JP4535722B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4535722B2
JP4535722B2 JP2003427212A JP2003427212A JP4535722B2 JP 4535722 B2 JP4535722 B2 JP 4535722B2 JP 2003427212 A JP2003427212 A JP 2003427212A JP 2003427212 A JP2003427212 A JP 2003427212A JP 4535722 B2 JP4535722 B2 JP 4535722B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427212A
Other languages
Japanese (ja)
Other versions
JP2005190695A (en
Inventor
雅秀 三宅
英行 古賀
昌治 板谷
和範 堂上
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003427212A priority Critical patent/JP4535722B2/en
Publication of JP2005190695A publication Critical patent/JP2005190695A/en
Application granted granted Critical
Publication of JP4535722B2 publication Critical patent/JP4535722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

現在、高エネルギー密度の二次電池として、非水電解液を使用し、リチウムイオンを正極と負極との間で移動させて充放電を行う非水電解質二次電池が利用されている。   Currently, non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte and charge and discharge by moving lithium ions between a positive electrode and a negative electrode are used as secondary batteries with high energy density.

このような非水電解質二次電池においては、一般に正極にLiCoO2等のリチウム遷移金属複合酸化物を用い、負極にリチウムの吸蔵・放出が可能な炭素材料を用いている。また、非水電解液としては、エチレンカーボネート及びジエチルカーボネート等の有機溶媒に、LiBF4、LiPF6等のリチウム塩からなる電解質を溶解させたものが用いられている。 In such a nonaqueous electrolyte secondary battery, a lithium transition metal composite oxide such as LiCoO 2 is generally used for the positive electrode, and a carbon material capable of occluding and releasing lithium is used for the negative electrode. In addition, as the nonaqueous electrolytic solution, a solution obtained by dissolving an electrolyte made of a lithium salt such as LiBF 4 or LiPF 6 in an organic solvent such as ethylene carbonate or diethyl carbonate is used.

近年においては、このような非水電解質二次電池が様々な携帯用機器の電源等として使用されるようになり、さらに高いエネルギー密度の非水電解質二次電池が要望されている。   In recent years, such a non-aqueous electrolyte secondary battery has been used as a power source for various portable devices, and a non-aqueous electrolyte secondary battery having a higher energy density has been demanded.

しかしながら、従来の非水電解質二次電池において、正極に使用されているLiCoO2等のリチウム遷移金属複合酸化物は、重量が大きく、反応電子数も少ないため、単位重量当たりの容量を十分に高めることが困難であった。 However, in the conventional non-aqueous electrolyte secondary battery, the lithium transition metal composite oxide such as LiCoO 2 used for the positive electrode is large in weight and has a small number of reaction electrons, so that the capacity per unit weight is sufficiently increased. It was difficult.

このため、容量において高いエネルギー密度が得られる正極材料の開発が必要不可欠である。近年、硫黄単体を正極材料に用いた研究が行われている。硫黄単体は1675mAh/gの大きな理論容量を有しており、次世代の二次電池の有望な正極材料の1つである。これらの研究では、負極にリチウム金属を用い、正極に硫黄単体及び硫黄化合物を用いて充放電特性について検討されている。また、正極に炭素材料を用い、負極にリチウム金属を用い、硫化物または多硫化物を含有したカソード液を用いた電池も提案されている(特許文献1)。   For this reason, it is indispensable to develop a positive electrode material capable of obtaining a high energy density in capacity. In recent years, studies have been conducted using sulfur alone as a positive electrode material. Sulfur alone has a large theoretical capacity of 1675 mAh / g, and is one of the promising positive electrode materials for the next generation secondary battery. In these studies, charge and discharge characteristics have been studied using lithium metal for the negative electrode and sulfur alone and a sulfur compound for the positive electrode. A battery using a cathode material containing a sulfide or polysulfide using a carbon material for the positive electrode and lithium metal for the negative electrode has also been proposed (Patent Document 1).

しかしながら、負極にリチウム金属を用いた場合、充放電によりデンドライド結晶が析出し、短絡を生じるという問題がある。また、正極に硫黄を用いた場合、電池作製の際、正極の硫黄は充電状態であり、負極にリチウム金属を用いていることから、充電状態での電池作製となる。そのため、空気中で負極/セパレータ/正極の電極の巻き取りを行うと、負極のリチウム金属が空気中の水分と反応してしまうので、空気中の水分の少ない場所で行う必要があり、ドライルームなどの設備を必要とするなどの問題がある。従って、負極にリチウム金属を用いることなく、正極及び負極共に放電状態のままで電池を作製することが望ましい。
特表2003−522383号公報 国際公開01/029912号パンフレット
However, when lithium metal is used for the negative electrode, there is a problem that dendrid crystals are deposited by charging and discharging, causing a short circuit. In addition, when sulfur is used for the positive electrode, when the battery is manufactured, the positive electrode sulfur is in a charged state, and since lithium metal is used for the negative electrode, the battery is manufactured in a charged state. Therefore, when the negative electrode / separator / positive electrode is wound up in the air, the lithium metal in the negative electrode reacts with moisture in the air, so it is necessary to perform it in a place where there is little moisture in the air. There are problems such as requiring equipment such as. Therefore, it is desirable to produce a battery with both the positive electrode and the negative electrode in a discharged state without using lithium metal for the negative electrode.
Special table 2003-522383 gazette International Publication No. 01/029912 Pamphlet

本発明の目的は、簡易に製造することが可能で、かつ高い容量密度を有する非水電解質二次電池を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can be easily manufactured and has a high capacity density.

本発明は、炭素材料を主体とし、充電の際には、硫化物イオンが酸化されて正極表面に硫黄が析出し、放電の際には、析出した硫黄が還元されて硫化物イオンとなる正極と、ケイ素を主体とする負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池において、前記非水電解質に、Li(1≦x≦8)で表される硫化リチウムが含有されていることを特徴としている。 The present invention is mainly composed of a carbon material, and during charging, sulfide ions are oxidized and sulfur is deposited on the surface of the positive electrode. During discharge, the deposited sulfur is reduced to become sulfide ions. And a non-aqueous electrolyte secondary battery comprising a negative electrode containing a negative electrode active material mainly composed of silicon and a non-aqueous electrolyte, the non-aqueous electrolyte is represented by Li 2 S x (1 ≦ x ≦ 8). It is characterized by containing lithium sulfide .

本発明においては、非水電解質に、Li2x(1≦x≦8)で表される硫化リチウムが含有されている。この硫化リチウムは、硫黄を正極活物質として用いた場合の放電状態の化合物である。また、本発明においては、ケイ素を主体とする負極活物質を用いているので、空気中で電池を作製することができる。従って、本発明の非水電解質二次電池は簡易に製造することができる。 In the present invention, the nonaqueous electrolyte contains lithium sulfide represented by Li 2 S x (1 ≦ x ≦ 8). This lithium sulfide is a compound in a discharge state when sulfur is used as a positive electrode active material. In the present invention, since the negative electrode active material mainly composed of silicon is used, the battery can be manufactured in the air. Therefore, the nonaqueous electrolyte secondary battery of the present invention can be easily manufactured.

本発明の非水電解質二次電池においては、負極及び正極において、以下の充電反応及び放電反応が生じる。   In the nonaqueous electrolyte secondary battery of the present invention, the following charging reaction and discharging reaction occur in the negative electrode and the positive electrode.

充電反応
負極:Si+4.4Li++4.4e- → Li4.4Si
正極:2Li++S2- → S+2Li++2e-
放電反応
負極:Li4.4Si → Si+4.4Li++4.4e-
正極:S+2Li++2e- → 2Li++S2-
上記のように、充電の際には、硫化物イオンが酸化されて正極表面に硫黄が析出し、放電の際には、析出した硫黄が還元されて硫化物イオンとなる。
Charge reaction Negative electrode: Si + 4.4Li + + 4.4e → Li 4.4 Si
Positive electrode: 2Li + + S 2− → S + 2Li + + 2e
Discharge reaction Negative electrode: Li 4.4 Si → Si + 4.4 Li + + 4.4e
Positive electrode: S + 2Li + + 2e → 2Li + + S 2−
As described above, during charging, sulfide ions are oxidized and sulfur is deposited on the surface of the positive electrode, and during discharging, the precipitated sulfur is reduced to sulfide ions.

本発明において、硫化リチウムは、非水電解質に溶解されているとともに、固体の状態でも含まれていることが好ましい。充電反応の際非水電解質に溶解されている硫化リチウムが反応して消費されると、固体状態の硫化リチウムが非水電解質に溶解し充電反応に用いられる。従って、固体状態の硫化リチウムを含むことにより、電池の容量を大きくすることができる。固体状態の硫化リチウムは、沈殿物等の形態で非水電解質中に含まれる。   In the present invention, lithium sulfide is preferably dissolved in a non-aqueous electrolyte and contained in a solid state. When lithium sulfide dissolved in the nonaqueous electrolyte reacts and is consumed during the charging reaction, the solid state lithium sulfide dissolves in the nonaqueous electrolyte and is used for the charging reaction. Therefore, the capacity of the battery can be increased by including solid state lithium sulfide. The solid state lithium sulfide is contained in the nonaqueous electrolyte in the form of a precipitate or the like.

本発明において用いる硫化リチウム中の硫黄は、できるだけ放電状態であることが好ましい。従って、Li2xにおけるxの値ができるだけ小さいことが望ましく、完全放電状態となったx=1のものが最も望ましいと考えられる。x=1の場合、理論充放電容量密度は硫黄1g当たり1675mAh/gとなり、現在正極活物質として用いられているLiCoO2の150mAh/gと比べて極めて大きくなる。 The sulfur in the lithium sulfide used in the present invention is preferably in a discharged state as much as possible. Therefore, it is desirable that the value of x in Li 2 S x is as small as possible, and it is considered most desirable that x = 1 in a fully discharged state. In the case of x = 1, the theoretical charge / discharge capacity density is 1675 mAh / g per gram of sulfur, which is very large compared to 150 mAh / g of LiCoO 2 currently used as the positive electrode active material.

本発明において用いる非水電解質の有機溶媒は、上記硫化リチウムを溶解させることができるものが用いられる。このような有機溶媒としては、環状エーテル、鎖状エーテル、融点が60℃以下の常温溶融塩などが挙げられる。   As the organic solvent for the non-aqueous electrolyte used in the present invention, a solvent capable of dissolving the lithium sulfide is used. Examples of such an organic solvent include cyclic ethers, chain ethers, and room temperature molten salts having a melting point of 60 ° C. or lower.

環状エーテルとしては、1,3−ジオキソラン、2−メチル−1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテルから選択される少なくとも1種が挙げられる。   Examples of the cyclic ether include 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1, Examples include at least one selected from 4-dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, and crown ether.

鎖状エーテルとしては、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルから選択される少なくとも1種が挙げられる。   As chain ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether , Methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1- Dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethylene At least one can be cited is selected from glycol dimethyl ether.

融点が60℃以下の常温溶融塩としては、第4級アンモニウム塩が好ましく用いられる。第4級アンモニウム塩は、イミダゾリウム塩、ピラゾリウム塩などのその他の常温溶融塩に比べ、耐還元性が優れており、またリチウム金属と反応しないことが知られている。イミダゾリウム塩、ピラゾリウム塩などの常温溶融塩は耐還元性が低く、リチウム金属と反応するため、リチウムイオン電池の電解液として用いることは好ましくないと考えられる。   As the room temperature molten salt having a melting point of 60 ° C. or lower, a quaternary ammonium salt is preferably used. It is known that the quaternary ammonium salt is excellent in reduction resistance and does not react with lithium metal compared to other room temperature molten salts such as imidazolium salt and pyrazolium salt. Room temperature molten salts such as imidazolium salts and pyrazolium salts have low reduction resistance and react with lithium metal, so that it is considered undesirable to use them as electrolytes for lithium ion batteries.

第4級アンモニウム塩としては、トリメチルプロピルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド((CH33+(C37)N-(SO2CF32)、トリメチルオクチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド((CH33+(C817)N-(SO2CF32)、トリメチルアリルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド((CH33+(Allyl)N-(SO2CF32)、トリメチルヘキシルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド((CH33+(C613)N-(SO2CF32)、メトキシメチルトリメチルアンモニウム・ビス(トリフルオロメチルスルホニル)イミド((CH33+(CH2OCH3)N-(SO2CF32)、トリメチルエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド((CH33+(C25)(CF3CO)N-(SO2CF3))、トリメチルアリルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド((CH33+(Allyl)(CF3CO)N-(SO2CF3))、トリメチルプロピルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド((CH33+(C37)(CF3CO)N-(SO2CF3))、テトラエチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド((C254+(CF3CO)N-(SO2CF3))、トリエチルメチルアンモニウム・2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミド((C253+(CH3)(CF3CO)N-(SO2CF3))から選択される少なくとも1種が挙げられる。 The quaternary ammonium salts include trimethylpropylammonium bis (trifluoromethylsulfonyl) imide ((CH 3 ) 3 N + (C 3 H 7 ) N (SO 2 CF 3 ) 2 ), trimethyloctyl ammonium bis (Trifluoromethylsulfonyl) imide ((CH 3 ) 3 N + (C 8 H 17 ) N (SO 2 CF 3 ) 2 ), trimethylallylammonium bis (trifluoromethylsulfonyl) imide ((CH 3 ) 3 N + (Allyl) N (SO 2 CF 3 ) 2 ), trimethylhexylammonium bis (trifluoromethylsulfonyl) imide ((CH 3 ) 3 N + (C 6 H 13 ) N (SO 2 CF 3 ) 2), methoxymethyl trimethylammonium bis (trifluoromethylsulfonyl) imide ((CH 3) 3 N + (CH 2 OCH 3 N - (SO 2 CF 3) 2), trimethylethyl ammonium 2,2,2-trifluoro -N- (trifluoromethylsulfonyl) acetamide ((CH 3) 3 N + (C 2 H 5) (CF 3 CO) N - (SO 2 CF 3)), trimethyl allyl ammonium 2,2,2-trifluoro -N- (trifluoromethylsulfonyl) acetamide ((CH 3) 3 N + (allyl) (CF 3 CO) N - (SO 2 CF 3) ), trimethylpropylammonium-2,2,2-trifluoro -N- (trifluoromethylsulfonyl) acetamide ((CH 3) 3 N + (C 3 H 7) (CF 3 CO ) N (SO 2 CF 3 )), tetraethylammonium · 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide ((C 2 H 5 ) 4 N + (CF 3 CO) N (SO 2 CF 3 )), triethylmethylammonium · 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide ((C 2 H 5 ) 3 N + (CH 3 ) (CF 3 CO) N (SO 2 CF 3 )).

本発明において用いる非水電解質の有機溶媒としては、硫化リチウムの溶解度の大きなものが好ましく用いられる。具体的には、硫化リチウムの溶解度が0.5モル/リットル以上のものが好ましく、さらには1モル/リットル以上のものが好ましく、特に5モル/リットル以上のものが好ましく用いられる。   As the organic solvent for the non-aqueous electrolyte used in the present invention, those having a high solubility of lithium sulfide are preferably used. Specifically, the solubility of lithium sulfide is preferably 0.5 mol / liter or more, more preferably 1 mol / liter or more, and particularly preferably 5 mol / liter or more.

また、電解質(溶質)としては、リチウム塩など、非水電解質二次電池において、電解質(溶質)として一般に使用されているものを用いることができ、例えば、LiBF4,LiPF6,LiCF3SO3,LiC49SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(COCF3)、LiAsF6、ジフルオロ(オキサラト)ホウ酸リチウムから選択される少なくとも1種を用いることができる。ジフルオロ(オキサラト)ホウ酸リチウムは、以下の(化1)に示す構造式を有している。 Further, as the electrolyte (solute), such as a lithium salt, a non-aqueous electrolyte secondary battery, there can be used those which are generally used as an electrolyte (solute), for example, LiBF 4, LiPF 6, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (COCF 3 ), LiAsF 6 , lithium difluoro (oxalato) borate At least one selected from can be used. Lithium difluoro (oxalato) borate has the structural formula shown in the following (Chemical Formula 1).

Figure 0004535722
本発明における負極は、ケイ素を主体とする負極活物質を含んでいる。ケイ素を主体とする負極活物質としては、金属箔からなる集電体の上にCVD法、スパッタリング法、蒸着法、溶射法などにより堆積させたシリコン薄膜が挙げられる。シリコン薄膜としては、非晶質シリコン薄膜、微結晶シリコン薄膜などが好ましく用いられる。また、本発明における負極活物質として、ケイ素粉末を用いてもよい。このようなケイ素粉末を用いる場合には、ケイ素粉末とバインダーを含むスラリーを集電体上に塗布して電極を作製することができる。
Figure 0004535722
The negative electrode in the present invention contains a negative electrode active material mainly composed of silicon. Examples of the negative electrode active material mainly composed of silicon include a silicon thin film deposited on a current collector made of metal foil by a CVD method, a sputtering method, a vapor deposition method, a thermal spraying method, or the like. As the silicon thin film, an amorphous silicon thin film, a microcrystalline silicon thin film, or the like is preferably used. Moreover, you may use a silicon powder as a negative electrode active material in this invention. When such silicon powder is used, an electrode can be produced by applying a slurry containing silicon powder and a binder onto a current collector.

シリコン薄膜を負極活物質として用いる場合には、特許文献2に開示された電極が好ましく用いられる。具体的には、集電体上のシリコン薄膜が厚み方向の切れ目によって柱状に分離された電極、集電体成分(銅成分など)がシリコン薄膜の内部に拡散した電極、表面が粗面化された集電体の上に形成されたシリコン薄膜を用いた電極などが挙げられる。   When a silicon thin film is used as the negative electrode active material, the electrode disclosed in Patent Document 2 is preferably used. Specifically, an electrode in which the silicon thin film on the current collector is separated into a columnar shape by a cut in the thickness direction, an electrode in which a current collector component (such as a copper component) diffuses inside the silicon thin film, and the surface is roughened And an electrode using a silicon thin film formed on the current collector.

また、本発明において、ケイ素を主体とするとは、ケイ素が50%以上含有されていることを意味している。合金薄膜としては、例えば、コバルト、鉄、ジルコニウム、亜鉛などを含むシリコン合金薄膜が挙げられる。   Moreover, in this invention, having silicon as a main component means that 50% or more of silicon is contained. Examples of the alloy thin film include a silicon alloy thin film containing cobalt, iron, zirconium, zinc and the like.

本発明における正極材料は、電子伝導性を有するものであり、例えば、炭素材料を挙げることができる。具体的には、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、活性炭及び黒鉛から選ばれる少なくとも1種を用いることができる。本発明においては、上述のように、充電の際に電解質中の硫化物イオンが酸化されて正極の表面に析出すると考えられる。従って、比表面積の大きな炭素材料を正極に用いることにより、析出する硫黄の量が増え、電池の容量密度が大きくなると考えられる。このため、10m2/g以上の比表面積を有する炭素材料が特に好ましく用いられる。
The positive electrode material in the present invention has electronic conductivity, and examples thereof include a carbon material. Specifically, at least one selected from carbon black such as acetylene black and ketjen black, activated carbon, and graphite can be used. In the present invention, as described above, it is considered that sulfide ions in the electrolyte are oxidized and deposited on the surface of the positive electrode during charging. Therefore, it is considered that the use of a carbon material having a large specific surface area for the positive electrode increases the amount of sulfur to be deposited and increases the capacity density of the battery. For this reason, a carbon material having a specific surface area of 10 m 2 / g or more is particularly preferably used.

本発明において正極は、炭素材料などの正極材料とバインダーを含むスラリーを、アルミニウム箔などの集電体上に塗布することにより作製することができる。
The positive electrode in the present invention can be produced by applying a slurry containing a positive electrode material and a binder such as a carbon material, on a current collector such as an aluminum foil.

本発明によれば、放電状態で電池を作製することができるので、簡易に製造することが可能な電池とすることができる。また、非水電解質中に、充放電反応に関与する硫化リチウムが含まれているので、高い容量密度を有する非水電解質二次電池とすることができる。   According to the present invention, since the battery can be manufactured in a discharged state, the battery can be easily manufactured. Moreover, since the non-aqueous electrolyte contains lithium sulfide involved in the charge / discharge reaction, a non-aqueous electrolyte secondary battery having a high capacity density can be obtained.

また、本発明においてはケイ素を主体とする負極活物質を用いているので、従来のリチウム金属を負極材料に用いる場合に比べ、優れたサイクル特性が得られる。   In the present invention, since the negative electrode active material mainly composed of silicon is used, excellent cycle characteristics can be obtained as compared with the case where conventional lithium metal is used for the negative electrode material.

以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができるものである。   Hereinafter, the present invention will be described by way of specific examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention.

(実施例1)
〔非水電解質の作製〕
1,2−ジメトキシエタンと1,3−ジオキソランを90:10の体積の割合で混合した溶媒に、LiN(SO2CF32を0.5モル/リットルの濃度となるように添加した。これに、Li2Sを5モル/リットルとなるようにさらに添加し、過飽和の状態にし、非水電解質として用いた。
Example 1
[Production of non-aqueous electrolyte]
LiN (SO 2 CF 3 ) 2 was added to a solvent in which 1,2-dimethoxyethane and 1,3-dioxolane were mixed at a volume ratio of 90:10 to a concentration of 0.5 mol / liter. Li 2 S was further added to this so that it might become 5 mol / liter, it was made the supersaturated state, and it used as a nonaqueous electrolyte.

〔正極の作製〕
導電剤のアセチレンブラック(比表面積70m2/g)を正極全体の90重量%となるように、結着剤であるポリテトラフルオロエチレン(PTFE)5重量%及び増粘剤であるカルボキシメチルセルロース(CMC)5重量%と混合し、水を加えて15分間らいかいを行い、混練し、スラリーを作製した。作製したスラリーを、ドクターブレード法を用いて電解アルミニウム箔の上に塗布し、ホットプレートを用いて50℃で乾燥させた。これを2cm×2cmのサイズに切り取り、さらに100℃で真空乾燥させ、正極とした。
[Production of positive electrode]
The conductive agent acetylene black (specific surface area 70 m 2 / g) is 90% by weight of the whole positive electrode, 5% by weight of polytetrafluoroethylene (PTFE) as a binder and carboxymethyl cellulose (CMC) as a thickener. ) Mixed with 5% by weight, added water for 15 minutes and kneaded to prepare a slurry. The prepared slurry was applied onto an electrolytic aluminum foil using a doctor blade method and dried at 50 ° C. using a hot plate. This was cut into a size of 2 cm × 2 cm and further vacuum dried at 100 ° C. to obtain a positive electrode.

〔試験セルの作製〕
図1に示すように、不活性雰囲気下において、作用極として上記の正極11を使用し、対極となる負極12及び参照極13にそれぞれリチウム金属を用いて試験セルを作製した。正極11と負極12の間にセパレータ15を配置し、試験セル10内に上記の非水電解質14を2ml注入し、実施例1の試験セルとした。
[Production of test cell]
As shown in FIG. 1, a test cell was prepared using the above positive electrode 11 as a working electrode under an inert atmosphere, and using lithium metal for the negative electrode 12 and the reference electrode 13 as counter electrodes. A separator 15 was disposed between the positive electrode 11 and the negative electrode 12, and 2 ml of the nonaqueous electrolyte 14 was injected into the test cell 10 to obtain a test cell of Example 1.

〔充放電試験〕
上記試験セルについて、充電電流2.5μA/cm2で充電終止電位2.8V(vs.Li/Li+)まで充電を行い、その後放電電流2.5μA/cm2で放電終止電位1.5V(vs.Li/Li+)まで放電を行った。この時の充放電容量密度と電位との関係を図2に示す。図2において、充電時における電位と電極1g当たりの容量密度との関係を充電曲線として破線で示す。また、放電時における電位と電極1g当たりの容量密度との関係を放電曲線として実線で示す。なお、電極1g当たりとは、導電剤、結着剤及び増粘剤の総重量1g当たりを意味している。
(Charge / discharge test)
For the test cell was charged at a charging current 2.5 .mu.A / cm 2 until the charge cutoff potential 2.8V (vs.Li/Li +), then the discharge current 2.5 .mu.A / cm 2 at the discharge cutoff potential of 1.5V ( vs. Li / Li + ). FIG. 2 shows the relationship between the charge / discharge capacity density and the potential at this time. In FIG. 2, the relationship between the potential at the time of charging and the capacity density per 1 g of the electrode is indicated by a broken line as a charging curve. Further, the relationship between the potential during discharge and the capacity density per 1 g of electrode is shown as a discharge curve by a solid line. In addition, per 1 g of electrode means per 1 g of the total weight of the conductive agent, the binder, and the thickener.

図2から明らかなように、初期放電容量密度は84.5mAh/gであり、その後の充電容量密度は136mAh/gであり、充放電が行えることが確認できた。   As is clear from FIG. 2, the initial discharge capacity density was 84.5 mAh / g, and the subsequent charge capacity density was 136 mAh / g, confirming that charge and discharge can be performed.

(実施例2)
〔非水電解質の作製〕
実施例1と同様にして、非水電解質を作製した。
(Example 2)
[Production of non-aqueous electrolyte]
A non-aqueous electrolyte was produced in the same manner as in Example 1.

〔負極の作製〕
表面を電解処理することにより粗面化した電解銅箔の上に、スパッタリング法により非晶質シリコン薄膜を形成した。薄膜の厚さは0.5μmであった。これを大きさ2cm×2cmに切り取り、110℃で真空乾燥したものを負極とした。
(Production of negative electrode)
An amorphous silicon thin film was formed by sputtering on an electrolytic copper foil roughened by electrolytic treatment of the surface. The thickness of the thin film was 0.5 μm. This was cut into a size of 2 cm × 2 cm and vacuum-dried at 110 ° C. to make a negative electrode.

〔試験セルの作製〕
作用極として上記負極12を用い、対極となる正極11及び参照極13としてそれぞれリチウム金属を用いる以外は、実施例1と同様にして試験セルを作製した。
[Production of test cell]
A test cell was produced in the same manner as in Example 1 except that the negative electrode 12 was used as the working electrode and lithium metal was used as the positive electrode 11 and the reference electrode 13 as the counter electrode.

〔充放電試験〕
上記試験セルについて、充電電流0.05mA/cm2で充電終止電位0V(vs.Li/Li+)まで充電を行い、その後放電電流0.05mA/cm2で放電終止電位1.5V(vs.Li/Li+)まで放電を行い、充放電試験を行った。その結果を図3に示す。
(Charge / discharge test)
For the test cell was charged at a charging current 0.05 mA / cm 2 until the charge cutoff potential 0V (vs.Li/Li +), then the discharge current 0.05 mA / cm 2 at the discharge cutoff potential 1.5V (vs. Li / Li + ) was discharged and a charge / discharge test was conducted. The result is shown in FIG.

図3において、放電時における電位と電極1g当たりの容量密度との関係を放電曲線として実線で示した。また、充電時における電位と電極1g当たりの容量密度との関係を充電曲線として破線で示した。なお、電極1g当たりとは、活物質(シリコン薄膜)1g当たりを意味している。   In FIG. 3, the relationship between the potential during discharge and the capacity density per gram of electrode is shown by a solid line as a discharge curve. The relationship between the potential during charging and the capacity density per gram of electrode is shown as a charging curve by a broken line. Here, per 1 g of electrode means per 1 g of active material (silicon thin film).

図3から明らかなように、初期充電容量密度は1647mAh/gであり、初期放電容量密度は1183mAh/gであり、充放電が行われることが確認できた。   As is clear from FIG. 3, the initial charge capacity density was 1647 mAh / g, the initial discharge capacity density was 1183 mAh / g, and it was confirmed that charging / discharging was performed.

実施例1及び実施例2の結果から、炭素材料を主体とする正極と、ケイ素を主体とする負極とを組み合わせて、Li2Sを含む電解質を用いた場合、充放電が行えることは明らかである。 From the results of Example 1 and Example 2, it is clear that charging and discharging can be performed when an electrolyte containing Li 2 S is used in combination of a positive electrode mainly composed of a carbon material and a negative electrode mainly composed of silicon. is there.

本発明に従う実施例において作製した試験セルを示す斜視図。The perspective view which shows the test cell produced in the Example according to this invention. 実施例1の試験セルにおける初期充放電特性を示す図。The figure which shows the initial stage charge / discharge characteristic in the test cell of Example 1. FIG. 実施例2の試験セルにおける初期充放電特性を示す図。The figure which shows the initial stage charge / discharge characteristic in the test cell of Example 2. FIG.

符号の説明Explanation of symbols

10…試験セル容器
11…正極
12…負極
13…参照極
14…非水電解質
DESCRIPTION OF SYMBOLS 10 ... Test cell container 11 ... Positive electrode 12 ... Negative electrode 13 ... Reference electrode 14 ... Nonaqueous electrolyte

Claims (3)

炭素材料を主体とし、充電の際には、硫化物イオンが酸化されて正極表面に硫黄が析出し、放電の際には、析出した硫黄が還元されて硫化物イオンとなる正極と、ケイ素を主体とする負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池において、
前記非水電解質に、Li(1≦x≦8)で表される硫化リチウムが含有されていることを特徴とする非水電解質二次電池。
Mainly composed of carbon material, during charging, sulfide ions are oxidized and sulfur is deposited on the surface of the positive electrode, and during discharge, the deposited sulfur is reduced to sulfide ions , In a non-aqueous electrolyte secondary battery comprising a negative electrode containing a negative electrode active material as a main component and a non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery comprising lithium sulfide represented by Li 2 S x (1 ≦ x ≦ 8) in the non-aqueous electrolyte.
前記硫化リチウムが、前記非水電解質に溶解されているとともに、固体の状態でも含まれていることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium sulfide is dissolved in the non-aqueous electrolyte and is also contained in a solid state. 前記負極活物質が、集電体上に堆積して形成したシリコン薄膜またはシリコン合金薄膜であることを特徴とする請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the negative electrode active material is a silicon thin film or a silicon alloy thin film formed by being deposited on a current collector.
JP2003427212A 2003-12-24 2003-12-24 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4535722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427212A JP4535722B2 (en) 2003-12-24 2003-12-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427212A JP4535722B2 (en) 2003-12-24 2003-12-24 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005190695A JP2005190695A (en) 2005-07-14
JP4535722B2 true JP4535722B2 (en) 2010-09-01

Family

ID=34786554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427212A Expired - Fee Related JP4535722B2 (en) 2003-12-24 2003-12-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4535722B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2402842C2 (en) * 2005-03-22 2010-10-27 Оксис Энерджи Лимитед Electrolyte cell and method of its fabrication
JP2007194107A (en) * 2006-01-20 2007-08-02 Mitsui Mining & Smelting Co Ltd Non-aqueous electrolytic solution secondary battery
CN105098223A (en) 2006-11-16 2015-11-25 松下电器产业株式会社 Electricity storage device
JP4321584B2 (en) 2006-12-18 2009-08-26 ソニー株式会社 Negative electrode for secondary battery and secondary battery
WO2014038919A1 (en) * 2012-09-10 2014-03-13 한양대학교 산학협력단 Electrolyte for lithium-sulphur battery, and lithium-sulphur battery comprising same
WO2016042763A1 (en) * 2014-09-18 2016-03-24 ソニー株式会社 Cell, and electrolyte for cell
KR20180025581A (en) * 2016-09-01 2018-03-09 주식회사 엘지화학 Electrolyte comprising lithium polysulfide for lithium air battery, and lithium air battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001006674A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
JP2002216842A (en) * 2001-01-15 2002-08-02 Hitachi Maxell Ltd Nonaqueous cell
JP2002329495A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and production process thereof
JP2003208897A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Lithium battery and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001006674A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
JP2002216842A (en) * 2001-01-15 2002-08-02 Hitachi Maxell Ltd Nonaqueous cell
JP2002329495A (en) * 2001-05-01 2002-11-15 Matsushita Electric Ind Co Ltd Lithium secondary battery and production process thereof
JP2003208897A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Lithium battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005190695A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP5430920B2 (en) Nonaqueous electrolyte secondary battery
JP4725728B2 (en) Secondary battery
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JPWO2005057714A1 (en) Secondary battery electrolyte and secondary battery using the same
JP2005108724A (en) Nonaqueous electrolyte secondary battery
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JP2009543318A (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
JP4345658B2 (en) Secondary battery
KR20040084858A (en) Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same
JP2005203342A (en) Secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2005235397A (en) Electrode for lithium battery, lithium battery using it, and lithium secondary battery
JP4693371B2 (en) Nonaqueous electrolyte secondary battery
JP4535722B2 (en) Nonaqueous electrolyte secondary battery
JP4776186B2 (en) Nonaqueous electrolyte secondary battery
US8530093B2 (en) Electrode active material, method of preparing the same, electrode for lithium secondary battery which includes the same, and lithium secondary battery using the electrode
JP2005158313A (en) Non-aqueous electrolyte secondary battery
JP2004342575A (en) Secondary battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP2005251473A (en) Nonaqueous electrolyte secondary battery
JP2001052698A (en) Lithium secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP5201794B2 (en) Lithium secondary battery and method for producing lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees