JP2016184483A - All solid-state lithium secondary battery - Google Patents

All solid-state lithium secondary battery Download PDF

Info

Publication number
JP2016184483A
JP2016184483A JP2015063601A JP2015063601A JP2016184483A JP 2016184483 A JP2016184483 A JP 2016184483A JP 2015063601 A JP2015063601 A JP 2015063601A JP 2015063601 A JP2015063601 A JP 2015063601A JP 2016184483 A JP2016184483 A JP 2016184483A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
negative electrode
current collector
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063601A
Other languages
Japanese (ja)
Inventor
純 川治
Jun Kawaji
純 川治
大剛 小野寺
Taigo Onodera
大剛 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015063601A priority Critical patent/JP2016184483A/en
Publication of JP2016184483A publication Critical patent/JP2016184483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all solid-state lithium secondary battery capable of effectively reducing resistance in a lithium secondary battery and suppressing cycle deterioration due to charge/discharge.SOLUTION: In an all solid-state lithium secondary battery, a solid electrolyte layer is arranged between a negative electrode layer and a positive electrode layer. At least one of the negative electrode layer and the positive electrode layer contains active material particles capable of absorbing/desorbing lithium and lithium metavanadate (LiVO) filled between the particles and having deliquescence, and is joined to a collector having electron conductivity by lithium metavanadate.SELECTED DRAWING: Figure 2

Description

本発明は、全固体リチウム二次電池に関する。   The present invention relates to an all-solid lithium secondary battery.

不燃性又は難燃性の固体電解質を用いた全固体リチウム二次電池は高耐熱化が可能であり、安全化が図れるため、モジュールコストを低減できる。また、金属箔の両面に正極と負極を配置したバイポーラ電極と固体電解質層を繰り返し積層することで、一つの電池パック内で正極/固体電解質/負極からなる単電池が直列接続したバイポーラ電池を形成することができる。従来のリチウム電池では、5V以上の高電圧蓄電を可能とするために複数の電池パックを直列に配置する必要があるが、バイポーラ電池では一つの電池パック内で所望の高電圧を実現することができるため、高電圧、高容量の蓄電システムを構成する上で電池パック外装や端子の体積・コストを削減することが可能となる。   An all-solid lithium secondary battery using a non-flammable or flame-retardant solid electrolyte can have high heat resistance and can be made safe, so that the module cost can be reduced. In addition, by repeatedly laminating a bipolar electrode with a positive electrode and a negative electrode on both sides of a metal foil and a solid electrolyte layer, a bipolar battery in which single cells of positive electrode / solid electrolyte / negative electrode are connected in series in one battery pack is formed. can do. In conventional lithium batteries, it is necessary to arrange a plurality of battery packs in series in order to enable high voltage storage of 5 V or higher, but bipolar batteries can achieve a desired high voltage in one battery pack. Therefore, it is possible to reduce the volume and cost of the battery pack exterior and terminals when configuring a high voltage, high capacity power storage system.

固体電解質を用いた全固体電池、およびバイポーラ電池の例として、特許文献1には、正極及び負極、の間にリチウム元素、リン元素及び硫黄元素を含有する固体電解質層を備えた電池が開示されている。   As an example of an all-solid battery using a solid electrolyte and a bipolar battery, Patent Document 1 discloses a battery including a solid electrolyte layer containing a lithium element, a phosphorus element, and a sulfur element between a positive electrode and a negative electrode. ing.

また、特許文献2には、全固体電池、バイポーラ型電池において、抵抗低減や容量増大などの電池性能改善を目的として、正極および負極と接触する電子伝導性の集金箔が多孔構造を有し、孔内に活物質と硫黄を含有する固体電解質、Vなどが充填された構成が開示されている。 Further, in Patent Document 2, in all solid state batteries and bipolar type batteries, for the purpose of improving battery performance such as resistance reduction and capacity increase, an electron conductive collecting foil in contact with the positive electrode and the negative electrode has a porous structure, A structure in which pores are filled with a solid electrolyte containing active material and sulfur, V 2 O 5 and the like is disclosed.

また、特許文献3には、Li1.2Al0.2Ti1.8(POやLi1.5Al0.5Ge1.5(PO)などの固体電解質としてナシコン型構造を有するリチウム含有リン酸化合物を用い、集電層、正極、固体電解質、負極を含むグリーンシートを複数積層し、700℃以上の高温で処理することで得られるバイポーラ電池が開示されている。 Patent Document 3 discloses a NASICON structure as a solid electrolyte such as Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 or Li 1.5 Al 0.5 Ge 1.5 (PO) 3. A bipolar battery obtained by laminating a plurality of green sheets including a current collecting layer, a positive electrode, a solid electrolyte, and a negative electrode using a lithium-containing phosphoric acid compound having a temperature of 700 ° C. or higher is disclosed.

加えて、酸化物系の固体電解質を用いたリチウム二次電池の例として、特許文献4には、正極及び負極とともに固体電解質層を備え、前記正極、前記負極及び前記固体電解質層のうちの少なくとも1つがLi−B−O化合物等の700℃近傍で熱融解する固体電解質充填剤を含む電池が開示されている。   In addition, as an example of a lithium secondary battery using an oxide-based solid electrolyte, Patent Document 4 includes a solid electrolyte layer together with a positive electrode and a negative electrode, and includes at least one of the positive electrode, the negative electrode, and the solid electrolyte layer. A battery is disclosed that includes a solid electrolyte filler, one of which is thermally melted near 700 ° C., such as a Li—B—O compound.

特開2008−103285号公報JP 2008-103285 A 特開2013−105702号公報JP 2013-105702 A WO2012/020700WO2012 / 020700 特開2013−084377号公報JP 2013-084377 A

特許文献1〜4では、抵抗の低い電池を大量かつ簡易に得ることが困難である。   In Patent Documents 1 to 4, it is difficult to easily and easily obtain a battery with low resistance.

すなわち、特許文献1および2では固体電解質として用いる硫黄化合物が大気中の酸素や水分と反応し、イオン伝導性が低下したり有毒ガスは発生するため、低露点、制御した空間内での電池作製が求められる。また、作成電池内部が大気と接触しないための外装、安全機構を設ける必要があるため、電池システムとして大型化してしまう。   That is, in Patent Documents 1 and 2, since the sulfur compound used as the solid electrolyte reacts with oxygen and moisture in the atmosphere, ionic conductivity is reduced and toxic gas is generated, battery production in a controlled space with a low dew point Is required. Moreover, since it is necessary to provide an exterior and a safety mechanism for preventing the inside of the produced battery from coming into contact with the atmosphere, the battery system is increased in size.

特許文献3や4では、固体電解質として、酸化物系の電解質を使用しているため、特許文献1や2のような課題は解消されるものの、電池の抵抗を下げるためには高温での700℃以上加熱処理が必要となり、電池の大型化に課題が残る他、集電材料には大気中での加熱に耐えられることが求められ、従来の非水系リチウム電池の集電材料であるCuやAlが適用困難になる。   In Patent Documents 3 and 4, since an oxide-based electrolyte is used as the solid electrolyte, the problems as in Patent Documents 1 and 2 are solved. However, in order to reduce the resistance of the battery, 700 at a high temperature is used. In addition to the problem of increasing the size of the battery, the current collection material is required to withstand heating in the atmosphere, and Cu and the current collection material for conventional non-aqueous lithium batteries are required. Al becomes difficult to apply.

これらの事情に鑑み、本発明は、抵抗が低く、簡易なプロセスで製造可能な全固体電池、バイポーラ型電池を得るための電極材料および電池構成を提供することを目的とする。   In view of these circumstances, an object of the present invention is to provide an electrode material and a battery configuration for obtaining an all-solid battery and a bipolar battery that have low resistance and can be manufactured by a simple process.

上記課題を解決するため、本発明のリチウム電池は、負極層と正極層が固体電解質層を挟んでなる全固体リチウム電池であって、負極層と正極層の少なくとも一方が、リチウムを吸蔵・放出可能な活物質粒子とその粒子間に充填される潮解性を有するメタバナジン酸リチウムを含み、メタバナジン酸リチウムによって電子伝導性を有する金属箔と接合されていることを特徴とする。   In order to solve the above problems, the lithium battery of the present invention is an all-solid lithium battery in which a negative electrode layer and a positive electrode layer sandwich a solid electrolyte layer, and at least one of the negative electrode layer and the positive electrode layer occludes / releases lithium. It includes a possible active material particle and lithium metavanadate having deliquescence filled between the particles, and is joined to a metal foil having electronic conductivity by lithium metavanadate.

本発明により、活物質粒子の空隙にイオン伝導性および電子伝導性を有するメタバナジン酸リチウムが存在し、かつ、メタバナジン酸リチウムにより金属箔との接合性を高めることで、電極内部の抵抗を低減することができる。加えて、メタバナジン酸リチウムは潮解性を有するため水を含んだスラリーを塗布、含浸させることで大気中での簡易な電池製造プロセスが可能となる。   According to the present invention, lithium metavanadate having ion conductivity and electron conductivity is present in the voids of the active material particles, and the metal metavanadate enhances the bondability with the metal foil, thereby reducing the internal resistance of the electrode. be able to. In addition, since lithium metavanadate has deliquescent properties, a simple battery manufacturing process in the atmosphere is possible by applying and impregnating a slurry containing water.

上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係るリチウム二次電池の断面図である。It is sectional drawing of the lithium secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るバイポーラ型リチウム二次電池の断面図である。1 is a cross-sectional view of a bipolar lithium secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係るリチウム二次電池の要部の断面図である。It is sectional drawing of the principal part of the lithium secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウム二次電池の要部の断面図である。It is sectional drawing of the principal part of the lithium secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウム二次電池の要部の断面図である。It is sectional drawing of the principal part of the lithium secondary battery which concerns on one Embodiment of this invention. 正極集電箔11と負極集電体10とを潮解性のLi伝導性充填剤46で接合したバイポーラ電極の構成図。The block diagram of the bipolar electrode which joined the positive electrode current collector foil 11 and the negative electrode collector 10 with the deliquescent Li conductive filler 46. FIG. 正極集電箔11と負極集電箔21の間に金属箔を配置したバイポーラ電極の構成図。The block diagram of the bipolar electrode which has arrange | positioned metal foil between the positive electrode current collector foil 11 and the negative electrode current collector foil 21. FIG.

以下、図面を用いて、本発明の実施形態について説明する。図面において、同一の機能を有するものは同一の符号を付与し、繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, components having the same function are denoted by the same reference numerals, and repeated description may be omitted.

図1は、本発明の一実施形態に係るリチウム二次電池の断面図である。図1に示すように、本発明のリチウム二次電池100は、正極70、負極80、電池ケース30及び固体電解質層50を有する。正極70は、正極集電体10及び正極合剤層40から構成され、負極80は、負極集電体20及び負極合剤層60から構成される。   FIG. 1 is a cross-sectional view of a lithium secondary battery according to an embodiment of the present invention. As shown in FIG. 1, the lithium secondary battery 100 of the present invention includes a positive electrode 70, a negative electrode 80, a battery case 30, and a solid electrolyte layer 50. The positive electrode 70 is composed of the positive electrode current collector 10 and the positive electrode mixture layer 40, and the negative electrode 80 is composed of the negative electrode current collector 20 and the negative electrode mixture layer 60.

図1は、一組の正極、固体電解質、負極からなる全固体リチウム電池の断面図であるが、一つの集電箔の両面に正極および負極活物質層を配置した構成のバイポーラ構造とすることもできる。   FIG. 1 is a cross-sectional view of an all-solid lithium battery comprising a pair of positive electrode, solid electrolyte, and negative electrode. A bipolar structure having a structure in which a positive electrode and a negative electrode active material layer are disposed on both surfaces of a current collector foil. You can also.

図2にバイポーラ電池の断面図を示す。本発明のバイポーラ電池200は、正極合材層40、負極合材層60、電池ケース30及び固体電解質層50を複数層含む。図中の200のうち最外の正極合材層40および負極合材層60は、正極集電体10および負極集電体と接続される。また、電池ケース内で隣り合う正極合材層40および負極合材層60の間には集電体としてのインターコネクター90が配置される。また、図3及び4は、図1および2に示した、本発明の一実施形態に係るリチウム二次電池の要部の断面図である。
<正極集電体>
正極集電体10は、正極合剤層40に電気的に接続されている。正極集電体10としては、厚さが10μm〜100μmの金属箔を用いることができる。材質としてはリチウムと合金を形成せず、かつ、正極の作動電位(>2.5V)でも酸化されない金属であることが望ましい。具体例としては、白金、金、インジウムなどの貴金属やアルミニウム、チタン、ステンレス、ニッケル等を挙げることができる。この中でもアルミニウムは軽量であること、他に比べて低コストであること、耐久性に優れるといった利点を有する。
FIG. 2 shows a sectional view of the bipolar battery. The bipolar battery 200 of the present invention includes a plurality of positive electrode mixture layers 40, negative electrode mixture layers 60, a battery case 30, and a solid electrolyte layer 50. Outermost positive electrode mixture layer 40 and negative electrode mixture layer 60 of 200 in the figure are connected to positive electrode current collector 10 and negative electrode current collector. An interconnector 90 as a current collector is disposed between the positive electrode mixture layer 40 and the negative electrode mixture layer 60 that are adjacent to each other in the battery case. 3 and 4 are cross-sectional views of the main part of the lithium secondary battery shown in FIGS. 1 and 2 according to an embodiment of the present invention.
<Positive electrode current collector>
The positive electrode current collector 10 is electrically connected to the positive electrode mixture layer 40. As the positive electrode current collector 10, a metal foil having a thickness of 10 μm to 100 μm can be used. The material is preferably a metal that does not form an alloy with lithium and is not oxidized even at the positive electrode operating potential (> 2.5 V). Specific examples include noble metals such as platinum, gold, and indium, aluminum, titanium, stainless steel, nickel, and the like. Among these, aluminum has advantages such as light weight, low cost, and excellent durability.

正極集電体の形状は平坦な薄膜形状の他に、多孔形状であることが望ましい。例えば、貫通孔を有する穿孔箔やエキスパンドメタル、又は発泡金属板、金属繊維焼結体を挙げることができる。また、これら箔、板材の表面を適切な手法でエッチングし、表面粗化したものも含む。このような孔の中に電極材料が充填された構成とすることで、電池抵抗が低く、充放電サイクルに対して電池容量が低下しない電池を得ることができる。   The positive electrode current collector preferably has a porous shape in addition to a flat thin film shape. For example, a perforated foil or an expanded metal having a through hole, a foamed metal plate, or a metal fiber sintered body can be used. Moreover, the surface of these foils and plate materials is etched by an appropriate technique to roughen the surface. By adopting a structure in which such a hole is filled with an electrode material, it is possible to obtain a battery having a low battery resistance and a battery capacity that does not decrease with respect to a charge / discharge cycle.

穿孔箔としては、金属箔に対し適切なマスクを施した後、物理的・化学的エッチングを行うことで貫通孔を形成させる。   As the perforated foil, an appropriate mask is applied to the metal foil, and then through holes are formed by performing physical and chemical etching.

発泡金属板としては、アルミニウムやニッケル、ステンレス(SUS304、316など)、チタンを主成分とする発泡金属板を挙げることができる。特に板垂直方向での孔の連続性をもった、海綿状の多孔体が望ましい。市販されている発泡金属板としては、住友電工(株)のセルメット(R)(ニッケル、ニッケル―クロム合金)や三菱マテリアル(株)の発泡アルミ多孔体、ERG Materials and Aerospace社のアルミファームなどを挙げることができる。   Examples of the foam metal plate include a metal foam plate mainly composed of aluminum, nickel, stainless steel (SUS304, 316, etc.) or titanium. In particular, a sponge-like porous body having pore continuity in the plate vertical direction is desirable. Commercially available foam metal plates include Sumitomo Electric's Celmet (R) (nickel, nickel-chromium alloy), foamed aluminum porous body of Mitsubishi Materials, and ERG Materials and Aerospace's aluminum farm. Can be mentioned.

金属繊維焼結体としては、アルミニウムやニッケル、ステンレス(SUS304、316など)、チタンを主成分とする金属繊維を加熱により焼結させシート化したものを挙げることができる。市販例としては、(株)UACJのアルミ繊維焼結シート「フルポーラス」などを挙げることができる。   Examples of the metal fiber sintered body include aluminum, nickel, stainless steel (SUS304, 316, etc.), and a metal fiber mainly composed of titanium sintered by heating to form a sheet. Commercially available examples include UACJ's aluminum fiber sintered sheet “Full Porous”.

適切な孔の大きさとしては電極活物質が侵入できる大きさであればよく、具体的には10μmから1000μm、さらに望ましくは10μmから100μmを挙げることができる。これよりも小さい場合は、活物質を構内に侵入させることが難しく、高抵抗となる。また、これよりも大きい場合は電極内の電気伝導体の存在比が低くなるため電池抵抗が高くなり、また、充放電に伴うサイクル低下が顕著となりやすい。   An appropriate hole size may be any size as long as the electrode active material can penetrate, and specifically, 10 μm to 1000 μm, and more preferably 10 μm to 100 μm. If it is smaller than this, it is difficult for the active material to enter the premises, resulting in high resistance. On the other hand, when the ratio is larger than this, the abundance ratio of the electric conductor in the electrode is lowered, so that the battery resistance is increased, and the cycle reduction due to charge / discharge tends to be remarkable.

金属箔の空孔率(金属箔体積に対する空孔体積の比率)は10%から90%であることが望ましい。さらにのぞましくは50%から90%となる。前述の空孔率が低いと、電池内での活物質体積分率が低くなり、エネルギー密度が低下する。多孔度が高すぎると、集電箔の機械的強度が弱まり、電池使用中に電池内で破壊が進みサイクル特性が悪化する。尚、穿孔箔やパンチングメタルの場合、空孔率は開口率と同義とみなせる。
<負極集電体>
負極集電体20は、負極合剤層60に電気的に接続されている。負極集電体20としては、厚さが10μm〜100μmの金属箔を用いることができる。材質としてはリチウムと合金を形成せず、かつ、負極の作動電位(<2.5V対Li/Li)でも還元されない金属であることが望ましい。具体例としては、金、インジウムなどの貴金属や銅、チタン、ニッケル等を挙げることができる。この中でも銅は軽量であること、他に比べて低コストであること、耐久性に優れるといった利点を有する。
It is desirable that the porosity of the metal foil (ratio of the pore volume to the metal foil volume) is 10% to 90%. Furthermore, it is 50% to 90%. When the above-mentioned porosity is low, the active material volume fraction in the battery is lowered and the energy density is lowered. If the porosity is too high, the mechanical strength of the current collector foil is weakened, and the breakage progresses in the battery during use of the battery, so that the cycle characteristics deteriorate. In the case of perforated foil or punching metal, the porosity can be regarded as synonymous with the aperture ratio.
<Negative electrode current collector>
The negative electrode current collector 20 is electrically connected to the negative electrode mixture layer 60. As the negative electrode current collector 20, a metal foil having a thickness of 10 μm to 100 μm can be used. The material is preferably a metal that does not form an alloy with lithium and is not reduced even by the negative electrode operating potential (<2.5 V vs. Li / Li + ). Specific examples include noble metals such as gold and indium, copper, titanium, nickel and the like. Among these, copper has advantages such as light weight, low cost compared to others, and excellent durability.

負極集電体の形状は正極集電体と同様に、平坦な薄膜形状の他に、多孔形状であることが望ましい。例えば、貫通孔を有する穿孔箔やエキスパンドメタル、又は発泡金属板を挙げることができる。また、これら箔、板材の表面を適切な手法でエッチングし、表面粗化したものも含む。このような孔の中に電極材料が充填された構成とすることで、電池抵抗が低く、充放電サイクルに対して電池容量が低下しない電池を得ることができる。   The shape of the negative electrode current collector is desirably a porous shape in addition to a flat thin film shape, similarly to the positive electrode current collector. For example, a perforated foil having a through hole, an expanded metal, or a foamed metal plate can be used. Moreover, the surface of these foils and plate materials is etched by an appropriate technique to roughen the surface. By adopting a structure in which such a hole is filled with an electrode material, it is possible to obtain a battery having a low battery resistance and a battery capacity that does not decrease with respect to a charge / discharge cycle.

適切な孔の大きさとしては電極活物質が侵入できる大きさであればよく、具体的には10μmから1000μm、さらに望ましくは10μmから100μmを挙げることができる。これよりも小さい場合は、活物質を構内に侵入させることが難しく、高抵抗となる。また、これよりも大きい場合は電極内の電気伝導体の存在比が低くなるため電池抵抗が高くなり、また、充放電に伴うサイクル低下が顕著となりやすい。   An appropriate hole size may be any size as long as the electrode active material can penetrate, and specifically, 10 μm to 1000 μm, and more preferably 10 μm to 100 μm. If it is smaller than this, it is difficult for the active material to enter the premises, resulting in high resistance. On the other hand, when the ratio is larger than this, the abundance ratio of the electric conductor in the electrode is lowered, so that the battery resistance is increased, and the cycle reduction due to charge / discharge tends to be remarkable.

金属箔の空孔率は10%から90%であることが望ましい。さらにのぞましくは50%から90%となる。空孔率が低いと、電池内での活物質体積分率が低くなり、エネルギー密度が低下する。空孔率が高すぎると、集電箔の機械的強度が弱まり、電池使用中に電池内で破壊が進みサイクル特性が悪化する。尚、穿孔箔やパンチングメタルの場合、空孔率は開口率と同義とみなせる。
<電池ケース>
電池ケース30は、正極集電体10、負極集電体20、正極合剤層40、固体電解質層50、及び負極合剤層60、インターコネクター90を収容する。電池ケース30の形状は、正極合剤層40、固体電解質層50、負極合剤層60で構成される電極群の形状に合わせて、円筒形、偏平長円形状、扁平楕円形状、角形等の形状から適宜選択することができる。電池ケース30の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等、非水電解質に対し耐食性のある材料から選択することができる。
<正極合剤層>
正極合剤層40は、正極活物質粒子42、任意に含み得る正極導電剤43、任意に含み得る固体電解質粒子44、任意に含み得る正極バインダを有する。
The porosity of the metal foil is preferably 10% to 90%. Furthermore, it is 50% to 90%. When the porosity is low, the active material volume fraction in the battery is lowered, and the energy density is lowered. When the porosity is too high, the mechanical strength of the current collector foil is weakened, and the breakage progresses in the battery during use of the battery, so that the cycle characteristics deteriorate. In the case of perforated foil or punching metal, the porosity can be regarded as synonymous with the aperture ratio.
<Battery case>
The battery case 30 houses the positive electrode current collector 10, the negative electrode current collector 20, the positive electrode mixture layer 40, the solid electrolyte layer 50, the negative electrode mixture layer 60, and the interconnector 90. The battery case 30 has a cylindrical shape, a flat oval shape, a flat elliptical shape, a square shape, or the like according to the shape of the electrode group composed of the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. The shape can be appropriately selected. The material of the battery case 30 can be selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel.
<Positive electrode mixture layer>
The positive electrode mixture layer 40 includes positive electrode active material particles 42, a positive electrode conductive agent 43 that can optionally be included, solid electrolyte particles 44 that can optionally be included, and a positive electrode binder that can be optionally included.

正極活物質粒子42としては、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2−x(ただし、MはCo、Ni、Fe、Cr、Zn及びTiからなる群から選択される少なくとも1種であり、x=0.01〜0.2である)、LiMnMO(ただし、MはFe、Co、Ni、Cμ及びZnからなる群から選択される少なくとも1種である)、Li1−xMn(ただし、AはMg、B、Al、Fe、Co、Ni、Cr、Zn及びCaからなる群から選択される少なくとも1種であり、x=0.01〜0.1である)、LiNi1−x(ただし、MはCo、Fe及びGaからなる群から選択される少なくとも1種であり、x=0.01〜0.2である)、LiFeO、Fe(SO、LiCo1−x(ただし、MはNi、Fe及びMnからなる群から選択される少なくとも1種であり、x=0.01〜0.2である)、LiNi1−x(ただし、MはMn、Fe、Co、Al、Ga、Ca及びMgからなる群から選択される少なくとも1種であり、x=0.01〜0.2である)、Fe(MoO、FeF、LiFePO、LiMnPO等が挙げられる。上記のいずれかの材料を単独で又は二種以上を混合して含んでいても良い。正極活物質粒子42は、充電過程においてリチウムイオンが脱離し、放電過程において、負極合剤層60中の負極活物質粒子から脱離したリチウムイオンが挿入される。 As the positive electrode active material particles 42, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x M x O 2 (where M is At least one selected from the group consisting of Co, Ni, Fe, Cr, Zn and Ti, and x = 0.01 to 0.2), Li 2 Mn 3 MO 8 (where M is Fe, Li 1-x A x Mn 2 O 4 (where A is Mg, B, Al, Fe, Co, Ni, Cr, at least one selected from the group consisting of Co, Ni, Cμ and Zn) It is at least one selected from the group consisting of Zn and Ca, and x = 0.01 to 0.1), LiNi 1-x M x O 2 (where M is a group consisting of Co, Fe and Ga) Selected from That is at least one, and x = 0.01~0.2), LiFeO 2, Fe 2 (SO 4) 3, LiCo 1-x M x O 2 ( however, M is Ni, Fe and Mn At least one selected from the group consisting of x = 0.01 to 0.2), LiNi 1-x M x O 2 (where M is Mn, Fe, Co, Al, Ga, Ca and And at least one selected from the group consisting of Mg, x = 0.01 to 0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4 and the like. Any of the above materials may be contained alone or in admixture of two or more. In the positive electrode active material particles 42, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material particles in the negative electrode mixture layer 60 are inserted in the discharging process.

正極活物質粒子42の粒径は、正極合剤層40の厚さ以下になるように通常は規定される。正極活物質粒子として正極合剤層40の厚さ以上のサイズを有する粗粒を含む場合、予めふるい分級や風流分級等により粗粒を除去し、正極合剤層40の厚さ以下の正極活物質粒子を調製することが好ましい。   The particle diameter of the positive electrode active material particles 42 is normally defined so as to be equal to or less than the thickness of the positive electrode mixture layer 40. When the positive electrode active material particles include coarse particles having a size equal to or larger than the thickness of the positive electrode mixture layer 40, the coarse particles are removed in advance by sieving classification or wind classification, and the positive electrode active material having a thickness equal to or less than the thickness of the positive electrode mixture layer 40. It is preferable to prepare substance particles.

また、正極活物質粒子42は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための正極導電剤43を利用する。正極導電剤43としては、アセチレンブラック、カ−ボンブラック、黒鉛、非晶質炭素等の炭素材料等が挙げられる。あるいは、インジウム・スズ酸化物(ITO)やアンチモン・スズ酸化物(ATO)等の電子伝導性を示す酸化物粒子を用いることもできる。   Further, since the positive electrode active material particles 42 are generally oxide-based and have high electric resistance, a positive electrode conductive agent 43 for supplementing electric conductivity is used. Examples of the positive electrode conductive agent 43 include carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon. Alternatively, oxide particles exhibiting electronic conductivity such as indium tin oxide (ITO) and antimony tin oxide (ATO) can be used.

正極活物質粒子42及び正極導電剤43はともに通常は粉末であるので、後述するようなLi伝導性を有する酸化物充填剤46を充填させない場合は、粉末に結着能力のあるバインダを混合して、粉末同士を結合させると同時に正極集電体10へ接着させることが好ましい。正極バインダとしては、スチレン−ブタジエンゴム、カルボキシメチルセルロ−ス、ポリフッ化ビニリデン(PVDF)及びこれらの混合物等が挙げられる。   Since both the positive electrode active material particles 42 and the positive electrode conductive agent 43 are usually powders, when not filling an oxide filler 46 having Li conductivity as described later, a binder having a binding ability is mixed with the powder. Thus, it is preferable that the powders are bonded to the positive electrode current collector 10 at the same time. Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.

一方、電極内での電子伝導、イオン伝導、集電体10やインターコネクター90との接合性を高めることを目的に、電極内のLi伝導性充填剤46として潮解性を有するLi含有酸化物を用いることができる。潮解性を有するLi含有酸化物は、電池反応を担うキャリアであるイオンを伝導させ、かつ、潮解性を有する充填剤である。なお、本発明において、潮解性を有するとは、大気中において常温(5℃以上35℃以下)で潮解する性質を有していることを意味する。水を含んだ溶媒に、潮解性を有するLi含有酸化物を溶かしてスラリー化し、正極、負極及び固体電解質層の少なくとも1つの製造に用いることによって、電極あるいは固体電解質層を構成する活物質粒子及び/又は固体電解質粒子の間の空隙にLi含有酸化物が高密度で充填されたマトリックス状の構造を形成することが可能となる。そして、このLi含有酸化物からなるLi伝導性充填剤を高密度で充填させることによって、Li伝導経路が増大し、電池内の抵抗を低減させることができる。また、正極集電体10に対し、潮解したLi含有酸化物が接着剤として機能することで正極合材層40との密着性が増し、電池内の抵抗を下げることができる。   On the other hand, a Li-containing oxide having deliquescence is used as the Li conductive filler 46 in the electrode for the purpose of enhancing electron conduction, ion conduction in the electrode, and the bonding property with the current collector 10 and the interconnector 90. Can be used. The Li-containing oxide having deliquescence is a filler that conducts ions that are carriers responsible for the battery reaction and has deliquescence. In the present invention, having deliquescence means having the property of deliquescence at normal temperature (5 ° C. or more and 35 ° C. or less) in the atmosphere. An active material particle constituting the electrode or the solid electrolyte layer is obtained by dissolving a Li-containing oxide having deliquescence in a solvent containing water to form a slurry and using it in the production of at least one of a positive electrode, a negative electrode and a solid electrolyte layer, and It becomes possible to form a matrix-like structure in which the voids between the solid electrolyte particles are filled with the Li-containing oxide with a high density. Then, by filling the Li conductive filler composed of this Li-containing oxide at a high density, the Li conduction path is increased, and the resistance in the battery can be reduced. Moreover, since the deliquescent Li-containing oxide functions as an adhesive with respect to the positive electrode current collector 10, the adhesion with the positive electrode mixture layer 40 is increased, and the resistance in the battery can be lowered.

また、貫通孔を有する集電材料を用いた場合でも、容易に変形可能な潮解したLi含有酸化物の存在のため、貫通孔内に緻密に活物質や充填剤を配置させることができる。その結果、図5に示したように貫通孔を有する集電箔の孔内に活物質および充填剤を配置させることができる。図5では、貫通孔を有する金属箔11内に正極活物質粒子42、任意に含み得る正極導電剤43、任意に含み得る固体電解質粒子44、潮解性を有するLi含有酸化物46が充填されている。また、図5では貫通孔を有する金属箔11と正極集電箔10がLi含有酸化物46で接合された構成を示している。以上の構成とすることで、集電箔と正極との密着性が高まるだけでなく、貫通孔を有する金属箔11内に充填された活物質への電子およびリチウムの供給がスムーズになり、抵抗が低減可能となる。また、充放電時の活物質膨張・収縮に対する電極全体の膨張・収縮が抑制され、構造崩壊によるサイクル劣化が抑制可能となる。尚、図中では貫通孔内のみに正極材料が充填されているが、貫通孔から固体電解質層50側および正極集電箔10側に電極材料が漏れ出た構成となっていても効果は得られる。加えて、固体電解質層50の一部が貫通孔内部に侵入していてもよい。また、図中では貫通孔は膜に対して垂直方向に形成されているが、箔垂直方向に対して傾斜して形成されたり、箔内で孔が分岐し、近くの別の貫通孔と接続されていてもよい。また、貫通孔表面に凹凸があり、比表面積を増大させてもよい。   Further, even when a current collecting material having a through hole is used, an active material or a filler can be densely arranged in the through hole due to the presence of a deliquescent Li-containing oxide that can be easily deformed. As a result, the active material and the filler can be disposed in the holes of the current collector foil having through holes as shown in FIG. In FIG. 5, the metal foil 11 having a through hole is filled with positive electrode active material particles 42, an optional positive electrode conductive agent 43, an optional solid electrolyte particle 44, and a Li-containing oxide 46 having deliquescence. Yes. FIG. 5 shows a configuration in which the metal foil 11 having a through hole and the positive electrode current collector foil 10 are joined by a Li-containing oxide 46. With the above configuration, not only the adhesion between the current collector foil and the positive electrode is increased, but also the supply of electrons and lithium to the active material filled in the metal foil 11 having the through holes is smoothed, and the resistance Can be reduced. Further, expansion / contraction of the entire electrode with respect to expansion / contraction of the active material during charge / discharge is suppressed, and cycle deterioration due to structural collapse can be suppressed. In the figure, the positive electrode material is filled only in the through hole, but the effect is obtained even when the electrode material leaks from the through hole to the solid electrolyte layer 50 side and the positive electrode current collector foil 10 side. It is done. In addition, a part of the solid electrolyte layer 50 may enter the through hole. In the figure, the through-hole is formed in the direction perpendicular to the film, but it is inclined with respect to the vertical direction of the foil, or the hole is branched in the foil and connected to another nearby through-hole. May be. Further, the surface of the through hole may be uneven, and the specific surface area may be increased.

潮解性を有するLi含有酸化物としては、具体的には、メタバナジン酸リチウム(LiVO)あるいはこれを含むリチウム−バナジウム酸化物を挙げることができる。潮解性Li伝導性充填剤4のイオン伝導度は、1×10−9S/cm以上であることが好ましく、1×10−7S/cm以上であることがより好ましい。イオン伝導度が1×10−9S/cm以上であれば、活物質粒子−活物質粒子間や、活物質粒子と固体電解質粒子間のイオン伝導性を有意に向上させることができ、リチウム二次電池における内部抵抗を良好に低減し、より高い放電容量を確保することが可能である。なお、このイオン伝導度は、25℃における値である。 Specific examples of the Li-containing oxide having deliquescence include lithium metavanadate (LiVO 3 ) and lithium-vanadium oxide containing the same. The ionic conductivity of the deliquescent Li conductive filler 4 is preferably 1 × 10 −9 S / cm or more, and more preferably 1 × 10 −7 S / cm or more. If the ionic conductivity is 1 × 10 −9 S / cm or more, the ionic conductivity between the active material particles and the active material particles or between the active material particles and the solid electrolyte particles can be significantly improved. It is possible to satisfactorily reduce the internal resistance of the secondary battery and ensure a higher discharge capacity. In addition, this ionic conductivity is a value in 25 degreeC.

正極活物質粒子42、正極導電剤43、Li伝導性充填剤46及び水を微量含んだ有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって正極集電体10へ付着させた後、溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の正極合剤層40を正極集電体10に積層化させることも可能である。また、図5のように貫通孔に正極構成材料を充填するには、貫通孔を有する集電箔11に直接塗布あるいは、別のシート状に塗布した正極スラリー上に貫通孔を有する集電箔11を配置し、含浸させることができる。この際、減圧乾燥させることで孔内への充填状態が改善し、より高エネルギー密度、低抵抗の電池を得ることができる。
<負極合剤層>
本発明に係る負極としては、リチウム箔およびLi合金箔からなる金属負極層と活物質粒子からなる負極合剤層60の双方を選択して用いることができる。
A positive electrode slurry in which a positive electrode active material particle 42, a positive electrode conductive agent 43, a Li conductive filler 46 and an organic solvent containing a trace amount of water are mixed is attached to the positive electrode current collector 10 by a doctor blade method, a dipping method, a spray method, or the like. Then, the positive electrode can be produced by drying the solvent and press-molding with a roll press. In addition, a plurality of positive electrode mixture layers 40 can be laminated on the positive electrode current collector 10 by performing a plurality of times from application to drying. Further, in order to fill the through hole with the positive electrode constituent material as shown in FIG. 5, the current collector foil having the through hole directly applied to the current collector foil 11 having the through hole or on the positive electrode slurry applied in the form of another sheet. 11 can be placed and impregnated. At this time, by drying under reduced pressure, the filling state in the hole is improved, and a battery having a higher energy density and a lower resistance can be obtained.
<Negative electrode mixture layer>
As the negative electrode according to the present invention, both a metal negative electrode layer made of lithium foil and Li alloy foil and a negative electrode mixture layer 60 made of active material particles can be selected and used.

負極合剤層60は、負極活物質粒子62、任意に含み得る負極導電剤63、任意に含み得る固体電解質粒子64、任意に含み得る負極バインダを有する。   The negative electrode mixture layer 60 includes negative electrode active material particles 62, a negative electrode conductive agent 63 that can optionally be included, solid electrolyte particles 64 that can optionally be included, and a negative electrode binder that can be optionally included.

負極活物質粒子62としては、リチウムイオンを可逆的に挿入脱離可能な炭素材料、シリコン系材料であるSi、SiO、一部の元素が置換され又は置換されていないチタン酸リチウム、リチウムバナジウム複合酸化物、リチウムとスズ、アルミニウム、アンチモン等の金属との合金等が用いられる。炭素材料としては、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、難黒鉛化炭素材等が挙げられる。負極活物質粒子62として、上記のいずれか一種の材料を単独で又は二種以上を混合して用いても良い。負極活物質粒子62は、充放電過程において、リチウムイオンの挿入脱離反応もしくはコンバージョン反応が進行する。   As the negative electrode active material particles 62, a carbon material capable of reversibly inserting and desorbing lithium ions, Si and SiO which are silicon-based materials, lithium titanate in which some elements are substituted or not substituted, and lithium vanadium composite An oxide, an alloy of lithium and a metal such as tin, aluminum, antimony, or the like is used. The carbon material is made of natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal. Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing. As the negative electrode active material particles 62, any one of the above materials may be used alone or in admixture of two or more. The negative electrode active material particles 62 undergo lithium ion insertion / desorption reaction or conversion reaction during the charge / discharge process.

負極活物質粒子62の粒径は、負極合剤層60の厚さ以下になるように通常は規定される。負極活物質粒子62が負極合剤層60の厚さ以上のサイズを有する粗粒を含む場合、予めふるい分級や風流分級等により粗粒を除去し、負極合剤層60の厚さ以下の粒子を調製することが好ましい。   The particle size of the negative electrode active material particles 62 is normally defined so as to be equal to or less than the thickness of the negative electrode mixture layer 60. When the negative electrode active material particles 62 include coarse particles having a size equal to or larger than the thickness of the negative electrode mixture layer 60, the coarse particles are removed in advance by sieving classification, wind classification, or the like, and particles having a thickness of the negative electrode mixture layer 60 or less. Is preferably prepared.

負極導電剤63としては、アセチレンブラック、カーボンブラック、黒鉛、非晶質炭素等の炭素材料等が挙げられる。   Examples of the negative electrode conductive agent 63 include carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon.

負極活物質粒子62及び負極導電剤63はともに通常は粉末であるので、前述のLi伝導性充填剤46を充填させない場合は、粉末に結着能力のあるバインダを混合して、粉末同士を結合させると同時に負極集電体20へ接着させることが好ましい。負極バインダとしては、スチレン−ブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン(PVDF)及びこれらの混合物等が挙げられる。   Since both the negative electrode active material particles 62 and the negative electrode conductive agent 63 are usually powders, when the above-described Li conductive filler 46 is not filled, a binder having a binding ability is mixed with the powders to bond the powders together. At the same time, it is preferably adhered to the negative electrode current collector 20. Examples of the negative electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.

一方、電極内での電子伝導、イオン伝導、集電体20との接合性を高めることを目的に、正極と同様に電極内のLi伝導性充填剤46として潮解性を有するLi含有酸化物を用いることができる。負極に用いることのできる潮解性を有するLi含有酸化物としては、正極同様にメタバナジン酸リチウム(LiVO)あるいはこれを含むリチウム−バナジウム酸化物を挙げることができる。 On the other hand, for the purpose of enhancing electron conduction, ion conduction, and bonding property with the current collector 20 in the electrode, a Li-containing oxide having deliquescence is used as the Li conductive filler 46 in the electrode as in the positive electrode. Can be used. As the Li-containing oxide having deliquescence that can be used for the negative electrode, lithium metavanadate (LiVO 3 ) or a lithium-vanadium oxide containing the same can be used as in the positive electrode.

ただし、本発明においては、必ずしも負極に潮解性のLi伝導性充填剤を適用する必要はなく、正極に潮解性のLi伝導性充填剤を用いている場合は、他の充填剤を用いても効果は得られる。他の充填剤の候補としては、Li伝導性の高分子電解質フィルムを用いることもできる。この場合、その材料としてポリエチレンオキシド(PEO)やポリエリレンカーボネート(PEC)等のエーテルおよびカルボニル結合含有高分子化合物を用いることができる。高分子内にLiPF、LiBF、LiFSI、LiTFSI等のLi塩を固溶させて用いることができる。また、LiBHをベースとするLi伝導性水素化物材料を用いることも可能である。 However, in the present invention, it is not always necessary to apply a deliquescent Li conductive filler to the negative electrode, and when a deliquescent Li conductive filler is used for the positive electrode, other fillers may be used. The effect is obtained. As another filler candidate, a Li conductive polymer electrolyte film can also be used. In this case, ether and carbonyl bond-containing polymer compounds such as polyethylene oxide (PEO) and polyerylene carbonate (PEC) can be used as the material. Li salts such as LiPF 6 , LiBF 4 , LiFSI, and LiTFSI can be used as a solid solution in the polymer. It is also possible to use a Li conductive hydride material based on LiBH 4 .

負極活物質粒子62、負極導電剤63、Li伝導性充填剤46及び水を微量含んだ有機溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって負極集電体20およびインターコネクター90の負極面へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、負極を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の負極合剤層60を負極集電体20およびインターコネクター90に積層化させることも可能である。
<固体電解質層>
図3及び図4に示されているように、固体電解質層50は、固体電解質粒子52及び必要に応じて固体電解質粒子52を結着するためのバインダを有する。あるいは、固体電解質層50としてLi伝導性を有する高分子電解質フィルムを用いることもできる。
A negative electrode slurry obtained by mixing a negative electrode active material particle 62, a negative electrode conductive agent 63, a Li conductive filler 46, and an organic solvent containing a small amount of water is mixed with the negative electrode current collector 20 and the interferometer by a doctor blade method, a dipping method, a spray method, or the like. After making it adhere to the negative electrode surface of the connector 90, an organic solvent is dried, and a negative electrode can be produced by press-molding with a roll press. In addition, a plurality of negative electrode mixture layers 60 can be laminated on the negative electrode current collector 20 and the interconnector 90 by performing a plurality of times from application to drying.
<Solid electrolyte layer>
As shown in FIGS. 3 and 4, the solid electrolyte layer 50 includes solid electrolyte particles 52 and a binder for binding the solid electrolyte particles 52 as necessary. Alternatively, a polymer electrolyte film having Li conductivity can be used as the solid electrolyte layer 50.

固体電解質層50の層厚は、1μm〜1mmであることが好ましい。イオン伝導性と強度の観点から10μm〜50μm、特に10μm〜30μmとすることが好ましい。層厚が1μmより小さい場合、強度を十分保つことができない。また、層厚が1mmを超える場合、イオンの伝導抵抗が高くなり、電池内のエネルギー密度が低下する。   The layer thickness of the solid electrolyte layer 50 is preferably 1 μm to 1 mm. From the viewpoint of ion conductivity and strength, it is preferably 10 μm to 50 μm, particularly preferably 10 μm to 30 μm. When the layer thickness is smaller than 1 μm, the strength cannot be sufficiently maintained. On the other hand, when the layer thickness exceeds 1 mm, the ion conduction resistance increases, and the energy density in the battery decreases.

固体電解質層50は、正極70、負極80間にシート状に設けられる。電極との接触面積を増大させるため、表面に人工的に形成された1μm〜100μmのサイズの凹凸を設けることが好ましい。   The solid electrolyte layer 50 is provided in a sheet shape between the positive electrode 70 and the negative electrode 80. In order to increase the contact area with the electrode, it is preferable to provide unevenness with a size of 1 μm to 100 μm artificially formed on the surface.

固定電解質層50の表面粗さは、算術平均粗さRaが0.1μm〜5μmであることが好ましい。電極との密着性の観点から粗さは大きい方が好ましい。粗さが0.1μmより小さい場合、電極との接合面積が小さく界面抵抗が増加する。   The surface roughness of the fixed electrolyte layer 50 is preferably an arithmetic average roughness Ra of 0.1 μm to 5 μm. A larger roughness is preferable from the viewpoint of adhesion to the electrode. When the roughness is smaller than 0.1 μm, the junction area with the electrode is small and the interface resistance is increased.

固体電解質粒子52としては、リチウムイオンを伝導する固体材料であれば特に限定はないが、安全性の観点から不燃性の無機固体電解質を含むことが望ましい。また、正極合剤層40内に任意に用いる固体電解質粒子44と負極合剤層60内に任意に用いる固体電解質粒子64も同様の材料を用いることができる。例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物、ガーネット型酸化物等の酸化物系固体電解質や、硫化物系固体電解質、βアルミナ等が挙げられる。ペロブスカイト型酸化物としては、例えば、LiLa1−aTiO等のように表されるLi−La−Ti系ペロブスカイト型酸化物、LiLa1−bTaO等のように表されるLi−La−Ta系ペロブスカイト型酸化物、LiLa1−cNbO等のように表されるLi−La−Nb系ペロブスカイト型酸化物等が挙げられる(前記式中、0<a<1、0<b<1、0<c<1である)。NASICON型酸化物としては、例えば、Li1+lAlTi2−l(PO等の結晶を主晶とするLi(前記式中、Xは、B、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeからなる群より選択される少なくとも1種の元素であり、Yは、Ti、Zr、Ge、In、Ga、Sn及びAlからなる群より選択される少なくとも1種の元素であり、0≦l≦1であり、m、n、o、p及びqは任意の正数である)で表される酸化物等が挙げられる。LISICON型酸化物としては、例えば、LiXO−LiYO(前記式中、Xは、Si、Ge、及びTiから選択される少なくとも1種の元素であり、Yは、P、As及びVから選択される少なくとも1種の元素である)で表される酸化物等が挙げられる。ガーネット型酸化物としては、例えば、LiLaZr12等のLi−La−Zr系酸化物等が挙げられる。硫化物系固体電解質としては、例えば、LiS−P、LiS−SiS、Li3.250.25Ge0.76、Li4−rGe1−r(式中、0≦r≦1である)、Li11、LiS−SiS−LiPO等が挙げられる。硫化物系固体電解質は、結晶性硫化物、非晶性硫化物のいずれであっても良い。これら固体電解質粒子は、いずれか一種を単独で用いても良く、複数種を組み合わせて用いても良い。 The solid electrolyte particle 52 is not particularly limited as long as it is a solid material that conducts lithium ions. However, it is desirable to include a nonflammable inorganic solid electrolyte from the viewpoint of safety. The same material can be used for the solid electrolyte particles 44 optionally used in the positive electrode mixture layer 40 and the solid electrolyte particles 64 optionally used in the negative electrode mixture layer 60. Examples thereof include oxide solid electrolytes such as perovskite oxides, NASICON oxides, LISICON oxides, and garnet oxides, sulfide solid electrolytes, and β alumina. Examples of the perovskite oxide include Li-La-Ti perovskite oxides such as Li a La 1-a TiO 3 and Li b La 1-b TaO 3. Li-La-Ta-based perovskite type oxide, in Li c La 1-c NbO 3 Li-La-Nb -based perovskite oxide represented as such, and the like (the above formula, 0 <a <1 , 0 <b <1, 0 <c <1). The NASICON-type oxide, for example, in Li m X n Y o P p O q ( Formula to ShuAkira the Li 1 + l Al l Ti 2 -l (PO 4) 3 or the like crystal, X is, B, It is at least one element selected from the group consisting of Al, Ga, In, C, Si, Ge, Sn, Sb, and Se, and Y is composed of Ti, Zr, Ge, In, Ga, Sn, and Al. And at least one element selected from the group, 0 ≦ l ≦ 1, and m, n, o, p, and q are arbitrary positive numbers). As the LISICON type oxide, for example, Li 4 XO 4 -Li 3 YO 4 (wherein X is at least one element selected from Si, Ge, and Ti, and Y is P, As And an oxide represented by at least one element selected from V). Examples of the garnet oxide include Li—La—Zr-based oxides such as Li 7 La 3 Zr 2 O 12 . Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 3.25 P 0.25 Ge 0.76 S 4 , and Li 4-r Ge 1-r P. Examples include r S 4 (where 0 ≦ r ≦ 1), Li 7 P 3 S 11 , Li 2 S—SiS 2 —Li 3 PO 4, and the like. The sulfide-based solid electrolyte may be either a crystalline sulfide or an amorphous sulfide. These solid electrolyte particles may be used alone or in combination of two or more.

固定電解質粒子52の粒径は、0.01μm〜10μmであることが好ましい。粒径が10μmを超える場合は粒子間に空隙が生じやすい。粒径が0.01μmより小さい場合、固体電解質層50を形成する工程において粒子の圧縮が困難となる場合がある。   The particle diameter of the fixed electrolyte particles 52 is preferably 0.01 μm to 10 μm. When the particle diameter exceeds 10 μm, voids are likely to occur between the particles. When the particle size is smaller than 0.01 μm, it may be difficult to compress the particles in the step of forming the solid electrolyte layer 50.

固体電解質粒子52のイオン伝導度は、1×10−6S/cm以上であることが好ましく、1×10−4S/cm以上であることがより好ましい。固体電解質粒子52のイオン伝導度が1×10−6S/cm以上であれば、後述のLi伝導性充填剤45との併用により電池内の抵抗を低く保つことができる。なお、このイオン伝導度は、25℃における値である。 The ionic conductivity of the solid electrolyte particles 52 is preferably 1 × 10 −6 S / cm or more, and more preferably 1 × 10 −4 S / cm or more. If the ionic conductivity of the solid electrolyte particles 52 is 1 × 10 −6 S / cm or more, the resistance in the battery can be kept low by the combined use with the Li conductive filler 45 described later. In addition, this ionic conductivity is a value in 25 degreeC.

固体電解質層50の空孔率は0〜10%であることが好ましい。イオン伝導度の観点からは、さらに0〜5%であることが好ましい。   The porosity of the solid electrolyte layer 50 is preferably 0 to 10%. From the viewpoint of ionic conductivity, it is preferably 0 to 5%.

また、固体電解質層50としてLi伝導性の高分子電解質フィルムを用いることもできる。この場合、その材料としてポリエチレンオキシド(PEO)等のエーテル結合含有高分子化合物を用いることができる。高分子内にLiPF、LiBF、LiFSI、LiTFSI等のLi塩を固溶させて用いることができる。 Further, a Li conductive polymer electrolyte film can be used as the solid electrolyte layer 50. In this case, an ether bond-containing polymer compound such as polyethylene oxide (PEO) can be used as the material. Li salts such as LiPF 6 , LiBF 4 , LiFSI, and LiTFSI can be used as a solid solution in the polymer.

また、固体電解質層50として前記の無機電解質と高分子電解質フィルムを積層させたものを使用しても本発明の効果は得られる。
<インターコネクター>
図2のバイポーラ電池において、隣り合う負極と正極の間に配置される集電材料であるインターコネクター90には、電子伝導性が高いこと、イオン伝導性がないこと、負極合剤層60と正極合剤層40に接触する面がそれぞれの電位によって酸化還元反応を示さないこと、などが挙げられる。インターコネクターに用いることにできる材料としては、前述の正極集電体10および負極集電体30に用いることのできる材料を含む。具体例としてはアルミニウム箔やSUS箔を挙げることができる。または、正極集電体10と負極集電体30とをクラッド成型および電子伝導性スラリーで貼り合わせることもできる。
In addition, the effect of the present invention can be obtained even when a solid electrolyte layer 50 in which the inorganic electrolyte and the polymer electrolyte film are laminated is used.
<Interconnector>
In the bipolar battery of FIG. 2, the interconnector 90, which is a current collecting material disposed between the adjacent negative electrode and positive electrode, has high electron conductivity, no ionic conductivity, the negative electrode mixture layer 60 and the positive electrode. For example, the surface in contact with the mixture layer 40 does not exhibit a redox reaction depending on the potential. Materials that can be used for the interconnector include materials that can be used for the positive electrode current collector 10 and the negative electrode current collector 30 described above. Specific examples include aluminum foil and SUS foil. Alternatively, the positive electrode current collector 10 and the negative electrode current collector 30 can be bonded together by cladding molding and electron conductive slurry.

図6(a)には、インターコネクターとして、貫通孔を有する集電箔11と負極集電体10とが潮解性のLi伝導性充填剤46とで接合した場合のバイポーラ電極の構成図を示す。また図6(b)には、貫通孔を有する正極集電箔11と負極集電箔21の間に金属箔を配置したバイポーラ電極の構成図を示す。これらバイポーラ電極を固体電解質層50と積層させることで、金属箔の貫通孔の中に電極材料が充填した構成のバイポーラ電池200を得ることができる。このバイポーラ電池は、低抵抗かつ高サイクル特性を示すことができる。   FIG. 6A shows a configuration diagram of a bipolar electrode as an interconnector when a current collector foil 11 having a through hole and a negative electrode current collector 10 are joined with a deliquescent Li conductive filler 46. . FIG. 6B is a configuration diagram of a bipolar electrode in which a metal foil is disposed between the positive electrode current collector foil 11 and the negative electrode current collector foil 21 having through holes. By laminating these bipolar electrodes with the solid electrolyte layer 50, it is possible to obtain the bipolar battery 200 having a configuration in which the electrode material is filled in the through holes of the metal foil. This bipolar battery can exhibit low resistance and high cycle characteristics.

ここで、図3から図6の構成を含むリチウム二次電池の製造方法の一例について説明するが、これ以外の方法でも作製できる。   Here, although an example of the manufacturing method of a lithium secondary battery including the structure of FIGS. 3-6 is demonstrated, it can produce also by methods other than this.

Li伝導性充填剤46として、溶媒に溶解させることによって軟化流動する材料を用いる場合は、i)少なくとも正極活物質粒子42とLi伝導性充填剤45の粉末とを混合する工程と、ii)Li伝導性充填剤が溶解する溶媒を添加し電極スラリーとする工程と、iii)正極集電体10あるいは貫通孔を有する正極集電体11上に電極スラリーを塗布する工程と、iv)加熱により溶媒を乾燥させて、金属箔と電極合剤層がメタバナジン酸リチウムで接合する工程を経て、本発明の全固体Li二次電池作製することができる。   When a material that softens and flows when dissolved in a solvent is used as the Li conductive filler 46, i) a step of mixing at least the positive electrode active material particles 42 and the powder of the Li conductive filler 45, and ii) Li A step of adding a solvent in which the conductive filler is dissolved to form an electrode slurry, iii) a step of applying the electrode slurry onto the positive electrode current collector 10 or the positive electrode current collector 11 having a through hole, and iv) a solvent by heating. The metal foil and the electrode mixture layer are bonded with lithium metavanadate, and the all-solid-state Li secondary battery of the present invention can be manufactured.

i)では、正極活物質粒子42とLi伝導性充填剤46の粉末を所定量で配合し、これをメノウ乳鉢やボールミルを用いて混合する。必要に応じて固体電解質粒子44や、正極導電剤43を加えても良い。ii)では、Li伝導性充填剤46を溶解しスラリー状とすることのできる溶媒を加える。前記の潮解性LiVO材料を用いる場合は、溶媒として水を含む極性溶媒を用いることができる。iii)では、正極集電体10あるいは貫通孔を有する正極集電体上に電極スラリーをブレードコーター法、スクリーン印刷法、ダイコーター法、スプレー塗布法等を用いて塗布し薄膜状に形成することができる。塗布後、必要に応じて塗膜をプレスすることができる。貫通孔を有する集電箔11の場合は、別シート状に塗膜したスラリー状に貫通孔を有する集電箔11を置き、含浸させることも可能である。iv)では、電極スラリーに用いた溶媒を除去可能な温度で加熱する。この加熱工程を減圧下で行うことで、電極がより緻密な構成を得ることができる。 In i), the positive electrode active material particles 42 and the Li conductive filler 46 powder are blended in a predetermined amount and mixed using an agate mortar or a ball mill. You may add the solid electrolyte particle 44 and the positive electrode electrically conductive agent 43 as needed. In ii), a solvent capable of dissolving the Li conductive filler 46 to form a slurry is added. In the case of using the deliquescent LiVO 3 material, a polar solvent containing water can be used as a solvent. In iii), an electrode slurry is applied on the positive electrode current collector 10 or the positive electrode current collector having a through hole by using a blade coater method, a screen printing method, a die coater method, a spray coating method, or the like to form a thin film. Can do. After application, the coating film can be pressed as necessary. In the case of the current collector foil 11 having a through hole, the current collector foil 11 having the through hole may be placed and impregnated in a slurry form coated on another sheet. In iv), heating is performed at a temperature at which the solvent used for the electrode slurry can be removed. By carrying out this heating step under reduced pressure, it is possible to obtain a more precise structure of the electrodes.

以上は、正極70を製造する方法について説明したが、この方法は負極80あるいは固体電解質層50を製造する場合にも同様に適用できる。   The method for manufacturing the positive electrode 70 has been described above, but this method can be similarly applied to the case of manufacturing the negative electrode 80 or the solid electrolyte layer 50.

本発明のリチウム二次電池であるか否かは、当該リチウム二次電池を解体し、その断面をSEMあるいはTEMにて観察し、さらにその組成をエネルギー分散型X線分析(EDX)、電子エネルギー損失分光法(EELS)等で分析することにより判別可能である。   Whether or not it is a lithium secondary battery of the present invention is determined by disassembling the lithium secondary battery, observing its cross section with SEM or TEM, and further analyzing its composition with energy dispersive X-ray analysis (EDX), electronic energy. This can be determined by analysis using loss spectroscopy (EELS) or the like.

以上のように、本発明では、負極層と正極層が固体電解質層を挟んでなる全固体リチウム電池であって、負極層と正極層の少なくとも一方が、リチウムを吸蔵・放出可能な活物質粒子とその粒子間に充填される潮解性を有するメタバナジン酸リチウムを含み、メタバナジン酸リチウムによって金属箔あるいは貫通孔を有する金属箔と接合されている構成とすることで、低抵抗、高サイクル特性のリチウム二次電池を得ることができる。   As described above, in the present invention, an all-solid lithium battery in which a negative electrode layer and a positive electrode layer sandwich a solid electrolyte layer, and at least one of the negative electrode layer and the positive electrode layer has active material particles capable of occluding and releasing lithium. And lithium metavanadate having deliquescence filled between the particles, and being joined to the metal foil or the metal foil having a through-hole by lithium metavanadate, lithium having low resistance and high cycle characteristics A secondary battery can be obtained.

本発明で得られるリチウム二次電池を、セルコントローラーや制御盤と接続し筐体で保護することによって、蓄電デバイスとして用いることができる。本発明により、より高い電流での充放電が可能となり、さらに、サイクルに伴う蓄電性能の低下を抑制できる。この蓄電デバイスは、自動車用電源として車体前面や底面に配置することができる。さらに、産業用電源として、電力需給バランス化のために使用可能である。
The lithium secondary battery obtained by the present invention can be used as an electricity storage device by being connected to a cell controller or a control panel and protected by a casing. According to the present invention, charging / discharging at a higher current is possible, and furthermore, a decrease in power storage performance accompanying a cycle can be suppressed. This power storage device can be disposed on the front or bottom of the vehicle body as a power source for automobiles. Furthermore, it can be used as an industrial power supply to balance power supply and demand.

以下、実施例及び比較例により本発明をさらに詳しく説明する。

(LiBO充填剤の合成)
比較例として用いる、熱溶融性のLiBO充填剤を合成した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

(Synthesis of Li 3 BO 3 filler)
A hot-melt Li 3 BO 3 filler used as a comparative example was synthesized.

炭酸リチウムLiCO11.41gと酸化ホウ素B3.58gとを配合し、ジルコニアボールを用いた遊星ボールミルで混合した。混合後、アルミナるつぼに混合粉を加え、600℃で24時間加熱処理した。得られた粉体の結晶構造をXRDで分析した結果、LiBOであることを確認した。これをLiBO充填剤とした。示唆熱分析(DTA)測定より融点を測定したところ、690℃であった。また、密度は2.4g/cmであった。

(LiVO充填剤の合成)
正極および負極に適用するLi伝導性充填剤としてメタバナジン酸リチウム(LiVO)を合成した。
Lithium carbonate Li 2 CO 3 11.41 g and boron oxide B 2 O 3 3.58 g were blended and mixed in a planetary ball mill using zirconia balls. After mixing, the mixed powder was added to the alumina crucible and heat-treated at 600 ° C. for 24 hours. As a result of analyzing the crystal structure of the obtained powder by XRD, it was confirmed to be Li 3 BO 3 . This was designated as Li 3 BO 3 fillers. It was 690 degreeC when melting | fusing point was measured from the suggestive thermal analysis (DTA) measurement. The density was 2.4 g / cm 3 .

(Synthesis of LiVO 3 filler)
Lithium metavanadate (LiVO 3 ) was synthesized as a Li conductive filler applied to the positive electrode and the negative electrode.

1.85gの炭酸リチウム(LiCO)と4.55gの五酸化二バナジウム(V)とを秤量して乳鉢に投入し、均一になるまで混合した。次いで、得られた混合物を、外径60mmのアルミナ製るつぼに入れ替え、ボックス型の電気炉で熱処理した。なお、この熱処理は、大気雰囲気において10℃/分の昇温速度で580℃まで昇温させた後、580℃で10時間保持する処理とした。そして、熱処理の後、混合物を100℃まで冷却し、潮解性のLi伝導性充填剤としてLiVOを得た。

(LiBOを含んだ固体電解質スラリーの作製)
平均粒径が1.5μmのLiLaZr12(豊島製作所、以下LLZO)0.85gに対し、LiBO充填剤を0.15g添加し、樹脂バインダとして5重量%のエチルセルロース溶液(溶媒:ブチルカルビトールアセテート)を0.5g添加して混合し、LiBO入りの固体電解質スラリーを作製した。

(LiVOを含んだ固体電解質スラリーの作製)
平均粒径が1.5μmのLLZO 0.85gに対し、LiVO充填剤を0.15g添加し、水-NMP混合溶液を計0.5g添加して混合し、固体電解質スラリーを作製した。
1.85 g of lithium carbonate (Li 2 CO 3 ) and 4.55 g of divanadium pentoxide (V 2 O 5 ) were weighed and put into a mortar and mixed until uniform. Subsequently, the obtained mixture was replaced with an alumina crucible having an outer diameter of 60 mm and heat-treated in a box-type electric furnace. In addition, this heat processing was set as the process hold | maintained at 580 degreeC for 10 hours, after making it heat up to 580 degreeC with the temperature increase rate of 10 degree-C / min in an atmospheric condition. After heat treatment, the mixture was cooled to 100 ° C., to obtain a LiVO 3 as deliquescent Li conductive filler.

(Preparation of solid electrolyte slurry containing Li 3 BO 3 )
0.15 g of Li 3 BO 3 filler is added to 0.85 g of Li 7 La 3 Zr 2 O 12 (Toshima Seisakusho, hereinafter referred to as LLZO) having an average particle size of 1.5 μm, and 5 wt% ethyl cellulose as a resin binder 0.5 g of a solution (solvent: butyl carbitol acetate) was added and mixed to prepare a solid electrolyte slurry containing Li 3 BO 3 .

(Preparation of solid electrolyte slurry containing LiVO 3 )
To 0.85 g of LLZO having an average particle size of 1.5 μm, 0.15 g of LiVO 3 filler was added, and a total of 0.5 g of a water-NMP mixed solution was added and mixed to prepare a solid electrolyte slurry.

(比較例1)
本比較例では、正極内のLi伝導性充填剤をLiBOとし、代表的な正極集電体であるアルミニウム箔上に正極合剤層を塗布した全固体リチウム二次電池を作製した。
(1−1)平均粒径が10μmのLiCoO粉末1.5gに対し、LiBO粉末を0.5g添加し、乳鉢にとりわけ、混合した後、5重量%のエチルセルロース溶液を1.5g加えて混練し、正極スラリーを調製した。
(1−2)混練した正極スラリーを10mm径のAl箔上にスクリーン塗布した。
(1−3)150℃で溶媒を乾燥させた後、ハンドプレスで冷間プレスした。
(1−4)試料をアルミナ板の上に載せ、エチルセルロース除去のために400℃で加熱した。冷却後、重量を測定した結果、塗布量は電極1cm当たりLiCoO重量として3 mg/cmであった。
(1−5)(1−4)で得た正極上に前記LiBOを含んだ固体電解質層を塗布した。その後(1−3)(1−4)と同様にし、固体電解質を緻密化した。マイクロメータで厚みを測定したところ10umの固体電解質層が形成されていることが分かった。
(1−6)上記(1−5)で得られた正極の側面を絶縁物でマスキングした。続いて、固体電解質層側にリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)、及び負極としてリチウム箔を積層し、これをCR2025型のコイン電池に組み込んだ。
(Comparative Example 1)
In this comparative example, the Li conductive filler in the positive electrode was Li 3 BO 3, and an all-solid lithium secondary battery in which a positive electrode mixture layer was applied on an aluminum foil, which is a typical positive electrode current collector, was produced.
(1-1) To 1.5 g of LiCoO 2 powder having an average particle diameter of 10 μm, 0.5 g of Li 3 BO 3 powder is added and mixed especially in a mortar, and then 1.5 g of 5 wt% ethylcellulose solution is mixed. In addition, the mixture was kneaded to prepare a positive electrode slurry.
(1-2) The kneaded positive electrode slurry was screen-coated on a 10 mm diameter Al foil.
(1-3) After drying the solvent at 150 ° C., it was cold-pressed with a hand press.
(1-4) The sample was placed on an alumina plate and heated at 400 ° C. to remove ethyl cellulose. As a result of measuring the weight after cooling, the coating amount was 3 mg / cm 2 as LiCoO 2 weight per 1 cm 2 of the electrode.
(1-5) The solid electrolyte layer containing Li 3 BO 3 was applied on the positive electrode obtained in (1-4). Thereafter, the solid electrolyte was densified in the same manner as (1-3) and (1-4). When the thickness was measured with a micrometer, it was found that a 10 μm solid electrolyte layer was formed.
(1-6) The side surface of the positive electrode obtained in (1-5) above was masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt on the solid electrolyte layer side, and lithium as a negative electrode The foil was laminated and incorporated into a CR2025 type coin battery.

(比較例2)
本比較例では、正極内のLi伝導性充填剤をLiBOとした比較例1に対して、正極合剤層をLiBOの融点である700℃で熱処理した全固体リチウム二次電池を作製した。
(2−1)比較例1において、正極スラリーを塗布したアルミニウム箔の熱処理温度を(1−3)(1−5)に示した400℃から700℃とした以外は全て比較例1と同様にして比較例2のリチウム二次電池を作製した。
(Comparative Example 2)
In this comparative example, in contrast to Comparative Example 1 in which the Li conductive filler in the positive electrode was Li 3 BO 3 , the positive electrode mixture layer was heat treated at 700 ° C. which is the melting point of Li 3 BO 3. A battery was produced.
(2-1) In Comparative Example 1, everything was the same as Comparative Example 1 except that the heat treatment temperature of the aluminum foil coated with the positive electrode slurry was changed from 400 ° C. to 700 ° C. shown in (1-3) (1-5). Thus, a lithium secondary battery of Comparative Example 2 was produced.

(実施例1)
本実施例では、正極内のLi伝導性充填剤をLiVOとしたリチウム二次電池を作製した。
(3−1)平均粒径が10μmのLiCoO粉末1.5gに対し、LiVO粉末を0.5g添加し、乳鉢にとりわけ、混合した後、LiVOを潮解させるために水を0.1g添加し、さらにN−メチル2−ピロリドンで粘度を調整し、潮解性の充填剤を含む正極スラリーを作製した。
(3−2)上記(3−1)で得た正極スラリーをアルミニウム箔の集電体上に塗布し、120℃、30分間の熱処理に供して水分を除去した後、断面積1cmの円板状に打ち抜き冷間プレスすることで正極を得た。冷却後、重量を測定した結果、塗布量は電極1cm当たりLiCoO重量として3 mg/cmであった。
(3−3)(3−2)で得た正極上に前記LiVOを含んだ固体電解質層を塗布した。その後(3−2)と同様にし、固体電解質を緻密化した。
(3−4)上記(3−3)で得た正極の側面を絶縁物でマスキングした。続いて、固体電解質層側にリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)、及び負極としてリチウム箔を積層し、これをCR2025型のコイン電池に組み込んだ。これを実施例1とした。
Example 1
In this example, a lithium secondary battery in which Li conductive filler in the positive electrode was LiVO 3 was produced.
(3-1) 0.5 g of LiVO 3 powder is added to 1.5 g of LiCoO 2 powder having an average particle diameter of 10 μm, and after mixing especially in a mortar, 0.1 g of water is used to deliquesce LiVO 3. Further, the viscosity was adjusted with N-methyl 2-pyrrolidone, and a positive electrode slurry containing a deliquescent filler was prepared.
(3-2) The positive electrode slurry obtained in (3-1) above was applied on an aluminum foil current collector, subjected to heat treatment at 120 ° C. for 30 minutes to remove moisture, and then a circle with a cross-sectional area of 1 cm 2 . A positive electrode was obtained by punching into a plate and cold pressing. As a result of measuring the weight after cooling, the coating amount was 3 mg / cm 2 as LiCoO 2 weight per 1 cm 2 of the electrode.
(3-3) A solid electrolyte layer containing LiVO 3 was applied on the positive electrode obtained in (3-2). Thereafter, the solid electrolyte was densified in the same manner as in (3-2).
(3-4) The side surface of the positive electrode obtained in (3-3) above was masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt on the solid electrolyte layer side, and lithium as a negative electrode The foil was laminated and incorporated into a CR2025 type coin battery. This was designated Example 1.

(実施例2)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体からなるリチウム二次電池を作製した。
(4−1)ガラス板上にAl箔(20μm厚)と貫通孔を有するAl箔(孔径150μm、開孔率25%)を重ねてガラス板上に密着させ、その上から(3−1)で作製したLiVO入りの正極スラリーブレードコーターで塗布した。
(4−2)ガラス板ごと真空乾燥機の中に入れ、減圧状態で150℃まで加熱し、溶媒を除去しながら、貫通孔内に正極活物質とLiVOを充填した。乾燥後の試料を切断しその断面をSEMで確認したところ、孔内とAl箔の表面にLiCoOとLiVOが充填され、さらに、多孔Al箔とAl箔の間にLiVOが侵入し、両者が接合されていることを確認した。
(4−3)(4−2)で得た正極の側面を絶縁物でマスキングした。続いて、固体電解質層側にリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)、及び負極としてリチウム箔を積層し、これをCR2025型のコイン電池に組み込んだ。これを実施例2とした。
(Example 2)
In this example, a lithium secondary battery in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous Al metal body and an Al foil was produced.
(4-1) An Al foil (thickness 20 μm) and an Al foil having a through hole (hole diameter 150 μm, open area 25%) are stacked on a glass plate and closely adhered to the glass plate, and then (3-1) The positive electrode slurry blade coater containing LiVO 3 prepared in step 1 was applied.
(4-2) The whole glass plate was put in a vacuum dryer, heated to 150 ° C. under reduced pressure, and the positive electrode active material and LiVO 3 were filled into the through-holes while removing the solvent. When the sample after drying was cut and the cross section was confirmed by SEM, the inside of the hole and the surface of the Al foil were filled with LiCoO 2 and LiVO 3 , and further LiVO 3 entered between the porous Al foil and the Al foil, It was confirmed that both were joined.
(4-3) The side surface of the positive electrode obtained in (4-2) was masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt on the solid electrolyte layer side, and lithium as a negative electrode The foil was laminated and incorporated into a CR2025 type coin battery. This was designated Example 2.

(実施例3)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔SUS304金属体とSUS304箔の接合体からなるリチウム二次電池を作製した。
(5−1)正極集電体としてSUS304箔(100μm厚)と貫通孔を有するSUS304箔(孔径150μm、開孔率25%)を用いた以外は全て実施例2と同様にして実施例3を得た。
Example 3
In this example, a lithium secondary battery in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous SUS304 metal body and SUS304 foil was produced.
(5-1) Example 3 was carried out in the same manner as Example 2 except that SUS304 foil (100 μm thickness) and SUS304 foil having a through hole (pore diameter 150 μm, aperture ratio 25%) were used as the positive electrode current collector. Obtained.

(実施例4)
本実施例では、負極内のLi伝導性充填剤をLiVOとし、負極集電体としてCu箔を用いたリチウム二次電池を作製した。
(6−1)一次粒径が200μmのLiTi12粉末(アルドリッチ社製)1.4g、に対し、導電助剤としてのアセチレンブラックを0.1gLiVO粉末を0.5g添加し、乳鉢にとりわけ、混合した後、LiVOを潮解させるために水を0.1g添加し、さらにN−メチル2−ピロリドンで粘度を調整し、潮解性の充填剤を含む負極スラリーを作製した。
(6−2)上記(6−1)で得た負極スラリーを厚み10μmの銅箔集電体上に塗布し、120℃、30分間の熱処理に供して水分を除去した後、断面積1cmの円板状に打ち抜き冷間プレスすることで負極を得た。冷却後、重量を測定した結果、塗布量は電極1cm当たりLiTi12重量として2.7 mg/cmであった。
(6−3)(6−2)で得た負極上に前記LiVOを含んだ固体電解質層を塗布した。その後(6−2)と同様にし、固体電解質を緻密化した。
(6−4)(6−3)で得た負極の側面を絶縁物でマスキングした。続いて、固体電解質層側にリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)、及び負極としてリチウム箔を積層し、これをCR2025型のコイン電池に組み、負極特性を評価するためのハーフセルとした。これを実施例4とした。
Example 4
In this example, a lithium secondary battery using LiVO 3 as the Li conductive filler in the negative electrode and Cu foil as the negative electrode current collector was produced.
(6-1) To 1.4 g of Li 4 Ti 5 O 12 powder (manufactured by Aldrich) having a primary particle size of 200 μm, 0.5 g of 0.1 g LiVO 3 powder is added as acetylene black as a conductive additive, In particular, after mixing in a mortar, 0.1 g of water was added to deliquesce LiVO 3 , and the viscosity was adjusted with N-methyl 2-pyrrolidone to prepare a negative electrode slurry containing a deliquescent filler.
(6-2) The negative electrode slurry obtained in (6-1) above was applied onto a copper foil current collector having a thickness of 10 μm, subjected to heat treatment at 120 ° C. for 30 minutes to remove moisture, and then the cross-sectional area was 1 cm 2. The negative electrode was obtained by punching out into a disk shape and cold pressing. As a result of measuring the weight after cooling, the coating amount was 2.7 mg / cm 2 as Li 4 Ti 5 O 12 weight per 1 cm 2 of the electrode.
(6-3) The solid electrolyte layer containing LiVO 3 was applied on the negative electrode obtained in (6-2). Thereafter, the solid electrolyte was densified in the same manner as in (6-2).
(6-4) The side surface of the negative electrode obtained in (6-3) was masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt on the solid electrolyte layer side, and lithium as a negative electrode The foil was laminated and assembled into a CR2025 type coin battery to form a half cell for evaluating negative electrode characteristics. This was designated Example 4.

(実施例5)
本実施例では、負極内のLi伝導性充填剤をLiVOとし、負極集電体としてAl箔を用いたリチウム二次電池を作製した。
(7−1)負極集電体としてAl箔(20μm厚)を用いた以外は全て実施例4と同様にして負極特性を評価するためのハーフセルとして実施例5を得た。
(Example 5)
In this example, a lithium secondary battery using LiVO 3 as the Li conductive filler in the negative electrode and an Al foil as the negative electrode current collector was produced.
(7-1) Example 5 was obtained as a half cell for evaluating negative electrode characteristics in the same manner as in Example 4 except that Al foil (20 μm thickness) was used as the negative electrode current collector.

(実施例6)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、負極集電体が多孔Al金属体とAl箔の接合体からなるリチウム二次電池を作製した。
(8−1)ガラス板上にAl箔(20μm厚)と(貫通孔を有するAl箔(孔径150μm、開孔率25%)を重ねてガラス板上に密着させ、その上から(6−1)で作製したLiVO入りの負極スラリーブレードコーターで塗布した。
(8−2)ガラス板ごと真空乾燥機の中に入れ、減圧状態で150℃まで加熱し、溶媒を除去しながら、貫通孔内に正極活物質とLiVOを充填した。乾燥後の試料を切断しその断面をSEMで確認したところ、孔内とAl箔の表面にLiTi12とLiVOが充填され、さらに、多孔Al箔とAl箔の間にLiVOが侵入し、両者が接合されていることを確認した。
(8−3)(8−2)で得た正極の側面を絶縁物でマスキングした。続いて、固体電解質層側にリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)、及び負極としてリチウム箔を積層し、これをCR2025型のコイン電池に組み込み、負極特性を評価するためのハーフセルとして実施例6を得た。
(Example 6)
In this example, a lithium secondary battery in which the Li conductive filler in the positive electrode was LiVO 3 and the negative electrode current collector was a joined body of a porous Al metal body and an Al foil was produced.
(8-1) Al foil (20 μm thick) and (Al foil having a through hole (hole diameter 150 μm, hole area ratio 25%)) are stacked on a glass plate and closely adhered to the glass plate, from above (6-1 The negative electrode slurry blade coater containing LiVO 3 prepared in (1) was applied.
(8-2) The glass plate was placed in a vacuum dryer, heated to 150 ° C. under reduced pressure, and the positive electrode active material and LiVO 3 were filled into the through hole while removing the solvent. When dried sample was cut cross section was confirmed by SEM, Li 4 Ti 5 O 12 and LiVO 3 are filled on the surface of the hole and the Al foil, further, LiVO 3 between the porous Al foil and Al foil Invaded and confirmed that both were joined.
(8-3) The side surface of the positive electrode obtained in (8-2) was masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt on the solid electrolyte layer side, and lithium as a negative electrode The foil was laminated and this was incorporated into a CR2025 type coin battery, and Example 6 was obtained as a half cell for evaluating negative electrode characteristics.

(実施例7)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の孔径を150μmから5μmとしたリチウム二次電池を作製した。
(9−1)用いる貫通孔を有するAl箔(開孔率25%)の孔径が5μmであること以外は全て実施例2と同様にして、実施例7を得た。
(Example 7)
In this example, the pore diameter of the porous metal foil was 150 μm to 5 μm compared to Example 2 in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous Al metal body and an Al foil. A lithium secondary battery was prepared.
(9-1) Example 7 was obtained in the same manner as Example 2 except that the hole diameter of the Al foil having through-holes to be used (opening ratio: 25%) was 5 μm.

(実施例8)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の孔径を150μmから10μmとしたリチウム二次電池を作製した。
(10−1)用いる貫通孔を有するAl箔(開孔率25%)の孔径が10μmであること以外は全て実施例2と同様にして、実施例8を得た。
(Example 8)
In this example, the pore diameter of the porous metal foil was 150 μm to 10 μm compared to Example 2 in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous Al metal body and an Al foil. A lithium secondary battery was prepared.
(10-1) Example 8 was obtained in the same manner as Example 2 except that the hole diameter of the Al foil having a through-hole to be used (opening ratio: 25%) was 10 μm.

(実施例9)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の孔径を150μmから1000μmとしたリチウム二次電池を作製した。
(11−1)用いる貫通孔を有するAl箔(開孔率25%)の孔径が1000μmであること以外は全て実施例2と同様にして、実施例9を得た。
Example 9
In this example, the pore diameter of the porous metal foil was 150 μm to 1000 μm compared to Example 2 in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous Al metal body and an Al foil. A lithium secondary battery was prepared.
(11-1) Example 9 was obtained in the same manner as Example 2 except that the hole diameter of the Al foil having a through hole to be used (opening ratio 25%) was 1000 μm.

(実施例10)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の孔径を150μmから2000μmとしたリチウム二次電池を作製した。
(12−1)用いる貫通孔を有するAl箔(開孔率25%)の孔径が2000μmであること以外は全て実施例2と同様にして、実施例10を得た。
(Example 10)
In this example, the pore diameter of the porous metal foil was 150 μm to 2000 μm compared to Example 2 in which the Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was a joined body of a porous Al metal body and an Al foil. A lithium secondary battery was prepared.
(12-1) Example 10 was obtained in the same manner as in Example 2 except that the hole diameter of the Al foil having a through hole to be used (opening ratio: 25%) was 2000 μm.

(実施例11)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の空隙率に相当する開孔率を25%から10%としたリチウム二次電池を作製した。
(13−1)用いる貫通孔を有するAl箔(孔径150μm)の開口率を10%としたこと以外は全て実施例2と同様にして、実施例11を得た。
(Example 11)
In this example, Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was equivalent to the porosity of the porous metal foil compared to Example 2 in which the porous Al metal body and Al foil were joined. A lithium secondary battery with an open area ratio of 25% to 10% was produced.
(13-1) Example 11 was obtained in the same manner as Example 2 except that the aperture ratio of the Al foil having through-holes to be used (pore diameter 150 μm) was 10%.

(実施例12)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の空隙率に相当する開孔率を25%から50%としたリチウム二次電池を作製した。
(14−1)用いる貫通孔を有するAl箔(孔径150μm)の開口率を50%としたこと以外は全て実施例2と同様にして、実施例12を得た。
(Example 12)
In this example, Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was equivalent to the porosity of the porous metal foil compared to Example 2 in which the porous Al metal body and Al foil were joined. A lithium secondary battery with an open area ratio of 25% to 50% was produced.
(14-1) Example 12 was obtained in the same manner as Example 2 except that the aperture ratio of the Al foil having through-holes to be used (pore diameter 150 μm) was set to 50%.

(実施例13)
本実施例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の空隙率に相当する開孔率を25%から90%としたリチウム二次電池を作製した。
(15−1)用いる貫通孔を有するAl箔(孔径150μm)の開口率を90%としたこと以外は全て実施例2と同様にして、実施例13を得た。
(Example 13)
In this example, Li conductive filler in the positive electrode was LiVO 3 and the positive electrode current collector was equivalent to the porosity of the porous metal foil compared to Example 2 in which the porous Al metal body and Al foil were joined. A lithium secondary battery with an open area ratio of 25% to 90% was produced.
(15-1) Example 13 was obtained in the same manner as Example 2 except that the aperture ratio of the Al foil (through hole diameter 150 μm) having through-holes used was 90%.

(比較例3)
本比較例では、正極内のLi伝導性充填剤をLiVOとし、正極集電体が多孔Al金属体とAl箔の接合体とした実施例2に対し、多孔金属箔の空隙率に相当する開孔率を25%から適正値外の95%としたリチウム二次電池を作製した。
(16−1)用いる貫通孔を有するAl箔(孔径150μm)の開口率を95%としたこと以外は全て実施例2と同様にして、比較例3を得た。
(Comparative Example 3)
In this comparative example, the Li conductive filler in the positive electrode is LiVO 3 and the positive electrode current collector corresponds to the porosity of the porous metal foil compared to Example 2 in which the porous Al metal body and the Al foil are joined. A lithium secondary battery having an open area ratio of 25% to 95% outside the appropriate value was manufactured.
(16-1) Comparative Example 3 was obtained in the same manner as Example 2 except that the aperture ratio of the Al foil having through-holes to be used (pore diameter 150 μm) was 95%.

(実施例14)
本実施例では、Li伝導性充填剤をLiVOとし集電体がAl箔の正極と接合体と、Li伝導性充填剤をポリマー電解質を充填剤としたLiTi12負極を併せたリチウム二次電池を試作した。
(17−1)一次粒径が200μmのLiTi12粉末(アルドリッチ社製)1.4g、に対し、導電助剤としてのアセチレンブラックを0.1g、NMPに溶解させたPEO系ポリマー電解質溶液をポリマー電解質が0.5gとなるように添加し、乳鉢にとりわけ、混合することで負極スラリーを得た。
(17−2)上記(17−1)で得た負極スラリーを厚み10μmの銅箔集電体上に塗布し、150℃、30分間の熱処理にNMPを除去した後、断面積1cmの円板状に打ち抜き冷間プレスすることで負極を得た。冷却後、重量を測定した結果、塗布量は電極1cm当たりLiTi12重量として2.7 mg/cmであった。
(17−3)(17−2)で得た負極上に前記ポリマー電解質を含んだ固体電解質層を塗布した。
(17−4)(17−3)で得た負極および(3−3)で得た正極の側面を絶縁物でマスキングした。続いて、固体電解質層としてリチウム塩としてリチウムビストリフルオロメタンスルホニルイミド((CFSONLi、(LiFSI))を含んだポリエチレンオキシド(PEO)膜(厚さ50μm)を用い、これを正極および負極ではさんだ構成でCR2025型のコイン電池に組み、これを実施例14とした。
(Example 14)
In this example, the Li conductive filler was LiVO 3 and the current collector was an Al foil positive electrode and joined body, and the Li 4 Ti 5 O 12 negative electrode having the Li conductive filler as a polymer electrolyte was combined. A lithium secondary battery was prototyped.
(17-1) PEO-based polymer in which 0.1 g of acetylene black as a conductive auxiliary agent is dissolved in NMP against 1.4 g of Li 4 Ti 5 O 12 powder (manufactured by Aldrich) having a primary particle size of 200 μm The negative electrode slurry was obtained by adding electrolyte solution so that a polymer electrolyte might be set to 0.5g, and mixing especially in a mortar.
(17-2) The negative electrode slurry obtained in (17-1) above was coated on a 10 μm thick copper foil current collector, NMP was removed by heat treatment at 150 ° C. for 30 minutes, and then a circle with a cross-sectional area of 1 cm 2 . A negative electrode was obtained by punching into a plate and cold pressing. As a result of measuring the weight after cooling, the coating amount was 2.7 mg / cm 2 as Li 4 Ti 5 O 12 weight per 1 cm 2 of the electrode.
(17-3) A solid electrolyte layer containing the polymer electrolyte was applied on the negative electrode obtained in (17-2).
(17-4) The side surfaces of the negative electrode obtained in (17-3) and the positive electrode obtained in (3-3) were masked with an insulator. Subsequently, a polyethylene oxide (PEO) film (thickness 50 μm) containing lithium bistrifluoromethanesulfonylimide ((CF 3 SO 2 ) 2 NLi, (LiFSI)) as a lithium salt was used as the solid electrolyte layer, and this was used as the positive electrode This was assembled into a CR2025 type coin battery with a configuration sandwiched between the negative electrode and the negative electrode.

(実施例15)
本実施例では、Li伝導性充填剤をLiVOとし集電体が多孔Al箔の正極と、Li伝導性充填剤をポリマー電解質を充填剤としたLiTi12負極を併せたリチウム二次電池を試作した。
(18−1)用いる正極を(4−2)で作製した、貫通孔を有するAl箔に正極活物質とLiVOが充填されたものを用いた以外は全て実施例14と同様にして、実施例15を得た。
(Example 15)
In this example, the lithium conductive filler is LiVO 3 and the current collector is a positive electrode with a porous Al foil, and the Li 4 Ti 5 O 12 negative electrode with a Li conductive filler as a polymer electrolyte filler is combined. A secondary battery was prototyped.
(18-1) The same procedure as in Example 14 was performed except that the positive electrode to be used was prepared in (4-2), and an Al foil having a through hole was filled with the positive electrode active material and LiVO 3. Example 15 was obtained.

(実施例16)
本実施例では、実施例2で作製した正極と実施例5で作製した負極を合わせたリチウム二次電池を試作した。
(19−1)用いる正極を(4−2)で作製した、貫通孔を有するAl箔に正極活物質とLiVOが充填されたもの、負極を(7−1)で作製したLiVOを含んだLiTi12負極を用いた以外は全て実施例14と同様にして、実施例16を作製した。
(Example 16)
In this example, a lithium secondary battery in which the positive electrode manufactured in Example 2 and the negative electrode manufactured in Example 5 were combined was prototyped.
(19-1) The positive electrode to be used was prepared in (4-2), the Al foil having a through hole filled with the positive electrode active material and LiVO 3 , and the negative electrode including LiVO 3 prepared in (7-1) Example 16 was made in the same manner as Example 14 except that the Li 4 Ti 5 O 12 negative electrode was used.

(実施例17)
本実施例では、実施例2で作製した正極と実施例6で作製した負極を合わせたリチウム二次電池を試作した。
(20−1)用いる正極を(4−2)で作製した、貫通孔を有するAl箔に正極活物質とLiVOが充填されたもの、負極を(8−2)で作製した貫通項を有するAl箔上にLiVOを含んだLiTi12負極を用いた以外は全て実施例14と同様にして、実施例17を作製した。
(Example 17)
In this example, a lithium secondary battery in which the positive electrode produced in Example 2 and the negative electrode produced in Example 6 were combined was prototyped.
(20-1) The positive electrode to be used was prepared in (4-2), the Al foil having a through hole filled with the positive electrode active material and LiVO 3 , and the negative electrode having the through term prepared in (8-2) Example 17 was made in the same manner as Example 14 except that a Li 4 Ti 5 O 12 negative electrode containing LiVO 3 on an Al foil was used.

(実施例18)
本実施例では、LiVOを充填剤とした正極および負極を4セル分積層し、一つの電池内で単セルの4倍の電圧が得られるリチウム二次電池を試作した。
(21−1)アルミニウム箔の片面に(3−1)で得た正極スラリーを、他面に(6−1)で得た負極スラリーをそれぞれ塗布した後、120℃で30分間乾燥させ、ハンドプレスにより一軸プレスを施した後、φ10に打ち抜いてバイポーラ電極を得た。
(21−2)バイポーラ電極の片面を除去し、残った正極および負極の重量をそれぞれ測定した結果、バイポーラ電極の正極はLiCoOとして3mg/cm、LiTi12として2.7mg/cmであることが分かった。
(21−3)φ20mmのポリマー電解質フィルム4枚と、(21−2)で得たバイポーラ電極3枚をポリマー電解質フィルムが最外になるように交互に積層した。この際、各層の中心が揃うように位置合わせを施した。さらに、ポリマー電解質フィルム同士が接触しないよう、各ポリマー電解質フィルムの間には、内径10mm、外形22mmのドーナツ型のPTFEシート(30μm)を挟み込んだ。
(21−4)(21−3)で得た積層体に対し、外側から(3−2)で得た正極と(6−2)で得た負極を張り合わせた。この際、4枚のポリマー電解質の両面で正極と負極が対向しているようにした。
(21−5)(21−4)で得た積層体をCR2025型のコイン電池に組み、これを実施例18とした。
(Example 18)
In this example, a positive electrode and a negative electrode using LiVO 3 as a filler were stacked for four cells, and a lithium secondary battery capable of obtaining a voltage four times that of a single cell in one battery was manufactured.
(21-1) After applying the positive electrode slurry obtained in (3-1) on one side of the aluminum foil and the negative electrode slurry obtained in (6-1) on the other side, the aluminum foil was dried at 120 ° C. for 30 minutes, and hand After uniaxial pressing by pressing, punching was performed to φ10 to obtain a bipolar electrode.
(21-2) One surface of the bipolar electrode was removed, and the weights of the remaining positive electrode and negative electrode were measured. As a result, the positive electrode of the bipolar electrode was 3 mg / cm 2 as LiCoO 2 and 2.7 mg / cm as Li 4 Ti 5 O 12. It was found to be cm 2 .
(21-3) Four polymer electrolyte films having a diameter of 20 mm and three bipolar electrodes obtained in (21-2) were alternately laminated so that the polymer electrolyte film was outermost. At this time, alignment was performed so that the centers of the respective layers were aligned. Further, a donut-shaped PTFE sheet (30 μm) having an inner diameter of 10 mm and an outer diameter of 22 mm was sandwiched between the polymer electrolyte films so that the polymer electrolyte films did not contact each other.
(21-4) The positive electrode obtained in (3-2) and the negative electrode obtained in (6-2) were bonded to the laminate obtained in (21-3) from the outside. At this time, the positive electrode and the negative electrode were opposed to each other on both surfaces of the four polymer electrolytes.
(21-5) The laminate obtained in (21-4) was assembled into a CR2025 type coin battery, and this was designated as Example 18.

(実施例19)
本実施例では、LiVOを充填剤とし、貫通孔を有するAl箔を用いた正極および負極を4セル分積層し、一つの電池内で単セルの4倍の電圧が得られるリチウム二次電池を試作した。
(22−1)貫通孔を有するアルミニウム箔(150μm、開口率50%)2枚にそれぞれ(3−1)で得た正極スラリーと(6−1)で得た負極スラリーをそれぞれ塗布し、80℃で10分間、予備乾燥を施した。それぞれのシートで貫通孔のないAl箔を挟んだ構成で、真空乾燥機中で減圧下、120℃で30分間乾燥させ、ハンドプレスにより一軸プレスを施した後、φ10に打ち抜いてバイポーラ電極を得た。
(22−2)(22−1)で得たバイポーラ電極と、(4−2)で得た正極、(8−2)で得た負極を用いた以外は全て実施例18と同様にして実施例19を得た。
(Example 19)
In this example, a lithium secondary battery in which four cells of a positive electrode and a negative electrode using LiVO 3 as a filler and an Al foil having a through-hole are stacked and a voltage four times that of a single cell can be obtained in one battery. Prototyped.
(22-1) The positive electrode slurry obtained in (3-1) and the negative electrode slurry obtained in (6-1) were respectively applied to two aluminum foils (150 μm, opening ratio 50%) having through holes, and 80 Pre-drying was performed at 10 ° C. for 10 minutes. Each sheet is sandwiched between Al foils without through-holes, dried in a vacuum dryer under reduced pressure at 120 ° C for 30 minutes, uniaxially pressed by hand press, then punched to φ10 to obtain a bipolar electrode It was.
(22-2) Implemented in the same manner as in Example 18 except that the bipolar electrode obtained in (22-1), the positive electrode obtained in (4-2), and the negative electrode obtained in (8-2) were used. Example 19 was obtained.

(実施例20)
本実施例では、LiVOを充填剤とし、貫通孔を有するAl箔を用いた正極および負極を4セル分積層し、一つの電池内で単セルの4倍の電圧が得られるリチウム二次電池のうち、固体電解質に酸化物電解質シートを適用したものを試作した。
(23−1)リチウム二次電池に用いる固体電解質を固体高分子電解質シートからLiLaZr12シート(200μm)とした以外は全て実施例19と同様にして、バイポーラ型のリチウム二次電池である実施例20を得た。
(Example 20)
In this example, a lithium secondary battery in which four cells of a positive electrode and a negative electrode using LiVO 3 as a filler and an Al foil having a through-hole are stacked and a voltage four times that of a single cell can be obtained in one battery. Of these, a solid electrolyte in which an oxide electrolyte sheet was applied was prototyped.
(23-1) Bipolar lithium secondary batteries were all used in the same manner as in Example 19 except that the solid electrolyte used in the lithium secondary battery was changed from a solid polymer electrolyte sheet to a Li 7 La 3 Zr 2 O 12 sheet (200 μm). Example 20 as a secondary battery was obtained.

(正極ハーフセルの評価)
作製した比較例1〜3及び実施例1〜3、7〜13のコイン型のリチウム二次電池に関し、ソーラトロン社製の1480ポテンシオスタットを用いて、0.1Cレート(450μA/cm)で充電した後、SOC=100%で1時間保持し、交流インピーダンス装置を用いて、交流抵抗を評価した。交流抵抗を適切な等価回路でフィッティングし、正極抵抗を分離評価した。その後、0.1Cレートで放電した。上限電位を4.25V、下限電位を3.0Vとし、充電容量と放電容量を測定した。充放電を30回繰り返した後、初回放電容量と30回目の放電容量の比を容量維持率とした。

(負極ハーフセルの評価)
作製した実施例4〜6のコイン型のリチウム二次電池に関し、ソーラトロン社製の1480ポテンシオスタットを用いて、LiTi12からなる負極の0.1Cレート(460μA/cm)で充電した後、SOC=100%で1時間保持し、交流インピーダンス装置を用いて、交流抵抗を評価した。交流抵抗を適切な等価回路でフィッティングし、負極抵抗を分離評価した。その後、0.1Cレートで放電した。上限電位を2.0V、下限電位を1.0Vとし、充電容量と放電容量を測定した。充放電を30回繰り返した後、初回放電容量と30回目の放電容量の比を容量維持率とした。

(合わせ電池の評価)
作製した実施例14〜17のコイン型のリチウム二次電池に関し、ソーラトロン社製の1480ポテンシオスタットを用いて、LiTi12からなる負極とLiCoOからなる正極について0.1Cレート(450μA/cm)で充電した後、SOC=100%で1時間保持し、交流インピーダンス装置を用いて、交流抵抗を評価した。交流抵抗を適切な等価回路でフィッティングし、負極抵抗を分離評価した。その後、0.1Cレートで放電した。上限電位を2.7V、下限電位を1.45Vとし、充電容量と放電容量を測定した。充放電を30回繰り返した後、初回放電容量と30回目の放電容量の比を容量維持率とした。

(バイポーラ電池の評価)
作製した実施例18〜20のコイン型のリチウム二次電池に関し、ソーラトロン社製の1480ポテンシオスタットを用いて、LiTi12からなる負極とLiCoOからなる正極を固体電解質を用いて4積層したバイポーラ電池の0.1Cレート(450μA/cm)での充放電を検討した。充電後、SOC=100%で1時間保持し、交流インピーダンス装置を用いて、交流抵抗を評価した。交流抵抗を適切な等価回路でフィッティングし、電池内部抵抗を分離評価した。その後、0.1Cレートで放電した。上限電位を10.8V、下限電位を5.8Vとし、充電容量と放電容量を測定した。充放電を30回繰り返した後、初回放電容量と30回目の放電容量の比を容量維持率とした。

(結果の考察)
比較例1から3および実施例1から20における電池構成概要と電池性能を表1に示す。
(Evaluation of positive electrode half cell)
For the coin-type lithium secondary batteries of Comparative Examples 1 to 3 and Examples 1 to 3 and 7 to 13 that were produced, using a 1480 potentiostat made by Solartron, at a 0.1 C rate (450 μA / cm 2 ). After charging, the battery was held at SOC = 100% for 1 hour, and the AC resistance was evaluated using an AC impedance device. The AC resistance was fitted with an appropriate equivalent circuit, and the positive electrode resistance was separated and evaluated. Thereafter, the battery was discharged at a 0.1 C rate. The upper limit potential was 4.25 V, the lower limit potential was 3.0 V, and the charge capacity and discharge capacity were measured. After the charge / discharge was repeated 30 times, the ratio of the initial discharge capacity to the 30th discharge capacity was defined as the capacity retention rate.

(Evaluation of negative electrode half cell)
With respect to the coin-type lithium secondary batteries of Examples 4 to 6, the negative electrode made of Li 4 Ti 5 O 12 was used at a 0.1 C rate (460 μA / cm 2 ) using a 1480 potentiostat manufactured by Solartron. After charging, the battery was held at SOC = 100% for 1 hour, and the AC resistance was evaluated using an AC impedance device. The AC resistance was fitted with an appropriate equivalent circuit, and the negative electrode resistance was separated and evaluated. Thereafter, the battery was discharged at a 0.1 C rate. The upper limit potential was 2.0 V, the lower limit potential was 1.0 V, and the charge capacity and discharge capacity were measured. After the charge / discharge was repeated 30 times, the ratio of the initial discharge capacity to the 30th discharge capacity was defined as the capacity retention rate.

(Evaluation of battery pack)
The coin-type lithium secondary batteries of Examples 14 to 17 were manufactured using a 1480 potentiostat manufactured by Solartron Co., with a negative electrode made of Li 4 Ti 5 O 12 and a positive electrode made of LiCoO 2 having a 0.1 C rate ( After charging at 450 μA / cm 2 ), SOC was maintained at 100% for 1 hour, and the AC resistance was evaluated using an AC impedance device. The AC resistance was fitted with an appropriate equivalent circuit, and the negative electrode resistance was separated and evaluated. Thereafter, the battery was discharged at a 0.1 C rate. The upper limit potential was 2.7 V and the lower limit potential was 1.45 V, and the charge capacity and discharge capacity were measured. After the charge / discharge was repeated 30 times, the ratio of the initial discharge capacity to the 30th discharge capacity was defined as the capacity retention rate.

(Evaluation of bipolar battery)
Regarding the coin-type lithium secondary batteries of Examples 18 to 20, the 1480 potentiostat made by Solartron was used, and the negative electrode made of Li 4 Ti 5 O 12 and the positive electrode made of LiCoO 2 were used using a solid electrolyte. The charging / discharging at the 0.1 C rate (450 μA / cm 2 ) of the four stacked bipolar batteries was examined. After charging, the battery was held at SOC = 100% for 1 hour, and the AC resistance was evaluated using an AC impedance device. The AC resistance was fitted with an appropriate equivalent circuit, and the battery internal resistance was separated and evaluated. Thereafter, the battery was discharged at a 0.1 C rate. The upper limit potential was 10.8 V, the lower limit potential was 5.8 V, and the charge capacity and discharge capacity were measured. After the charge / discharge was repeated 30 times, the ratio of the initial discharge capacity to the 30th discharge capacity was defined as the capacity retention rate.

(Consideration of results)
Table 1 shows the battery configuration outline and battery performance in Comparative Examples 1 to 3 and Examples 1 to 20.

Figure 2016184483
Figure 2016184483

(結果の考察)
比較例1、2にいて、LiBO充填剤を含んだ正極合剤層をAl箔上に塗布した場合、処理温度に依らず低性能となった。低温の場合(比較例1)は融点700℃のLiBOが溶解せず、電極内のイオン伝導ネットワークが不十分、高温の場合(比較例2)、Al集電箔(融点660℃)が溶解・正極と副反応を起こすためと考えられる。一方、潮解性のLiVOを充填剤としてAl箔上に形成した正極は容量が向上し、抵抗も大きく低減していることから、LiVOはAl箔を用いた固体電池正極形成に有効な充填剤といえる。
(Consideration of results)
In Comparative Examples 1 and 2, when the positive electrode mixture layer containing the Li 3 BO 3 filler was applied on the Al foil, the performance was low regardless of the treatment temperature. In the case of low temperature (Comparative Example 1), Li 3 BO 3 having a melting point of 700 ° C. does not dissolve, the ion conduction network in the electrode is insufficient, and in the case of high temperature (Comparative Example 2), Al current collector foil (melting point of 660 ° C.) This is thought to be due to dissolution and side reactions with the positive electrode. On the other hand, the positive electrode formed on the Al foil using deliquescent LiVO 3 as a filler has improved capacity and greatly reduced resistance. Therefore, LiVO 3 is an effective packing for forming a solid battery positive electrode using Al foil. It can be said to be an agent.

実施例1と実施例2と3を比較すると、多孔金属箔を用いることで、抵抗低減、サイクル試験後の容量維持に効果的であることが分かる。これは正極活物質と充填剤が金属で囲まれた孔内に配置されることで、電子伝導促進、充放電に伴う体積変化が抑制されたためと考えられる。   When Example 1 is compared with Examples 2 and 3, it can be seen that the use of the porous metal foil is effective in reducing resistance and maintaining the capacity after the cycle test. This is presumably because the positive electrode active material and the filler were disposed in the hole surrounded by the metal, and the volume change accompanying the promotion of electron conduction and charge / discharge was suppressed.

実施例4から6の結果から、本発明の効果は正極だけではなく、負極でも見られることが確認できる。   From the results of Examples 4 to 6, it can be confirmed that the effect of the present invention is observed not only in the positive electrode but also in the negative electrode.

実施例1と実施例7ないし10は、多孔Al箔の孔径が異なっているものであり、抵抗および容量維持率の比較から、孔径には適正範囲があり、本実施例からは10μmから1000μmで特に効果が得られることが分かる。   Example 1 and Examples 7 to 10 are different in the hole diameter of the porous Al foil, and there is an appropriate range of the hole diameter from the comparison of the resistance and capacity retention rate. From this example, the hole diameter is 10 μm to 1000 μm. It turns out that an effect is acquired especially.

実施例1と実施例11ないし13は、多孔Al箔の空孔率、開口率が異なっているものであり、抵抗および容量維持率の比較から、空孔率にも適正範囲があり、本実施例からは10%から90%で効果が確認される。一方、空隙率が95%の比較例3では充電時に短絡が生じた。試験後の解体評価から、空隙率が高すぎるため、電池内部で多孔Al箔が破損していることがわかり、これが短絡の一因と考えられる。   Example 1 and Examples 11 to 13 are different in porosity and aperture ratio of the porous Al foil, and there is an appropriate range in the porosity from the comparison of resistance and capacity maintenance rate. From the example, the effect is confirmed at 10% to 90%. On the other hand, in Comparative Example 3 having a porosity of 95%, a short circuit occurred during charging. From the disassembly evaluation after the test, it can be seen that the porous Al foil is broken inside the battery because the porosity is too high, which is considered to be a cause of the short circuit.

実施例14から17では少なくとも正極に潮解性LiVO充填剤を適用いたものであり、いずれの電池においても適切な充放電が行えている。特に正極に多孔Al箔を用いることでサイクル特性が改善することが分かる。また、この際、正極に潮解性LiVOを適用していれば、負極充填剤がポリマー電解質でもLiVOでも効果が確認される。 In Examples 14 to 17, a deliquescent LiVO 3 filler was applied to at least the positive electrode, and appropriate charging / discharging was performed in any of the batteries. In particular, it can be seen that the use of a porous Al foil for the positive electrode improves the cycle characteristics. At this time, if deliquescent LiVO 3 is applied to the positive electrode, the effect can be confirmed whether the negative electrode filler is a polymer electrolyte or LiVO 3 .

実施例18から20は本発明の電極、全固体リチウム二次電池を積層させたバイポーラ電池であるが、10V以上の電池電圧を得ることが可能であり、いずれの資料も充放電が可能であった。特に多孔Al箔中に正極および負極を充填した実施例19や20ではサイクル特性に優れることが分かった。実施例1から19までは固体電解質層に固体高分子フィルムを用いていたが、酸化物固体電解質を用いた実施例20においても同様に効果が得られることが確認できる。   Examples 18 to 20 are bipolar batteries in which the electrode of the present invention and an all-solid lithium secondary battery are stacked, but a battery voltage of 10 V or more can be obtained, and any of the materials can be charged and discharged. It was. In particular, it was found that Examples 19 and 20 in which the porous Al foil was filled with the positive electrode and the negative electrode were excellent in cycle characteristics. Although the solid polymer film was used for the solid electrolyte layer in Examples 1 to 19, it can be confirmed that the same effect can be obtained in Example 20 using the oxide solid electrolyte.

また、負極内あるいは固体電解質層に本発明の構成を適用した場合でも、Li伝導性充填剤のLi伝導度が改善され、結果として充放電特性に優れたリチウム二次電池を得ることができる。   Moreover, even when the structure of the present invention is applied to the negative electrode or the solid electrolyte layer, the Li conductivity of the Li conductive filler is improved, and as a result, a lithium secondary battery having excellent charge / discharge characteristics can be obtained.

本実施例では多孔集電体としては貫通孔を有する金属箔を用いたが、これに代わり、発泡金属板、金属繊維焼結体を用いた場合でも同様の材料、プロセスを適用することで、本実施例で見られるような効果が得られる。また、負極充填剤や固体高分子層に対して、本実施例以外の電解質材料を適用した場合にも同様の効果が期待できる。

In this example, a metal foil having a through-hole was used as the porous current collector, but instead of this, even when a foam metal plate or a metal fiber sintered body was used, by applying the same material and process, The effect as seen in this embodiment can be obtained. Moreover, the same effect can be expected when an electrolyte material other than the present embodiment is applied to the negative electrode filler or the solid polymer layer.

10 正極集電箔
11 貫通孔を有する正極多孔集電体
20 負極集電箔
21 貫通孔を有する負極多孔集電体
30 電池ケース
40 正極合剤層
42 正極活物質粒子
43 正極導電剤
44 固体電解質粒子
46 Li伝導性充填剤
50 固体電解質層
52 固体電解質粒子
60 負極合剤層
62 負極活物質粒子
63 負極導電剤
64 固体電解質粒子
70 正極
80 負極
90 インターコネクター
100 リチウム二次電池
200 バイポーラ型リチウム二次電池
DESCRIPTION OF SYMBOLS 10 Positive electrode current collector foil 11 Positive electrode porous current collector 20 having a through hole Negative electrode current collector foil 21 Negative electrode porous current collector 30 having a through hole 30 Battery case 40 Positive electrode mixture layer 42 Positive electrode active material particle 43 Positive electrode conductive agent 44 Solid electrolyte Particle 46 Li conductive filler 50 Solid electrolyte layer 52 Solid electrolyte particle 60 Negative electrode mixture layer 62 Negative electrode active material particle 63 Negative electrode conductive agent 64 Solid electrolyte particle 70 Positive electrode 80 Negative electrode 90 Interconnector 100 Lithium secondary battery 200 Bipolar lithium secondary Secondary battery

Claims (10)

負極層と正極層との間に固体電解質層を配置した全固体リチウム二次電池であって、負極層と正極層の少なくとも一方が、リチウムを吸蔵、放出可能な活物質粒子とその粒子間に充填される潮解性を有するメタバナジン酸リチウムを含み、メタバナジン酸リチウムによって電子伝導性を有する集電体と接合されていることを特徴とする全固体リチウム二次電池。   An all-solid lithium secondary battery in which a solid electrolyte layer is disposed between a negative electrode layer and a positive electrode layer, wherein at least one of the negative electrode layer and the positive electrode layer is inserted between active material particles capable of inserting and extracting lithium and the particles An all-solid-state lithium secondary battery comprising lithium metavanadate having deliquescence filled and being joined to a current collector having electronic conductivity by lithium metavanadate. 請求項1において、前記集電体が貫通孔を有する多孔集電体と金属箔との接合体であり、貫通孔の中に活物質粒子と潮解性を有するメタバナジン酸リチウムの複合体が充填されていることを特徴とする全固体リチウム二次電池。   The current collector is a joined body of a porous current collector having a through-hole and a metal foil, and the through-hole is filled with a composite of active material particles and deliquescent lithium metavanadate. An all-solid-state lithium secondary battery. 請求項2において、前記貫通孔を有する多孔集電体が、貫通孔を有する穿孔箔、発泡金属板、金属繊維焼結体であることを特徴とする全固体リチウム二次電池。   3. The all solid lithium secondary battery according to claim 2, wherein the porous current collector having the through hole is a perforated foil having a through hole, a foamed metal plate, or a metal fiber sintered body. 請求項1ないし3のいずれかにおいて、正極と接する集電体がアルミニウムあるいはステンレス材であることを特徴とする全固体リチウム二次電池。   4. The all-solid lithium secondary battery according to claim 1, wherein the current collector in contact with the positive electrode is aluminum or stainless steel. 請求項1ないし4のいずれかにおいて、負極と接する集電箔がアルミニウム、銅、ニッケルもしくはステンレス材であることを特徴とする全固体リチウム二次電池。   5. The all solid lithium secondary battery according to claim 1, wherein the current collector foil in contact with the negative electrode is aluminum, copper, nickel, or stainless steel. 請求項2ないし5のいずれかにおいて、多孔集電体の貫通孔の平均直径が10μmから1000μmであることを特徴とする全固体リチウム二次電池。   6. The all-solid lithium secondary battery according to claim 2, wherein the average diameter of the through holes of the porous current collector is 10 μm to 1000 μm. 請求項2ないし6のいずれかにおいて、多孔集電体の空孔率が10%から90%であることを特徴とする全固体リチウム二次電池。   7. The all-solid lithium secondary battery according to claim 2, wherein the porosity of the porous current collector is 10% to 90%. 請求項1ないし7のいずれかにおいて、電池パック内で直列に接続したバイポーラ型電池の構成を有することを特徴とする全固体リチウム二次電池。   8. The all-solid-state lithium secondary battery according to claim 1, wherein the all-solid lithium secondary battery has a configuration of a bipolar battery connected in series in a battery pack. i)正極あるいは負極の少なくとも一方の活物質粒子とメタバナジン酸リチウムの粉末とを混合する工程と、
ii)メタバナジン酸リチウムを溶解する水を含有した溶媒を添加し電極スラリーとする工程と、
iii)集電体表面に電極スラリーを塗布する工程と、
iv)加熱により溶媒を乾燥させて、金属箔と電極合剤層をメタバナジン酸リチウムで接合する工程と、
を含むことを特徴とする全固体リチウム二次電池の製造方法。
i) mixing the active material particles of at least one of the positive electrode or the negative electrode and the lithium metavanadate powder;
ii) adding a solvent containing water that dissolves lithium metavanadate to form an electrode slurry;
iii) applying an electrode slurry to the current collector surface;
iv) drying the solvent by heating and joining the metal foil and the electrode mixture layer with lithium metavanadate;
The manufacturing method of the all-solid-state lithium secondary battery characterized by the above-mentioned.
請求項1ないし8のいずれかに記載の全固体リチウム二次電池を含むことを特徴とする蓄電デバイス。 An electricity storage device comprising the all-solid-state lithium secondary battery according to claim 1.
JP2015063601A 2015-03-26 2015-03-26 All solid-state lithium secondary battery Pending JP2016184483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063601A JP2016184483A (en) 2015-03-26 2015-03-26 All solid-state lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063601A JP2016184483A (en) 2015-03-26 2015-03-26 All solid-state lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2016184483A true JP2016184483A (en) 2016-10-20

Family

ID=57243138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063601A Pending JP2016184483A (en) 2015-03-26 2015-03-26 All solid-state lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2016184483A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186442A1 (en) * 2017-04-04 2018-10-11 株式会社村田製作所 All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
JP2018160445A (en) * 2017-03-22 2018-10-11 株式会社東芝 Composite electrolyte, secondary battery, battery pack and vehicle
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
WO2019102668A1 (en) * 2017-11-24 2019-05-31 昭和電工株式会社 Lithium ion secondary battery, multilayer structure for lithium ion secondary batteries, and method for producing lithium ion secondary battery
CN111370756A (en) * 2020-02-24 2020-07-03 青岛大学 High-voltage solid-state lithium battery and preparation method thereof
CN114628762A (en) * 2020-12-08 2022-06-14 本田技研工业株式会社 Solid-state battery
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery
KR20220147855A (en) 2021-04-28 2022-11-04 주식회사 엘지에너지솔루션 Negative electrode for all-solid secondary battery and all-solid secondary battery comprising the same
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160445A (en) * 2017-03-22 2018-10-11 株式会社東芝 Composite electrolyte, secondary battery, battery pack and vehicle
CN110495038A (en) * 2017-04-04 2019-11-22 株式会社村田制作所 All-solid-state battery, electronic equipment, electronic card, wearable device and electric vehicle
US11710855B2 (en) 2017-04-04 2023-07-25 Murata Manufacturing Co., Ltd. All-solid-state battery, electronic device, electronic card, wearable device, and electric motor vehicle
CN110495038B (en) * 2017-04-04 2022-07-08 株式会社村田制作所 All-solid-state battery, electronic equipment, electronic card, wearable equipment and electric vehicle
WO2018186442A1 (en) * 2017-04-04 2018-10-11 株式会社村田製作所 All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
JPWO2018186442A1 (en) * 2017-04-04 2019-11-07 株式会社村田製作所 All-solid-state batteries, electronic devices, electronic cards, wearable devices, and electric vehicles
JP7009772B2 (en) 2017-04-28 2022-01-26 トヨタ自動車株式会社 Laminated battery and manufacturing method of laminated battery
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
CN111033858A (en) * 2017-08-30 2020-04-17 株式会社村田制作所 Co-fired forming all-solid-state battery
US11322776B2 (en) 2017-08-30 2022-05-03 Murata Manufacturing Co., Ltd. Co-fired all-solid-state battery
JPWO2019044902A1 (en) * 2017-08-30 2020-01-23 株式会社村田製作所 Co-fired all-solid-state battery
WO2019044902A1 (en) * 2017-08-30 2019-03-07 株式会社村田製作所 Co-firing type all-solid state battery
US11955596B2 (en) 2017-08-30 2024-04-09 Murata Manufacturing Co., Ltd. Solid electrolyte and all solid state battery
CN111033858B (en) * 2017-08-30 2023-06-16 株式会社村田制作所 Co-fired all-solid battery
WO2019102668A1 (en) * 2017-11-24 2019-05-31 昭和電工株式会社 Lithium ion secondary battery, multilayer structure for lithium ion secondary batteries, and method for producing lithium ion secondary battery
CN111370756A (en) * 2020-02-24 2020-07-03 青岛大学 High-voltage solid-state lithium battery and preparation method thereof
CN114628762A (en) * 2020-12-08 2022-06-14 本田技研工业株式会社 Solid-state battery
US11804618B2 (en) 2020-12-08 2023-10-31 Honda Motor Co., Ltd. Solid-state battery
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery
JP7239551B2 (en) 2020-12-28 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries
KR20220147855A (en) 2021-04-28 2022-11-04 주식회사 엘지에너지솔루션 Negative electrode for all-solid secondary battery and all-solid secondary battery comprising the same

Similar Documents

Publication Publication Date Title
JP6240306B2 (en) Lithium secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP2016184483A (en) All solid-state lithium secondary battery
DK2965369T3 (en) SOLID BATTERY SAFETY AND MANUFACTURING PROCEDURES
WO2015151144A1 (en) All-solid-state lithium secondary battery
JP6149657B2 (en) All solid battery
WO2016064474A1 (en) Methods and compositions for lithium ion batteries
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP7269571B2 (en) Method for manufacturing all-solid-state battery
JP2016201310A (en) All-solid-state lithium secondary battery
JP2017004910A (en) Lithium ion secondary battery
JP6278385B2 (en) Non-aqueous secondary battery pre-doping method and battery obtained by the pre-doping method
JP2016085941A (en) Nonaqueous electrolyte secondary battery, and electrode body used therefor
JP2019040709A (en) All-solid lithium ion secondary battery and method for manufacturing the same
JP2015088437A5 (en)
JP2016058335A (en) All-solid battery, manufacturing method thereof, and method for recovering capacity
CN111384433A (en) Solid electrolyte laminate and solid battery
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2012138290A (en) Lithium secondary battery system and method for controlling the lithium secondary battery system
WO2021154358A2 (en) Si-anode-based semi-solid cells with solid separators
RU2771614C2 (en) Method for producing fully solid-state battery
JP2016207477A (en) Ionically conductive material and all solid-state battery using the same, and manufacturing method of all solid-state battery
JP2017111989A (en) Electrode for all-solid battery, all-solid battery, and manufacturing methods thereof
CN116031572A (en) Separation membrane for lithium ion battery, preparation method of separation membrane and lithium ion battery
JP2017111891A (en) Electrode for all-solid battery, all-solid battery, and manufacturing methods thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113