JP3457461B2 - Non-aqueous electrolyte secondary battery and assembled battery - Google Patents

Non-aqueous electrolyte secondary battery and assembled battery

Info

Publication number
JP3457461B2
JP3457461B2 JP10354596A JP10354596A JP3457461B2 JP 3457461 B2 JP3457461 B2 JP 3457461B2 JP 10354596 A JP10354596 A JP 10354596A JP 10354596 A JP10354596 A JP 10354596A JP 3457461 B2 JP3457461 B2 JP 3457461B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
electrolyte secondary
electrode
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10354596A
Other languages
Japanese (ja)
Other versions
JPH09266012A (en
Inventor
剛次 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP10354596A priority Critical patent/JP3457461B2/en
Publication of JPH09266012A publication Critical patent/JPH09266012A/en
Application granted granted Critical
Publication of JP3457461B2 publication Critical patent/JP3457461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、組電池化した場合
の体積エネルギー密度が高く、充放電サイクル特性に優
れる非水電解質二次電池及び該二次電池を複数組合わせ
た組電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which has a high volume energy density when assembled into a battery and is excellent in charge / discharge cycle characteristics, and a battery pack in which a plurality of such secondary batteries are combined.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、ポータブル化
が進み、これらの駆動用電源として小型・軽量で、高エ
ネルギー密度を有し、充放電サイクル特性に優れた長寿
命の二次電池への要望が高い。そこで、最近、リチウム
やリチウム合金、又は炭素材料等のリチウムイオンのド
ープ・脱ドープが可能な物質を負極活物質として用い、
リチウムコバルト複合酸化物等のリチウム複合酸化物を
正極活物質として使用する非水電解質二次電池の研究・
開発が行われており、既に実用化されているものもあ
る。
2. Description of the Related Art In recent years, electronic devices have become smaller and more portable, and as a power source for driving these devices, they have become small-sized, lightweight, high energy density, long-life secondary batteries with excellent charge / discharge cycle characteristics. Is highly demanded. Therefore, recently, a material capable of doping / dedoping lithium ions such as lithium, a lithium alloy, or a carbon material is used as a negative electrode active material,
Research on non-aqueous electrolyte secondary batteries using lithium composite oxides such as lithium cobalt composite oxides as positive electrode active materials
Some are under development and some are already in practical use.

【0003】従来、このような非水電解質二次電池の形
状としては、円筒形、角形(四角柱状)及び偏平角形等
がある。
Conventionally, as the shape of such a non-aqueous electrolyte secondary battery, there are a cylindrical shape, a prismatic shape (square columnar shape), a flat rectangular shape and the like.

【0004】円筒形非水電解質二次電池は、形状に無理
がなく、充放電サイクル特性に優れている。ところで、
単電池当たりの容量が大きくなることによる安全性の低
下を防止する場合や、単電池では出せない高い電圧を必
要とする場合には、例えば図4に示すように単電池20
を複数個集合して組電池21にする必要があるが、組電
池化した場合、隙間部分22が多く、体積エネルギー密
度が低くなるという問題がある。
The cylindrical non-aqueous electrolyte secondary battery has a reasonable shape and is excellent in charge / discharge cycle characteristics. by the way,
When it is necessary to prevent a decrease in safety due to an increase in the capacity per unit cell or when a high voltage that cannot be output by a unit cell is required, for example, as shown in FIG.
It is necessary to assemble a plurality of batteries to form the assembled battery 21, but when the assembled battery is formed, there is a problem that the gap portion 22 is large and the volume energy density is low.

【0005】四角柱状の角形非水電解質二次電池は、組
電池化した場合、隙間部分を少なくできるため体積エネ
ルギー密度を高くすることができるが、渦巻き状に巻き
取った電極を四角柱状にプレス成形し使用するため、角
部で電極が直角に折り曲げられる。このため、角部と平
面部とで電極反応の反応性が異なり、全体として電極反
応が不均一となり、十分な充放電サイクル特性が得られ
ないという問題がある。また、角形電池は、渦巻き状の
電極を四角柱状にプレス成形する必要があるが、その場
合、電極の径が大きくなるほど大きな加圧力を要するた
め、大型化にも限界がある。
When a prismatic non-aqueous electrolyte secondary battery having a quadrangular prism shape is assembled into a battery pack, the volume of the energy density can be increased because the gap can be reduced. However, the spirally wound electrode is pressed into a quadrangular prism shape. Since it is molded and used, the electrodes are bent at right angles at the corners. Therefore, there is a problem that the reactivity of the electrode reaction is different between the corner portion and the flat portion, the electrode reaction becomes non-uniform as a whole, and sufficient charge / discharge cycle characteristics cannot be obtained. Further, in the prismatic battery, it is necessary to press-form a spiral electrode into a quadrangular prism shape, but in that case, the larger the diameter of the electrode, the larger the pressing force required, and therefore there is a limit to the increase in size.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の目的
は、組電池化した場合の体積エネルギー密度が高く、か
全体として電極反応を均一に維持することにより充放
電サイクル特性に優れる非水電解質二次電池及び該二次
電池を複数個集合した組電池を提供することにある。
Therefore, an object of the present invention is to provide a non-aqueous electrolyte which has a high volume energy density when assembled into a battery, and which is excellent in charge / discharge cycle characteristics by maintaining the electrode reaction uniformly as a whole. An object of the present invention is to provide a secondary battery and an assembled battery in which a plurality of the secondary batteries are assembled.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明者は鋭意研究の結果、渦巻き状に巻付けてな
る渦巻き状電極の断面形状を六角形に形成し、六角筒形
の電池缶に収容するようにすれば、極めて有効であるこ
とを見出し、本発明を完成した。すなわち、本発明の非
水電解質二次電池は、帯状の正極と帯状の負極とをセパ
レーターを介して積層した帯状電極を設け、この帯状電
極を渦巻き状に巻付けてなる渦巻き状電極を備えた非水
電解質二次電池において、前記渦巻き状電極は円筒状に
形成したものをプレス成形して断面形状を六角形に形成
し、該六角形に形成した渦巻き状電極を六角筒形電池缶
に収容してなること、を特徴としている。また、本発明
の組電池は、かかる非水電解質二次電池を複数個各辺を
密接させて並列に集合するとともに、各非水電解質二次
電池を並列又は直列に接続してなること、を特徴として
いる。
In order to solve the above problems, as a result of earnest research, the present inventor has formed a spirally wound electrode having a hexagonal cross-section into a hexagonal tubular shape. The present invention has been completed by finding that it is extremely effective if it is housed in a battery can. That is, the non-aqueous electrolyte secondary battery of the present invention is provided with a band-shaped electrode in which a band-shaped positive electrode and a band-shaped negative electrode are laminated with a separator interposed therebetween, and the spiral electrode is formed by spirally winding the band-shaped electrode. In the non-aqueous electrolyte secondary battery, the spiral electrode has a cylindrical shape.
The formed product is press-molded to form a hexagonal cross-sectional shape, and the hexagonal spiral electrode is housed in a hexagonal tubular battery can. Further, the assembled battery of the present invention, a plurality of such non-aqueous electrolyte secondary batteries are assembled in parallel by closely contacting each side, and each non-aqueous electrolyte secondary battery is connected in parallel or in series, It has a feature.

【0008】[0008]

【発明の実施の形態】以下本発明の非水電解質二次電池
及び該二次電池を集合した組電池の実施の形態を説明す
る。図1は六角形に形成した渦巻き状電極を六角筒形電
池缶に収容した状態を示す説明図、図2は本発明の非水
電解質二次電池の断面図、図3は組電池化した場合の説
明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the non-aqueous electrolyte secondary battery of the present invention and the assembled battery in which the secondary batteries are assembled will be described below. FIG. 1 is an explanatory view showing a state in which a hexagonal spiral electrode is housed in a hexagonal tubular battery can, FIG. 2 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention, and FIG. FIG.

【0009】本発明の非水電解質二次電池1は、帯状の
正極2と帯状の負極3とをセパレーター4を介して積層
した帯状電極を、渦巻き状に巻付けた渦巻き状電極5を
備えてなる。そして、該渦巻き状電極5の断面形状をプ
レス等により成形して六角形に形成し、該六角形に形成
した渦巻き状電極5を有底の六角筒形の電池缶6に収容
してなる。図2において、符号7は正極2と正極キャッ
プ8とを接続する正極リード、9は負極3と電池缶6と
を接続する負極リード、10は電池缶6と正極キャップ
8とを絶縁するとともに、気密性を保持するためのパッ
キンである。なお、電池缶6内には非水電解液が注入さ
れている。
The non-aqueous electrolyte secondary battery 1 of the present invention comprises a spirally wound electrode 5 in which a spirally wound band-shaped electrode in which a band-shaped positive electrode 2 and a band-shaped negative electrode 3 are laminated via a separator 4 is provided. Become. Then, the cross-sectional shape of the spiral electrode 5 is formed by pressing or the like to form a hexagon, and the spiral electrode 5 formed in the hexagon is housed in a bottomed hexagonal tubular battery can 6. In FIG. 2, reference numeral 7 is a positive electrode lead connecting the positive electrode 2 and the positive electrode cap 8, 9 is a negative electrode lead connecting the negative electrode 3 and the battery can 6, 10 is insulating the battery can 6 and the positive electrode cap 8, and Packing for maintaining airtightness. A non-aqueous electrolytic solution is injected into the battery can 6.

【0010】このように渦巻き状電極5の断面形状を六
角形に形成したので、六角筒形の電池缶6に容積効率よ
く電極5を収容できる。また、屈曲角度がそれほど大き
くないので、四角柱状の角形二次電池に比べて角部での
電極反応の集中が起こり難く、全体として電極反応を均
一に維持できる。このため、円筒形の非水電解質二次電
池と同様、充放電サイクル特性に優れている。また、円
筒状の渦巻き状電極を断面六角形に成形する際、屈曲角
度がそれほど大きくないので、プレス成形も容易で、大
型化も可能である。また、電極5を六角筒形電池缶6に
収容した六角柱状電池1としたので、次に述べるよう
に、組電池化した場合、隙間少なく集合でき、高体積エ
ネルギー密度化が可能となる。
Since the spiral electrode 5 is formed in a hexagonal cross-section in this manner, the electrode 5 can be housed in the hexagonal tubular battery can 6 with high volume efficiency. Further, since the bending angle is not so large, the electrode reaction is less likely to be concentrated at the corners as compared with the prismatic prismatic secondary battery, and the electrode reaction can be uniformly maintained as a whole. Therefore, as with the cylindrical non-aqueous electrolyte secondary battery, it has excellent charge / discharge cycle characteristics. Further, when the cylindrical spiral electrode is formed into a hexagonal cross section, since the bending angle is not so large, press forming is easy and the size can be increased. Moreover, since the electrode 5 is the hexagonal columnar battery 1 housed in the hexagonal tubular battery can 6, as described below, when assembled into a battery pack, the gaps can be assembled with a small gap, and high volumetric energy density can be achieved.

【0011】本発明の組電池は、例えば図3に示すよう
に、上記六角柱状の非水電解質二次電池1を複数個各辺
を密接させて並列に集合するとともに、各非水電解質二
次電池1を使用目的に応じて並列又は直列に接続(図示
せず)してなる。このように、六角柱状の二次電池1を
複数個隙間12少なく配列することができるので、組電
池(11)化した場合に、高い体積エネルギー密度が得
られる。
In the assembled battery of the present invention, for example, as shown in FIG. 3, a plurality of hexagonal column-shaped non-aqueous electrolyte secondary batteries 1 are assembled in parallel with each side in close contact with each other, and each non-aqueous electrolyte secondary battery is The batteries 1 are connected in parallel or in series (not shown) depending on the purpose of use. In this way, since a plurality of hexagonal column-shaped secondary batteries 1 can be arranged with a small gap 12, a high volume energy density can be obtained when the assembled battery (11) is formed.

【0012】本発明における非水電解質二次電池は、有
機溶媒にリチウム塩等の電解質を溶解させた非水電解液
を用いた二次電池であれば、特に制限はないが、負極活
物質、正極活物質、有機溶媒及び電解質を具体的に述べ
れば、以下のようなものが挙げられる。
The non-aqueous electrolyte secondary battery in the present invention is not particularly limited as long as it is a secondary battery using a non-aqueous electrolytic solution in which an electrolyte such as a lithium salt is dissolved in an organic solvent, but the negative electrode active material, Specific examples of the positive electrode active material, the organic solvent and the electrolyte include the following.

【0013】負極活物質としてはリチウムイオンのドー
プ・脱ドープが可能な炭素材料が好ましく、かかる炭素
材料としては、熱分解炭素類、コークス類、有機高分子
化合物焼成体、黒鉛、ガラス状炭素類等が挙げられる。
正極活物質としては、リチウムをドープ・脱ドープ可能
な物質であれば特に制限はないが、リチウム遷移金属複
合酸化物が好適で、具体的には、LiCoO2 、LiM
nO2 、LiNiO2、LiCrO2 、LiMn2 4
等が挙げられる。
The negative electrode active material is preferably a carbon material capable of being doped or dedoped with lithium ions. Examples of the carbon material include pyrolytic carbons, cokes, organic polymer compound fired bodies, graphite and glassy carbons. Etc.
The positive electrode active material is not particularly limited as long as it is a material that can be doped with lithium and dedoped, but a lithium transition metal composite oxide is preferable, and specifically, LiCoO 2 , LiM
nO 2 , LiNiO 2 , LiCrO 2 , LiMn 2 O 4
Etc.

【0014】有機溶媒としては、特に限定されるもので
はないが、たとえば、エチレンカーボネイト、プロピレ
ンカーボネイト、ジエチルカーボネイト、ジメチルカー
ボネイト、エチルメチルカーボネイト、ジプロピルカー
ボネイト、γ−ブチロラクトン等が挙げられ、これらの
1種又は2種以上の混合溶媒を用いることができる。ま
た、電解質としては、LiPF6 、LiBF4 、LiC
lO4 、LiAsF6、LiSbF6 、LiCF3 SO
3 、LiC(CF3 SO2 3 等が挙げられ、これらの
1種又は2種以上を併用することもできる。
The organic solvent is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, γ-butyrolactone, and the like. One kind or a mixed solvent of two or more kinds can be used. Further, as the electrolyte, LiPF 6 , LiBF 4 , LiC
lO 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO
3 , LiC (CF 3 SO 2 ) 3, and the like, and one or more of these may be used in combination.

【0015】[0015]

【実施例】以下に本発明を実施例においてより具体的に
説明する。実施例は本発明を例示的に示したものであっ
て本発明を制限するものではない。実施例1 図1及び図2中の断面六角形に形成した渦巻き状電極5
は、帯状の正極2と帯状の負極3の間にポリプロピレン
製セパレータ4を配し、渦巻き状に巻付けた円柱形の渦
巻き状電極を、プレスにより六角柱状に成形したもので
ある。ここで、正極2は厚さ20μmのアルミニウム箔
の両面に、リチウムコバルト複合酸化物90重量部、黒
鉛粉末5重量部、ポリフッ化ビニリデン樹脂5重量部、
及びN−メチルピロリドン50重量部の混合物を、塗
布、乾燥、圧延したものである。また、負極3は厚さ1
5μmの銅箔の両面に、黒鉛粉末90重量部、ポリフッ
化ビニリデン樹脂10重量部及びN−メチルピロリドン
100重量部の混合物を、塗布、乾燥、圧延したもので
ある。また、正極2には正極リード7を、負極3には負
極リード9を溶接してある。この渦巻き状電極5を電池
缶6に装填後、正極リード7と正極キャップ8間、及び
負極リード9と電池缶6間を溶接した。次に、エチレン
カーボネイト50vol%とジエチルカーボネイト50
vol%からなる溶媒に、6フッ化リン酸リチウムを1
mol/Lの濃度で溶解させ、調整した非水電解液を電
池缶6内に注入し、パッキン10を介して電池缶6の上
部をカシメることにより、正極キャップ8を固定して電
池缶6を密閉し、非水電解質二次電池1とした。こうし
て作製した非水電解質二次電池1の充放電試験結果を表
1に示す。なお、充放電試験は、電圧範囲2.5〜4.
1Vで行い、充放電電流は1000mAとした。
EXAMPLES The present invention will be described more specifically below with reference to examples. The examples are illustrative of the invention and are not intended to limit the invention. Example 1 A spiral electrode 5 formed in a hexagonal cross section in FIGS. 1 and 2.
Is a columnar spirally wound electrode in which a polypropylene separator 4 is disposed between a strip-shaped positive electrode 2 and a strip-shaped negative electrode 3, and the spirally wound cylindrical electrode is formed into a hexagonal column shape by pressing. Here, the positive electrode 2 has 90 parts by weight of lithium cobalt composite oxide, 5 parts by weight of graphite powder, 5 parts by weight of polyvinylidene fluoride resin, on both sides of an aluminum foil having a thickness of 20 μm.
And a mixture of 50 parts by weight of N-methylpyrrolidone and applied, dried and rolled. The negative electrode 3 has a thickness of 1
A mixture of 90 parts by weight of graphite powder, 10 parts by weight of polyvinylidene fluoride resin and 100 parts by weight of N-methylpyrrolidone was applied, dried and rolled on both surfaces of a 5 μm copper foil. A positive electrode lead 7 is welded to the positive electrode 2 and a negative electrode lead 9 is welded to the negative electrode 3. After the spiral electrode 5 was loaded into the battery can 6, the positive electrode lead 7 and the positive electrode cap 8 and the negative electrode lead 9 and the battery can 6 were welded. Next, 50% by volume of ethylene carbonate and 50% of diethyl carbonate
1% lithium hexafluorophosphate in a solvent consisting of vol%
The prepared non-aqueous electrolyte solution is dissolved at a concentration of mol / L and injected into the battery can 6, and the upper part of the battery can 6 is caulked via the packing 10 to fix the positive electrode cap 8 and fix the battery can 6. Was sealed to obtain a non-aqueous electrolyte secondary battery 1. Table 1 shows the charge / discharge test results of the non-aqueous electrolyte secondary battery 1 thus produced. The charge / discharge test was conducted in the voltage range of 2.5 to 4.
It was performed at 1 V and the charge / discharge current was 1000 mA.

【0016】比較例1 実施例1における円柱形の渦巻き状電極を、プレス成形
せず円柱状のまま使用し、電池缶として円筒形容器を使
用した以外は、実施例1と同様の方法を用いて非水電解
質二次電池を作製した。こうして作製した電池の充放電
試験結果を表1に示す。
Comparative Example 1 The same method as in Example 1 was used, except that the cylindrical spirally wound electrode in Example 1 was used as it was without being press-molded, and a cylindrical container was used as a battery can. A non-aqueous electrolyte secondary battery was produced. Table 1 shows the charge / discharge test results of the battery thus manufactured.

【0017】比較例2 実施例1における円柱形の渦巻き状電極を、四角柱状に
プレス成形し、電池缶として角形容器を使用した以外
は、実施例1と同様の方法を用いて非水電解質二次電池
を作製した。こうして作製した電池の充放電試験結果を
表1に示す。
Comparative Example 2 A non-aqueous electrolyte electrolyte was prepared in the same manner as in Example 1 except that the cylindrical spirally wound electrode in Example 1 was press-molded into a square column shape and a rectangular container was used as a battery can. A secondary battery was produced. Table 1 shows the charge / discharge test results of the battery thus manufactured.

【0018】[0018]

【表1】 表 1 放電容量 体積エネルギー 100 サイクル後 (mAh) 密度(Wh/L) 容量維持率(%) 実施例1の電池 1680 219 91.1 比較例1の電池 1690 221 91.3 比較例2の電池 1660 216 82.6 [Table 1] Table 1 Discharge capacity Volume energy after 100 cycles (MAh) Density (Wh / L) Capacity retention rate (%) Battery of Example 1 1680 219 91.1 Battery of Comparative Example 1 1690 221 91.3 Battery of Comparative Example 2 1660 216 82.6

【0019】表1から分かるように、実施例1の電池
は、比較例1と同様な高い容量維持率を示したが、比較
例2の電池は容量維持率が低いものとなった。
As can be seen from Table 1, the battery of Example 1 showed a high capacity retention rate similar to that of Comparative Example 1, but the battery of Comparative Example 2 had a low capacity retention rate.

【0020】実施例2 実施例1において作製した単電池(1)81個を図3に
示すように各辺を密接させて並列(最密状態)に配置す
るとともに、各単電池を並列に接続して組電池11とし
た。この組電池11の充放電試験結果を表2に示す。な
お、充放電試験は、電圧範囲2.5〜4.1Vで行い、
充放電電流は20Aとした。
Example 2 Eighty-one unit cells (1) produced in Example 1 were arranged in parallel (closest packed state) with their sides in close contact with each other as shown in FIG. 3, and each unit cell was connected in parallel. The assembled battery 11 was obtained. Table 2 shows the charging / discharging test result of the assembled battery 11. The charge / discharge test is performed in the voltage range of 2.5 to 4.1V,
The charge / discharge current was 20A.

【0021】比較例3 比較例1において作製した単電池(20)81個を図4
に示すように最密状態に配置するとともに、各単電池2
0を並列に接続して組電池21とした。この組電池21
の充放電試験結果を表2に示す。
Comparative Example 3 81 unit cells (20) produced in Comparative Example 1 are shown in FIG.
The cells are arranged in a close-packed state as shown in Fig.
0 was connected in parallel to form an assembled battery 21. This battery pack 21
Table 2 shows the results of the charge and discharge test.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から分かるように、実施例2の組電池
11は、比較例3の組電池21に比べて高い体積エネル
ギー密度を示した。
As can be seen from Table 2, the assembled battery 11 of Example 2 exhibited a higher volume energy density than the assembled battery 21 of Comparative Example 3.

【0024】[0024]

【発明の効果】以上、説明したように、本発明の非水電
解質二次電池によれば、円筒状の渦巻き状電極をプレス
成形して、その断面形状を六角形に形成し、六角筒形電
池缶に収容するようにしたので、組電池化した場合の体
積エネルギー密度が高く、かつ全体として電極反応を均
一に維持することにより充放電サイクル特性に優れる。
また、本発明の組電池によれば、体積エネルギー密度が
高く、かつ充放電サイクル特性に優れる等の効果を奏す
る。
As described above, according to the non-aqueous electrolyte secondary battery of the present invention, the cylindrical spiral electrode is pressed.
Molded to form a sectional shape in a hexagonal, since so as to accommodate the hexagonal cylindrical battery can, the body of the case where the assembled battery of
The product energy density is high and the electrode reaction is uniform as a whole.
By maintaining the same value, the charge / discharge cycle characteristics are excellent.
Further, according to the assembled battery of the present invention, there are effects such as high volume energy density and excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】六角形に形成した渦巻き状電極を六角筒形電池
缶に収容した状態を示す説明図。
FIG. 1 is an explanatory view showing a state in which a hexagonal spiral electrode is housed in a hexagonal tubular battery can.

【図2】本発明の非水電解質二次電池の断面図。FIG. 2 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図3】組電池化した場合の説明図。FIG. 3 is an explanatory diagram of a case where an assembled battery is used.

【図4】比較例3における組電池の説明図。FIG. 4 is an explanatory diagram of an assembled battery in Comparative Example 3.

【符号の説明】 1 非水電解質二次電池 2 正極 3 負極 4 セパレータ 5 渦巻き状電極 6 六角筒形電池缶 11 組電池[Explanation of symbols] 1 Non-aqueous electrolyte secondary battery 2 positive electrode 3 Negative electrode 4 separator 5 spiral electrode 6 Hexagonal tubular battery can 11 batteries

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 10/04 - 10/28 H01M 6/02 - 6/18 H01M 2/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 10/04-10/28 H01M 6/02-6/18 H01M 2/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】帯状の正極と帯状の負極とをセパレーター
を介して積層した帯状電極を設け、この帯状電極を渦巻
き状に巻付けてなる渦巻き状電極を備えた非水電解質二
次電池において、前記渦巻き状電極は円筒状に形成した
ものをプレス成形して断面形状を六角形に形成し、該六
角形に形成した渦巻き状電極を六角筒形電池缶に収容し
てなることを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a spirally wound electrode formed by stacking a spirally wound positive electrode and a negative belt negative electrode via a separator, and spirally winding the spirally wound electrode. The spiral electrode was formed in a cylindrical shape
What is claimed is: 1. A non-aqueous electrolyte secondary battery, which is obtained by press-molding a product to form a hexagonal cross-sectional shape, and storing the hexagonal spiral electrode in a hexagonal tubular battery can.
【請求項2】請求項1に記載の非水電解質二次電池を複
数個各辺を密接させて並列に集合するとともに、各非水
電解質二次電池を並列又は直列に接続してなる組電池。
2. An assembled battery in which a plurality of the non-aqueous electrolyte secondary batteries according to claim 1 are assembled in parallel with their respective sides in close contact with each other, and the non-aqueous electrolyte secondary batteries are connected in parallel or in series. .
JP10354596A 1996-03-29 1996-03-29 Non-aqueous electrolyte secondary battery and assembled battery Expired - Fee Related JP3457461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354596A JP3457461B2 (en) 1996-03-29 1996-03-29 Non-aqueous electrolyte secondary battery and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354596A JP3457461B2 (en) 1996-03-29 1996-03-29 Non-aqueous electrolyte secondary battery and assembled battery

Publications (2)

Publication Number Publication Date
JPH09266012A JPH09266012A (en) 1997-10-07
JP3457461B2 true JP3457461B2 (en) 2003-10-20

Family

ID=14356815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354596A Expired - Fee Related JP3457461B2 (en) 1996-03-29 1996-03-29 Non-aqueous electrolyte secondary battery and assembled battery

Country Status (1)

Country Link
JP (1) JP3457461B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521449B (en) 2000-07-04 2003-02-21 Matsushita Electric Ind Co Ltd A battery, a process for producing the battery, a process for producing a battery case, and a battery pack
DE102007010744B4 (en) * 2007-02-27 2009-01-22 Daimler Ag Battery cell of a battery, cell combination of battery cells and use of multiple cells
JP2012064353A (en) * 2010-09-14 2012-03-29 Sony Corp Power supply unit
JP2014170613A (en) * 2011-06-28 2014-09-18 Panasonic Corp Battery module
JP2014197452A (en) * 2011-08-03 2014-10-16 パナソニック株式会社 Battery module
CN102593524A (en) * 2012-03-01 2012-07-18 广州市云通磁电有限公司 Manufacturing method of orthohexagonal lithium ion battery cell
US20170210587A1 (en) * 2014-07-23 2017-07-27 Bosch Corporation Roll and method for manufacturing roll
US10224573B2 (en) * 2016-03-28 2019-03-05 Bosch Battery Systems, Llc Wound electrode assembly for an electrochemical cell, and methods and devices for manufacture of same
US20210175566A1 (en) * 2018-04-06 2021-06-10 Sanyo Electric Co., Ltd. Battery
KR102503269B1 (en) * 2018-09-05 2023-02-22 주식회사 엘지에너지솔루션 Hexagonal prism-shaped battery cell and Method for manufacturing the same, and Battery module comprising the same
CN110931879A (en) * 2019-11-18 2020-03-27 合肥国轩高科动力能源有限公司 Novel columnar lithium ion battery
CN112768748B (en) * 2021-04-07 2021-08-03 江苏时代新能源科技有限公司 Battery monomer, battery, electric equipment and method and device for preparing battery monomer
EP4099461A4 (en) * 2021-04-07 2022-12-07 Jiangsu Contemporary Amperex Technology Limited Battery cell, battery, electric device, and method and apparatus for manufacturing battery cell
US11817260B2 (en) * 2021-11-30 2023-11-14 Nissan North America, Inc. Integrated supercapacitor-battery structure
US11862395B2 (en) * 2021-11-30 2024-01-02 Nissan North America, Inc. Energy bank including integrated supercapacitor-battery structures

Also Published As

Publication number Publication date
JPH09266012A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP5217076B2 (en) Lithium ion battery
CN1168172C (en) Non-aqueous electrolyte battery and its manufacturing method
TWI387148B (en) Anode and secondary battery
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JP3457461B2 (en) Non-aqueous electrolyte secondary battery and assembled battery
CN1167151C (en) Non-water electrolyte battery
US20140134500A1 (en) Anode and battery using same
JP3589021B2 (en) Lithium ion secondary battery
JP3460407B2 (en) Non-aqueous electrolyte secondary battery
JP2001185224A (en) Nonaqueous electrolyte secondary battery
JP3114646B2 (en) Secondary battery and manufacturing method thereof
JP2002237292A (en) Nonaqueous electrolyte secondary battery
CN107026281A (en) Lithium rechargeable battery
JP3237015B2 (en) Non-aqueous electrolyte secondary battery
JP2006012703A (en) Secondary battery
JPH03152881A (en) Rectangular type lithium secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP3457462B2 (en) Non-aqueous electrolyte secondary battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
JP2001189167A (en) Non-aqueous electrolyte secondary cell
US11791460B2 (en) Electrode assembly, secondary battery, battery module, battery pack and power consuming device
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP2002231312A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees