
From Table 1 and FIG. 1, the discharge capacity retention rate of the battery A having the molecular sieve 3A in the positive electrode active material layer and the battery B having the molecular sieve 3A in the negative electrode active material layer was 90% or more. On the other hand, the discharge capacity retention rate of the battery C having no molecular sieve 3A in the battery case was 80% or less. Further, in comparison between Battery A and Battery B, it was found that the discharge capacity retention rate was higher in Battery A, and it is most preferable that the molecular sieve 3A is arranged in the positive electrode active material layer.

【0029】以上の結果から明らかなように、電池ケー
ス内に、水分子の進入を許容する一方水分子より大きな
分子の進入を規制可能な孔径の細孔が形成された多孔質
体を配することにより、この多孔質体に水を吸収させ、
フッ素化合物の発生を抑制することができ、充放電サイ
クル特性に優れた非水電解質二次電池を得ることができ
る。
As is clear from the above results, the battery case is provided with a porous body in which pores having a pore size capable of allowing the entry of water molecules and restricting the entry of molecules larger than water molecules are formed. As a result, this porous body absorbs water,
Generation of a fluorine compound can be suppressed, and a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例の電池についての充放電サ
イクル数と放電容量との関係を示すグラフ
FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity for batteries of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ07 AK03 AL07 AM03 AM05 AM07 CJ08 DJ08 DJ13 DJ16 HJ06 5H050 AA13 BA17 CA08 CB08 DA02 DA15 EA14 FA13 FA17 GA10 HA06    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ07 AK03 AL07 AM03 AM05                       AM07 CJ08 DJ08 DJ13 DJ16                       HJ06                 5H050 AA13 BA17 CA08 CB08 DA02                       DA15 EA14 FA13 FA17 GA10                       HA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、 負極と、 非水系溶媒に電解質を溶解させてなる非水電解液と、 前記正極、前記負極および前記非水電解液を収容する電
池ケースとを備えた非水電解質二次電池であって、 前記電池ケース内に、水分子の進入を許容する一方前記
水分子より大きな分子の進入を規制可能な孔径の細孔が
形成された多孔質体が備えられていることを特徴とする
非水電解質二次電池。
1. A non-aqueous electrolyte comprising a positive electrode, a negative electrode, a non-aqueous electrolytic solution prepared by dissolving an electrolyte in a non-aqueous solvent, and a battery case accommodating the positive electrode, the negative electrode and the non-aqueous electrolytic solution. A secondary battery, wherein the battery case is provided with a porous body in which pores having a pore size capable of allowing the entry of water molecules while restricting the entry of molecules larger than the water molecules are formed. A non-aqueous electrolyte secondary battery characterized by:
【請求項2】 前記多孔質体が合成ゼオライトであるこ
とを特徴とする請求項1に記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the porous body is a synthetic zeolite.
【請求項3】 前記正極がアルミニウムにより形成され
た集電体と、この集電体の表面に形成された正極活物質
層とを備えるとともに、 前記多孔質体が前記正極活物質層中に配されていること
を特徴とする請求項1または請求項2に記載の非水電解
質二次電池。
3. The positive electrode includes a current collector formed of aluminum and a positive electrode active material layer formed on the surface of the current collector, and the porous body is arranged in the positive electrode active material layer. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is provided.
JP2002128717A 2002-04-30 2002-04-30 Nonaqueous electrolyte secondary battery Pending JP2003323916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128717A JP2003323916A (en) 2002-04-30 2002-04-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128717A JP2003323916A (en) 2002-04-30 2002-04-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003323916A true JP2003323916A (en) 2003-11-14

Family

ID=29542376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128717A Pending JP2003323916A (en) 2002-04-30 2002-04-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003323916A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049853A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics by elimination of metal ions
WO2007049871A1 (en) 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
JP2010205546A (en) * 2009-03-03 2010-09-16 Ntt Facilities Inc Lithium ion secondary battery
CN102157750A (en) * 2011-03-07 2011-08-17 湖南丰源业翔晶科新能源股份有限公司 Secondary lithium-ion battery and preparation method thereof
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof
US20120261328A1 (en) * 2009-12-17 2012-10-18 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution
JP2016171080A (en) * 2011-09-30 2016-09-23 株式会社日本触媒 Electrolytic solution and method for manufacturing the same, and power storage device arranged by use thereof
CN112331813A (en) * 2019-08-05 2021-02-05 珠海冠宇电池股份有限公司 Negative plate for improving safety of lithium ion battery and preparation method and application thereof
US11088357B2 (en) 2017-12-12 2021-08-10 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery
US11094982B2 (en) 2018-03-09 2021-08-17 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049853A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics by elimination of metal ions
WO2007049871A1 (en) 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
KR100901535B1 (en) * 2005-10-26 2009-06-08 주식회사 엘지화학 Secondary Battery of Improved Life Characteristics
US7560191B2 (en) 2005-10-26 2009-07-14 Lg Chem, Ltd. Secondary battery of improved life characteristics by elimination of metal ions
KR100907624B1 (en) * 2005-10-26 2009-07-15 주식회사 엘지화학 Secondary battery with improved lifespan by removing metal ions
JP2010205546A (en) * 2009-03-03 2010-09-16 Ntt Facilities Inc Lithium ion secondary battery
US9023204B2 (en) * 2009-12-17 2015-05-05 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution
US20120261328A1 (en) * 2009-12-17 2012-10-18 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof
CN102157750A (en) * 2011-03-07 2011-08-17 湖南丰源业翔晶科新能源股份有限公司 Secondary lithium-ion battery and preparation method thereof
JP2016171080A (en) * 2011-09-30 2016-09-23 株式会社日本触媒 Electrolytic solution and method for manufacturing the same, and power storage device arranged by use thereof
US11088357B2 (en) 2017-12-12 2021-08-10 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery
US11094982B2 (en) 2018-03-09 2021-08-17 Samsung Electronics Co., Ltd. Battery case, battery, and method for fabricating a battery
CN112331813A (en) * 2019-08-05 2021-02-05 珠海冠宇电池股份有限公司 Negative plate for improving safety of lithium ion battery and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2010129332A (en) Nonaqueous electrolyte secondary battery
JP2003208924A (en) Lithium secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
WO2011016113A1 (en) Lithium ion nonaqueous electrolyte secondary battery
JP2003323916A (en) Nonaqueous electrolyte secondary battery
WO2012025963A1 (en) Nonaqueous-electrolyte battery
JPH117962A (en) Nonaqueous electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP4691966B2 (en) Lithium secondary battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2001283920A (en) Lithium secondary battery
JP2004119199A (en) Nonaqueous electrolyte secondary battery
JP3596225B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2005071617A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4715093B2 (en) Electrochemical devices
JPH11283671A (en) Organic electrolyte secondary battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery
JP3322182B2 (en) Non-aqueous electrolyte for batteries
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JPH06333553A (en) Nonaqueous secondary battery