JP2003208897A - Lithium battery and manufacturing method thereof - Google Patents

Lithium battery and manufacturing method thereof

Info

Publication number
JP2003208897A
JP2003208897A JP2002006895A JP2002006895A JP2003208897A JP 2003208897 A JP2003208897 A JP 2003208897A JP 2002006895 A JP2002006895 A JP 2002006895A JP 2002006895 A JP2002006895 A JP 2002006895A JP 2003208897 A JP2003208897 A JP 2003208897A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
solid electrolyte
sulfur
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002006895A
Other languages
Japanese (ja)
Other versions
JP2003208897A5 (en
Inventor
Tomo Inatomi
友 稲富
Masaki Hasegawa
正樹 長谷川
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002006895A priority Critical patent/JP2003208897A/en
Publication of JP2003208897A publication Critical patent/JP2003208897A/en
Publication of JP2003208897A5 publication Critical patent/JP2003208897A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is hard to take a large current and that the charge and discharge cycle characteristic is low because single sulfur is an insulating material and hinders electron conductivity and ion conductivity and the problem that it is hard to mix with the conductive agent such as a carbon because the single sulfur is hard to be dissolved in the solvent except carbon bisulfide (CS<SB>2</SB>). <P>SOLUTION: Sulfur is heated for melting, and mixed with the solid electrolyte and the conductive agent to form a positive electrode having high electron conductivity and high ion conductivity. This positive electrode is used for a lithium battery, and the battery is formed of the positive electrode, a negative electrode and the electrolyte chemically stabilized in relation to the positive electrode and the negative electrode and for moving the ion between these electrodes. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極、負極、非水
電解質からなるリチウム電池に関するものである。
TECHNICAL FIELD The present invention relates to a lithium battery including a positive electrode, a negative electrode and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、移動体通信機器、携帯電子機器の
開発にともない、その電源の需要は非常に大きくなって
いる。リチウム二次電池は起電力が高く、高いエネルギ
ー密度が得られるため、携帯電子機器の電源として広範
囲に用いられている。しかし、携帯電子機器の小型軽量
化に伴い、電池の高エネルギー密度化に対する要望もま
すます高まってきており、さらに高いエネルギー密度を
有する新規電極材料の出現が望まれている。一方で、機
器の駆動電圧の低下も進んでおり、2〜2.5Vの電圧
でも電池として使用可能な状況も生まれつつある。この
ような背景のもと、様々な取り組みが行われている。特
に、正極、負極活物質の高エネルギー密度化は、電池自
体の高エネルギー密度化に直接的に結びつくために、正
極、負極のそれぞれにおいて材料開発の取り組みが積極
的に行われている。
2. Description of the Related Art In recent years, with the development of mobile communication equipments and portable electronic equipments, the demand for their power sources has become very large. Lithium secondary batteries have high electromotive force and high energy density, and are therefore widely used as power sources for portable electronic devices. However, with the reduction in size and weight of portable electronic devices, the demand for higher energy density of batteries is also increasing, and the advent of new electrode materials having higher energy density is desired. On the other hand, the drive voltage of the equipment is also decreasing, and a situation where a voltage of 2 to 2.5 V can be used as a battery is also emerging. Against this background, various efforts are being made. In particular, since increasing the energy density of the positive electrode and the negative electrode active material directly leads to increasing the energy density of the battery itself, efforts for material development are being actively carried out for each of the positive electrode and the negative electrode.

【0003】その中で、高容量、低コストである単体硫
黄を正極材料に用いたリチウム電池の研究が多く行われ
ている。これまでの主な硫黄系電池に関する研究を以下
に示す。米国特許第5,523,179号公報では、単
体硫黄を正極に使用したものが提案されている。つま
り、この電池は、金属リチウム負極を用いて作動電圧が
2Vであり、100〜800Wh/kgの高エネルギー
密度が期待できるといわれているが、高温、溶融状態下
でしか充放電できないため、実用化に至っていない。米
国特許第4,833,048号公報ならびに米国特許第
5,516,598号公報では、Dejongheらは、有機硫
黄化合物を用いた二次電池を発明した。この硫黄化合物
は、最も簡単には、M+-S−R−S-−M+と表される
(Rは脂肪族あるいは芳香族の有機基、Sは硫黄、M+
はプロトンあるいは金属カチオン)。この化合物は電解
酸化によりS−S結合を介して互いに結合し、 M+-S−R−S−S−R−S−S−R−S-−M+ のような形でポリマー化する。こうして生成したポリマ
ーは電解還元により元のモノマーに戻る。この反応を充
放電反応に用い、二次電池としている。エー・スコタイ
ム(A.Skotheim)らとモルテック(Moltech)社は一般
式(C2 x n(2≦x≦100、n≧2)で示され
るポリカーボンスルフィド(poly-carbonsulfides)を
用いた二次電池を発明した(米国特許第5,441,8
31号公報、米国特許第5,529,860号公報)。
このポリカーボンスルフィドはカーボンを骨格とし、硫
黄原子を側鎖とする構造を持つ。その硫黄原子のS-S結
合・解離反応を利用して二次電池としたものである。
Among them, much research has been carried out on lithium batteries using high capacity and low cost elemental sulfur as a positive electrode material. The followings are the researches on the major sulfur batteries so far. U.S. Pat. No. 5,523,179 proposes using elemental sulfur for the positive electrode. That is, it is said that this battery has an operating voltage of 2 V and a high energy density of 100 to 800 Wh / kg can be expected using a metallic lithium negative electrode, but since it can be charged and discharged only at high temperature and in a molten state, it is practically used. It has not been realized. In US Pat. No. 4,833,048 and US Pat. No. 5,516,598, Dejonghe et al. Invented a secondary battery using an organic sulfur compound. This sulfur compound is most simply expressed as M + S−R−S −M + (R is an aliphatic or aromatic organic group, S is sulfur, M +
Is a proton or a metal cation). This compound bound to each other via an S-S bond by the electrolytic oxidation, M + - - S-R -S-S-R-S-S-R-S - polymers in the form such as -M + . The polymer thus produced returns to the original monomer by electrolytic reduction. This reaction is used for a charge / discharge reaction to obtain a secondary battery. A. Skotheim et al. And Moltech used poly-carbon sulfides represented by the general formula (C 2 S x ) n (2 ≦ x ≦ 100, n ≧ 2). Invented a secondary battery (US Pat. No. 5,441,8)
31 and U.S. Pat. No. 5,529,860).
This polycarbon sulfide has a structure in which carbon is a skeleton and sulfur atoms are side chains. A secondary battery was made by utilizing the SS bond / dissociation reaction of the sulfur atom.

【0004】一方で、負極の高容量材料としては、リチ
ウム含有複合窒化物が期待されている。リチウムの窒化
物としては、固体電解質である窒化リチウム(Li
3N)がよく研究されてきた。この窒化リチウムは、イ
オン伝導性はあるが電子伝導性がないため、活物質では
なく電解質として考えられてきた。ところが、最近、L
3Nに他の金属成分を添加して電子伝導牲を付与し
た、いわゆるリチウム含有複合窒化物が電極活物質とし
て働くことがわかってきた。このリチウム含有複合窒化
物に関する研究は以下の通りである。リチウム含有複合
窒化物はV.W.Sachsze,et a1., Z. Anorg. Chem.(1949)
p278 やT.Asai,et al., Mat. Res. Bull. vol..16 (19
84) p1377に報告されている。Li3NにFeを添加した
Li3FeN2(M,Nishijima,et al., J. Solid State Ch
em..vol.113,(1994)p205、Li3NにMnを添加したL
7MnN4(M. Nishijima, et al., J. Electrochem. So
c. Vol. 141.(1994)p2966.、Li3NにCoを添加したL
3-xCoxN(M.Nishijima, et al.,Solid State Ionic
s vol.83(1996)p107 同じくT. Shoudai, et al., Soli
d State Ionics vol.86〜88、p785(1996))などがある。
また、この種の材料を電極材料とした特許出願として
は、特開平7−78609号公報、特開平7−3207
20号公報、特開平9−22697号公報などが知られ
ている。
On the other hand, as a high capacity material for the negative electrode, lithium is used.
Um-containing composite nitrides are expected. Nitriding of lithium
As the material, lithium nitride (Li
3N) has been well studied. This lithium nitride is
Since it has on-conductivity but no electron conductivity,
Instead, it has been considered as an electrolyte. However, recently L
i 3Addition of other metal components to N to impart electronic conductivity
In addition, so-called lithium-containing composite nitride is used as the electrode active material.
I understand that it works. This lithium-containing composite nitride
The researches on the objects are as follows. Lithium-containing composite
Nitride is V.W.Sachsze, et a1., Z. Anorg. Chem. (1949)
p278 and T. Asai, et al., Mat. Res. Bull. vol. 16 (19
84) Reported in p1377. Li3Fe was added to N
Li3FeN2(M, Nishijima, et al., J. Solid State Ch
em..vol.113, (1994) p205, Li3L in which Mn is added to N
i7MnNFour(M. Nishijima, et al., J. Electrochem. So
c. Vol. 141. (1994) p2966., Li3L with Co added to N
i3-xCoxN (M.Nishijima, et al., Solid State Ionic
s vol.83 (1996) p107 Same as T. Shoudai, et al., Soli
d State Ionics vol.86-88, p785 (1996)).
Also, as a patent application using this kind of material as an electrode material
Are disclosed in JP-A-7-78609 and JP-A-7-3207.
No. 20, JP-A-9-22697, etc. are known.
ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記硫
黄系電池は以下に述べる課題を有していた。すなわち、
単体硫黄は絶縁物であるため、電子伝導性、イオン伝導
性が悪く、酸化還元反応は室温では遅く、大電流を取り
出すことが困難である。また、単体硫黄そのままでは充
放電サイクル特性が悪いという課題がある。また、単体
硫黄は二硫化炭素(CS2 )以外の溶媒に溶けにくく分
散溶媒が少ないため、カーボンなどの導電剤との混合が
難しい。また、低沸点、低引火点の二硫化炭素(C
2 )を溶媒として使用する必要がある。さらに、前記
記載の一般式(C2 x n で示されるポリカーボンス
ルフィドは合成が複雑である。またコストも高い。さら
に、有機イオウ化合物は、主にジスルフィドであり、高
容量が実現できない。さらに、前記記載のどの硫黄系電
池も、負極にはリチウム金属を用いていることから、そ
の電池の商品化は困難であった。
However, the above sulfur-based battery has the following problems. That is,
Since elemental sulfur is an insulator, it has poor electron conductivity and ionic conductivity, and the redox reaction is slow at room temperature, making it difficult to extract a large current. Further, there is a problem that the charge / discharge cycle characteristics are poor when the elemental sulfur is used as it is. Further, elemental sulfur is difficult to dissolve in a solvent other than carbon disulfide (CS 2 ), and the amount of dispersed solvent is small, so that it is difficult to mix it with a conductive agent such as carbon. Also, carbon dioxide having a low boiling point and a low flash point (C
It is necessary to use S 2 ) as solvent. Further, the polycarbon sulfide represented by the general formula (C 2 S x ) n described above is complicated to synthesize. The cost is also high. Furthermore, organic sulfur compounds are mainly disulfides, and high capacity cannot be realized. Further, in any of the above-mentioned sulfur-based batteries, lithium metal is used for the negative electrode, so that commercialization of the battery was difficult.

【0006】上記リチウム含有複合窒化物は以下の問題
を有していた。すなわち、リチウム含有複合窒化物で
は、黒鉛材料や合金、金属酸化物とは違って、リチウム
脱離から始まる電池となる。そのため、LiCoO2
の正極と組み合わせる場合には、事前のリチウム脱離処
理等の前処理が必要となる。
The lithium-containing composite nitride has the following problems. That is, the lithium-containing composite nitride, unlike graphite materials, alloys, and metal oxides, is a battery starting from lithium desorption. Therefore, when combined with a positive electrode such as LiCoO 2 , pretreatment such as lithium desorption treatment is required in advance.

【0007】本発明は、上記のような従来技術における
問題点を解決し、高容量の二次電池を提供することを目
的とする。
An object of the present invention is to solve the above problems in the prior art and provide a high capacity secondary battery.

【0008】[0008]

【課題を解決するための手段】上記、従来の課題を解決
する本発明は、一般式(LixS)n(0<x≦1.5、
nは1以上の整数)で表される化合物を有する正極と、
一般式Li3-yyN(0.2≦y≦0.8、MはTi、
V、Cr、Mn、Fe、Co、Ni、およびCuより選
ばれた少なくとも1種の元素)で表される化合物または
SnとSiとの固溶体またはSnあるいはSiの金属間化合物ま
たはSnあるいはSiの酸化物の少なくとも1種を含む負極
と、電解液と、を有するリチウム電池とした。さらに、
正極混合重量を100重量%とした場合、一般式(Li
xS)n(0<x≦1.5、nは1以上の整数)で表され
る化合物が60〜98重量%、固体電解質が20〜1重量%、
および導電体が20〜1重量%を有し、前記(LixS)n
で表される化合物の粒子表面上に固体電解質、正極内の
電子伝導性を司る導電体を有するリチウム電池とした。
さらに、前記固体電解質は、Li2S-SiS(2+a)(aはLi3P
O4、LiI、Li4SiO4から選ばれた少なくとも1つ)、Li2S-
P2O5、Li2S-B2S5、Li2S-P2S5-GeS2から選ばれた少なく
とも1つを有するリチウム電池とした。さらに、正極内
の電子伝導性を司る導電体は導電性を有する炭素材料、
ポリアニリン、ポリピロール、ポリチオフェン、ポリア
セチレンから選ばれた少なくとも1種を有するリチウム
電池とした。さらに、一般式(LixS)n(0<x≦
1.5、nは1以上の整数)で表される化合物の平均粒
形が、5〜100μmの粒形を有するリチウム電池とした。
According to the present invention for solving the above-mentioned conventional problems, the general formula (Li x S) n (0 <x ≦ 1.5,
n is an integer of 1 or more), and a positive electrode having a compound represented by the following:
General formula Li 3-y M y N (0.2 ≦ y ≦ 0.8, M is Ti,
A compound represented by at least one element selected from V, Cr, Mn, Fe, Co, Ni, and Cu) or
A lithium battery having a negative electrode containing a solid solution of Sn and Si, an intermetallic compound of Sn or Si, or an oxide of Sn or Si, and an electrolytic solution was prepared. further,
When the positive electrode mixture weight is 100% by weight, the general formula (Li
x S) n (0 <x ≦ 1.5, n is an integer of 1 or more) is 60 to 98% by weight, the solid electrolyte is 20 to 1% by weight,
And the electric conductor has 20 to 1% by weight, and the (Li x S) n
A lithium battery having a solid electrolyte on the particle surface of the compound represented by and a conductor controlling the electron conductivity in the positive electrode was obtained.
Further, the solid electrolyte is Li 2 S-SiS (2 + a) (a is Li 3 P
At least one selected from O 4 , LiI, and Li 4 SiO 4 ), Li 2 S-
A lithium battery having at least one selected from P 2 O 5 , Li 2 SB 2 S 5 , and Li 2 SP 2 S 5 -GeS 2 was used. Furthermore, the conductor that controls the electron conductivity in the positive electrode is a carbon material having conductivity,
A lithium battery containing at least one selected from polyaniline, polypyrrole, polythiophene, and polyacetylene was prepared. Furthermore, the general formula (Li x S) n (0 <x ≦
The average particle shape of the compound represented by 1.5 and n is an integer of 1 or more) is a lithium battery having a particle shape of 5 to 100 μm.

【0009】また、一般式(LixS)n(0<x≦1.
5、nは1以上の整数)で表される化合物を有する正極
は、加熱プロセスと、溶解プロセスと、固体電解質、正
極内の電子伝導性を司る導電体とともに混合するプロセ
スとを有するリチウム電池の製法。
Further, the general formula (Li x S) n (0 <x ≦ 1.
5, n is an integer of 1 or more), a positive electrode having a compound represented by a heating process, a dissolution process, a solid electrolyte, a process of mixing with a conductor that controls the electronic conductivity in the positive electrode Manufacturing method.

【0010】[0010]

【発明の実施の形態】本発明は、分子レベルで単体硫黄
に導電剤、固体電解質を混合させることにより、高電気
化学活性を有するリチウム電池用正極を作製した。さら
に、前記正極と、リチウム含有複合窒化物を有する負極
を用いることによって、高容量の二次電池を実現した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention produced a positive electrode for a lithium battery having high electrochemical activity by mixing elemental sulfur with a conductive agent and a solid electrolyte at the molecular level. Furthermore, a high-capacity secondary battery was realized by using the positive electrode and the negative electrode having the lithium-containing composite nitride.

【0011】すなわち本発明では、単体硫黄粒子表面上
にカーボンなどの導電剤を付加し電子伝導性を向上さ
せ、さらに、単体硫黄粒子表面上に固体電解質を付加す
ることでイオン伝導性を向上させ、高電気化学活性の単
体硫黄を得て、これを正極活物質として用いることによ
り、高容量の二次電池を得たのである。
That is, in the present invention, a conductive agent such as carbon is added to the surface of the simple substance sulfur particles to improve the electron conductivity, and further, a solid electrolyte is added to the surface of the simple substance sulfur particles to improve the ionic conductivity. By obtaining elemental sulfur having high electrochemical activity and using it as a positive electrode active material, a high capacity secondary battery was obtained.

【0012】単体硫黄と導電剤、固体電解質との高分散
混合は、単体硫黄を高温で加熱融解させ、そこに導電
剤、固体電解質を混合させることで実現させた。また、
上記単体硫黄と導電剤、固体電解質との反応は簡単であ
る。
The highly dispersed mixing of the elemental sulfur with the conductive agent and the solid electrolyte was realized by heating and melting the elemental sulfur at high temperature and mixing the conductive agent and the solid electrolyte therein. Also,
The reaction of the elemental sulfur with the conductive agent and the solid electrolyte is simple.

【0013】つまり本発明は、加熱溶解させた一般式
(LixS)n(0<x≦1.5、nは1以上の整数)で表さ
れる化合物に、前記一般式(LixS)nで表される化合
物が正極混合重量を100重量%とすると、60〜98%、固
体電解質が20〜1%、および導電体が20〜1%の重量比
で混合し、前記一般式(LixS)nで表される化合物の
粒子表面上、に導電剤、固体電解質が存在し、その導電
剤と固体電解質は均一に分布した形状をもつ活物質をリ
チウム電池用正極に用いるものである。正極は、前記一
般式(LixS)n(0<x≦1.5、n≧1)で表される化
合物と、固体電解質、正極内の電子伝導性を司る導電体
とともに構成されるが、上記導電体としては、例えば、
黒鉛、カーボンのような導電性炭素材料、導電性ポリマ
ーなどが好ましく、また、上記導電性ポリマーとして
は、例えば、ポリアセン、ポリアセチリン、ポリアニリ
ン、ポリピロール、ポリチオフィンなどの共役構造を有
するポリマーやそれらのメチル、ブチルなどの側鎖を有
する誘導体などが好ましい。また上記固体電解質として
は、Li2S-SiS(2+a)(aはLi3PO4、LiI、Li4SiO4から選ば
れた少なくとも1つ)、Li2S-P2O5、Li2S-B2S5、Li2S-P2
S5-GeS2、以外にもナトリウム/アルミナ(Al2O3)、無定
形、低相転移温度(Tg)のポリエーテル、無定形フッ化ビ
ニリデンコポリマー、異種ポリマーのブレンド体、ポリ
エチレンオキサイド、ポリアクリロニトリル、エチレン
とアクリロニトリルとのコポリマーまたは架橋されたポ
リマーにエチレンカーボネート、プロピレンカーボネー
トなどの低分子量非水溶媒を加え、それに電解質塩を添
加したイオン伝導性ゲルポリマー電解質などが好適に用
いられる。そして、正極活物質内にバインダーとして例
えば、ポリフッ化ビニリデン、無定形ポリエーテル、ポ
リアクリルアミドなどを加えることも好ましい。前記の
電解質塩としては、リチウム、ナトリウム、カリウムな
どのアルカリ金属やマグネシウムなどのアルカリ土類金
属のハロゲン塩、過塩素酸塩およびトリフロロメタンス
ルホン酸塩を代表とする含フッ素化合物の塩よりなる群
から選ばれる少なくとも1種が好ましく、そのような電
解質塩の具体例としては、例えば、フッ化リチウム、塩
化リチウム、過塩素酸リチウム、トリフロロメタンスル
ホン酸リチウム、四ホウフッ化リチウム、ビストリフロ
ロメチルスルホニルイミドリチウム、チオシアン酸リチ
ウム、過塩素酸マグネシウム、トリフロロメタンスルホ
ン酸マグネシウム、四ホウフッ化ナトリウムなどが挙げ
られる。
That is, in the present invention, the compound represented by the general formula (Li x S) n (0 <x ≦ 1.5, n is an integer of 1 or more) dissolved in the above-mentioned general formula (Li x S) n is used. When in the compounds represented is 100 wt% of the positive electrode mixture by weight, 60 to 98%, the solid electrolyte is 20 to 1%, and the conductor are mixed in a weight ratio of 20 to 1%, the formula (Li x The conductive agent and the solid electrolyte are present on the surface of the particles of the compound represented by S) n , and the conductive material and the solid electrolyte are used for the positive electrode for a lithium battery using an active material having a uniformly distributed shape. The positive electrode is composed of a compound represented by the general formula (Li x S) n (0 <x ≦ 1.5, n ≧ 1), a solid electrolyte, and a conductor that controls electronic conductivity in the positive electrode. As the conductor, for example,
Graphite, a conductive carbon material such as carbon, a conductive polymer or the like is preferable, and as the conductive polymer, for example, polyacene, polyacetylene, polyaniline, polypyrrole, a polymer or a polymer thereof having a conjugated structure such as polythiophene, A derivative having a side chain such as butyl is preferable. Further, as the solid electrolyte, Li 2 S-SiS (2 + a) (a is at least one selected from Li 3 PO 4 , LiI, Li 4 SiO 4 ), Li 2 SP 2 O 5 , Li 2 SB 2 S 5 , Li 2 SP 2
In addition to S 5 -GeS 2 , sodium / alumina (Al 2 O 3 ), amorphous, low phase transition temperature (Tg) polyether, amorphous vinylidene fluoride copolymer, blend of different polymers, polyethylene oxide, poly An ion conductive gel polymer electrolyte in which a low molecular weight non-aqueous solvent such as ethylene carbonate or propylene carbonate is added to acrylonitrile, a copolymer of ethylene and acrylonitrile, or a crosslinked polymer, and an electrolyte salt is added thereto is preferably used. Then, it is also preferable to add, for example, polyvinylidene fluoride, amorphous polyether, or polyacrylamide as a binder into the positive electrode active material. The electrolyte salt comprises a halogen salt of an alkali metal such as lithium, sodium or potassium or an alkaline earth metal such as magnesium, or a salt of a fluorine-containing compound represented by perchlorate or trifluoromethanesulfonate. At least one selected from the group is preferable, and specific examples of such an electrolyte salt include, for example, lithium fluoride, lithium chloride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluorofluoride, and bistrifluoromethyl. Examples thereof include lithium sulfonylimide, lithium thiocyanate, magnesium perchlorate, magnesium trifluoromethanesulfonate, and sodium tetrafluoroborate.

【0014】負極は、リチウムの窒素化合物以外にも、
リチウムなどのアルカリ金属挿入炭素、スズ(Sn)お
よび炭素または他の金属との複合物、ポリアセン、ポリ
アセチレン、ポリアニリン、ポリチオフェン、ポリピロ
ールのような共役構造を有するポリマーやそれらのメチ
ル、ブチル、ベンジルなどの側鎖の有する誘導体などか
らなる導電性ポリマーなどが挙げられる。
In addition to the nitrogen compound of lithium, the negative electrode is
Alkali metal-inserted carbons such as lithium, tin (Sn) and composites with carbon or other metals, polymers having conjugated structures such as polyacene, polyacetylene, polyaniline, polythiophene, polypyrrole and their methyl, butyl, benzyl, etc. Examples thereof include conductive polymers made of derivatives having a side chain.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。本実施例
では、まず正極の作製方法を説明し、次に作製した正
極、負極、電解液からなるリチウム電池に関する説明を
する。
EXAMPLES Examples of the present invention will be described below. In this example, first, a method for manufacturing a positive electrode is described, and then, a lithium battery including a manufactured positive electrode, a negative electrode, and an electrolytic solution is described.

【0016】(実施例1)硫黄正極の合成は下記のよう
にした。
Example 1 A sulfur positive electrode was synthesized as follows.

【0017】所定量の単体硫黄(S)(分子量;32 関
東化学製)に、所定量の導電剤として導電性炭素(デン
カブラック 電気化学工業製)、固体電解質としてLi2S
-SiS 2-Li3PO4を加え十分混合し正極粉末を得た。単体硫
黄、導電剤、固体電解質の混合比を表1に示す。
A predetermined amount of elemental sulfur (S) (molecular weight;
Tohka Chemical Co., Ltd., conductive carbon (den
Kablack Denki Kagaku Kogyo), Li as solid electrolyte2S
-SiS 2-Li3POFourWas added and mixed well to obtain a positive electrode powder. Single sulfur
Table 1 shows the mixing ratio of yellow, the conductive agent, and the solid electrolyte.

【0018】[0018]

【表1】 [Table 1]

【0019】つづいて上記で調製した正極粉末を用い、
正極極板を以下の方法で作製した。正極粉末と結着剤と
してポリフッ化ビニリデン(KFポリマー9130 呉羽化学
工業製)を重量比10:1の割合で混合した。十分に混合
した後、この合剤をアルミ箔集電体上にキャストし90
℃、1時間真空乾燥を行った。乾燥後、これを直径13.5m
mの円盤上に打ち抜いて正極極板とした。この際、極板
の重量は13mg以下となるように厚みを調節した。
Next, using the positive electrode powder prepared above,
A positive electrode plate was produced by the following method. The positive electrode powder was mixed with polyvinylidene fluoride (KF polymer 9130, manufactured by Kureha Chemical Industry Co., Ltd.) as a binder at a weight ratio of 10: 1. After mixing well, cast this mixture on an aluminum foil current collector.
Vacuum drying was performed at ℃ for 1 hour. After drying, this is 13.5m in diameter
It was punched out on a disk of m to obtain a positive electrode plate. At this time, the thickness of the electrode plate was adjusted so that the weight was 13 mg or less.

【0020】次に電解質として用いたゲル電解質の合成
方法について示す。ゲル電解質は、LiBF4を1M溶
解した容積比1:1で混合したプロピレンカーボネート
とエチレンカーボネート(ソルライト 三菱化学製)の
混合溶液20.7gをポリアクリロニトリル3.0g
(Aldrich製)と混合し、140℃、5分間ステンバット上
で加熱してゲル化させ、ゲル電解質とした。このゲル電
解質の厚みは、0.3mmとした。
Next, a method for synthesizing the gel electrolyte used as the electrolyte will be described. As the gel electrolyte, 20.7 g of a mixed solution of propylene carbonate and ethylene carbonate (manufactured by Sollite Mitsubishi Chemical Co., Ltd.) in which 1 M of LiBF 4 was dissolved at a volume ratio of 1: 1 was added to 3.0 g of polyacrylonitrile.
(Manufactured by Aldrich), and heated at 140 ° C. for 5 minutes on a stenbat to cause gelation to obtain a gel electrolyte. The thickness of this gel electrolyte was 0.3 mm.

【0021】上記方法で作製した正極極板に金属リチウ
ム(厚さ;300μm、旭東金属製)を対極に用いて、コイ
ン型電池を作製し、特性評価を行った。評価に用いたコ
イン型電池の構造は図1に示す。次に電池作製手順を以
下に示す。まず、上記正極極板(11)を、ケース(1
2)に設けた集電体上(13)に置き、次に、周縁部に
封口リングを装着したケース内側にリチウム金属を圧着
し、この上に前記ゲル電解質(14)を載せ、さらにそ
の上に多孔質ポリエチレンシートからなるセパレータ
(セルガード 旭化成製)(15)を設置し、これをか
み合わせプレス機にてかしめ封口し、コイン電池を作製
した。このようにして作製したコイン電池について、正
極極板に対し、単位面積あたり電流値0.1mA、電圧範囲
1.5V〜4.0Vで定電流充放電を行い、特性評価を行った。
その結果を表2に示す。ここでは2サイクル目、5サイク
ル目の放電容量を示す。
Metal lithium (thickness: 300 μm, made by Asahi Tohkin Co., Ltd.) was used as a counter electrode for the positive electrode plate prepared by the above method to prepare a coin-type battery, and its characteristics were evaluated. The structure of the coin-type battery used for evaluation is shown in FIG. Next, a battery manufacturing procedure is shown below. First, the positive electrode plate (11) is attached to the case (1
It is placed on the current collector (13) provided in 2), then lithium metal is pressure-bonded to the inside of the case with the sealing ring attached to the peripheral edge, and the gel electrolyte (14) is placed on this, and further on top of this. A separator made of a porous polyethylene sheet (Celgard Asahi Kasei) (15) was installed in the above, and this was caulked and sealed with an interlocking press to produce a coin battery. For the coin battery produced in this way, the current value per unit area was 0.1 mA, the voltage range was
A constant current charge / discharge was performed at 1.5V to 4.0V and the characteristics were evaluated.
The results are shown in Table 2. Here, the discharge capacities of the second cycle and the fifth cycle are shown.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、実施例の調製方
法から正極混合重量を100重量%とすると、硫黄が60%
以下、98%以上の範囲、固体電解質および導電剤が20%
以上、2%以下の範囲の組成では容量が小さく、好まし
い特性は得られなかった。したがって、正極混合重量を
100重量%としたとき、硫黄が60〜98%、固体電解質が2
0〜1%、および導電体が20〜1%の重量比の範囲以外で
は好ましい特性が得られないことが判明した。
As is apparent from Table 2, when the positive electrode mixture weight is 100% by weight according to the preparation method of the example, the sulfur content is 60%.
Below, 98% or more, solid electrolyte and conductive agent 20%
As described above, in the case of the composition within the range of 2% or less, the capacity is small, and preferable characteristics cannot be obtained. Therefore,
60% to 98% sulfur and 2% solid electrolyte
It was found that the preferable characteristics cannot be obtained outside the range of 0 to 1% and the weight ratio of the conductor of 20 to 1%.

【0024】この理由は絶縁物である硫黄粒子表面上に
固体電解質、導電剤が均一に分布し、集電体から硫黄粒
子への導電パスが十分に得られる構造となったために、
放電容量ならびにサイクル特性が向上したと考えられ
る。
The reason for this is that the solid electrolyte and the conductive agent are uniformly distributed on the surface of the sulfur particles which are insulators, and the structure is such that a sufficient conductive path from the current collector to the sulfur particles can be obtained.
It is considered that the discharge capacity and cycle characteristics were improved.

【0025】また、正極混合重量を100重量%とし、硫
黄が60〜98%、固体電解質が20〜1%、および導電体が
20〜1%の重量比の範囲にある正極極板は、図2に示した
ような、硫黄粒子表面上もしくは粒子表面上に固体電解
質、導電剤が存在する構造をもつことが確認された。こ
れらの結果から、硫黄粒子表面上に固体電解質,導電剤
が上記範囲の比率で存在する構造をもつことが、硫黄正
極のサイクル特性向上につながることがわかった。
The positive electrode mixed weight is 100% by weight, sulfur is 60 to 98%, solid electrolyte is 20 to 1%, and conductor is
It was confirmed that the positive electrode plate in a weight ratio range of 20 to 1% had a structure in which the solid electrolyte and the conductive agent were present on the surface of the sulfur particles or on the surface of the particles, as shown in FIG. From these results, it was found that the structure in which the solid electrolyte and the conductive agent are present on the surface of the sulfur particles in the ratio in the above range leads to the improvement of the cycle characteristics of the sulfur positive electrode.

【0026】(実施例2)実施例1の方法で実施した硫
黄が60〜98%、固体電解質が20〜1%、および導電体が
20〜1%の重量比の範囲にある正極の作製方法について
検討した。
(Example 2) Sulfur carried out by the method of Example 1 was 60 to 98%, the solid electrolyte was 20 to 1%, and the conductor was
A method for producing a positive electrode having a weight ratio of 20 to 1% was studied.

【0027】所定組成の単体硫黄(S)(分子量;32
関東化学製)をN−メチルピロリドン(関東化学製)
(重量比1:1)とともに110〜120℃に加熱させ
た。さらに溶解させ、ここに導電剤としてアセチレンブ
ラック(デンカブラック 電気化学工業製)を10g加
え、さらに固体電解質としてLi2S-SiS2-Li3PO4を10g
加え十分混合し、黒色のインク状液体を得た。この黒色
のインク状液体に電解質塩として4gのLiBF4、結着剤
としてポリフッ化ビニリデン(N−メチルピロリドン溶
液、KFポリマー9130 呉羽化学工業製)を10g加え1時
間混合後、16μm厚みのアルミニウム箔上にキャスト
し、その後60℃2時間真空乾燥を行い、正極とした。
Elementary sulfur (S) having a predetermined composition (molecular weight: 32
Kanto Kagaku) to N-methylpyrrolidone (Kanto Kagaku)
It was heated to 110 to 120 ° C. together with (weight ratio 1: 1). Further dissolve, add 10 g of acetylene black (Denka Black Denki Kagaku Kogyo) as a conductive agent, and further 10 g of Li 2 S-SiS 2 -Li 3 PO 4 as a solid electrolyte.
The mixture was added and mixed well to obtain a black ink-like liquid. To this black ink-like liquid, 4 g of LiBF 4 as an electrolyte salt and 10 g of polyvinylidene fluoride (N-methylpyrrolidone solution, KF polymer 9130 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder were added and mixed for 1 hour, and then an aluminum foil having a thickness of 16 μm. It was cast on the surface and then vacuum dried at 60 ° C. for 2 hours to obtain a positive electrode.

【0028】(比較例1)80gの単体硫黄(S)(分子
量;32 関東化学製)をN−メチルピロリドン(関東化
学製)(重量比1:1)とともに混合した。ここに導電
剤として導電性炭素(デンカブラック 電気化学工業
製)を10g加え、さらに固体電解質としてLi2S-SiS2-
Li3PO4を10g加え十分混合し、黒色のインク状液体を
得た。この黒色のインク状液体に電解質塩として4gの
LiBF4、結着剤としてポリフッ化ビニリデン(N−メチル
ピロリドン溶液、KFポリマー9130 呉羽化学工業製)を
10g加え1時間混合後、16μm厚みのアルミニウム箔
上にキャストし、その後60℃2時間真空乾燥を行い、
正極とした。
Comparative Example 1 80 g of elemental sulfur (S) (molecular weight: 32 manufactured by Kanto Kagaku) was mixed with N-methylpyrrolidone (manufactured by Kanto Kagaku) (weight ratio 1: 1). 10 g of conductive carbon (made by Denka Black Denki Kagaku Kogyo) was added as a conductive agent, and Li 2 S-SiS 2 -was added as a solid electrolyte.
10 g of Li 3 PO 4 was added and mixed well to obtain a black ink-like liquid. 4 g of electrolyte salt was added to this black ink-like liquid.
LiBF4, polyvinylidene fluoride (N-methylpyrrolidone solution, KF polymer 9130 manufactured by Kureha Chemical Industry) as a binder
After adding 10 g and mixing for 1 hour, cast on an aluminum foil with a thickness of 16 μm, then vacuum dry at 60 ° C. for 2 hours,
It was used as the positive electrode.

【0029】(比較例2)80gの単体硫黄(S)(分子
量;32 関東化学製)に導電剤として導電性炭素(デン
カブラック 電気化学工業製)を10g加え、さらに固
体電解質としてLi 2S-SiS2-Li3PO4を10g加え十分混合
し、黒色粉末を得た。この黒色粉末に電解質塩として4
gのLiBF4、結着剤としてポリフッ化ビニリデン(N−メ
チルピロリドン溶液、KFポリマー9130 呉羽化学工業
製)を10g加え1時間混合後、16μm厚みのアルミニ
ウム箔上にキャストし、その後60℃2時間真空乾燥を
行い、正極とした。
Comparative Example 2 80 g of elemental sulfur (S) (molecule
Amount: 32 Conductive carbon (den
Kablack Denki Kagaku Kogyo Co., Ltd.) (10 g)
Li as body electrolyte 2S-SiS2-Li3POFourAdd 10g and mix well
Then, a black powder was obtained. 4 as electrolyte salt in this black powder
g LiBFFour, Polyvinylidene fluoride (N-meth) as a binder
Tyrpyrrolidone solution, KF polymer 9130 Kureha Chemical Industry
10g) and mixed for 1 hour.
Cast on um foil and vacuum dry at 60 ℃ for 2 hours
It carried out and it was set as the positive electrode.

【0030】実施例2、比較例1、2で作製した正極と
負極、電解質を用いてコイン型電池を作成し充放電試験
評価を行った。負極、電解質およびコイン電池の作成方
法は実施例1と同様の方法で行った。充放電試験評価は
正極極板に対し、単位面積あたり電流値0.1mA、電圧範
囲1.5V〜4.0Vで行った。その結果を表3に示す、表3に
は2、5、10サイクル目における放電容量のみを示
す。
A coin-type battery was prepared using the positive electrode, the negative electrode and the electrolyte prepared in Example 2 and Comparative Examples 1 and 2, and the charge / discharge test was evaluated. The negative electrode, the electrolyte and the coin battery were prepared in the same manner as in Example 1. The charge / discharge test was evaluated on the positive electrode plate at a current value of 0.1 mA per unit area and a voltage range of 1.5V to 4.0V. The results are shown in Table 3. In Table 3, only the discharge capacities at the 2nd, 5th and 10th cycles are shown.

【0031】[0031]

【表3】 [Table 3]

【0032】比較例1、2で作成した正極は5サイクル
目までは高い放電容量を示していたが、10サイクル目
では容量減少が観察された。実施例2で作成した正極は
10サイクル目でも高い放電容量を示した。以上の結果
から、実施例2の正極作成方法が比較例1,2の作成方
法よりも高い充放電特性を得ることができた。
The positive electrodes prepared in Comparative Examples 1 and 2 showed a high discharge capacity up to the 5th cycle, but a capacity decrease was observed at the 10th cycle. The positive electrode prepared in Example 2 showed a high discharge capacity even at the 10th cycle. From the above results, it was possible to obtain higher charging / discharging characteristics in the positive electrode production method of Example 2 than in the production methods of Comparative Examples 1 and 2.

【0033】実施例2、比較例1,2で作成した正極合
剤の平均粒形を観察した。その結果を表4に示す。
The average particle shape of the positive electrode mixture prepared in Example 2 and Comparative Examples 1 and 2 was observed. The results are shown in Table 4.

【0034】[0034]

【表4】 [Table 4]

【0035】比較例1,2では正極合剤の平均粒形が50〜
550nmであるが、実施例2の方法で作製した合剤の平均粒
形は5〜100nmと粒形、分布ともに小さくなっている。ま
た、走査型電子顕微鏡を用いた正極粒子の観察結果から
比較例1,2では硫黄、固体電解質、導電剤は均一に分布
しておらず、大きく偏って分布していた。一方、実施例
2の粒子は図1に示すような、硫黄、固体電解質、導電剤
が均一に分布した構造であった。これらの結果から実施
例2の電極作製方法が電極内の粒子の分散を向上させて
いることがわかった。
In Comparative Examples 1 and 2, the average particle shape of the positive electrode mixture was 50 to
Although it is 550 nm, the average particle shape of the mixture prepared by the method of Example 2 is 5 to 100 nm, and both the particle shape and the distribution are small. In addition, from the observation results of the positive electrode particles using a scanning electron microscope, in Comparative Examples 1 and 2, the sulfur, the solid electrolyte, and the conductive agent were not uniformly distributed, but were largely unevenly distributed. On the other hand, Example
The particles of No. 2 had a structure in which sulfur, a solid electrolyte and a conductive agent were uniformly distributed as shown in FIG. From these results, it was found that the electrode manufacturing method of Example 2 improved the dispersion of particles in the electrode.

【0036】実施例2記載の作製方法は正極作成時に、
硫黄を加熱させるプロセスと、溶解させるプロセスとを
経たことで、電極内での単体硫黄、固体電解質、導電剤
の分散が向上し、均一混合が可能となった。単体硫黄と
固体電解質、導電剤の分散が向上すると、正極極板内の
電子伝導性が向上し、効率的に単体硫黄を反応させるこ
とができる。比較例で行った従来の加熱・溶解プロセス
を経ない混合では、単体硫黄、導電剤、固体電解質の高
い分散での混合が難しい。一方、加熱・溶解させるプロ
セスを経た場合には高い分散での混合が可能となり、10
サイクル目の容量は比較例が400mAh/g程度だったのに対
し、実施例2では600mAh/gとなり、サイクル特性を大き
く向上させることができた。以上の結果から、硫黄を加
熱させるプロセスと、溶解させるプロセスとを経たこと
で、電極内の電子伝導性が向上し、高い充放電特性が得
られた。比較例1,2では容量が小さく、好ましい特性
は得られなかったことから正極合剤平均粒形が5〜10
0μmの範囲であることが好ましい。さらに、粒度分布
を計測したところ、60μm付近に極大ピークを保持し
たことから、50〜70μmの範囲がなお好ましい。
The manufacturing method described in Example 2 was
By passing through the process of heating the sulfur and the process of dissolving it, the dispersion of the elemental sulfur, the solid electrolyte, and the conductive agent in the electrode was improved, and uniform mixing became possible. When the dispersion of the elemental sulfur, the solid electrolyte, and the conductive agent is improved, the electron conductivity in the positive electrode plate is improved, and the elemental sulfur can be efficiently reacted. In the mixing that does not go through the conventional heating and melting process performed in the comparative example, it is difficult to mix the elemental sulfur, the conductive agent, and the solid electrolyte in a high dispersion. On the other hand, when the process of heating and melting is performed, mixing with high dispersion becomes possible, and
The capacity at the cycle was about 400 mAh / g in the comparative example, whereas it was 600 mAh / g in Example 2, and the cycle characteristics could be greatly improved. From the above results, the electron conductivity in the electrode was improved and high charge / discharge characteristics were obtained by passing through the process of heating sulfur and the process of dissolving sulfur. In Comparative Examples 1 and 2, since the capacity was small and the preferable characteristics were not obtained, the average particle size of the positive electrode mixture was 5 to 10
It is preferably in the range of 0 μm. Furthermore, when the particle size distribution was measured, the maximum peak was retained near 60 μm, so the range of 50 to 70 μm is still preferable.

【0037】(実施例3)実施例3で作成したサンプ
ル、および比較例で作製したサンプルを正極極板とし、
リチウム含有複合窒化物を負極活物質として用いたコイ
ン型電池を作製し、特性を評価した。電解質、コイン型
電池の構成および作製方法、実験条件等は実施例1の場
合と同様に行った。
Example 3 The sample prepared in Example 3 and the sample prepared in Comparative Example were used as positive electrode plates,
A coin-type battery using a lithium-containing composite nitride as a negative electrode active material was prepared and the characteristics were evaluated. The electrolyte, the configuration and manufacturing method of the coin-type battery, the experimental conditions and the like were the same as in the case of Example 1.

【0038】リチウム含有複合窒化物を活物質とする負
極の作製法を示す。Li/Coのモル比を2.6/0.
4としたリチウムコバルト合金を銅製の容器に入れ窒素
雰囲気中、800℃で12時間保持し、窒素と反応させ
た。反応後、得られた黒灰色の化合物を粉砕し、リチウ
ムコバルト複合窒化物粉末を得た。合成試料について、
CuKα線を用いた粉末X線回折測定を行った。その結
果、窒化リチウム(Li 3N)と同じ六方晶に基づく回
折パターンが現れており、Coが窒化リチウムに固溶し
た状態の単一相となっていることを確認した。また合成
したリチウム含有複合窒化物組成はLi2.6Co0.4Nで
あった。このようにして作製したリチウム含有複合窒化
物粉末、炭素粉末、および結着剤としてポリ4-フッ化エ
チレン粉末を重量比100:25:5の割合で混合し練合し
た。十分に練合したのち、この合剤をシート上に圧延
し、これを直径13.0mmの円盤上に打ち抜いて極板とし
た。その際、極板の重量は25mgとなるようにした。
A negative electrode containing a lithium-containing composite nitride as an active material
A method of making a pole will be shown. The molar ratio of Li / Co is 2.6 / 0.
Place the lithium cobalt alloy of No. 4 in a copper container and nitrogen
Hold at 800 ° C for 12 hours in the atmosphere to react with nitrogen.
It was After the reaction, the obtained black gray compound was crushed and
Mucobalt composite nitride powder was obtained. For synthetic samples,
Powder X-ray diffraction measurement was performed using CuKα rays. That conclusion
As a result, lithium nitride (Li 3N) based on hexagonal crystal
A folding pattern appears, and Co dissolves in lithium nitride.
It was confirmed that it was a single phase of the state. Also synthetic
The lithium-containing composite nitride composition is Li2.6Co0.4At N
there were. Lithium-containing composite nitride produced in this way
Powder, carbon powder, and poly 4-fluoride as a binder
Tylene powder is mixed and kneaded at a weight ratio of 100: 25: 5.
It was After thoroughly kneading, roll this mixture on a sheet
Then, punch it out on a disk with a diameter of 13.0 mm to make an electrode plate.
It was At that time, the weight of the electrode plate was set to 25 mg.

【0039】実施例2で作製したサンプルを正極活物質
として用いた正極極板と、上記方法で作製したリチウム
含有複合窒化物を負極活物質として電解液とともにコイ
ン型電池を作製した。
A coin-type battery was prepared with the positive electrode plate using the sample prepared in Example 2 as the positive electrode active material and the lithium-containing composite nitride prepared by the above method as the negative electrode active material together with the electrolytic solution.

【0040】(実施例4)実施例2で作成したサンプ
ル、および比較例で作製したサンプルを正極極板とし、
金属酸化物を負極活物質として用いたコイン型電池を作
製し、特性を評価した。電解質、コイン型電池の構成お
よび作製方法、実験条件等は実施例1の場合と同様に行
った。金属酸化物として用いたSiO負極の作製方法を示
す。正極は、実施例1と同様に準備した。
Example 4 The sample prepared in Example 2 and the sample prepared in Comparative Example were used as positive electrode plates,
A coin-type battery using a metal oxide as a negative electrode active material was prepared and the characteristics were evaluated. The electrolyte, the configuration and manufacturing method of the coin-type battery, the experimental conditions and the like were the same as in the case of Example 1. A method for producing a SiO negative electrode used as a metal oxide is shown. The positive electrode was prepared in the same manner as in Example 1.

【0041】負極活物質のSiOは、市販の試薬を粉砕
して粉末にしたものを使用した。真空中で250℃、5
時間の乾燥処理を行ってから使用した。そして粉末Si
Oと実施例3と同様に作製したLi2.6Co0.4N粉末を
重量比で1:1に混合した。そしてこの混合活物質粉末
100重量部に対して導電剤としての黒鉛粉末を25重
量部、結着剤としてのテフロン(登録商標)樹脂粉末を
5重量部加え、十分に混練した後にローラーで圧延して
フィルム状に加工した。作製した負極にはリチウムが含
まれていないため化成処理を行って、リチウムを挿入す
る必要がある。本実施例では負極活物質に対し、電気化
学的なリチウム挿入処理を行った。この挿入処理は、対
極に金属リチウムを用いた電気化学セルを構成し、単位
面積あたり0.5mAの電流値で定電流電解を行い、上限電
圧1.5Vまで酸化させて行った。その後この処理を行った
極板を取り出し、負極とした。
As the negative electrode active material, SiO was used by pulverizing a commercially available reagent into powder. 250 ° C in vacuum, 5
It was used after being dried for an hour. And powder Si
O and Li 2.6 Co 0.4 N powder produced in the same manner as in Example 3 were mixed at a weight ratio of 1: 1. Then, to 100 parts by weight of this mixed active material powder, 25 parts by weight of graphite powder as a conductive agent and 5 parts by weight of Teflon (registered trademark) resin powder as a binder were added, sufficiently kneaded, and then rolled with a roller. Processed into a film. Since the manufactured negative electrode does not contain lithium, it is necessary to perform a chemical conversion treatment to insert lithium. In this example, an electrochemical lithium insertion treatment was performed on the negative electrode active material. This insertion treatment was performed by constructing an electrochemical cell using metallic lithium as a counter electrode, performing constant current electrolysis at a current value of 0.5 mA per unit area, and oxidizing it to an upper limit voltage of 1.5V. After that, the electrode plate subjected to this treatment was taken out and used as a negative electrode.

【0042】(実施例5)実施例2で作成したサンプ
ル、および比較例で作製したサンプルを正極極板とし、
合金負極を負極活物質として用いたコイン型電池を作製
し、特性を評価した。電解質、コイン型電池の構成およ
び作製方法、実験条件等は実施例1の場合と同様に行っ
た。合金負極の作製方法を以下に示す。負極は、実施例
3と同様にして、Fe2Sn粉末とSiO粉末とLi2.6
Co0.4N粉末を準備した。そして、Fe2Sn:Si
O:Li2.6Co0.4Nを重量比で、1:1:2となるよ
うに混合した。そしてこの混合活物質粉末100重量部
に対して導電剤としての黒鉛粉末を25重量部、結着剤
としてのテフロン樹脂粉末を5重量部加え、十分に混練
した後にローラーで圧延してフィルム状に加工した。作
製した負極にはリチウムが含まれていないため化成処理
を行って、リチウムを挿入する必要がある。本実施例で
は実施例4と同様の方法で負極活物質に対し、電気化学
的なリチウム挿入処理を行った。
Example 5 The sample prepared in Example 2 and the sample prepared in Comparative Example were used as positive electrode plates,
A coin-type battery using the alloy negative electrode as a negative electrode active material was produced and the characteristics were evaluated. The electrolyte, the configuration and manufacturing method of the coin-type battery, the experimental conditions and the like were the same as in the case of Example 1. The method for producing the alloy negative electrode will be described below. Example of negative electrode
In the same manner as in 3, Fe 2 Sn powder, SiO powder, Li 2.6
Co 0.4 N powder was prepared. And Fe 2 Sn: Si
O: Li 2.6 Co 0.4 N was mixed in a weight ratio of 1: 1: 2. Then, to 100 parts by weight of this mixed active material powder, 25 parts by weight of graphite powder as a conductive agent and 5 parts by weight of Teflon resin powder as a binder were added, sufficiently kneaded, and then rolled with a roller to form a film. processed. Since the manufactured negative electrode does not contain lithium, it is necessary to perform a chemical conversion treatment to insert lithium. In this example, an electrochemical lithium insertion treatment was performed on the negative electrode active material in the same manner as in Example 4.

【0043】(比較例3)実施例2で作製したサンプル
を正極活物質として用いた正極極板と、リチウム金属を
負極活物質とし、電解液とともにコイン型電池を作製し
た。実施例3、4、5と比較例3で作成したコイン型電池の
充放電特性評価を行った。このときの充放電試験結果を
図3に示す。リチウム金属を負極に用いた場合のみ50サ
イクル以降において容量劣化が観察された。金属酸化物
負極、合金負極を用いた場合には60サイクルでも容量劣
化は観察されず、とくにリチウム含有複合窒化物負極を
用いた場合には100サイクルを超えても容量劣化は観察
されなかった。これは、リチウム金属を負極活物質とし
て用いた場合には、充放電サイクルを繰り返すに従い、
リチウム金属上に炭酸リチウム等のリチウム化合物が生
成、堆積すると考えられる。これによりリチウム金属負
極が劣化し、放電容量が劣化したと考えられる。一方、
リチウム含有複合窒化物負極を用いた場合には、負極自
身のサイクルに伴う劣化が非常に少ないため、100サイ
クルをこえても放電容量の劣化が観察されなかったと考
えられる。金属酸化物負極、合金負極を用いた場合は、
リチウム金属よりはサイクルに伴う劣化が少ないものと
考えられる。
(Comparative Example 3) A positive electrode plate using the sample prepared in Example 2 as a positive electrode active material and lithium metal as a negative electrode active material were used to prepare a coin-type battery together with an electrolytic solution. The charge and discharge characteristics of the coin type batteries prepared in Examples 3, 4 and 5 and Comparative Example 3 were evaluated. The charge / discharge test results at this time are shown in FIG. Only when lithium metal was used for the negative electrode, capacity deterioration was observed after 50 cycles. When the metal oxide negative electrode and the alloy negative electrode were used, the capacity deterioration was not observed even after 60 cycles, and particularly when the lithium-containing composite nitride negative electrode was used, the capacity deterioration was not observed even after exceeding 100 cycles. This is because when lithium metal is used as the negative electrode active material, as the charge and discharge cycle is repeated,
It is considered that a lithium compound such as lithium carbonate is generated and deposited on the lithium metal. It is considered that this deteriorated the lithium metal negative electrode and deteriorated the discharge capacity. on the other hand,
It is considered that when the lithium-containing composite nitride negative electrode was used, the deterioration of the discharge capacity was not observed even after 100 cycles because the deterioration of the negative electrode itself due to the cycle was very small. When a metal oxide negative electrode or an alloy negative electrode is used,
It is considered that deterioration with cycling is less than that of lithium metal.

【0044】リチウム二次電池の正極材料として現在多
く用いられているコバルト酸リチウム-カーボン負極電
池の理論容量は145mAhであるが、硫黄正極-リチウム含
有複合窒化物負極電池では600mAh程度の高容量を得るこ
とができる。硫黄正極-金属リチウム電池の場合には硫
黄正極-リチウム含有複合窒化物負極電池よりも、より
高容量の電池が期待できるが、サイクル特性に問題があ
る。
The theoretical capacity of a lithium cobalt oxide-carbon negative electrode battery, which is currently widely used as a positive electrode material of a lithium secondary battery, is 145 mAh, but a sulfur positive electrode-lithium-containing composite nitride negative electrode battery has a high capacity of about 600 mAh. Obtainable. In the case of the sulfur positive electrode-metal lithium battery, a battery having a higher capacity than the sulfur positive electrode-lithium-containing composite nitride negative electrode battery can be expected, but there is a problem in cycle characteristics.

【0045】なお、本実施例においての製造時にはN‐
メチルピロリドンを用いたが、これは市販の試薬をその
まま、またはゼオライト吸着剤により水分を20ppm
以下に低減したものを用いることができる。また、その
他に、ピロリドン、N−エチル−2−ピロリドン、N−
ブチル−2−ピロリドン等を用いることもできる。
It should be noted that when manufacturing in this embodiment, N-
Methylpyrrolidone was used, but this is a commercially available reagent as it is, or a zeolite adsorbent allows water content of 20 ppm.
Those reduced below can be used. In addition, in addition, pyrrolidone, N-ethyl-2-pyrrolidone, N-
Butyl-2-pyrrolidone or the like can also be used.

【0046】さらに、本実施例においては、電極集電体
として、アルミ箔を用いたが、銅、ステンレス鋼等の金
属箔、ポリアニリンやポリピロール等の導電性高分子膜
フィルム、または導電性高分子膜フィルムを塗着または
被覆した金属箔やカーボンシートを用いることもでき
る。
Further, although aluminum foil is used as the electrode current collector in this embodiment, metal foil such as copper or stainless steel, conductive polymer film such as polyaniline or polypyrrole, or conductive polymer is used. It is also possible to use a metal foil or carbon sheet coated or covered with a membrane film.

【0047】また、本実施例の負極活物質においては、
Coを用いたリチウム含有複合窒化物を準備したが、そ
の他の遷移金属、例えば、Ti、V、Cr、Mn、F
e、Ni、およびCuなどを用いても構わない。またC
oを含んだこれらの群より選ばれた2種の遷移元素を用
いても構わない。
Further, in the negative electrode active material of this embodiment,
A lithium-containing composite nitride using Co was prepared, but other transition metals such as Ti, V, Cr, Mn, and F were prepared.
You may use e, Ni, Cu, etc. Also C
Two kinds of transition elements selected from these groups containing o may be used.

【0048】[0048]

【発明の効果】本発明の複合電極は、従来のリチウム電
池にくらべてサイクル特性が高く、高エネルギー密度を
有する電池を与える。
INDUSTRIAL APPLICABILITY The composite electrode of the present invention provides a battery having higher cycle characteristics and higher energy density than the conventional lithium battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム電池第1の実施例であるコイ
ン型試験セルの縦断面を含む図
FIG. 1 is a diagram including a vertical cross section of a coin-type test cell that is a first embodiment of a lithium battery of the present invention.

【図2】本発明の正極材料の粒子構造図FIG. 2 is a particle structure diagram of the positive electrode material of the present invention.

【図3】本発明の実施例3、実施例4、実施例5で作製
した電池の充放電試験結果の図
FIG. 3 is a diagram showing the results of charge / discharge tests of the batteries manufactured in Examples 3, 4 and 5 of the present invention.

【符号の説明】[Explanation of symbols]

11 正極電極板 12 ケース 13 集電体 14 ゲル電解質 15 セパレータ 21 硫黄粒子 22 導電剤 23 固体電解質 11 Positive electrode plate 12 cases 13 Current collector 14 gel electrolyte 15 separator 21 Sulfur particles 22 Conductive agent 23 Solid electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ02 AK05 AL01 AM03 AM07 AM12 BJ03 BJ13 CJ02 DJ08 DJ09 DJ16 EJ04 EJ13 HJ01 HJ02 HJ05 5H050 AA02 BA17 CA11 CB01 DA02 DA10 DA13 EA08 EA15 EA23 EA26 FA17 FA18 GA02 HA01 HA02 HA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiaki Nitta             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H029 AJ02 AK05 AL01 AM03 AM07                       AM12 BJ03 BJ13 CJ02 DJ08                       DJ09 DJ16 EJ04 EJ13 HJ01                       HJ02 HJ05                 5H050 AA02 BA17 CA11 CB01 DA02                       DA10 DA13 EA08 EA15 EA23                       EA26 FA17 FA18 GA02 HA01                       HA02 HA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式(LixS)n(0<x≦1.5、
nは1以上の整数)で表される化合物を有する正極と、
一般式Li3-yyN(0.2≦y≦0.8、MはTi、
V、Cr、Mn、Fe、Co、Ni、およびCuより選
ばれた少なくとも1種の元素)で表される化合物または
SnとSiとの固溶体またはSnあるいはSiの金属間化合物ま
たはSnあるいはSiの酸化物の少なくとも1種を含む負極
と、電解液と、を有することを特徴とするリチウム電
池。
1. The general formula (Li x S) n (0 <x ≦ 1.5,
n is an integer of 1 or more), and a positive electrode having a compound represented by the following:
General formula Li 3-y M y N (0.2 ≦ y ≦ 0.8, M is Ti,
A compound represented by at least one element selected from V, Cr, Mn, Fe, Co, Ni, and Cu) or
A lithium battery comprising a negative electrode containing at least one of a solid solution of Sn and Si, an intermetallic compound of Sn or Si, or an oxide of Sn or Si, and an electrolytic solution.
【請求項2】 正極混合重量を100重量%とした場合、
一般式(LixS)n(0<x≦1.5、nは1以上の整
数)で表される化合物が60〜98重量%、固体電解質が20
〜1重量%、および導電体が20〜1重量%を有し、前記
(LixS)nで表される化合物の粒子表面上に固体電解
質、正極内の電子伝導性を司る導電体を有することを特
徴とする請求項1記載のリチウム電池。
2. When the positive electrode mixture weight is 100% by weight,
The compound represented by the general formula (Li x S) n (0 <x ≦ 1.5, n is an integer of 1 or more) is 60 to 98% by weight, and the solid electrolyte is 20
˜1 wt%, and the conductor is 20 to 1 wt%, and has a solid electrolyte on the particle surface of the compound represented by (Li x S) n and a conductor that controls the electron conductivity in the positive electrode. The lithium battery according to claim 1, wherein:
【請求項3】 前記固体電解質は、Li2S-SiS(2+a)(aは
Li3PO4、LiI、Li4SiO4から選ばれた少なくとも1つ)、L
i2S-P2O5、Li2S-B2S5、Li2S-P2S5-GeS2から選ばれた少
なくとも1つを有することを特徴とする請求項2記載の
リチウム電池。
3. The solid electrolyte is Li 2 S—SiS (2 + a) (where a is
At least one selected from Li 3 PO 4 , LiI, and Li 4 SiO 4 ), L
The lithium battery according to claim 2, comprising at least one selected from i 2 SP 2 O 5 , Li 2 SB 2 S 5 , and Li 2 SP 2 S 5 -GeS 2 .
【請求項4】 正極内の電子伝導性を司る導電体は導電
性を有する炭素材料、ポリアニリン、ポリピロール、ポ
リチオフェン、ポリアセチレンから選ばれた少なくとも
1種を有する請求項2記載のリチウム電池。
4. The conductor controlling the electron conductivity in the positive electrode is at least selected from a conductive carbon material, polyaniline, polypyrrole, polythiophene and polyacetylene.
The lithium battery according to claim 2, which has one kind.
【請求項5】 一般式(LixS)n(0<x≦1.5、
nは1以上の整数)で表される化合物の平均粒形が、5〜
100μmの粒形を有することを特徴とする請求項2記載
のリチウム電池。
5. The general formula (Li x S) n (0 <x ≦ 1.5,
The average particle shape of the compound represented by
The lithium battery according to claim 2, which has a particle shape of 100 μm.
【請求項6】 一般式(LixS)n(0<x≦1.5、
nは1以上の整数)で表される化合物を有する正極は、
加熱プロセスと、溶解プロセスと、固体電解質、正極内
の電子伝導性を司る導電体とともに混合するプロセスと
を有することを特徴とする請求項1および2記載のリチ
ウム電池の製法。
6. The general formula (Li x S) n (0 <x ≦ 1.5,
The positive electrode having a compound represented by the formula (n is an integer of 1 or more) is
3. The method for producing a lithium battery according to claim 1, further comprising a heating process, a dissolution process, and a process of mixing with a solid electrolyte and a conductor controlling electronic conductivity in the positive electrode.
JP2002006895A 2002-01-16 2002-01-16 Lithium battery and manufacturing method thereof Pending JP2003208897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006895A JP2003208897A (en) 2002-01-16 2002-01-16 Lithium battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006895A JP2003208897A (en) 2002-01-16 2002-01-16 Lithium battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003208897A true JP2003208897A (en) 2003-07-25
JP2003208897A5 JP2003208897A5 (en) 2005-07-14

Family

ID=27645528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006895A Pending JP2003208897A (en) 2002-01-16 2002-01-16 Lithium battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003208897A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190695A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2010232085A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Electrode active material, secondary battery and manufacturing method of electrode active material
JP2012504932A (en) * 2008-10-02 2012-02-23 レイデン エナジー インコーポレイテッド Electronic current interrupt device for batteries
WO2012086196A1 (en) * 2010-12-24 2012-06-28 出光興産株式会社 Positive electrode material for lithium ion batteries, and lithium ion battery
JP2012533862A (en) * 2009-07-20 2012-12-27 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Sulfur / carbon composite conductive materials, use as electrodes, and methods of making such materials
JP2013527579A (en) * 2010-05-28 2013-06-27 ビーエーエスエフ ソシエタス・ヨーロピア How to use expanded graphite in lithium-sulfur batteries
JP2013139371A (en) * 2011-12-28 2013-07-18 Qinghua Univ Method for producing sulfur-graphene composite material
JP2013139377A (en) * 2011-12-28 2013-07-18 Qinghua Univ Method for producing sulfur-graphene composite material
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2013143297A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2013254620A (en) * 2012-06-06 2013-12-19 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
JP2014500584A (en) * 2010-11-04 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Cathode materials for lithium-sulfur batteries
JP2014029791A (en) * 2012-07-31 2014-02-13 Tdk Corp Lithium ion secondary battery
JP2014175278A (en) * 2013-03-13 2014-09-22 Hitachi Maxell Ltd Nonaqueous secondary battery positive electrode material, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery
WO2018164050A1 (en) * 2017-03-07 2018-09-13 富士フイルム株式会社 Inorganic solid electrolyte material, slurry using same, solid electrolyte film for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, positive electrode active material film for all-solid-state secondary battery, negative electrode active material film for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method for all-solid-state secondary battery
CN110957483A (en) * 2019-12-03 2020-04-03 武汉理工大学 Preparation method and application of sulfur composite cathode material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117942A (en) * 1997-06-19 1999-01-12 Matsushita Electric Ind Co Ltd Total solid lithium battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery
JP2000311684A (en) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its positive electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117942A (en) * 1997-06-19 1999-01-12 Matsushita Electric Ind Co Ltd Total solid lithium battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery
JP2000311684A (en) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its positive electrode

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535722B2 (en) * 2003-12-24 2010-09-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2005190695A (en) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2012504932A (en) * 2008-10-02 2012-02-23 レイデン エナジー インコーポレイテッド Electronic current interrupt device for batteries
JP2010232085A (en) * 2009-03-27 2010-10-14 Daihatsu Motor Co Ltd Electrode active material, secondary battery and manufacturing method of electrode active material
JP2012533862A (en) * 2009-07-20 2012-12-27 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Sulfur / carbon composite conductive materials, use as electrodes, and methods of making such materials
US9577243B2 (en) 2010-05-28 2017-02-21 Sion Power Corporation Use of expanded graphite in lithium/sulphur batteries
JP2013527579A (en) * 2010-05-28 2013-06-27 ビーエーエスエフ ソシエタス・ヨーロピア How to use expanded graphite in lithium-sulfur batteries
JP2014500584A (en) * 2010-11-04 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Cathode materials for lithium-sulfur batteries
JP5856979B2 (en) * 2010-12-24 2016-02-10 出光興産株式会社 Positive electrode material for lithium ion battery and lithium ion battery
CN103262308A (en) * 2010-12-24 2013-08-21 出光兴产株式会社 Positive electrode material for lithium ion battery and lithium ion battery
US9620772B2 (en) 2010-12-24 2017-04-11 Idemitsu Kosan Co., Ltd. Positive electrode material containing a composite of sulfur and a porous conductive substance, and glass or glass ceramic particles for lithium ion batteries, and lithium ion battery
WO2012086196A1 (en) * 2010-12-24 2012-06-28 出光興産株式会社 Positive electrode material for lithium ion batteries, and lithium ion battery
JP2013139371A (en) * 2011-12-28 2013-07-18 Qinghua Univ Method for producing sulfur-graphene composite material
JP2013139377A (en) * 2011-12-28 2013-07-18 Qinghua Univ Method for producing sulfur-graphene composite material
JP2013143297A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
JP2013143298A (en) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd Electrode material, electrode, and battery using the same
US9786921B2 (en) 2012-02-17 2017-10-10 Sony Corporation Secondary battery, manufacturing method of secondary battery, electrode for secondary battery, and electronic device
JPWO2013121642A1 (en) * 2012-02-17 2015-05-11 ソニー株式会社 Secondary battery, secondary battery manufacturing method, secondary battery electrode and electronic device
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2013254620A (en) * 2012-06-06 2013-12-19 Idemitsu Kosan Co Ltd Positive electrode mixture slurry and electrode sheet
JP2014029791A (en) * 2012-07-31 2014-02-13 Tdk Corp Lithium ion secondary battery
JP2014175278A (en) * 2013-03-13 2014-09-22 Hitachi Maxell Ltd Nonaqueous secondary battery positive electrode material, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery
WO2018164050A1 (en) * 2017-03-07 2018-09-13 富士フイルム株式会社 Inorganic solid electrolyte material, slurry using same, solid electrolyte film for all-solid-state secondary battery, solid electrolyte sheet for all-solid-state secondary battery, positive electrode active material film for all-solid-state secondary battery, negative electrode active material film for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method for all-solid-state secondary battery
JPWO2018164050A1 (en) * 2017-03-07 2019-11-07 富士フイルム株式会社 Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material film for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US11508989B2 (en) 2017-03-07 2022-11-22 Fujifilm Corporation Solid electrolyte film for all-solid state secondary battery, solid electrolyte sheet for all-solid state secondary battery, positive electrode active material film for all-solid state secondary battery, negative electrode active material film for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method for manufacturing all-solid state secondary battery
CN110957483A (en) * 2019-12-03 2020-04-03 武汉理工大学 Preparation method and application of sulfur composite cathode material

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP4467926B2 (en) Electrochemical element
JP2003208897A (en) Lithium battery and manufacturing method thereof
KR20000019944A (en) Solid-state secondary battery composed of thin film type multiple material anode
CN111213274A (en) Solid electrolyte for lithium-ion electrochemical cells
JP2004119367A (en) Positive electrode activator for lithium-sulfur battery, lithium-sulfur battery, and electronic product
JPH10505705A (en) Secondary battery using organic sulfur / metal charge conductive material for positive electrode
EP1416553B1 (en) Electrochemical device with unsaturated Organic Electrode Material
EP1478040B1 (en) Electrochemical device and electrode active material for electrochemical device
JP4468058B2 (en) Secondary battery and electrode active material for secondary battery
JP3085943B2 (en) Lithium polymer secondary battery with anode containing metal composite anode
JPH0815095B2 (en) New battery
WO2000067339A1 (en) Electroactive sulfur containing, conductive, highly branched polymeric materials for use in electrochemical cells
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JP2008159275A (en) Electrode active material and power storage device using the same
JP2002319400A (en) Electrode, manufacturing method therefor, and lithium battery using the same
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
WO2018090097A1 (en) Electrochemical cell
JP2000340225A (en) Composite electrode composition and lithium battery using it
KR20180111322A (en) Preparing method for electrode for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery comprising the same
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2000090970A (en) Lithium secondary battery
KR20150131653A (en) Lithium sulfur batteries system
JP2001266885A (en) Composite electrode composition, its manufacturing method and lithium battery
JP2003178750A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605