JPH10255847A - Secondary battery and manufacture therefor - Google Patents

Secondary battery and manufacture therefor

Info

Publication number
JPH10255847A
JPH10255847A JP9060754A JP6075497A JPH10255847A JP H10255847 A JPH10255847 A JP H10255847A JP 9060754 A JP9060754 A JP 9060754A JP 6075497 A JP6075497 A JP 6075497A JP H10255847 A JPH10255847 A JP H10255847A
Authority
JP
Japan
Prior art keywords
electrode
filler
secondary battery
electrode element
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9060754A
Other languages
Japanese (ja)
Other versions
JP3114646B2 (en
Inventor
Hidemasa Kawai
英正 河合
Satoyuki Ota
智行 太田
Junji Tabuchi
順次 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09060754A priority Critical patent/JP3114646B2/en
Publication of JPH10255847A publication Critical patent/JPH10255847A/en
Application granted granted Critical
Publication of JP3114646B2 publication Critical patent/JP3114646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary batterry having a simple structure, a sufficient reaction area and no capacity decrease caused by a clearance generated between electrodes due to repetitive charging/discharging, by laminating and winding sheet-like positive and negative electrodes through sheet-like separators, and by arranging a packing material in a central space of an obtained flat rectangular parallelopiped electrode element. SOLUTION: A sheet-like positive electrode 4 mainly composed of lithium manganate or the like and a negative electrode 5 mainly composed of a carbonaceous material or the like capable of freely doping-dedoping a lithium ion, are laminated through separators 6 and 7. This laminated body is wound around a plate-like core to form an electrode element 3 of a flat rectangular parallelopiped as a whole. Afterwards, a filling material 10 is applied in a central space after the core is removed. This filling material 10 is preferably a plate shape having a thickness of 40 to 98% of a thickness of the central space and a width of 50 to 95% of a width dimension. This electrode element 3 is housed in a flat rectangular parallelopiped battery can 2, and a nonaqueous electrolyte is sealed in it, to obtain a secondary battery 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シート状の正負の
電極がセパレータを介して長円の渦巻き状に巻回され、
このように長円状に巻回された正負の電極が扁平な直方
体状の容器の内部に収容されて、この容器の内部に非水
電解液が充填されている二次電池、その製造方法に関す
る。
[0001] The present invention relates to a sheet-like positive and negative electrode wound in an elliptical spiral shape via a separator,
The secondary battery in which the positive and negative electrodes wound in an elliptical shape are housed inside a flat rectangular parallelepiped container and the container is filled with a non-aqueous electrolyte, and a method for manufacturing the secondary battery .

【0002】[0002]

【従来の技術】近年の電子技術の目覚ましい進歩は、電
子機器の小型軽量化を次々と実現させている。それに伴
い、携帯用情報端未に利用される電池に対しても、ます
ます小型軽量で高エネルギ密度であることが求められて
いる。さらに、近年の環境問題、特に大気汚染ヘの配慮
から、一酸化炭素や窒素化合物を排出しない電気自動車
(EV)も注目されており、大型の二次電池についても
軽量化と高密度化とが求められている。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has realized a reduction in size and weight of electronic devices one after another. Along with this, batteries used for portable information terminals are also required to be smaller and lighter and have higher energy density. In addition, due to recent environmental problems, particularly the consideration of air pollution, electric vehicles (EVs) that do not emit carbon monoxide or nitrogen compounds have also attracted attention, and the weight and density of large secondary batteries have been reduced. It has been demanded.

【0003】従来、一般用途の二次電池としては、鉛電
池、ニッケル・カドミウム電池等の水溶液系が主流であ
った。しかし、これらの水溶液系電池は、サイクル特性
に優れるが、電池重量やエネルギ密度の点では充分満足
できるものではない。
Conventionally, aqueous secondary batteries such as lead batteries and nickel-cadmium batteries have been the mainstream as general-purpose secondary batteries. However, although these aqueous batteries are excellent in cycle characteristics, they are not sufficiently satisfactory in terms of battery weight and energy density.

【0004】一方、近年、リチウムやリチウム合金もし
くは炭素材料のようなリチウムイオンのドープ/脱ドー
プが可能な物質を負極に用い、リチウム複合酸化物を正
極に使用する、非水電解液二次電池の研究・開発が行わ
れている。この非水電解液二次電池は、高エネルギ密度
を有し、自己放電も少なく、軽最である等の利点を有す
ることから注目を集めている。
On the other hand, in recent years, a non-aqueous electrolyte secondary battery using a material capable of doping / dedoping lithium ions, such as lithium, a lithium alloy or a carbon material, for a negative electrode and a lithium composite oxide for a positive electrode. Research and development. This non-aqueous electrolyte secondary battery has attracted attention because of its advantages such as high energy density, low self-discharge, and lightness.

【0005】ところで、上述のごとく電子機器の分野に
おいては、小型軽量化が進行しており、これに対応すべ
く電池としては、機器内スベースの有効利用の観点から
扁平な直方体状とされることが多くなっている。また、
EV搭載の場合も同様に機器内のスペースの有効刑用の
観点から、扁平な直方体状とされる場合もある。このよ
うな形状の電池の電極としては、複数の短冊状の正負の
電極をセパレータを介して交互に積層させた構造が一般
的である。
As described above, in the field of electronic equipment, the size and weight of the electronic equipment have been reduced, and in order to cope with this, the battery is required to have a flat rectangular parallelepiped shape from the viewpoint of effective use of the base in the equipment. Is increasing. Also,
Similarly, in the case of an EV mounted, it may be formed in a flat rectangular parallelepiped from the viewpoint of effective use of space in the device. As a battery electrode having such a shape, a structure in which a plurality of strip-shaped positive and negative electrodes are alternately stacked via a separator is generally used.

【0006】しかし、上述のような積層構造の電極で
は、その全体の厚さの最適化が難しいとされている。例
えば、短冊状の正負の電極として比較的厚さが厚いもの
を用いると、電池缶内に収容される各々の枚数が少なく
なるので、電極の構造が簡単になり生産性が向上する。
その反面、電極の反応面積が小さくなることから、電池
として重負荷特性が不充分になり急速充電に適さなくな
る。
[0006] However, it is said that it is difficult to optimize the overall thickness of the electrode having a laminated structure as described above. For example, when a relatively thick strip-shaped positive and negative electrode is used, the number of each of the strip-shaped positive and negative electrodes accommodated in the battery can is reduced, so that the structure of the electrode is simplified and the productivity is improved.
On the other hand, since the reaction area of the electrode becomes small, the heavy load characteristics of the battery become insufficient and the battery is not suitable for quick charging.

【0007】これに対して、短冊状の電極を薄くすると
反応画積が大きくなるので、電池としての重負荷特性は
改善される。しかし、これでは多数枚の電極を用いるこ
とになるので、その構造が複雑になり生産性が低下す
る。
On the other hand, when the strip-shaped electrode is made thin, the reaction area becomes large, and the heavy load characteristics of the battery are improved. However, this requires a large number of electrodes, which complicates the structure and reduces productivity.

【0008】そこで、電極の構造を複雑にすることなく
反応面積を確保できる電極として、長尺のシート状の正
負の電極をセパレータを介して積層し、これを多数回巻
回した巻回構造の電極素子の利用が提案されている。こ
の巻回構造の電極素子では、縦断面を見たときに正負の
電極が多数積層された構造となっており、大きな電極の
反応面積が得られる。その一方で、正負の電極の枚数と
しては各1枚ずつで済むので、構造としては極めて簡単
である。
Therefore, as an electrode which can secure a reaction area without complicating the structure of the electrode, a long sheet-like positive / negative electrode is laminated via a separator, and this is wound in a number of turns. The use of electrode elements has been proposed. The wound electrode element has a structure in which a large number of positive and negative electrodes are stacked when viewed in a vertical cross section, and a large electrode reaction area can be obtained. On the other hand, since only one positive and negative electrode is required, the structure is extremely simple.

【0009】[0009]

【発明が解決しようとする課題】上述のようにシート状
の正負の電極を巻回した構造では、電極の構造を簡単と
しながら充分な反応面積を確保することができる。とこ
ろが、この巻回電極体素子を、矩形型電池に適用しよう
とした場合、以下のような間題が生じてしまう。
In the structure in which the sheet-like positive and negative electrodes are wound as described above, a sufficient reaction area can be ensured while simplifying the structure of the electrodes. However, when this wound electrode body element is applied to a rectangular battery, the following problems occur.

【0010】すなわち、巻回構造の電極素子は、通常、
断面円形状や断面楕円状または平板状の巻芯を用い、こ
れに上述したような電極積層体を多数回巻回し、巻回後
に巻芯を巻回体から抜き取ることで作製されるが、この
巻回構造の電極素子を矩形型電池に通用する場合には、
さらにその容器の形状に合わせて、巻回体を直径方向か
ら圧縮して収容する必要がある。
That is, an electrode element having a wound structure is usually
It is manufactured by using a core having a circular cross section, an elliptical cross section, or a flat plate, winding the above-described electrode laminate many times on the core, and extracting the core from the core after the winding. When the electrode element of the winding structure is used for a rectangular battery,
Further, it is necessary to compress and accommodate the wound body in the diametrical direction according to the shape of the container.

【0011】ところがマンガン酸リチウムを主成分とす
る正極と、リチウムイオンがドープ/脱ドープ自在な炭
素材料を主成分とする負極とを、巻回構造とした電池に
おいて充電後の断層面を観察すると、正負の電極間に部
分的に隙間が空くことが分かった。この隙間は、充電に
より正極が収縮すると同時に負極が膨張するため、これ
らの応力により電極素子の巻回構造の中心空間が変形
し、正負の電極間に隙間が発生することによる。この隙
間は初回の充電後に発生し、一旦発生した隙問は、その
後の充放電の繰り返しでは無くならない。その結果、電
極反応が不均一になり、電池容量の低下を招くことにな
る。
However, when a battery having a positive electrode composed mainly of lithium manganate as a main component and a negative electrode composed mainly of a carbon material capable of being doped / dedoped with lithium ions as a main component has a wound structure, the fault surface after charging is observed. It was found that a gap was partially left between the positive and negative electrodes. The gap is caused by the fact that the positive electrode contracts and the negative electrode expands upon charging, so that the stress deforms the central space of the wound structure of the electrode element, and a gap is generated between the positive and negative electrodes. This gap is generated after the first charge, and the gap once generated is not eliminated by the subsequent repetition of charge and discharge. As a result, the electrode reaction becomes non-uniform and the battery capacity is reduced.

【0012】この現象は巻回構造の電極素子の中心空間
が大きくなる、すなわち巻回構造の電極素子が大型化す
るほど顕著となる。携帯情報瑞末等に用いられる小型で
薄型の直方体形状の電池の場合、巻回方法や巻回した電
極の整形方法などで対処できる場合もあるが完全ではな
い。特に、巻回構造の電極素子が大型の場合、上記方法
では巻回構造の電極素子に電極破断が発生する等の問題
も発生する。
This phenomenon becomes more conspicuous as the central space of the wound electrode element increases, that is, as the size of the wound electrode element increases. In the case of a small and thin rectangular parallelepiped battery used for portable information devices, etc., a winding method or a method of shaping a wound electrode may be able to cope with such a case, but it is not perfect. In particular, when the wound-structured electrode element is large, the above-described method also causes problems such as the occurrence of electrode breakage in the wound-structured electrode element.

【0013】本発明は上述のような課題に鑑みてなされ
たものであり、セパレータを介して積層したシート状の
正負の電極を、全体が扁平な直方体状となるよう巻回し
て容器に収納した二次電池において、充電と放電とを繰
り返しても正負の電極間に隙間が発生しない二次電池、
その製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a structure in which sheet-like positive and negative electrodes laminated via a separator are wound into a flat rectangular parallelepiped shape and housed in a container. In a secondary battery, a secondary battery in which a gap does not occur between the positive and negative electrodes even when charging and discharging are repeated,
It is an object of the present invention to provide a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】本発明の二次電池は、シ
ート状の正負の電極がシート状のセパレータを介して積
層され、これが巻回されて全体的に扁平な直方体状の電
極素子が形成され、この電極素子を非水電解液が封入さ
れた扁平な直方体状の容器の内部に収容されている二次
電池において、前記電極素子の中心空間に充填物を設け
た。
In the secondary battery of the present invention, sheet-like positive and negative electrodes are laminated via a sheet-like separator, and this is wound to form an overall flat rectangular parallelepiped electrode element. In a secondary battery formed and containing this electrode element in a flat rectangular parallelepiped container in which a non-aqueous electrolyte is sealed, a filler was provided in the central space of the electrode element.

【0015】従って、シート状の正負の巻回構造の電極
素子の中心空間に充填物が配置しているので、充電と放
電との繰り返しによりシート状の正負の電極が伸縮して
も、この正負の電極間に隙間が発生することが防止され
る。なお、このような巻回構造の電極素子の中心空間に
充填物を配置する構造は、円筒型の電池におけるパイプ
状のピンの挿入として既知である。
Therefore, since the filler is disposed in the central space of the electrode element having a sheet-like positive / negative wound structure, even if the sheet-like positive / negative electrode expands / contracts due to repetition of charging and discharging, the positive / negative electrode does not change. The generation of a gap between the electrodes is prevented. Note that such a structure in which the filler is disposed in the central space of the wound electrode element is known as insertion of a pipe-shaped pin in a cylindrical battery.

【0016】しかし、これは電極素子の放熱が主日的で
あり、シート状の電極の収縮による隙間の発生を防止す
るようには形成されていない。また、当然ながら、円筒
形の電池はスペース的な効率が悪く、電池を使用する機
器の小型化を阻害する。その点、容器を扁平な直方体状
とした電池は、スペース的な効率が良く、電池を使用す
る機器の小型化に寄与することができるが、このような
形状の二次電池においては、上述のように巻回構造の電
極素子の中心空間に充填物を配置させる試みはなされて
いない。
However, this is because the heat dissipation of the electrode elements is mainly performed on a daily basis and is not formed so as to prevent the generation of a gap due to the contraction of the sheet-like electrode. Also, needless to say, cylindrical batteries have poor space efficiency and hinder miniaturization of equipment using the batteries. In that regard, a battery having a flat rectangular parallelepiped container has a good space efficiency and can contribute to miniaturization of a device using the battery. No attempt has been made to dispose the filler in the central space of the wound electrode element.

【0017】なお、本発明で云う充填物は、上述のよう
にシート状の正負の電極の伸縮による隙間の発生を防止
できる部材であれば良く、例えば、樹脂やアルミニウム
製の扁平な直方体状の板材などを許容する。また、シー
ト状の電極は、巻回自在なシート状で正負の電極となる
部材であれば良く、その一端に電極リードが装着された
構造を許容する。
The filler used in the present invention may be any member that can prevent the occurrence of a gap due to the expansion and contraction of the sheet-like positive and negative electrodes as described above. For example, the filler may be a flat rectangular parallelepiped made of resin or aluminum. Allow plate materials. Further, the sheet-shaped electrode may be a member that can be wound and can be a positive and negative electrode, and a structure in which an electrode lead is attached to one end is allowed.

【0018】正側の電極としては、正極集電体となる帯
状のアルミニウム箔の両面に正極合剤スラリーを均一に
塗布し、これを乾媒させてから全体を圧縮形成して帯状
としたものを許容する。この正極合剤スラリーとして
は、N−メチル2−ピロリドンに正極合剤を分散させた
ものを許容し、この正極合剤としては、正極活物質とし
てLiMn204を92重量部、導電剤としてグラファ
イトを5重量部、結着剤としてポリフッ化ビニリデンを
3重量部、混合したものを許容する。正極活物質である
LiMn204は、炭酸リチウムと二酸化マンガンとを
混合し、これを空気中で温度780℃で12時間まで焼
成することなどで生成される。
As the positive electrode, a positive electrode mixture slurry is uniformly applied to both sides of a band-shaped aluminum foil serving as a positive electrode current collector, and the slurry is dried and then entirely formed by compression to form a band. Tolerate. As the positive electrode mixture slurry, one in which a positive electrode mixture is dispersed in N-methyl 2-pyrrolidone is allowed. As the positive electrode mixture, 92 parts by weight of LiMn204 as a positive electrode active material and 5 parts of graphite as a conductive agent are used. A mixture of 3 parts by weight of polyvinylidene fluoride as a binder is allowed. LiMn204, which is a positive electrode active material, is produced by mixing lithium carbonate and manganese dioxide, and baking this in air at 780 ° C. for up to 12 hours.

【0019】負側の電極としては、負側の電極集電体と
なる厚さ10μmの帯状の銅箔の両面に負極合剤スラリ
ーを塗布し、これを乾燥させてから圧縮形成して帯状と
したものを許容する。この負極合剤スラリーとしては、
溶剤であるN−メチル2−ピロリドンに負極合剤を分散
させたものを許容し、この負極合剤としては、電極活物
質の坦持体としてメソフェーズ系の炭素材料の粉末を9
0重量部、結着材としてポリフッ化ビニリデン(PVD
F)を10重量部、混合したものを許容する。
As the negative electrode, a negative electrode mixture slurry is applied to both sides of a 10 μm thick strip-shaped copper foil serving as a negative electrode current collector, and then dried and compressed to form a strip. Accept what you did. As the negative electrode mixture slurry,
N-methyl 2-pyrrolidone as a solvent in which a negative electrode mixture is dispersed is acceptable. As the negative electrode mixture, a mesophase-based carbon material powder as a carrier for an electrode active material is used.
0 parts by weight, polyvinylidene fluoride (PVD)
A mixture of 10 parts by weight of F) is allowed.

【0020】容器は、外形が扁平な直方体状で、同様な
形状の電極素子を収容し、非水電解液を封入できるもの
であれば良く、例えば、ステンレス製の缶を許容する。
非水電解液としては、エチレンカーボネートを30重量
部とジエチルカーボネートを70重量部との混合溶媒中
に、LiPF6を1モル/1の剖合で溶解させたものを
許容する。
The container may have any shape as long as it has a flat rectangular parallelepiped shape, accommodates electrode elements of a similar shape, and can enclose a non-aqueous electrolyte. For example, a stainless steel can is acceptable.
As the non-aqueous electrolyte, a solution prepared by dissolving LiPF6 at a ratio of 1 mol / 1 in a mixed solvent of 30 parts by weight of ethylene carbonate and 70 parts by weight of diethyl carbonate is allowed.

【0021】上述のような二次電池における他の発明と
しては、充填物が全体的に平板状に形成されている。従
って、扁平な直方体状の容器の内部に収容されるよう電
極素子を巻回した場合に、その巻回構造の中心空間が平
板状の充填物で的確に充電される。
As another invention in the above-described secondary battery, the filling is formed in a flat plate shape as a whole. Therefore, when the electrode element is wound so as to be accommodated in a flat rectangular parallelepiped container, the central space of the wound structure is appropriately charged with the flat-shaped filler.

【0022】上述のような二次電池における他の発明と
しては、充填物の厚み寸法が巻回構造の電極素子の中心
空間の厚み寸法の40〜98%である。従って、充填物
の厚み寸法が電極素子の中心空間の40%以上なので、
充電により正負の電極が伸縮しても隙間の発生が良好に
防止され、充填物の厚み寸法が電極素子の中心空間の9
8%以下なので、組立工程において電極素子の中心空間
に充填物が容易に挿入される。
In another aspect of the secondary battery as described above, the thickness of the filler is 40 to 98% of the thickness of the center space of the wound electrode element. Therefore, since the thickness dimension of the filler is 40% or more of the center space of the electrode element,
Even if the positive and negative electrodes expand and contract due to charging, generation of a gap is well prevented, and the thickness dimension of the filler is 9% of the central space of the electrode element.
Since it is 8% or less, the filler is easily inserted into the central space of the electrode element in the assembly process.

【0023】上述のような二次電池における他の発明と
しては、充填物の幅寸法が巻回構造の電極素子の中心空
間の幅寸法の50〜95%である。従って、充填物の幅
寸法が電極素子の中心空間の50%以上なので、充電に
より正負の電極が伸縮しても隙間の発生が良好に防止さ
れ、充填物の幅寸法が電極素子の中心空間の95%以下
なので、組立工程において電極素子の中心空間に充填物
が容易に挿入される。
In another aspect of the secondary battery as described above, the width of the filling is 50 to 95% of the width of the center space of the wound electrode element. Therefore, since the width dimension of the filler is 50% or more of the center space of the electrode element, even if the positive and negative electrodes expand and contract due to charging, the generation of a gap is favorably prevented. Since it is 95% or less, the filler is easily inserted into the central space of the electrode element in the assembly process.

【0024】上述のような二次電池における他の発明と
しては、充填物の表面に凹部が形成されている。従っ
て、シート状の電極の一端に電極リードを設ける場合、
この電極リードを充填物の凹部に配置できる。なお、正
側の電極リードとしては、アルミニウム製の平板を正側
のシート状の電極の一端に溶接した構造を許容し、負側
の電極リードとしては、例えば、ニッケル製の平板を負
側のシート状の電極の一端に溶接した構造を許容する。
In another aspect of the above-described secondary battery, a recess is formed on the surface of the filler. Therefore, when providing an electrode lead at one end of a sheet-like electrode,
This electrode lead can be arranged in the recess of the filling. As the positive electrode lead, a structure in which an aluminum flat plate is welded to one end of the positive sheet electrode is allowed. As the negative electrode lead, for example, a nickel flat plate is used as the negative electrode lead. A structure welded to one end of a sheet-like electrode is allowed.

【0025】上述のような二次電池における他の発明と
しては、充填物が複数の部品からなる。従って、シート
状の電極の一端に電極リードを設ける場合、この電極リ
ードを充填物の複数の部品の間隙に配置できる。なお、
このような構造を実現する充填物の複数の部品として
は、例えば、電極リードを間隙に配置できるよう並設し
た二本の角柱などを許容する。
In another aspect of the secondary battery as described above, the filler is composed of a plurality of parts. Therefore, when an electrode lead is provided at one end of a sheet-like electrode, the electrode lead can be arranged in a gap between a plurality of components of the filler. In addition,
As the plurality of parts of the filler for realizing such a structure, for example, two prisms arranged side by side so that electrode leads can be arranged in a gap are allowed.

【0026】上述のような二次電池における他の発明と
しては、充填物が非水電解液と化学反応しない材質から
なる。従って、電極素子の中心空間に配置された充填物
は必然的に非水電解液に浸漬されるが、この非水電解液
と充填物とが反応することがない。
In another aspect of the above-described secondary battery, the filling is made of a material that does not chemically react with the non-aqueous electrolyte. Therefore, although the filler disposed in the central space of the electrode element is necessarily immersed in the non-aqueous electrolyte, the non-aqueous electrolyte does not react with the filler.

【0027】上述のような二次電池における他の発明と
しては、シート状の正側の電極がマンガン酸リチウムを
主成分として形成されており、シート状の負側の電極が
リチウムイオンのドープ/脱ドープが自在な炭素材料を
主成分として形成されている。
In another aspect of the above-described secondary battery, the positive electrode in the form of a sheet is formed mainly of lithium manganate, and the negative electrode in the form of a sheet is doped with lithium ions. It is formed mainly of a carbon material that can be undoped.

【0028】このような構造の二次電池では、初回充電
時にリチウムイオンが正極から負極ヘインターカーレー
トする際、リチウムイオンを脱ドープした正極は収縮
し、リチウムイオンがドープされた負極は格子定数が大
きくなり膨張する。発生する応力が電極素子の巻回構造
の中心空間を変形させるように作用し、この中心空間が
変形すると積層された正負の電極に隙間が発生する。こ
の隙問は電池の動作時にはリチウムイオンのドープ/脱
ドープには寄与せず、また隙間の周辺部は電流密度の集
中のために寄与しないところのリチウムイオンが金属リ
チウムとなって析出することになる。この金屈リチウム
の析出は電池容最の低下の原因となり電池性能の低下を
引き起こす。しかし、この電極素子の巻回構造の中心空
間が変形しないように充填物が配置されていれば、充電
しても正負の電極間に隙問が発生しない。
In the secondary battery having such a structure, when lithium ions intercalate from the positive electrode to the negative electrode during the first charge, the positive electrode dedoped with lithium ions contracts, and the negative electrode doped with lithium ions has a lattice constant. Become larger and expand. The generated stress acts to deform the center space of the wound structure of the electrode element. When the center space is deformed, a gap is generated between the stacked positive and negative electrodes. This gap does not contribute to the doping / de-doping of lithium ions during the operation of the battery, and the lithium ions that do not contribute to the concentration of the current density at the periphery of the gap are deposited as metallic lithium. Become. This deposition of gold-gold lithium causes the ultimate reduction in battery capacity and causes a decrease in battery performance. However, if the filler is arranged so that the center space of the wound structure of the electrode element is not deformed, no gap occurs between the positive and negative electrodes even when charged.

【0029】本発明の二次電池の製造方法は、シート状
のセパレータを介してシート状の正負の電極を積層し、
このセパレータとともに積層された正負の電極を平板状
の巻芯に巻回して電極素子を全体的に扁平な直方体状に
形成し、この電極素子の巻回構造の中心空間から巻芯を
取り外して充填物を挿入し、この充填物が挿入された電
極素子を扁平な直方体状の容器の内部に収容し、この容
器の内部に非水電解液を封入するようにした。
In the method for manufacturing a secondary battery according to the present invention, sheet-like positive and negative electrodes are laminated via a sheet-like separator,
The positive and negative electrodes laminated together with this separator are wound around a flat core to form the entire electrode element into a flat rectangular parallelepiped shape, and the core is removed from the center space of the wound structure of this electrode element and filled. The electrode element into which the filler was inserted was accommodated in a flat rectangular parallelepiped container, and a nonaqueous electrolyte was sealed in the container.

【0030】従って、このような製造方法により形成さ
れた二次電池は、非水電解液が封入された扁平な直方体
状の容器の内部に、同様な形状の巻回構造の電極素子が
配置されており、この電極素子の中心空間に充填物が配
置されているので、充電と放電との繰り返しによりシー
ト状の正負の電極が伸縮しても、この正負の電極間に隙
間が発生することが防止される。
Therefore, in a secondary battery formed by such a manufacturing method, an electrode element having a similar winding structure is arranged inside a flat rectangular parallelepiped container in which a non-aqueous electrolyte is sealed. Since the filler is disposed in the central space of the electrode element, a gap may be generated between the positive and negative electrodes even if the sheet-like positive and negative electrodes expand and contract due to repetition of charging and discharging. Is prevented.

【0031】[0031]

【発明の実施の形態】本発明の実施の一形態を図面を参
照して以下に説明する。なお、図1は本実施の形態の二
次電池の組立構造を示す分解斜視図、図2は充電と放電
とを繰り返した場合の電池容量と充填物の厚み寸法との
関係を示す特性図、図3は充電と放電とを繰り返した場
合の電池容量と充填物の幅寸法との関係を示す特性図、
図4は充填物の各種の変形例を示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing an assembling structure of the secondary battery according to the present embodiment, FIG. 2 is a characteristic diagram showing a relationship between a battery capacity and a thickness dimension of a filler when charging and discharging are repeated, FIG. 3 is a characteristic diagram showing the relationship between the battery capacity and the width of the filler when charging and discharging are repeated,
FIG. 4 is a perspective view showing various modifications of the filler.

【0032】まず、本実施の形態の二次電池1は、図1
に示すように、容器である電池缶2が扁平な直方体状に
形成されており、その内部に同様な形状の電極素子3が
収容されている。この電極素子3は、シート状の正負の
電極4,5とシート状のセパレータ6,7からなり、前
記電極4,5は前記セパレータ6,7を介して積層され
た状態で巻回されている。前記電極4,5の一端には電
極リード8,9が装着されており、前記電極素子3の中
心空間には平板状の充填物10が配置されている。
First, the secondary battery 1 of the present embodiment is similar to the one shown in FIG.
As shown in FIG. 1, a battery can 2 as a container is formed in a flat rectangular parallelepiped shape, and an electrode element 3 having a similar shape is accommodated in the inside thereof. The electrode element 3 includes sheet-like positive and negative electrodes 4 and 5 and sheet-like separators 6 and 7, and the electrodes 4 and 5 are wound in a stacked state with the separators 6 and 7 interposed therebetween. . Electrode leads 8 and 9 are attached to one ends of the electrodes 4 and 5, and a flat filling 10 is disposed in a central space of the electrode element 3.

【0033】本実施の形態の二次電池1は、上述のよう
に外形が扁平な直方体状なのでスペース的な効率が良好
であり、これを使用する機器の小型化に許容することが
でき、保存や搬送も容易である。そして、このような形
状の電池缶2に収容されるよう、電極素子3も扁平な直
方体状に形成されているが、その巻回構造の中心空間に
同様な形状の充填物10が配置されているので、シート
状の正負の電極4,5が充放電により伸縮しても、中心
空間が変形して隙間が発生することがない。このため、
本実施の形態の二次電池1は、充放電を繰り返しても容
量が低下することがなく、良好な性能を安定に発揮する
ことができる。
As described above, the secondary battery 1 of the present embodiment has a flat rectangular parallelepiped shape, and therefore has a good space efficiency, and can be used for miniaturization of equipment using the same. And transport is also easy. The electrode element 3 is also formed in a flat rectangular parallelepiped shape so as to be accommodated in the battery can 2 having such a shape, but a filler 10 having a similar shape is arranged in the center space of the wound structure. Therefore, even if the sheet-like positive and negative electrodes 4 and 5 expand and contract due to charging and discharging, the center space is not deformed and a gap is not generated. For this reason,
The secondary battery 1 according to the present embodiment can stably exhibit good performance without a decrease in capacity even when charge and discharge are repeated.

【0034】なお、図1では構造の説明を容易とするた
め、前記電池缶2から上方に前記電極素子3が突出し、
この電極素子3から上方に前記充填物10が突出してい
る状態を示しているが、実際には前記充填物10は前記
電極素子3の中心空間の内部に配置されており、この電
極素子3は前記電池缶2の内部に配置されている。ま
た、図面では上述のような構造の二次電池1の製造方法
を、以下に詳細に説明する。まず、前記負側の電極5
は、以下のようにして製作した。メソフェーズ系の炭素
材料の粉末を負側の電極活物質の坦持体とし、これを9
0重量部、結着材としてポリフッ化ビニリデン(PVD
F)を10重量部と混合し、負極合剤を調整した。そし
て、この負極合剤を、溶剤であるN−メチル2−ピロリ
ドンに分散させて負極合剤スラリーにした。
In FIG. 1, in order to facilitate the description of the structure, the electrode element 3 projects upward from the battery can 2,
Although the state where the filler 10 protrudes upward from the electrode element 3 is shown, actually, the filler 10 is disposed inside the central space of the electrode element 3, and the electrode element 3 is It is arranged inside the battery can 2. In the drawings, a method for manufacturing the secondary battery 1 having the above-described structure will be described in detail below. First, the negative electrode 5
Was manufactured as follows. A powder of a mesophase-based carbon material was used as a carrier for the negative electrode active material,
0 parts by weight, polyvinylidene fluoride (PVD)
F) was mixed with 10 parts by weight to prepare a negative electrode mixture. Then, this negative electrode mixture was dispersed in N-methyl 2-pyrrolidone as a solvent to obtain a negative electrode mixture slurry.

【0035】この負極合剤スラリーを、負側の電極集電
体となる厚さ10μmの帯状の銅箔の両面に塗布して乾
燥させた後、圧縮形成して帯状の負側の電極5を製作し
た。なお、この帯状の負側の電極5は、合剤厚さを両面
共に80μmで同一とし、幅を39mm、長さを465
mmとした。そして、上述のように製作した負側の電極
5の一端に、厚さ0.1mm、幅3mmのニッケル製の
平板を溶接して負側の電極リード9を形成した。
This negative electrode mixture slurry is applied to both sides of a 10 μm-thick strip-shaped copper foil serving as a negative-side electrode current collector and dried, and then compression-formed to form a strip-shaped negative electrode 5. Made. The band-shaped negative electrode 5 had the same mixture thickness of 80 μm on both sides, a width of 39 mm, and a length of 465.
mm. Then, a flat plate made of nickel having a thickness of 0.1 mm and a width of 3 mm was welded to one end of the negative electrode 5 manufactured as described above to form a negative electrode lead 9.

【0036】また、正側の電極4は次のようにして製作
した。まず、炭酸リチウムと二酸化マンガンを混合し、
空気中で温度780℃で12時間まで焼成してLiMn
204を得た。このLiMn204を正極活物質とし、
これを92重量部と、導電剤としてグラファイト5重量
部、結着剤としてポリフッ化ビニリデン3重量部を混合
し、正極合剤を調整した。そして、この正極合剤をN−
メチル2−ピロリドンに分散させて正極合剤スラリーに
した。
The positive electrode 4 was manufactured as follows. First, mix lithium carbonate and manganese dioxide,
LiMn by firing in air at 780 ° C for up to 12 hours
204 was obtained. This LiMn204 is used as a positive electrode active material,
This was mixed with 92 parts by weight, 5 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder to prepare a positive electrode mixture. Then, this positive electrode mixture was mixed with N-
The mixture was dispersed in methyl 2-pyrrolidone to form a positive electrode mixture slurry.

【0037】この正極合剤スラリーを、正極集電体とな
る厚さ25μmの帯状のアルミニウム箔の両面に均一に
塗布して乾媒させた後、圧縮形成して帯状の正側の電極
4を作製した。なお、帯状の正側の電極4は、合剤厚さ
を両面共に80μmで同一とし、幅を37mm、長さを
395mmとした。そして、上述のように製作した正側
の電極4の一端に、厚さ0.1mm、幅3mmのアルミ
ニウム製の平板を溶接して正側の電極リード8を形成し
た。
This positive electrode mixture slurry is uniformly applied to both sides of a 25 μm-thick strip-shaped aluminum foil serving as a positive electrode current collector and dried, and then compression-formed to form a strip-shaped positive electrode 4. Produced. The band-shaped positive electrode 4 had the same mixture thickness of 80 μm on both sides, a width of 37 mm, and a length of 395 mm. Then, an aluminum flat plate having a thickness of 0.1 mm and a width of 3 mm was welded to one end of the positive electrode 4 manufactured as described above to form a positive electrode lead 8.

【0038】以上のようにして作製した帯状の正負の電
極4,5を、厚さ25μm、幅41mmの微多孔性のポ
リプロピレンフィルムよりなるセパレータ6,7を介し
て、負側の電極5、第一のセパレータ6、正側の電極
4、第二のセパレータ7、の順番に積層し、この積層体
の一端を断面形状が長方形の平板状の巻芯(図示せず)に
固定して多数回巻回した。このように巻芯に積層体を巻
回した後、最外周に位置するセパレータ6,7の最終端
部を、幅l5mmの粘着テープ11によって巻回体に固
定した。そして、巻芯を巻回体から抜き取ることにより
電極素子3を製作した。
The strip-like positive and negative electrodes 4 and 5 produced as described above are connected to the negative electrode 5 and the negative electrode 5 through separators 6 and 7 made of a microporous polypropylene film having a thickness of 25 μm and a width of 41 mm. One of the separators 6, the positive electrode 4, and the second separator 7 are stacked in this order, and one end of the stacked body is fixed to a flat plate-shaped core (not shown) having a rectangular cross-sectional shape. Wound. After winding the laminated body around the core in this way, the final ends of the separators 6 and 7 located at the outermost periphery were fixed to the wound body with an adhesive tape 11 having a width of 15 mm. And the electrode element 3 was manufactured by extracting a core from a winding body.

【0039】このようにして作製した電極素子3の巻回
構造の中心空間、すなわち巻芯が位置していたところ
に、ポリプロピレン製の長方形の平板状の充填物10を
挿入した。この充填物10が配置された電極素子3を、
ステンレス製の扁平な直方体状の電池缶2に収納し、電
極素子3の上下両面に絶縁板(図示せず)を配置した。
A rectangular flat plate-shaped filler 10 made of polypropylene was inserted into the center space of the wound structure of the electrode element 3 thus manufactured, that is, where the core was located. The electrode element 3 on which the filler 10 is arranged is
It was housed in a flat rectangular parallelepiped battery can 2 made of stainless steel, and insulating plates (not shown) were arranged on both upper and lower surfaces of the electrode element 3.

【0040】ついで、正側の電極リード8を電池缶7に
溶接するとともに、負側の電極リード8を電池蓋に溶接
し、電池蓋を電池缶7にレーザ溶接により固定した。そ
して、エチレンカーボネートを30重量部とジエチルカ
ーボネートを70重量部との混合溶媒中にLiPF6を
1モル/1の剖合で溶解した非水電解液を用意し、これ
を電池缶7の内部に電解液注入部(図示せず)から注入
し、この電解液注人部を密封することで電池缶7の機密
性を保持させた。以上の工程で、厚さ9mm、幅26m
m、高さ45mmの扁平な直方体状の非水電解液方式の
二次電池1を作製した。
Next, the positive electrode lead 8 was welded to the battery can 7, the negative electrode lead 8 was welded to the battery lid, and the battery lid was fixed to the battery can 7 by laser welding. Then, a non-aqueous electrolyte prepared by dissolving LiPF6 at a rate of 1 mol / 1 in a mixed solvent of 30 parts by weight of ethylene carbonate and 70 parts by weight of diethyl carbonate was prepared. The battery can 7 was kept confidential by injecting it from a liquid injecting section (not shown) and sealing the electrolyte pouring section. With the above process, thickness 9mm, width 26m
m, a flat rectangular parallelepiped non-aqueous electrolyte type secondary battery 1 having a height of 45 mm was produced.

【0041】以上のようにして充填物10の厚みを巻回
構造の電極素子3の中心空間の寸法の10%から95
%、幅を10%から95%まで各10%毎に変化させた
充填物を各合計10個の二次電池1を作製し、上限電圧
4.2V、充電電流0.5Aの条件で定電流充電を2.
5時間行った後、終止電圧3.0Vの条件で放電を行う
といった充放電サイクルを100回まで繰り返してから
電池容量を調ベた。
As described above, the thickness of the filler 10 is increased from 10% to 95% of the dimension of the central space of the wound electrode element 3.
%, And a total of 10 rechargeable batteries 1 each having a filler whose width was changed from 10% to 95% for each 10%, and a constant current under conditions of an upper limit voltage of 4.2 V and a charging current of 0.5 A. Charge 2.
After performing for 5 hours, the battery capacity was measured after repeating the charge / discharge cycle of discharging the battery under the condition of a final voltage of 3.0 V up to 100 times.

【0042】この100サイクルの容量分布を図2およ
び図3に示す。これらの図面から明らかなように、電極
素子3の巻回構造の中心空間の寸法に対して充填物10
の厚みと幅が50%〜90%のものは、容量低下が非常
に少ない。これは電極素子3の中心空間に充填物10が
挿入されていることにより、充放電を繰り返しても電極
素子3の正負の電極4,5問に隙問が生じないためであ
る。このことから、電極素子3の巻回構造の中心空間に
その厚み及び幅寸法の50%〜90%の寸法の充填物1
0を配置させることは、二次電池1の容量低下を防止す
る上で有効であることが判明した。
FIGS. 2 and 3 show the capacity distribution of the 100 cycles. As is apparent from these drawings, the filling 10
Those having a thickness and a width of 50% to 90% have very little capacity reduction. This is because there is no gap between the positive and negative electrodes 4 and 5 of the electrode element 3 even when charging and discharging are repeated, since the filler 10 is inserted into the central space of the electrode element 3. From this, the filling 1 having a size of 50% to 90% of the thickness and width of the electrode element 3 in the center space of the wound structure of the electrode element 3
It has been found that placing 0 is effective in preventing the capacity of the secondary battery 1 from decreasing.

【0043】つまり、本実施の形態の二次電池1は、前
述のように外形が扁平な直方体状でスペース的な効率が
良好であり、その内部の電極素子3も扁平な直方体状に
形成されているが、その巻回構造の中心空間に同様な形
状の充填物10が配置されているので、充放電を繰り返
してもシート状の正負の電極4,5隙間が発生して容量
が低下することがなく、良好な性能を安定に発揮するこ
とができる。
That is, the secondary battery 1 of the present embodiment has a flat rectangular parallelepiped shape and good space efficiency as described above, and the electrode elements 3 inside the secondary battery 1 are also formed in a flat rectangular parallelepiped shape. However, since the filler 10 having a similar shape is arranged in the center space of the wound structure, even if charge and discharge are repeated, gaps between the sheet-like positive and negative electrodes 4 and 5 are generated and the capacity is reduced. And good performance can be stably exhibited.

【0044】しかも、本実施の形態の二次電池1の製造
方法としては、巻回構造の電極素子3を従来と同様な手
法により形成し、この電極素子3の中心空間から巻芯を
取り外して充填物10を挿入しているので、充填物10
が電極素子3の中心空間に配置された構造を容易に実現
することができる。
Further, as a method of manufacturing the secondary battery 1 of the present embodiment, the wound electrode element 3 is formed by a method similar to the conventional method, and the core is removed from the center space of the electrode element 3. Since the filling 10 is inserted, the filling 10
Can be easily realized in the central space of the electrode element 3.

【0045】さらに、本実施の形態の二次電池1は、前
述のように充填物10の厚み寸法を電極素子3の中心空
間の40〜98%とし、幅寸法を50〜95%とするこ
とにより、正負の電極4,5間に隙間が発生することを
良好に防止することができ、かつ、電極素子3の中心空
間に充填物10を容易に挿入することができるので、電
池容量が低下しない構造を容易に製作することができ
る。
Further, in the secondary battery 1 of the present embodiment, as described above, the thickness of the filler 10 is 40 to 98% of the central space of the electrode element 3 and the width is 50 to 95%. As a result, it is possible to satisfactorily prevent the formation of a gap between the positive and negative electrodes 4 and 5, and to easily insert the filler 10 into the central space of the electrode element 3, thereby lowering the battery capacity. It is possible to easily manufacture a structure that does not have the above.

【0046】さらに、本実施の形態の二次電池1は、充
填物10は扁平な直方体状に形成されているので、電池
缶2に対応して扁平な直方体状に形成された電極素子3
の中心空間を的確に充填することができる。また、本実
施の形態の二次電池1は、従来の構造に対して充填物1
0が追加されていることになるが、この充填物10が非
水電解液と化学反応しない材質からなるので、充填物1
0が非水電解液と反応して電池の性能が低下することも
ない。
Furthermore, in the secondary battery 1 of the present embodiment, since the filler 10 is formed in a flat rectangular parallelepiped shape, the electrode element 3 is formed in a flat rectangular parallelepiped shape corresponding to the battery can 2.
Center space can be accurately filled. Further, the secondary battery 1 of the present embodiment has a
0 is added, but since the filler 10 is made of a material that does not chemically react with the non-aqueous electrolyte, the filler 1
0 does not react with the non-aqueous electrolyte to lower the performance of the battery.

【0047】なお、本発明は上記形態に限定されるもの
ではなく、その要旨を逸脱しない範囲で各種の変形を許
容する。例えば、上記形態では従来と同様に製作した電
極素子3の中心空間から巻芯を取り外して充填物10を
挿入することを例示したが、最初から充填物10に電極
4,5やセパレータ6,7を巻回して電極素子3を形成
することも可能である。
The present invention is not limited to the above-described embodiment, but allows various modifications without departing from the gist of the present invention. For example, in the above-described embodiment, the core is removed from the center space of the electrode element 3 manufactured in the same manner as in the related art, and the filler 10 is inserted. However, the electrodes 4 and 5 and the separators 6 and 7 are added to the filler 10 from the beginning. Can be wound to form the electrode element 3.

【0048】この場合、従来の生産設備を流用すること
は困難となるが、巻芯の取り外しや充填物10の挿入を
不要とすることができる。さらに、充填物10の厚み寸
法と幅寸法とを電極素子3の中心空間の100%とする
ことができるので、シート状の電極6,7間に隙間が発
生することを確実に防止することができる。
In this case, it is difficult to use the conventional production equipment, but it is not necessary to remove the core and insert the filler 10. Further, since the thickness and width of the filler 10 can be set to 100% of the central space of the electrode element 3, it is possible to reliably prevent a gap from being generated between the sheet-like electrodes 6 and 7. it can.

【0049】また、上記形態では充填物10を単純な平
板とすることを例示したが、これは電極素子3の中心空
間の変形を防止できる外形を維持できれば良いので、例
えば、図4(a)に示すように、直径2mm程度の肉抜き
孔21が連設された充填物22をアルミニウム等で形成
し、全体を軽量化するとともに非水電解液の容積を増加
させるようなことも可能である。
In the above-described embodiment, the filling material 10 is exemplified as a simple flat plate. However, since it is only necessary to maintain the outer shape capable of preventing the deformation of the central space of the electrode element 3, for example, FIG. As shown in FIG. 5, it is also possible to form a filler 22 having a lightening hole 21 having a diameter of about 2 mm continuously formed of aluminum or the like so as to reduce the overall weight and increase the volume of the non-aqueous electrolyte. .

【0050】さらに、上記形態では一端に電極リード
8,9が各々装着されたシート状の電極5,6を平板状
の充填物10に巻回することを例示したが、これでは電
極リード8,9の厚みのために電極素子3の外形が阻害
されることもある。これが問題となる場合には、図4
(b)に示すように、表面に凹部23が形成された形状に
充填物24を形成し、その凹部23に電極リード8を位
置させることや、図4(c)に示すように、二個の角柱状
の部品25を所定間隔で並設して充填物26を形成し、
その間隙に電極リード8を位置させるようなことが好ま
しい。
Further, in the above-described embodiment, the sheet-like electrodes 5 and 6 having the electrode leads 8 and 9 mounted on one end, respectively, are wound around the plate-like filler 10, but in this case, the electrode leads 8 and 9 are wound. Due to the thickness of 9, the outer shape of the electrode element 3 may be hindered. If this is a problem, see FIG.
As shown in FIG. 4B, a filler 24 is formed in a shape in which a concave portion 23 is formed on the surface, and the electrode lead 8 is positioned in the concave portion 23. As shown in FIG. Are formed side by side at predetermined intervals to form a filler 26,
It is preferable that the electrode lead 8 be located in the gap.

【0051】[0051]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0052】請求項1記載の発明の二次電池は、シート
状の正負の電極がシート状のセパレータを介して積層さ
れ、これが巻回されて全体的に扁平な直方体状の電極素
子が形成され、この電極素子を非水電解液が封入された
扁平な直方体状の容器の内部に収容されている二次電池
において、前記電極素子の中心空間に充填物を設けたこ
とにより、容器が扁平な直方体状なのでスペース的な効
率が良好であり、このような形状の容器に収容された巻
回構造のシート状の正負の電極が充電と放電との繰り返
しにより伸縮しても、その中心空間の変形が充填物によ
り防止されるので、電極間に隙間が発生することによる
電池容量の低下を防止することができる。
In the secondary battery according to the first aspect of the present invention, sheet-like positive and negative electrodes are laminated via a sheet-like separator, and this is wound to form an overall flat rectangular parallelepiped electrode element. In a secondary battery in which this electrode element is accommodated in a flat rectangular parallelepiped container in which a nonaqueous electrolyte is sealed, by providing a filler in the central space of the electrode element, the container is flat. Since it is a rectangular parallelepiped, space efficiency is good, and even if the sheet-like positive and negative electrodes of a wound structure housed in a container of such a shape expand and contract due to repetition of charging and discharging, deformation of its central space Is prevented by the filler, so that it is possible to prevent a decrease in battery capacity due to a gap between the electrodes.

【0053】請求項2記載の発明は、請求項1記載の二
次電池であって、充填物が全体的に平板状に形成されて
いることにより、扁平な直方体状の容器に収容されるよ
う巻回構造の電極素子を形成した場合、その中心空間を
充填物により的確に充填することができ、中心空間の変
形により正負の電極間に隙間が発生することを良好に防
止することができる。
According to a second aspect of the present invention, there is provided the secondary battery according to the first aspect, wherein the filling is formed in a flat plate shape as a whole, so that the filling is accommodated in a flat rectangular parallelepiped container. When an electrode element having a wound structure is formed, the center space thereof can be accurately filled with the filling material, and a gap between the positive and negative electrodes due to deformation of the center space can be favorably prevented.

【0054】請求項3記載の発明は、請求項2記載の二
次電池であって、充填物の厚み寸法が巻回構造の電極素
子の中心空間の厚み寸法の40〜98%であることによ
り、充填物の厚み寸法が電極素子の中心空間の40%以
上なので、正負の電極間に隙間が発生することを良好に
防止することができ、充填物の厚み寸法が電極素子の中
心空間の98%以下なので、電極素子の中心空間に充填
物を容易に挿入することができ、電池容量の低下を良好
に防止できる構造を良好な生産性で実現することができ
る。
According to a third aspect of the invention, there is provided the secondary battery according to the second aspect, wherein the thickness of the filler is 40 to 98% of the thickness of the center space of the wound electrode element. Since the thickness of the filler is 40% or more of the center space of the electrode element, it is possible to prevent the occurrence of a gap between the positive and negative electrodes, and the thickness of the filler is 98% of the center space of the electrode element. % Or less, the filler can be easily inserted into the central space of the electrode element, and a structure capable of favorably preventing a decrease in battery capacity can be realized with good productivity.

【0055】請求項4記載の発明は、請求項2ないし3
の何れか一記載の二次電池であって、充填物の幅寸法が
巻回構造の電極素子の中心空間の幅寸法の50〜95%
であることにより、充填物の幅寸法が電極素子の中心空
間の50%以上なので、正負の電極間に隙間が発生する
ことを良好に防止することができ、充填物の幅寸法が電
極素子の中心空間の95%以下なので、電極素子の中心
空間に充填物を容易に挿入することができ、電池容量の
低下を良好に防止できる構造を良好な生産性で実現する
ことができる。
The invention described in claim 4 is the second or third invention.
Wherein the width of the filler is 50% to 95% of the width of the center space of the wound electrode element.
Since the width dimension of the filler is 50% or more of the center space of the electrode element, it is possible to prevent a gap from being generated between the positive and negative electrodes, and to reduce the width dimension of the electrode element. Since it is 95% or less of the central space, the filler can be easily inserted into the central space of the electrode element, and a structure capable of favorably preventing a decrease in battery capacity can be realized with good productivity.

【0056】請求項5記載の発明は、請求項2ないし5
の何れか一記載の二次電池であって、充填物の表面に凹
部が形成されていることにより、シート状の電極の一端
に電極リードを装着する場合でも、この電極リードを充
填物の凹部に配置すれば、電極素子を全体的に扁平な直
方体状に形成することができる。
The invention according to claim 5 provides the invention according to claims 2 to 5
The secondary battery according to any one of the above, wherein the concave portion is formed on the surface of the filler, so that even when the electrode lead is attached to one end of the sheet-like electrode, the electrode lead is provided in the concave portion of the filler. In this case, the electrode element can be formed in a flat rectangular parallelepiped shape as a whole.

【0057】請求項6記載の発明は、請求項2ないし4
の何れか一記載の二次電池であって、充填物が複数の部
品からなることにより、シート状の電極の一端に電極リ
ードを装着する場合でも、この電極リードを充填物の凹
部に配置すれば、電極素子を全体的に扁平な直方体状に
形成することができる。
The invention according to claim 6 provides the invention according to claims 2 to 4
The secondary battery according to any one of the above, wherein the filler is composed of a plurality of parts, so that even when an electrode lead is attached to one end of a sheet-like electrode, the electrode lead is disposed in a recess of the filler. In this case, the electrode element can be formed in a flat rectangular parallelepiped shape as a whole.

【0058】請求項7記載の発明は、請求項1ないし6
の何れか一記載の二次電池であって、充填物が非水電解
液と化学反応しない材質からなることにより、充填物が
非水電解液と反応して電池の性能が低下することが防止
される。
The invention according to claim 7 is the invention according to claims 1 to 6
The secondary battery according to any one of the above, wherein the filler is made of a material that does not chemically react with the non-aqueous electrolyte, thereby preventing the filler from reacting with the non-aqueous electrolyte and deteriorating the performance of the battery. Is done.

【0059】請求項8記載の発明は、請求項1ないし7
の何れか一記載の二次電池であって、シート状の正側の
電極がマンガン酸リチウムを主成分として形成されてお
り、シート状の負側の電極がリチウムイオンのドープ/
脱ドープが自在な炭素材料を主成分として形成されてい
ることにより、シート状の正負の電極が充放電により伸
縮するが、その巻回構造の中心空間に充填物が位置して
いるので、電極間の隙間の発生による容量の低下が発生
しない。
The invention according to claim 8 is the invention according to claims 1 to 7
The secondary battery according to any one of the above, wherein the sheet-like positive electrode is formed mainly of lithium manganate, and the sheet-like negative electrode is doped with lithium ions.
Since the undoped carbon material is formed as a main component, the sheet-like positive and negative electrodes expand and contract by charging and discharging, but since the filler is located in the central space of the wound structure, the electrode is There is no reduction in capacity due to generation of a gap between them.

【0060】請求項9記載の発明の二次電池の製造方法
は、シート状のセパレータを介してシート状の正負の電
極を積層し、このセパレータとともに積層された正負の
電極を平板状の巻芯に巻回して電極素子を全体的に扁平
な直方体状に形成し、この電極素子の巻回構造の中心空
間から巻芯を取り外して充填物を挿入し、この充填物が
挿入された電極素子を扁平な直方体状の容器の内部に収
容し、この容器の内部に非水電解液を封入するようにし
たことにより、扁平な直方体状の巻回構造の電極素子の
中央空間に充填物が配置された構造を簡易に実現するこ
とができる。
According to a ninth aspect of the present invention, in the method for manufacturing a secondary battery, sheet-like positive and negative electrodes are laminated via a sheet-like separator, and the positive and negative electrodes laminated together with the separator are formed into a flat core. The electrode element is formed into a flat rectangular parallelepiped shape as a whole, the core is removed from the center space of the wound structure of the electrode element, a filler is inserted, and the electrode element into which the filler is inserted is removed. By filling the non-aqueous electrolyte inside the flat rectangular parallelepiped container and filling the non-aqueous electrolyte inside the container, the filler is disposed in the center space of the flat rectangular parallelepiped wound electrode element. Can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の二次電池を示す分解斜
視図である。
FIG. 1 is an exploded perspective view showing a secondary battery according to an embodiment of the present invention.

【図2】電極素子の中心空間に対する充填物の厚みを変
化させた場合の電池容量の変化を示す特性図である。
FIG. 2 is a characteristic diagram showing a change in battery capacity when the thickness of a filler with respect to a center space of an electrode element is changed.

【図3】電極素子の中心空間に対する充填物の幅を変化
させた場合の電池容量の変化を示す特性図である。
FIG. 3 is a characteristic diagram showing a change in battery capacity when the width of the filling material with respect to the center space of the electrode element is changed.

【図4】充填物の各種の変形例である。FIG. 4 shows various modifications of the packing.

【符号の説明】[Explanation of symbols]

1 二次電池 2 容器である電池缶 3 電極素子 4,5 電極 6,7 セパレータ 8,9 電極リード 10 充填物 11 粘着テープ 21 肉抜き孔 22 充填物 23 凹部 24 充填物 25 部品 26 充填物 DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Battery can which is a container 3 Electrode element 4,5 Electrode 6,7 Separator 8,9 Electrode lead 10 Filler 11 Adhesive tape 21 Lightening hole 22 Filler 23 Depression 24 Filler 25 Parts 26 Filler

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 シート状の正負の電極がシート状のセパ
レータを介して積層され、これが巻回されて全体的に扁
平な直方体状の電極素子が形成され、この電極素子を非
水電解液が封入された扁平な直方体状の容器の内部に収
容されている二次電池において、 前記電極素子の中心空間に充填物を設けたことを特微と
する二次電池。
1. A sheet-like positive / negative electrode is laminated via a sheet-like separator, and this is wound to form an overall flat rectangular parallelepiped electrode element. A secondary battery housed in an enclosed flat rectangular parallelepiped container, characterized in that a filler is provided in a central space of the electrode element.
【請求項2】 充填物が全体的に平板状に形成されてい
ることを特徴とする請求項1記載の二次電池。
2. The secondary battery according to claim 1, wherein the filler is formed in a flat plate shape as a whole.
【請求項3】 充填物の厚み寸法が巻回構造の電極素子
の中心空間の厚み寸法の40〜98%であることを特徴
とする請求項2記載の二次電池。
3. The secondary battery according to claim 2, wherein the thickness of the filling is 40 to 98% of the thickness of the center space of the wound electrode element.
【請求項4】 充填物の幅寸法が巻回構造の電極素子の
中心空間の幅寸法の50〜95%であることを特徴とす
る請求項2ないし3の何れか一記載の二次電池。
4. The secondary battery according to claim 2, wherein the width of the filler is 50 to 95% of the width of the center space of the wound electrode element.
【請求項5】 充填物の表面に凹部が形成されているこ
とを特徴とする請求項2ないし5の何れか一記載の二次
電池。
5. The secondary battery according to claim 2, wherein a recess is formed on a surface of the filling.
【請求項6】 充填物が複数の部品からなることを特徴
とする請求項2ないし4の何れか一記載の二次電池。
6. The secondary battery according to claim 2, wherein the filler comprises a plurality of parts.
【請求項7】 充填物が非水電解液と化学反応しない材
質からなることを特徴とする請求項1ないし6の何れか
一記載の二次電池。
7. The secondary battery according to claim 1, wherein the filler is made of a material that does not chemically react with the non-aqueous electrolyte.
【請求項8】 シート状の正側の電極がマンガン酸リチ
ウムを主成分として形成されており、シート状の負側の
電極がリチウムイオンのドープ/脱ドープが自在な炭素
材料を主成分として形成されていることを特徴とする請
求項1ないし7の何れか一記載の二次電池。
8. A sheet-shaped positive electrode is formed mainly of lithium manganate, and a sheet-shaped negative electrode is formed mainly of a carbon material capable of freely doping / dedoping lithium ions. The secondary battery according to any one of claims 1 to 7, wherein
【請求項9】 シート状のセパレータを介してシート状
の正負の電極を積層し、 このセパレータとともに積層された正負の電極を平板状
の巻芯に巻回して電極素子を全体的に扁平な直方体状に
形成し、 この電極素子の巻回構造の中心空間から巻芯を取り外し
て充填物を挿入し、 この充填物が挿入された電極素子を扁平な直方体状の容
器の内部に収容し、 この容器の内部に非水電解液を封入するようにしたこと
を特徴とする二次電池の製造方法。
9. A sheet-like positive / negative electrode is laminated via a sheet-like separator, and the positive / negative electrode laminated together with the separator is wound around a plate-shaped core, so that the electrode element is entirely flat rectangular parallelepiped. The core is removed from the center space of the wound structure of the electrode element, a filler is inserted, and the electrode element into which the filler is inserted is accommodated in a flat rectangular parallelepiped container. A method for manufacturing a secondary battery, wherein a non-aqueous electrolyte is sealed in a container.
JP09060754A 1997-03-14 1997-03-14 Secondary battery and manufacturing method thereof Expired - Fee Related JP3114646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09060754A JP3114646B2 (en) 1997-03-14 1997-03-14 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09060754A JP3114646B2 (en) 1997-03-14 1997-03-14 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10255847A true JPH10255847A (en) 1998-09-25
JP3114646B2 JP3114646B2 (en) 2000-12-04

Family

ID=13151386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09060754A Expired - Fee Related JP3114646B2 (en) 1997-03-14 1997-03-14 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3114646B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150074A (en) * 2003-07-01 2005-06-09 Matsushita Electric Ind Co Ltd Angular cylindrical battery and its process of manufacture
JP2005347427A (en) * 2004-06-01 2005-12-15 Nippon Chemicon Corp Electrolytic capacitor and manufacturing method thereof
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2008066089A (en) * 2006-09-07 2008-03-21 Hitachi Vehicle Energy Ltd Wound type battery
JP2008166243A (en) * 2006-12-29 2008-07-17 Saehan Enertech Inc Crude cell for high-capacity secondary battery and its manufacturing method as well as high-capacity secondary battery
WO2011155060A1 (en) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 Lithium secondary battery and production method for same
JP2012064354A (en) * 2010-09-14 2012-03-29 Hitachi Vehicle Energy Ltd Square lithium secondary battery
JP2014096387A (en) * 2014-01-24 2014-05-22 Gs Yuasa Corp Battery
US9293785B2 (en) 2010-03-26 2016-03-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, vehicle, and battery mounting device
JP2016126857A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
JP2019207895A (en) * 2014-12-26 2019-12-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
US11043700B2 (en) 2014-12-26 2021-06-22 Samsung Sdi Co., Ltd. Non-aqueous electrolyte rechargeable battery
WO2024092714A1 (en) * 2022-11-04 2024-05-10 宁德时代新能源科技股份有限公司 Electrode assembly, forming method, battery cell, battery and electrical device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150074A (en) * 2003-07-01 2005-06-09 Matsushita Electric Ind Co Ltd Angular cylindrical battery and its process of manufacture
JP2005347427A (en) * 2004-06-01 2005-12-15 Nippon Chemicon Corp Electrolytic capacitor and manufacturing method thereof
JP2008066089A (en) * 2006-09-07 2008-03-21 Hitachi Vehicle Energy Ltd Wound type battery
JP2008166243A (en) * 2006-12-29 2008-07-17 Saehan Enertech Inc Crude cell for high-capacity secondary battery and its manufacturing method as well as high-capacity secondary battery
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
US9293785B2 (en) 2010-03-26 2016-03-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, vehicle, and battery mounting device
JP5218873B2 (en) * 2010-06-11 2013-06-26 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
US8771860B2 (en) 2010-06-11 2014-07-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for manufacturing same
WO2011155060A1 (en) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 Lithium secondary battery and production method for same
JP2012064354A (en) * 2010-09-14 2012-03-29 Hitachi Vehicle Energy Ltd Square lithium secondary battery
JP2014096387A (en) * 2014-01-24 2014-05-22 Gs Yuasa Corp Battery
JP2016126857A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
JP2019207895A (en) * 2014-12-26 2019-12-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
US11043700B2 (en) 2014-12-26 2021-06-22 Samsung Sdi Co., Ltd. Non-aqueous electrolyte rechargeable battery
WO2024092714A1 (en) * 2022-11-04 2024-05-10 宁德时代新能源科技股份有限公司 Electrode assembly, forming method, battery cell, battery and electrical device

Also Published As

Publication number Publication date
JP3114646B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US8119277B2 (en) Stack type battery
JP4630855B2 (en) Battery pack and manufacturing method thereof
KR101651712B1 (en) Secondary Battery
US5658683A (en) Method for making a cell
WO2002013305A1 (en) Coin-shaped battery
JP6424426B2 (en) Assembled battery
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP4305111B2 (en) Battery pack and electric vehicle
JP3114646B2 (en) Secondary battery and manufacturing method thereof
JP4313992B2 (en) Design method for prismatic secondary battery
US20220320596A1 (en) Electrode assembly, manufacturing method and manufacturing system of same, battery cell, and battery
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP3457461B2 (en) Non-aqueous electrolyte secondary battery and assembled battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2006012703A (en) Secondary battery
JPH08148184A (en) Nonaqueous electrolyte secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP7225287B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JPH09320636A (en) Nonaqueous electrolyte secondary battery
JPH1064515A (en) Lithium ion secondary battery
JP5776948B2 (en) Lithium secondary battery and manufacturing method thereof
CN116210109A (en) Secondary battery
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP3166487B2 (en) Thin battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees