JP3736045B2 - All solid lithium battery - Google Patents

All solid lithium battery

Info

Publication number
JP3736045B2
JP3736045B2 JP16224997A JP16224997A JP3736045B2 JP 3736045 B2 JP3736045 B2 JP 3736045B2 JP 16224997 A JP16224997 A JP 16224997A JP 16224997 A JP16224997 A JP 16224997A JP 3736045 B2 JP3736045 B2 JP 3736045B2
Authority
JP
Japan
Prior art keywords
lithium
lithium ion
solid
ion conductive
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16224997A
Other languages
Japanese (ja)
Other versions
JPH117942A (en
Inventor
和也 岩本
信 藤野
和典 高田
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16224997A priority Critical patent/JP3736045B2/en
Publication of JPH117942A publication Critical patent/JPH117942A/en
Application granted granted Critical
Publication of JP3736045B2 publication Critical patent/JP3736045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は全固体リチウム電池、特にその電極に関するものである。
【0002】
【従来の技術】
近年、パーソナルコンピュータ・携帯電話等のポータブル機器の開発にともない、その電源として電池の需要は非常に大きなものとなっている。特に、リチウム電池は、リチウムが小さな原子量を持ちかつイオン化エネルギーが大きな物質であることから、高エネルギー密度を得ることができる電池として各方面で盛んに研究が行われている。
【0003】
一方、これらの用途に用いられる電池は、電解質に液体を使用しているため、電解質の漏液等の問題を皆無とすることができない。こうした問題を解決し信頼性を高めるため、また素子を小型、薄型化するためにも、液体電解質を固体電解質に代えて、電池を全固体化する試みが各方面でなされている。特に先に述べたリチウム電池に関しては、そのエネルギー密度の高さのために、電池に異常が生じた際には電池が発火する等の恐れがある。そのため、電池の安全性を確保するために、不燃性の固体材料で構成される固体電解質を用いた全固体リチウム電池の開発が望まれている。このような電池に用いられる固体電解質としては、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、あるいはこれらの誘導体などが知られている。また、Li2S−SiS2、 Li2S−P25、 Li2S−B23等のリチウムイオン導電性硫化物ガラス状固体電解質や、これらのガラスにLiIなどのハロゲン化リチウム、Li3PO4などのリチウム酸素酸塩をドープしたリチウムイオン導電性固体電解質は、10-4〜10-3S/cmの高いイオン導電性を有することから世界的にその物性を中心とした研究が行われている。
【0004】
【発明が解決しようとする課題】
たとえば、全固体リチウム電池は正極/固体電解質/負極の3層構成のペレットを粉末成型法により構成し、従来のコイン型電池ケースあるいはボタン型電池ケースに挿入し、その周囲をかしめ封口して作製される。このような全固体リチウム電池においては、正負極および電解質層よりなる電池構成群がすべて堅い固体からなるため、活物質粒子間の接合が悪くイオン伝導路の確保が難しく、内部抵抗が高くなる。特に二次電池の場合、充放電サイクルの進行に伴って、電極中の活物質の膨張・収縮が繰り返されることにより、電極全体が膨張・収縮し、ケースあるいは封口板との接触不良が生じたり、あるいは電極中での粒子間の接合が弛緩しやすい。このため電池構成材料間の接合状態の悪化により、充放電容量が低下するといった課題を有していた。
【0005】
本発明はこのような従来の課題を解決するものであり、充放電時における電池の膨張・収縮に伴う内部抵抗の増加を低減するとともに、集電性を高め、優れた充放電サイクル特性を有する全固体リチウム二次電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために本発明の全固体リチウム電池は、正極あるいは負極の少なくともいずれか一方の電極材料として、リチウムイオン導電性ポリマーで被覆した活物質と、リチウムイオン導電性無機固体電解質粉末とを混合してなる電極材料を用いたものである。上記構成では、リチウムイオン導電性ポリマーの弾性により、充放電時における電極中での活物質の膨張・収縮による粒子間の接合の弛緩を抑制し、電池ペレットの体積変化を抑えることができる。
【0007】
さらに、リチウムイオン導電性ポリマー中に電子電導剤を分散させることでイオン的にも電子的にも安定した接合を実現させるものである。
【0008】
これにより、電極の体積変化が小さく、電池ペレットの正極及び負極と集電体との間に十分な電気的接触が得られる。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、正極あるいは負極の少なくともいずれか一方の電極材料として、リチウムイオン導電性ポリマーで被覆した活物質と、リチウムイオン導電性無機固体電解質粉末から成る電極材料を用いたものであり、正極活物質または負極活物質の少なくともいずれか一方をリチウムイオン導電性ポリマーで被覆し、十分乾燥させた後、粉砕し、リチウムイオン導電性無機固体電解質粉末と混合・成形し、電極とする。このことにより、充放電時に活物質が膨張・収縮した際にその体積変化をポリマー層で吸収し、イオン伝導経路を確保する。
【0010】
また、このように予め活物質をリチウムイオン導電性ポリマーで被覆する構成法をとった場合、ポリマーを溶解するための有機溶媒は活物質被覆後取り除かれるため、無機固体電解質と直接接触することなく、有機溶媒に対して極めて不安定な無機固体電解質でも用いることができる。
【0011】
請求項2に記載の発明は、請求項1に記載のリチウムイオン導電性ポリマー中に電子電導剤を分散させたものであり、イオン伝導経路を確保すると同時に、電子電導経路も確保する。
【0012】
請求項3に記載の発明は、請求項2に記載の電子電導剤としてケッチェンブラック、アセチレンブラック、金属粉末、金属被覆プラスティック粉末、金属被覆ガラス粉末からなる群の少なくとも一つとしたものであり、リチウムイオン導電性ポリマーに高い電子電導性を付与する材料である。
【0013】
以下、本発明の実施の形態について図1から図4を用いて説明する。
(実施の形態1)
図1はリチウムイオン導電性ポリマー1で被覆した活物質粒子2とリチウムイオン導電性無機固体電解質3を混合して作製した電極構造の模式図を示したものである。
【0014】
図1においてリチウムイオン導電性ポリマー1で被覆した活物質粒子2と、リチウムイオン導電性無機固体電解質3を混合し、電極を作製することにより、活物質が膨張・収縮した場合にでもリチウムイオン導電性ポリマー1の弾性が、膨張・収縮による体積変化を吸収することで、活物質を被覆したリチウムイオン導電性ポリマー1まで含めた活物質粒子の体積変化が極めて小さくなる。その結果、リチウムイオン導電性無機固体電解質3とリチウムイオン導電性ポリマー1の接触性が良く、リチウムイオンの導電経路が常に保たれる。
【0015】
また、コバルト酸リチウム(LiCoO2)や二硫化チタン(TiS2)などのリチウムイオンが層間に挿入・脱離する層状化合物5を活物質として用いた場合、そのイオン伝導経路に異方性があるため、図4に示したようにリチウムイオン7が挿入・脱離する位置にリチウムイオン7の伝導経路であるリチウムイオン導電性無機固体電解質6がなければリチウムイオン7の活物質中への挿入あるいは脱離が起こらず、活物質の利用率が低いものとなる。これに対して本発明によれば図3に示したように挿入・脱離が困難な位置にリチウムイオン導電性無機固体電解質6が存在しても層状活物質5を被覆したリチウムイオン導電性ポリマー8層がリチウムイオン7の伝導経路となり、リチウムイオンの挿入・脱離が起こる。
【0016】
(実施の形態2)
図2は実施の形態1のリチウムイオン伝導性ポリマー1層に電子電導剤4を分散させた電極の模式図である。これにより、活物質間のあるいは活物質−集電体間の電子電導性を実施の形態1より向上させたものである。
【0017】
電子導電剤はニッケル、鉄、金、銀または白金などの金属粉末や、これら金属で被覆した樹脂製マイクロビーズあるいはガラス製マイクロビーズなどの金属被覆プラスチック粉末あるいは金属被覆ガラス粉末、またはアセチレンブラックやケッチェンブラック、黒鉛などの炭素材料が好ましく用いられる。
【0018】
【実施例】
次に、本発明の具体例を説明する。
【0019】
(実施例1)
ポリエチレンオキサイド3.96gをアセトニトリル50mlに溶解し、該溶液中に過塩素酸リチウムを2.13gを加えて溶解させ、リチウムイオン導電性ポリマー溶液とした。次いで、コバルト酸リチウム(LiCoO2)3gに該ポリマー溶液を4.5g加え、十分混合を行った後、真空中60℃で乾燥させた。乾燥後、粉砕しLi3PO4−Li2S−SiS2ガラス状固体電解質粉末2gと十分混合し、正極合剤とした。
【0020】
一方、該ポリマー溶液2gをIn粉末6gに加え、十分混合を行った後、真空中60℃で乾燥させた。乾燥後、粉砕しLi3PO4−Li2S−SiS2ガラス状固体電解質粉末1gと十分混合し、負極合剤とした。
【0021】
Li3PO4−Li2S−SiS2ガラス状固体電解質粉末を直径16.8mmのペレットに加圧成形した後、そのペレットの一方に該固体電解質粉末と正極合剤を加えて予備成型した。次いで固体電解質層を挟んで対向する他方の面に負極合剤を加えて一体成型を行い、全固体リチウム二次電池ペレットを構成した。
【0022】
該ペレットを2016サイズ(直径20mm、厚さ1.6mm)のコイン型電池ケースに入れて封口し、本発明の全固体リチウム二次電池Aを得た。
【0023】
また、正極にリチウムイオン導電性ポリマーで被覆していない正極活物質を用いた以外は全固体リチウム二次電池Aと同様に電池Bを、負極にリチウムイオン導電性ポリマーで被覆していない負極活物質を用いた以外は全固体リチウム二次電池Aと同様に電池Cを構成した。
【0024】
比較例として、リチウムイオン導電性ポリマーで被覆していない正極活物質および負極活物質を用いた以外は上記実施例1と同様の方法により、放電電気容量が等しくなるように活物質を秤量して全固体リチウム二次電池Xを構成した。
【0025】
得られた全固体リチウム二次電池A〜C、およびXの充放電を行った。リチウムイオン導電性ポリマーによる被覆の有無によって作動中の分極の度合いが異なるため、電圧制御の定電流法にて充放電を行った。
【0026】
図5に全固体リチウム二次電池AおよびXの充放電曲線を示す。
この結果、リチウムイオン導電性ポリマーで被覆した活物質を用いた全固体リチウム二次電池A〜Cの方がXと比べ活物質利用率が高められ、大きな放電電気量を得ることが可能となった。さらに、正極、負極ともにリチウムイオン導電性ポリマーで被覆した活物質を用いた全固体リチウム二次電池Aが最も大きな放電容量が得られた。
【0027】
また、図6に全固体リチウム二次電池AおよびXのサイクル特性を示す。この結果、リチウムイオン導電性ポリマーで被覆しない全固体リチウム二次電池Xの場合、初期に大きな容量劣化が認められ、その後も徐々に容量劣化が起こっているが、リチウムイオン導電性ポリマーで被覆した正、負極活物質を用いて構成した全固体リチウム二次電池Aは500サイクルまで進行しても極わずかな容量劣化が認められるのみであった。
【0028】
さらに、全固体リチウム二次電池A〜C、およびXの電池厚さ、および内部抵抗を測定した。その結果を(表1)に示す。
【0029】
【表1】

Figure 0003736045
【0030】
(表1)より、従来の活物質を用いた電池Xでは、組立直後と500サイクル目の充電完了後では、電池の厚さが0.11mmも増加しているのに対し、正負極ともポリマーで被覆した活物質を用いた電池Aでは0.02mmとほとんど変化がなかった。また、内部抵抗も従来の電池Xでは60Ωの増加があったのに対し、電池Aでは10Ωとほとんど変化はなかった。また、正負極のいずれかにポリマーで被覆した活物質を用いた電池BおよびCでは、組立直後と500サイクル目の充電完了後の電池厚さの増加は0.04〜0.05mmであり、内部抵抗の増加も25Ωと電池Aよりは大きい値であった。
【0031】
本実施例に依ればサイクル劣化が極めて小さく、利用率が高く、また、サイクルによる電池寸法変化ならびに内部抵抗の変化が小さな全固体リチウム二次電池を構成することができる。
【0032】
(実施例2)
リチウムイオン導電性ポリマー溶液を調製する段階でアセチレンブラックを0.2g添加した以外は実施例1の全固体リチウム二次電池Aと同様にして全固体リチウム二次電池Dを構成した。得られた全固体リチウム二次電池Dを実施例1と同様の条件で充放電した。
【0033】
図5に充放電曲線を示した。リチウムイオン導電性ポリマーに電子導電剤のアセチレンブラックを添加することで作動中の分極が全固体リチウム二次電池Aに比べてさらに小さくなり、電圧制御の定電流法で充放電を行った場合、さらに活物質利用率が高められ、大きな放電電気量を得ることが可能となった。
【0034】
また、図6にサイクル特性を示したが、電子電導剤を含有したリチウムイオン導電性ポリマーで被覆した活物質を用いて構成した全固体リチウム二次電池は500サイクルまで進行しても全く容量劣化が認められないことがわかった。
【0035】
また、本実施例による全固体リチウム二次電池Dの電池厚さ、および内部抵抗を測定し、その結果を(表1)に示す。
【0036】
(表1)より、組立直後と500サイクル目の充電完了後では、電池の厚さ変化が0.01mm、内部抵抗差も8Ωと電池Aよりさらに変化が小さくなった。
【0037】
本実施例に依ればサイクル劣化が極めて小さく、利用率が高く、また、サイクルによる電池寸法変化すなわち内部抵抗の変化が小さな全固体リチウム二次電池を構成することができる。
【0038】
なお、本発明の実施例においては、リチウムイオン導電性無機固体電解質としてX−Li2S−SiS2固体電解質ガラスのXがリン酸リチウム(Li3PO4)の場合についてのみ説明を行ったが、Xが無い場合、あるいは酸化リチウム(Li2O)、硫酸リチウム(Li2SO4)、炭酸リチウム(Li2CO3)、ホウ酸リチウム(Li3BO3)等他のリチウム酸素酸塩の場合についても同様の効果が得られることは自明であり、Xがリン酸リチウムの場合にのみ限定されるものではなく、さらにリチウムイオン導電性無機固体電解質としてはこれらの硫化物を主体とする非晶質のもののほかに、結晶性酸化物系リチウムイオン導電性無機固体電解質であるLi3.6Si0.60.44、Li3.40.6Si0.44やLiTi(PO43や酸化物を含んだ非晶質性のリチウムイオン導電性無機固体電解質LiX−Li2S−Li2O−P410-nn(X=LiI,LiBr)などを用いることも可能である。しかしながら固体電解質の高いイオン導電性と高い電気化学的安定性を実現するためにはこれらの硫化物を主体とする非晶質の物が特に好ましい。
【0039】
また、本発明の実施例における全固体リチウム電池の負極材料としてインジウムを用いて説明を行ったが、金属リチウム、アルミニウム、スズなどのリチウムと合金化しやすい金属、あるいはリチウム合金、さらに遷移金属酸化物、遷移金属硫化物などを用いても同様の効果が得られ、本発明における実施例にのみ限定されるものではない。
【0040】
また、本発明の実施例における全固体リチウム電池の正極材料としてコバルト酸リチウムを用いて説明を行ったが、ニッケル酸リチウム、マンガン酸リチウム等他の遷移金属酸化物や二硫化チタン、二硫化モリブデン等の遷移金属硫化物を用いても同様の効果が得られ、本発明における実施例にのみ限定されるものではない。
【0041】
また、本発明の実施例におけるリチウムイオン導電性ポリマーとしてポリエチレンオキサイドにLiClO4を溶解した物を用いたが、支持塩としてはLiBF4、LiCF3SO3、LiPF6等も用いることができる。また、ポリマーも他のポリアルキレンオキシド(−(CH2m−O−)nやポリアセチレンなどのオレフィン系高分子などでも用いることができ、本発明における実施例にのみ限定されるものではなく、比較的高いイオン伝導度を有するポリアルキレンオキシドが特に好ましく用いられる。
【0042】
【発明の効果】
以上のように本発明によれば、正極活物質および負極活物質の少なくとも一方をリチウムイオン導電性ポリマーで被覆することにより活物質の体積変化を吸収すると同時にイオン伝導経路の安定化がはかれるといった有利な効果が得られる。
【0043】
さらに、ポリマー中に電子電導剤を分散せしめることによって電子電導経路の安定化をも併せ持つことができ、極めて内部抵抗の小さな全固体リチウム二次電池の構成が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による電極の模式図
【図2】本発明の一実施の形態による電極の模式図
【図3】本発明の一実施の形態によるリチウムイオン伝導経路を示す模式図
【図4】従来のリチウムイオン伝導経路を示す模式図
【図5】全固体リチウム二次電池の充放電曲線を示す図
【図6】全固体リチウム二次電池のサイクル特性曲線を示す図
【符号の説明】
1 リチウムイオン導電性ポリマー
2 活物質粒子
3 リチウムイオン導電性無機固体電解質
4 電子電導剤
5 層状活物質
6 リチウムイオン導電性無機固体電解質
7 リチウムイオン
8 リチウムイオン導電性ポリマー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an all solid lithium battery, and more particularly to an electrode thereof.
[0002]
[Prior art]
In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as a power source has become very large. In particular, lithium batteries are actively studied in various fields as batteries capable of obtaining a high energy density because lithium has a small atomic weight and a large ionization energy.
[0003]
On the other hand, since the battery used for these uses uses a liquid as an electrolyte, it cannot eliminate problems such as electrolyte leakage. In order to solve these problems and increase the reliability, and to reduce the size and thickness of the device, attempts have been made in various fields to replace the liquid electrolyte with a solid electrolyte and make the battery completely solid. In particular, regarding the lithium battery described above, due to its high energy density, there is a risk that the battery may ignite when an abnormality occurs in the battery. Therefore, in order to ensure the safety of the battery, development of an all-solid-state lithium battery using a solid electrolyte composed of a noncombustible solid material is desired. Known solid electrolytes used in such batteries include lithium halide, lithium nitride, lithium oxyacid salt, or derivatives thereof. Moreover, lithium ion conductive sulfide glassy solid electrolytes such as Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , and lithium halides such as LiI Lithium ion conductive solid electrolyte doped with lithium oxyacid salt such as Li 3 PO 4 has a high ionic conductivity of 10 −4 to 10 −3 S / cm, so that its physical properties are centered around the world. Research is underway.
[0004]
[Problems to be solved by the invention]
For example, an all-solid lithium battery is made by forming a three-layered pellet of positive electrode / solid electrolyte / negative electrode by a powder molding method, inserting it into a conventional coin type battery case or button type battery case, and caulking and sealing the periphery. Is done. In such an all-solid lithium battery, since the battery constituent group consisting of the positive and negative electrodes and the electrolyte layer is all made of solid solid, the bonding between the active material particles is poor and it is difficult to secure an ion conduction path, and the internal resistance becomes high. In particular, in the case of a secondary battery, as the charge / discharge cycle progresses, the active material in the electrode is repeatedly expanded and contracted, so that the entire electrode expands and contracts, resulting in poor contact with the case or the sealing plate. Alternatively, the bonding between particles in the electrode tends to relax. For this reason, there has been a problem that the charge / discharge capacity decreases due to the deterioration of the bonding state between the battery constituent materials.
[0005]
The present invention solves such a conventional problem, reduces the increase in internal resistance accompanying expansion / contraction of the battery during charge / discharge, enhances current collection, and has excellent charge / discharge cycle characteristics. An object is to provide an all-solid lithium secondary battery.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the all solid lithium battery of the present invention includes an active material coated with a lithium ion conductive polymer as an electrode material of at least one of a positive electrode and a negative electrode, and a lithium ion conductive inorganic solid electrolyte powder. Is used. In the above configuration, due to the elasticity of the lithium ion conductive polymer, loosening of bonding between particles due to expansion / contraction of the active material in the electrode during charge / discharge can be suppressed, and volume change of the battery pellet can be suppressed.
[0007]
Furthermore, an ion conductive material is dispersed in a lithium ion conductive polymer to realize a stable ionic and electronic bonding.
[0008]
Thereby, the volume change of an electrode is small and sufficient electrical contact is obtained between the positive electrode and negative electrode of a battery pellet, and a collector.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an electrode material comprising an active material coated with a lithium ion conductive polymer and a lithium ion conductive inorganic solid electrolyte powder as an electrode material of at least one of a positive electrode and a negative electrode. After covering at least one of the positive electrode active material and the negative electrode active material with a lithium ion conductive polymer, drying it thoroughly, pulverizing it, mixing and molding with lithium ion conductive inorganic solid electrolyte powder An electrode. As a result, when the active material expands and contracts during charge and discharge, the volume change is absorbed by the polymer layer, and an ion conduction path is secured.
[0010]
Moreover, when the active material is previously coated with a lithium ion conductive polymer, the organic solvent for dissolving the polymer is removed after the active material is coated, so that it does not come into direct contact with the inorganic solid electrolyte. Inorganic solid electrolytes that are extremely unstable with respect to organic solvents can also be used.
[0011]
The invention according to claim 2 is obtained by dispersing an electron conductive agent in the lithium ion conductive polymer according to claim 1, and secures an electron conduction path as well as an ion conduction path.
[0012]
The invention according to claim 3 is at least one of the group consisting of ketjen black, acetylene black, metal powder, metal-coated plastic powder, metal-coated glass powder as the electronic conductive agent according to claim 2, It is a material that imparts high electronic conductivity to the lithium ion conductive polymer.
[0013]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 shows a schematic diagram of an electrode structure prepared by mixing active material particles 2 coated with a lithium ion conductive polymer 1 and a lithium ion conductive inorganic solid electrolyte 3.
[0014]
In FIG. 1, the active material particles 2 coated with the lithium ion conductive polymer 1 and the lithium ion conductive inorganic solid electrolyte 3 are mixed to produce an electrode, so that the lithium ion conductivity can be obtained even when the active material expands and contracts. The elasticity of the conductive polymer 1 absorbs the volume change due to expansion / contraction, so that the volume change of the active material particles including the lithium ion conductive polymer 1 coated with the active material becomes extremely small. As a result, the contact property between the lithium ion conductive inorganic solid electrolyte 3 and the lithium ion conductive polymer 1 is good, and the lithium ion conductive path is always maintained.
[0015]
Further, when a layered compound 5 in which lithium ions such as lithium cobalt oxide (LiCoO 2 ) and titanium disulfide (TiS 2 ) are inserted and desorbed between layers is used as an active material, the ion conduction path has anisotropy. Therefore, as shown in FIG. 4, if there is no lithium ion conductive inorganic solid electrolyte 6 that is a conduction path of the lithium ion 7 at the position where the lithium ion 7 is inserted / desorbed, the insertion of the lithium ion 7 into the active material or Desorption does not occur, and the utilization factor of the active material is low. On the other hand, according to the present invention, as shown in FIG. 3, the lithium ion conductive polymer coated with the layered active material 5 even when the lithium ion conductive inorganic solid electrolyte 6 is present at a position where insertion and removal are difficult. The eight layers serve as a conduction path for lithium ions 7, and insertion / extraction of lithium ions occurs.
[0016]
(Embodiment 2)
FIG. 2 is a schematic view of an electrode in which an electron conductive agent 4 is dispersed in one lithium ion conductive polymer layer of the first embodiment. Thereby, the electronic conductivity between the active materials or between the active material and the current collector is improved from that of the first embodiment.
[0017]
The electronic conductive agent is a metal powder such as nickel, iron, gold, silver or platinum, a metal-coated plastic powder such as a resin microbead or a glass microbead coated with these metals or a metal-coated glass powder, or acetylene black or kettle. Carbon materials such as chain black and graphite are preferably used.
[0018]
【Example】
Next, specific examples of the present invention will be described.
[0019]
Example 1
3.96 g of polyethylene oxide was dissolved in 50 ml of acetonitrile, and 2.13 g of lithium perchlorate was dissolved in the solution to obtain a lithium ion conductive polymer solution. Next, 4.5 g of the polymer solution was added to 3 g of lithium cobaltate (LiCoO 2 ) and mixed well, followed by drying at 60 ° C. in a vacuum. After drying, it was pulverized and sufficiently mixed with 2 g of Li 3 PO 4 —Li 2 S—SiS 2 glassy solid electrolyte powder to obtain a positive electrode mixture.
[0020]
On the other hand, 2 g of the polymer solution was added to 6 g of In powder, mixed well, and then dried at 60 ° C. in a vacuum. After drying, it was pulverized and sufficiently mixed with 1 g of Li 3 PO 4 —Li 2 S—SiS 2 glassy solid electrolyte powder to prepare a negative electrode mixture.
[0021]
Li 3 PO 4 —Li 2 S—SiS 2 glassy solid electrolyte powder was pressure-molded into pellets having a diameter of 16.8 mm, and then the solid electrolyte powder and positive electrode mixture were added to one of the pellets and preformed. Subsequently, the negative electrode mixture was added to the other surface facing the solid electrolyte layer to perform integral molding to constitute an all-solid lithium secondary battery pellet.
[0022]
The pellet was put in a coin size battery case of 2016 size (diameter 20 mm, thickness 1.6 mm) and sealed to obtain an all-solid lithium secondary battery A of the present invention.
[0023]
Further, except that a positive electrode active material not coated with a lithium ion conductive polymer is used for the positive electrode, the battery B is the same as the all solid lithium secondary battery A, and the negative electrode active not coated with the lithium ion conductive polymer is used for the negative electrode. A battery C was constructed in the same manner as the all solid lithium secondary battery A except that the substance was used.
[0024]
As a comparative example, the active material was weighed so as to have the same discharge electric capacity by the same method as in Example 1 except that a positive electrode active material and a negative electrode active material not coated with a lithium ion conductive polymer were used. An all-solid lithium secondary battery X was constructed.
[0025]
The obtained all solid lithium secondary batteries A to C and X were charged and discharged. Since the degree of polarization during operation differs depending on the presence or absence of coating with a lithium ion conductive polymer, charging / discharging was performed by a voltage controlled constant current method.
[0026]
FIG. 5 shows charge / discharge curves of all-solid lithium secondary batteries A and X.
As a result, all-solid lithium secondary batteries A to C using an active material coated with a lithium ion conductive polymer have higher active material utilization than X and can obtain a large amount of discharge electricity. It was. Furthermore, the all-solid lithium secondary battery A using an active material coated with a lithium ion conductive polymer for both the positive electrode and the negative electrode has the largest discharge capacity.
[0027]
FIG. 6 shows the cycle characteristics of all solid lithium secondary batteries A and X. As a result, in the case of the all solid lithium secondary battery X not covered with the lithium ion conductive polymer, a large capacity deterioration was observed in the initial stage, and after that, the capacity deterioration gradually occurred, but it was covered with the lithium ion conductive polymer. The all-solid lithium secondary battery A constituted by using the positive and negative electrode active materials showed only a slight capacity deterioration even when proceeding up to 500 cycles.
[0028]
Furthermore, the battery thickness and internal resistance of all the solid lithium secondary batteries A to C and X were measured. The results are shown in (Table 1).
[0029]
[Table 1]
Figure 0003736045
[0030]
According to Table 1, in the battery X using the conventional active material, the thickness of the battery increased by 0.11 mm immediately after assembly and after the completion of charging at the 500th cycle, whereas both the positive and negative electrodes were polymerized. In battery A using the active material coated with, there was almost no change of 0.02 mm. Also, the internal resistance increased by 60Ω in the conventional battery X, whereas the battery A changed little to 10Ω. In addition, in batteries B and C using an active material coated with a polymer on either positive or negative electrode, the increase in battery thickness immediately after assembly and after completion of charging in the 500th cycle is 0.04 to 0.05 mm, The increase in internal resistance was 25Ω, which was larger than that of battery A.
[0031]
According to this embodiment, it is possible to construct an all-solid lithium secondary battery in which cycle deterioration is extremely small, utilization rate is high, and battery dimensional change and internal resistance change by cycle are small.
[0032]
(Example 2)
An all-solid lithium secondary battery D was constructed in the same manner as the all-solid lithium secondary battery A of Example 1 except that 0.2 g of acetylene black was added at the stage of preparing the lithium ion conductive polymer solution. The obtained all solid lithium secondary battery D was charged and discharged under the same conditions as in Example 1.
[0033]
FIG. 5 shows a charge / discharge curve. When the acetylene black as an electronic conductive agent is added to the lithium ion conductive polymer, the polarization during operation is further reduced as compared with the all-solid lithium secondary battery A, and charging / discharging is performed by a constant current method of voltage control, Furthermore, the active material utilization rate was increased, and a large amount of discharge electricity could be obtained.
[0034]
In addition, although the cycle characteristics are shown in FIG. 6, the all-solid lithium secondary battery constructed using the active material coated with the lithium ion conductive polymer containing the electron conductive agent has no capacity deterioration even when it proceeds to 500 cycles. It was found that was not allowed.
[0035]
Moreover, the battery thickness and internal resistance of the all-solid lithium secondary battery D according to this example were measured, and the results are shown in (Table 1).
[0036]
From Table 1, the change in thickness of the battery was 0.01 mm and the difference in internal resistance was 8Ω, which was smaller than that of battery A immediately after assembly and after completion of charging at the 500th cycle.
[0037]
According to this embodiment, it is possible to construct an all-solid lithium secondary battery in which cycle deterioration is extremely small, utilization is high, and battery dimensional change, that is, change in internal resistance due to the cycle is small.
[0038]
In the examples of the present invention, only the case where X of the X-Li 2 S—SiS 2 solid electrolyte glass as the lithium ion conductive inorganic solid electrolyte is lithium phosphate (Li 3 PO 4 ) has been described. , X, or other lithium oxyacid salts such as lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), lithium carbonate (Li 2 CO 3 ), lithium borate (Li 3 BO 3 ), etc. It is obvious that the same effect can be obtained in some cases, and is not limited to the case where X is lithium phosphate. Further, the lithium ion conductive inorganic solid electrolyte is non-sulfur based mainly on these sulfides. In addition to crystalline ones, Li 3.6 Si 0.6 P 0.4 O 4 , Li 3.4 V 0.6 Si 0.4 O 4 and LiTi (PO 4 ) which are crystalline oxide type lithium ion conductive inorganic solid electrolytes 3 and including an oxide amorphous lithium ion conductive inorganic solid electrolyte LiX-Li 2 of S-Li 2 O-P 4 O 10-n S n (X = LiI, LiBr) can also be used as It is. However, in order to realize the high ionic conductivity and high electrochemical stability of the solid electrolyte, amorphous substances mainly composed of these sulfides are particularly preferable.
[0039]
In addition, although description has been given using indium as the negative electrode material of the all-solid-state lithium battery in the examples of the present invention, metals that are easily alloyed with lithium such as metallic lithium, aluminum, and tin, lithium alloys, and transition metal oxides Even if a transition metal sulfide is used, the same effect can be obtained, and the present invention is not limited to the examples in the present invention.
[0040]
Further, although lithium cobaltate was used as the positive electrode material of the all-solid-state lithium battery in the examples of the present invention, other transition metal oxides such as lithium nickelate and lithium manganate, titanium disulfide, and molybdenum disulfide Even when transition metal sulfides such as these are used, the same effect can be obtained, and the present invention is not limited to the examples in the present invention.
[0041]
Although using a solution of LiClO 4 in polyethylene oxide as a lithium-ion conductive polymer in the embodiment of the present invention, as the supporting salt may be used LiBF 4, LiCF 3 SO 3, LiPF 6 and the like. Further, the polymer can also be used with other polyalkylene oxide (— (CH 2 ) m —O—) n and olefin polymers such as polyacetylene, and is not limited to the examples in the present invention. Polyalkylene oxide having a relatively high ionic conductivity is particularly preferably used.
[0042]
【The invention's effect】
As described above, according to the present invention, by coating at least one of the positive electrode active material and the negative electrode active material with the lithium ion conductive polymer, the volume change of the active material can be absorbed and the ion conduction path can be stabilized at the same time. Effects can be obtained.
[0043]
Further, by dispersing the electron conducting agent in the polymer, the electron conduction path can be stabilized, and an all-solid lithium secondary battery with extremely low internal resistance can be constructed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrode according to an embodiment of the present invention. FIG. 2 is a schematic diagram of an electrode according to an embodiment of the present invention. FIG. 3 shows a lithium ion conduction path according to an embodiment of the present invention. Schematic diagram [FIG. 4] Schematic diagram showing a conventional lithium ion conduction path [FIG. 5] A diagram showing a charge / discharge curve of an all-solid lithium secondary battery [FIG. 6] A diagram showing a cycle characteristic curve of the all-solid lithium secondary battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion conductive polymer 2 Active material particle 3 Lithium ion conductive inorganic solid electrolyte 4 Electronic conductive agent 5 Layered active material 6 Lithium ion conductive inorganic solid electrolyte 7 Lithium ion 8 Lithium ion conductive polymer

Claims (3)

正極と負極がリチウムイオン導電性固体電解質を挟んで対峙してなる全固体リチウム電池において、正極あるいは負極の少なくともいずれか一方の電極材料が、リチウムイオン導電性ポリマーで被覆した活物質と、リチウムイオン導電性無機固体電解質粉末から成る全固体リチウム電池。In an all solid lithium battery in which a positive electrode and a negative electrode are opposed to each other with a lithium ion conductive solid electrolyte interposed therebetween, at least one of the positive electrode and the negative electrode material is an active material coated with a lithium ion conductive polymer, lithium ion An all-solid lithium battery comprising a conductive inorganic solid electrolyte powder. 前記リチウムイオン導電性ポリマー中に電子電導剤を分散させたことを特徴とする請求項1記載の全固体リチウム電池。2. The all-solid-state lithium battery according to claim 1, wherein an electronic conductive agent is dispersed in the lithium ion conductive polymer. 前記電子電導剤がケッチェンブラック、アセチレンブラック、黒鉛、金属粉末、金属被覆プラスティック粉末あるいは金属被覆ガラス粉末からなる群の少なくとも一つであることを特徴とする請求項1あるいは2のいずれかに記載の全固体リチウム電池。3. The electronic conductive agent according to claim 1, wherein the electron conductive agent is at least one of a group consisting of ketjen black, acetylene black, graphite, metal powder, metal-coated plastic powder, and metal-coated glass powder. All solid lithium battery.
JP16224997A 1997-06-19 1997-06-19 All solid lithium battery Expired - Fee Related JP3736045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16224997A JP3736045B2 (en) 1997-06-19 1997-06-19 All solid lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16224997A JP3736045B2 (en) 1997-06-19 1997-06-19 All solid lithium battery

Publications (2)

Publication Number Publication Date
JPH117942A JPH117942A (en) 1999-01-12
JP3736045B2 true JP3736045B2 (en) 2006-01-18

Family

ID=15750841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16224997A Expired - Fee Related JP3736045B2 (en) 1997-06-19 1997-06-19 All solid lithium battery

Country Status (1)

Country Link
JP (1) JP3736045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020486A1 (en) * 2013-08-08 2015-02-12 세종대학교산학협력단 Cathode material for lithium secondary battery, and lithium secondary battery containing same
CN113767499A (en) * 2019-05-03 2021-12-07 株式会社Lg新能源 Solid electrolyte membrane and solid-state battery including the same

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051305A (en) * 2001-08-06 2003-02-21 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, its manufacturing method and nonaqueous electrolyte battery using the same
JP3896058B2 (en) * 2001-09-05 2007-03-22 三星エスディアイ株式会社 Battery active material and method for producing the same
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP2003208897A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Lithium battery and manufacturing method thereof
KR100445434B1 (en) * 2002-07-10 2004-08-21 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using same
JP3690684B2 (en) 2003-04-18 2005-08-31 松下電器産業株式会社 Solid electrolyte and all-solid battery including the same
RU2321924C1 (en) * 2004-08-17 2008-04-10 Эл Джи Кем, Лтд. Secondary lithium battery characterized in improved safety and performance characteristics
JP4867161B2 (en) * 2004-11-26 2012-02-01 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US7993782B2 (en) 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP2008016192A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
US20100047691A1 (en) * 2006-10-25 2010-02-25 Sumitomo Chemical Company, Limited Lithium secondary battery
KR100814881B1 (en) * 2006-11-24 2008-03-18 삼성에스디아이 주식회사 Active material for battery, and electrode and battery comprising same
JP5187658B2 (en) * 2007-03-07 2013-04-24 公立大学法人大阪府立大学 All-solid lithium secondary battery
JP4612664B2 (en) * 2007-09-25 2011-01-12 セイコーエプソン株式会社 All-solid secondary battery, method for producing all-solid secondary battery
JP5344418B2 (en) * 2008-01-10 2013-11-20 出光興産株式会社 All-solid lithium secondary battery and method for producing the same
JP5149920B2 (en) 2010-02-05 2013-02-20 トヨタ自動車株式会社 Method for producing electrode for lithium secondary battery
JP5516755B2 (en) * 2010-12-10 2014-06-11 トヨタ自動車株式会社 Electrode body and all-solid battery
CN103339767B (en) * 2011-02-02 2016-01-06 丰田自动车株式会社 The manufacture method of active material, active material and battery
US9786947B2 (en) 2011-02-07 2017-10-10 Sila Nanotechnologies Inc. Stabilization of Li-ion battery anodes
JP5986561B2 (en) 2011-03-28 2016-09-06 三井造船株式会社 Secondary battery electrode material, method for producing secondary battery electrode material, and secondary battery
JP5557793B2 (en) 2011-04-27 2014-07-23 株式会社日立製作所 Nonaqueous electrolyte secondary battery
JP2014160540A (en) * 2011-06-16 2014-09-04 Panasonic Corp Lithium ion secondary battery anode and manufacturing method therefor, and lithium ion secondary battery using the same
JPWO2013121642A1 (en) * 2012-02-17 2015-05-11 ソニー株式会社 Secondary battery, secondary battery manufacturing method, secondary battery electrode and electronic device
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
KR101939270B1 (en) * 2012-12-27 2019-01-16 삼성전자주식회사 Electro active material for secondary battery, conductive composition for secondary battery, cathode material, cathode structure and secondary battery comprising the same, and fabricating methods thereof
JP6068237B2 (en) * 2013-04-02 2017-01-25 本田技研工業株式会社 Electrolyte-negative electrode structure and lithium ion secondary battery comprising the same
WO2015132845A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 All-solid-state battery
US11283066B2 (en) 2014-03-12 2022-03-22 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP6314563B2 (en) * 2014-03-17 2018-04-25 トヨタ自動車株式会社 Positive electrode mixture layer
KR101668367B1 (en) * 2014-12-29 2016-10-31 서울대학교산학협력단 All solid ion battery
CN106058165B (en) * 2015-04-02 2021-11-09 松下知识产权经营株式会社 Battery and electrode material for battery
KR101994878B1 (en) * 2015-07-30 2019-07-01 주식회사 엘지화학 Positive electrode for solid lithium ion secondary battery, and solid lithium ion secondary battery comprising the same
JP2018185883A (en) * 2015-08-26 2018-11-22 株式会社日立製作所 All-solid lithium secondary battery and secondary battery system including the same
EP3352278A4 (en) * 2015-09-16 2019-02-13 Zeon Corporation All-solid secondary battery
JP6607959B2 (en) 2015-12-16 2019-11-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6748348B2 (en) * 2016-06-23 2020-09-02 富士通株式会社 All solid state battery
US10411264B2 (en) * 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing
WO2018164455A1 (en) * 2017-03-06 2018-09-13 주식회사 엘지화학 Method for manufacturing electrode comprising polymer electrolyte and electrode manufactured thereby
EP3467908B1 (en) 2017-03-16 2024-03-06 LG Energy Solution, Ltd. Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
EP3690995A4 (en) * 2017-09-29 2021-06-23 Zeon Corporation All-solid secondary battery electrode composite particles, method of manufacturing same, all-solid secondary battery electrode, and all-solid secondary battery
KR102259971B1 (en) 2017-10-20 2021-06-02 주식회사 엘지에너지솔루션 An anode for all-solid type batteries including solid electrolyte
JP7273263B2 (en) * 2018-02-07 2023-05-15 住友金属鉱山株式会社 Coated positive electrode active material for lithium ion secondary battery, method for producing the same, and evaluation method for the coated positive electrode active material
JP7273264B2 (en) * 2018-02-07 2023-05-15 住友金属鉱山株式会社 Coated positive electrode active material for lithium ion secondary battery, method for producing the same, and evaluation method for the coated positive electrode active material
JP7273262B2 (en) * 2018-02-07 2023-05-15 住友金属鉱山株式会社 Coated positive electrode active material for lithium ion secondary battery, method for producing the same, and evaluation method for the coated positive electrode active material
JP7240932B2 (en) * 2018-03-30 2023-03-16 三井金属鉱業株式会社 All-solid battery negative electrode and all-solid lithium secondary battery
JP7135107B2 (en) * 2018-05-25 2022-09-12 エルジー エナジー ソリューション リミテッド Composite particles for negative electrode active material and negative electrode for all-solid battery containing the same
JP7237296B2 (en) * 2018-07-03 2023-03-13 川上 総一郎 storage device
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
JP7165747B2 (en) * 2018-10-15 2022-11-04 富士フイルム株式会社 Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery
TWI676316B (en) * 2018-11-06 2019-11-01 輝能科技股份有限公司 Composite electrode materials with improved structure
JP7453765B2 (en) * 2019-09-18 2024-03-21 日産自動車株式会社 All solid state battery
US11637291B2 (en) 2020-11-04 2023-04-25 Global Graphene Group, Inc. Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method
CN115132984B (en) * 2022-06-09 2023-04-11 广东马车动力科技有限公司 Composite cathode material and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020486A1 (en) * 2013-08-08 2015-02-12 세종대학교산학협력단 Cathode material for lithium secondary battery, and lithium secondary battery containing same
KR101514605B1 (en) * 2013-08-08 2015-04-24 세종대학교산학협력단 Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
US9444095B1 (en) 2013-08-08 2016-09-13 Industry-Academia Cooperation Group Of Sejong Univ Method of making cathode active material, cathode and lithium secondary battery
US10050261B2 (en) 2013-08-08 2018-08-14 Industry-Academia Cooperation Group Of Sejong University Cathode material for lithium secondary battery, and lithium secondary battery containing same
CN113767499A (en) * 2019-05-03 2021-12-07 株式会社Lg新能源 Solid electrolyte membrane and solid-state battery including the same

Also Published As

Publication number Publication date
JPH117942A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP3736045B2 (en) All solid lithium battery
JP5882516B2 (en) Lithium secondary battery
CN101630729B (en) Composite electrode materials for high power lithium secondary battery and preparation method thereof
US20040043295A1 (en) Rechargeable composite polymer battery
KR20190113605A (en) Hybrid solid electrolyte membrane for all solid state secondary battery and all solid state secondary battery comprising the same
CN110379984A (en) Partition for lithium metal base battery group
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2002373643A (en) Lithium secondary battery
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
JPH11283664A (en) Solid-electrolyte battery
US8431265B2 (en) Electric cell
JP2000285929A (en) Solid electrolyte battery
JP2005340165A (en) Positive electrode material for lithium secondary cell
CN101630728A (en) High energy density lithium secondary battery electrode and preparation method thereof
Park et al. Variables study for the fast charging lithium ion batteries
JP3917754B2 (en) Lithium battery
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN113451586A (en) Electrode plate of secondary battery, secondary battery and preparation method of secondary battery
KR102654674B1 (en) Negative electrode for lithium secondary battery and all-solid-state-lithium secondary battery comprising the same
JP2001283913A (en) Lithium battery
JP2003123767A (en) Collector, electrode, and battery
JP3446205B2 (en) Rechargeable battery
JPH11111266A (en) High polymer electrolyte secondary battery
JP4845245B2 (en) Lithium battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees