JPH09199114A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH09199114A
JPH09199114A JP8004224A JP422496A JPH09199114A JP H09199114 A JPH09199114 A JP H09199114A JP 8004224 A JP8004224 A JP 8004224A JP 422496 A JP422496 A JP 422496A JP H09199114 A JPH09199114 A JP H09199114A
Authority
JP
Japan
Prior art keywords
active material
material layer
strip
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8004224A
Other languages
Japanese (ja)
Other versions
JP3694557B2 (en
Inventor
Isato Higuchi
勇人 樋口
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP00422496A priority Critical patent/JP3694557B2/en
Publication of JPH09199114A publication Critical patent/JPH09199114A/en
Application granted granted Critical
Publication of JP3694557B2 publication Critical patent/JP3694557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell having a high capacity and excellent load characteristics by using low crystalline carbon as a negative electrode material. SOLUTION: This cell is constituted by winding a belt-shaped positive electrode 1 having a positive electrode active material layer using lithium-contained transition metal chalcogenite as an active material in both surfaces of a belt- shaped positive electrode collector and a belt-shaped negative electrode 2 having a negative electrode active material layer using a carbon material as an active material in both surfaces of a belt-shaped negative electrode collector, through a belt-shaped separator 3. In this case, the negative electrode active material layer contains low crystalline carbon with a 3.4Å or more mean interlayer distance d002 and a 100Å or less crystallite size Lc in a direction of an axis (c), thickness of one surface of this negative electrode active material layer is 0.04mm or less, and when assuming xmm for length in a major axis direction of the belt-shaped negative electrode material layer and ymm for diameter of a cylindrical cell, a relation where x/y<2> is 1.8 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帯状正極と帯状負
極とから構成されるリチウム二次電池などの非水電解液
二次電池に関し、さらに詳しくは、充放電特性の改良さ
れた上記非水電解液二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery composed of a strip positive electrode and a strip negative electrode, and more specifically to the above non-aqueous electrolyte having improved charge / discharge characteristics. The present invention relates to an electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池の負極材料としては、
一般的にカ―ボンが用いられている。カ―ボンは層状構
造を有しており、原料を焼成する際の温度により結晶性
が決められ、カ―ボンの結晶性の高いほど高容量を示す
ことが知られている。
2. Description of the Related Art As a negative electrode material for a lithium secondary battery,
Carbon is generally used. Carbon has a layered structure, and its crystallinity is determined by the temperature at which the raw material is fired. It is known that the higher the crystallinity of the carbon, the higher the capacity.

【0003】現存する最高の結晶性を有する天然黒鉛
は、平均層間距離d002 が3.35Åで、c軸方向の結
晶子サイズLcが1,000Å以上であり、理論容量3
72mAh/g(すなわち、C6 Li)を示すものであ
る。しかしながら、近年の盛んな研究開発により、上記
のような黒鉛の理論容量をはるかに超える容量を有する
低結晶性カ―ボンが多数現れてきた。
The existing natural graphite having the highest crystallinity has an average interlayer distance d 002 of 3.35 Å, a crystallite size Lc in the c-axis direction of 1,000 Å or more, and a theoretical capacity of 3
It shows 72 mAh / g (that is, C 6 Li). However, due to active research and development in recent years, many low crystalline carbons having a capacity far exceeding the theoretical capacity of graphite as described above have appeared.

【0004】たとえば、フエノ―ル樹脂を約700℃で
焼成することにより得られるポリアセン系有機高分子半
導体では、カ―ボン重量あたり850mAh/g(第3
5回電池討論会要旨集2B15)、ポリパラフエニレン
のような有機高分子化合物を500〜1,500℃で焼
成したカ―ボンでは680mAh/g(日経産業新聞1
994年5月2日)の高容量が得られることが報告され
ている。
For example, in the case of a polyacene-based organic polymer semiconductor obtained by firing a phenol resin at about 700 ° C., 850 mAh / g (3rd unit) per carbon weight.
5th Battery Symposium Summary 2B15), 680 mAh / g for carbon made by firing an organic polymer compound such as polyparaphenylene at 500-1,500 ° C (Nikkei Sangyo Shimbun 1
It has been reported that a high capacity (May 2, 994) can be obtained.

【0005】このような低結晶性カ―ボンは、平均層間
距離d002 が天然黒鉛のそれに比べてはるかに大きく、
層構造以外に多くの孔を有しており、そこに多量のリチ
ウムをド―プできるため、高容量が得られると考えられ
ている。
Such low crystalline carbon has an average inter-layer distance d 002 much larger than that of natural graphite,
It has many pores other than the layered structure, and it is considered that a large capacity can be obtained because a large amount of lithium can be doped therein.

【0006】[0006]

【発明が解決しようとする課題】しかし、低結晶性カ―
ボンは、非常に高容量なため、電池を作製したときに、
それらと組み合わせる正極材料に、低結晶性カ―ボンの
重量あたり、または体積あたりの容量に相当するものが
現存しない。たとえば、代表的な正極材料であるリチウ
ムコバルト酸化物(LiCoO2 )で130mAh/
g、リチウムニツケル酸化物(LiNiO2 )で190
mAh/gである。
However, the low crystallinity car
Bonn has a very high capacity, so when you make a battery,
There is currently no positive electrode material to be combined with them that corresponds to the capacity per weight or volume of the low crystalline carbon. For example, a typical positive electrode material, lithium cobalt oxide (LiCoO 2 ), has 130 mAh /
g, lithium nickel oxide (LiNiO 2 ) 190
It is mAh / g.

【0007】このことから、正極容量と負極容量を等し
くするため、正極活物質層を厚くするか、負極活物質層
を薄くしなければならない。また、アモルフアス構造を
有する低結晶性カ―ボンは、電気的等方性を示すため、
粒子の導電性が黒鉛のそれに比べて低く、かつ低結晶性
カ―ボンに多く存在する空孔中のリチウムの拡散速度が
層間のそれに比べると非常に遅いため、低結晶性カ―ボ
ンを負極に用いると、電池の負荷特性が黒鉛を用いた場
合に比べて悪くなる。
Therefore, in order to make the positive electrode capacity and the negative electrode capacity equal, the positive electrode active material layer must be thickened or the negative electrode active material layer must be thinned. Further, the low crystalline carbon having an amorphous structure exhibits electrical isotropy,
The conductivity of the particles is lower than that of graphite, and the diffusion rate of lithium in the pores that are often present in low crystalline carbon is very slow compared to that between the layers, so low crystalline carbon is used as the negative electrode. When used for, the load characteristics of the battery are worse than when graphite is used.

【0008】本発明は、上記の事情に照らし、負極材料
として低結晶性カ―ボンを用いたリチウム二次電池など
の非水電解液二次電池において、負極活物質層の厚さお
よび長さを規制することにより、高容量であつて、かつ
負荷特性にすぐれた非水電解液二次電池を得ることを目
的としている。
In view of the above circumstances, the present invention provides a non-aqueous electrolyte secondary battery such as a lithium secondary battery using a low crystalline carbon as a negative electrode material, and the thickness and length of the negative electrode active material layer. The purpose of this is to obtain a non-aqueous electrolyte secondary battery having a high capacity and excellent load characteristics by regulating the above.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋭意研究を重ねた結果、負極材料
として低結晶性カ―ボンを用いたリチウム二次電池など
において、負極活物質層を特定厚さ以下の薄い構成とす
ることにより負荷特性が改善されるとともに、この負極
活物質層を特定長さ以上の広い面積構成とすることによ
り高容量化をも達成できることを知り、本発明を完成す
るに至つた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, in a lithium secondary battery using a low crystalline carbon as a negative electrode material, By making the negative electrode active material layer a thin structure of a specific thickness or less, load characteristics are improved, and by making this negative electrode active material layer a wide area structure of a specific length or more, it is possible to achieve high capacity. As a result, I came to complete the present invention.

【0010】すなわち、本発明は、帯状正極集電体の両
面にリチウム含有遷移金属カルコゲナイドを活物質とし
て用いた正極活物質層を有する帯状正極と、帯状負極集
電体の両面に炭素材料を活物質として用いた負極活物質
層を有する帯状負極とを、帯状セパレ―タを介して捲回
してなる円筒型の非水電解液二次電池において、上記の
負極活物質層は、平均層間距離d002 が3.4Å以上
で、c軸方向の結晶子サイズLcが100Å以下である
低結晶性カ―ボンを含有してなり、この負極活物質層の
片面の厚さが0.04mm以下であり、かつ帯状の負極活
物質層の長軸方向の長さをxmm、円筒型電池の直径をy
mmとしたとき、x/y2 が1.8以上であることを特徴
とする円筒型の非水電解液二次電池に係るものである。
That is, according to the present invention, a strip-shaped positive electrode having a positive electrode active material layer using a lithium-containing transition metal chalcogenide as an active material on both sides of the strip-shaped positive electrode collector, and a carbon material is activated on both sides of the strip-shaped negative electrode collector. In a cylindrical non-aqueous electrolyte secondary battery formed by winding a strip negative electrode having a negative electrode active material layer used as a substance through a strip separator, the negative electrode active material layer has an average interlayer distance d. 002 is 3.4 Å or more, and a low crystalline carbon having a crystallite size Lc in the c-axis direction of 100 Å or less is contained, and the thickness of one side of this negative electrode active material layer is 0.04 mm or less. And the length of the strip-shaped negative electrode active material layer in the major axis direction is x mm, and the diameter of the cylindrical battery is y.
The present invention relates to a cylindrical non-aqueous electrolyte secondary battery characterized in that x / y 2 is 1.8 or more in mm.

【0011】[0011]

【発明の実施の形態】本発明においては、図1に示すよ
うに、帯状正極1と帯状負極2とをポリエチレン製など
の帯状セパレ―タ3を介して捲回して渦巻状電極体4を
構成し、これを円筒型の電池缶5内に収容し、これにさ
らに非水電解液を加えて、常法により封口し、円筒型の
非水電解液二次電池としたものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as shown in FIG. 1, a spirally wound electrode body 4 is constructed by winding a strip positive electrode 1 and a strip negative electrode 2 through a strip separator 3 made of polyethylene or the like. Then, this is housed in a cylindrical battery can 5, a non-aqueous electrolyte is further added thereto, and the container is sealed by a conventional method to obtain a cylindrical non-aqueous electrolyte secondary battery.

【0012】帯状正極1は、図2に示すように、アルミ
ニウム箔などの帯状正極集電体10の両面にリチウム含
有遷移金属カルコゲナイドを活物質として用いた正極活
物質層11A,11Bを有する構成からなり、これらの
層11A,11Bは、通常、上記の活物質とバインダと
導電助剤を含有する塗液を上記集電体10の両面に塗布
し乾燥したのち、加圧成形することにより、作製され
る。
As shown in FIG. 2, the strip-shaped positive electrode 1 has a structure in which positive electrode active material layers 11A and 11B using lithium-containing transition metal chalcogenide as an active material are provided on both surfaces of a strip-shaped positive electrode current collector 10 such as an aluminum foil. The layers 11A and 11B are usually prepared by applying a coating liquid containing the above active material, a binder and a conductive auxiliary agent to both surfaces of the above current collector 10, drying and then pressure molding. To be done.

【0013】ここで、正極活物質であるリチウム含有遷
移金属カルコゲナイドは、リチウムとコバルト、ニツケ
ルなどの遷移金属との複合酸化物、複合硫化物、複合セ
レン化物などの化合物として、従来より公知のものがす
べて使用可能であり、これらの中でも、リチウムコバル
ト酸化物(LiCoO2 )、リチウムニツケル酸化物
(LiNiO2 )などの化合物がとくに好ましく用いら
れる。
Here, the lithium-containing transition metal chalcogenide, which is the positive electrode active material, is conventionally known as a compound such as a complex oxide of lithium and a transition metal such as cobalt or nickel, a complex sulfide, or a complex selenide. Can be used, and among these, compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) are particularly preferably used.

【0014】帯状負極2は、図3に示すように、銅箔な
どの帯状負極集電体20の両面に炭素材料を活物質とし
て用いた負極活物質層21A,21Bを有する構成から
なり、これらの負極活物質層21A,21Bは、通常、
炭素材料からなる活物質とバインダを含有する塗液を上
記集電体20の両面に塗布し乾燥したのち、加圧成形す
ることにより、作製される。
As shown in FIG. 3, the strip-shaped negative electrode 2 is composed of strip-shaped negative electrode current collectors 20 such as copper foil having negative electrode active material layers 21A and 21B using a carbon material as an active material on both sides. The negative electrode active material layers 21A and 21B of
A coating liquid containing an active material made of a carbon material and a binder is applied to both surfaces of the current collector 20 and dried, and then pressure-molded.

【0015】ここで、負極活物質である炭素材料は、平
均層間距離d002 が3.4Å以上、好ましくは3.5Å
以上(通常4.0Åまで)で、c軸方向の結晶子サイズ
Lcが100Å以下、好ましくは50Å以下(通常4.
5Åまで)である低結晶性カ―ボンが用いられる。この
低結晶性カ―ボンは、たとえば、石油ピツチやこれより
抽出されるカ―ボンマイクロビ―ズ、フエノ―ル樹脂な
どを500℃以上の温度で焼成したバルクカ―ボンを粉
砕することにより得られ、平均粒径が通常0.5〜30
μmの粉末材料として用いられる。
Here, the carbon material as the negative electrode active material has an average interlayer distance d 002 of 3.4 Å or more, preferably 3.5 Å
Above (usually up to 4.0Å), the crystallite size Lc in the c-axis direction is 100 Å or less, preferably 50 Å or less (usually 4.
Low crystalline carbon up to 5Å) is used. This low crystalline carbon is obtained, for example, by crushing bulk carbon obtained by firing petroleum pitch, carbon microbeads extracted from it, phenol resin, etc. at a temperature of 500 ° C or higher. The average particle size is usually 0.5 to 30
Used as a μm powder material.

【0016】このような低結晶性カ―ボンを活物質とし
た負極活物質層21A,21Bは、片面の厚さtが0.
04mm以下(通常0.02mmまで)であることが必要
で、これより厚くなると、電池の負荷特性が悪くなる。
また、このような厚さに設定する一方、低結晶性カ―ボ
ンに基づく高い容量が得られるように、帯状の負極活物
質層21A,21B(つまりは、帯状負極2)の長軸方
向の長さをxmm、円筒型電池の直径をymmとしたとき
に、x/y2 が1.8以上、好ましくは1.9以上(通
常5.0まで)とすることが必要で、上記の長さxがこ
れより短くなると、負極面積の低下によつて電池の高容
量化が難しくなる。
The negative electrode active material layers 21A and 21B using such a low crystalline carbon as the active material have a thickness t of one side of 0.
It is necessary to be 04 mm or less (usually up to 0.02 mm), and if it is thicker than this, the load characteristics of the battery deteriorate.
Further, while the thickness is set to such a value, the strip-shaped negative electrode active material layers 21A and 21B (that is, the strip-shaped negative electrode 2) in the major axis direction are obtained so that a high capacity based on the low crystalline carbon can be obtained. When the length is xmm and the diameter of the cylindrical battery is ymm, x / y 2 must be 1.8 or more, preferably 1.9 or more (usually up to 5.0). If the length x is shorter than this, it is difficult to increase the capacity of the battery due to the decrease in the negative electrode area.

【0017】非水電解液としては、有機溶媒に電解質を
溶解させてなるものが用いられる。有機溶媒には、リン
酸トリメチル、リン酸トリエチル、リン酸トリブチルな
どの含リン系有機溶媒、エチレンカ―ボネ―ト、プロピ
レンカ―ボネ―ト、ブチレンカ―ボネ―ト、γ―ブチロ
ラクトンなどの誘電率の高いエステルのほか、1,2−
ジメトキシエタン、ジオキソラン、テトラヒドロフラ
ン、2−メチル−テトラヒドロフラン、ジエチルエ―テ
ル、アセトニトリルなどが用いられる。また、電解質と
しては、LiClO4 、LiPF6 、LiBF4 、Li
AsF6 、LiSbF6 、LiCF3 SO3 、LiCF
3 CO2 、Li224 (SO32 、LiN(CF
3 SO22 、LiC(CF3 SO23 、LiCn
2n+1SO3(n≧2)などが、単独でまたは2種以上混
合して用いられる。
As the non-aqueous electrolytic solution, one prepared by dissolving an electrolyte in an organic solvent is used. Organic solvents include phosphorus-containing organic solvents such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, etc. High ester, 1,2-
Dimethoxyethane, dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether, acetonitrile and the like are used. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , Li
AsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiCF
3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF
3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F
2n + 1 SO 3 (n ≧ 2) and the like are used alone or in combination of two or more.

【0018】[0018]

【実施例】つぎに、実施例を記載して、本発明をより具
体的に説明する。ただし、本発明はそれらの実施例にの
み限定されるものではない。なお、各実施例において、
負極活物質として用いた低結晶性カ―ボンである「カ―
ボンA〜C」は、下記の方法により得られたものであ
る。
EXAMPLES Next, the present invention will be described more concretely with reference to examples. However, the present invention is not limited to these examples. In each example,
"Carbon," which is a low crystalline carbon used as the negative electrode active material
“Bon A to C” are obtained by the following method.

【0019】<カ―ボンA>石油ピツチを850℃で焼
成したバルクカ―ボンを粉砕して、平均粒径が10μm
である低結晶性カ―ボンからなる粉末を得、これをカ―
ボンAとした。このカ―ボンAは、d002 が3.8Å、
Lcが12Åであつた。
<Carbon A> Bulk carbon obtained by firing petroleum pitch at 850 ° C. is crushed to obtain an average particle size of 10 μm.
A powder consisting of low crystalline carbon, which is
Bon A. This carbon A has a d 002 of 3.8Å,
Lc was 12Å.

【0020】<カ―ボンB>石油ピツチより抽出したカ
―ボンマイクロビ―ズを700℃で焼成したバルクカ―
ボンを粉砕して、平均粒径が10μmである低結晶性カ
―ボンからなる粉末を得、これをカ―ボンBとした。こ
のカ―ボンBは、d002 が3.61Å、Lcが16Åで
あつた。
<Carbon B> Bulk carbon obtained by firing carbon microbeads extracted from petroleum pitch at 700 ° C.
Carbon was crushed to obtain a powder of low crystalline carbon having an average particle size of 10 μm, which was designated as carbon B. This carbon B had a d 002 of 3.61Å and an Lc of 16Å.

【0021】<カ―ボンC>フエノ―ル樹脂を700℃
で焼成したバルクカ―ボンを粉砕して、平均粒径が10
μmである低結晶性カ―ボンからなる粉末を得、これを
カ―ボンCとした。このカ―ボンCは、d002 が4.1
0Å、Lcが10Åであつた。
<Carbon C> phenol resin at 700 ° C.
The bulk carbon that was baked in
A powder of low crystalline carbon having a size of μm was obtained, which was designated as carbon C. This carbon C has a d 002 of 4.1.
0Å, Lc was 10Å.

【0022】実施例1 負極活物質としてカ―ボンAからなる粉末を用い、これ
とバインダにPVDF(ポリフツ化ビニリデン)を用い
て塗液を調製し、これを厚さが0.018mmの銅箔の両
面に塗布し、乾燥したのち、カレンダ―ロ―ルプレスし
て帯状負極を作製した。また、正極活物質としてリチウ
ムニツケル酸化物(LiNiO2 )からなる粉末を用
い、これとバインダにPVDF、導電助剤にカ―ボンブ
ラツクを用いて塗液を調製し、これを厚さが0.02mm
のアルミニウム箔の両面に塗布し、乾燥したのち、カレ
ンダ―ロ―ルプレスして、帯状正極を作製した。
Example 1 A powder of carbon A was used as a negative electrode active material, and PVDF (polyvinylidene fluoride) was used as a binder for the powder to prepare a coating liquid, which was used as a copper foil having a thickness of 0.018 mm. After being coated on both sides of the above, dried and then calendar roll pressed, a strip negative electrode was produced. Further, a powder made of lithium nickel oxide (LiNiO 2 ) was used as the positive electrode active material, PVDF was used as the binder, and carbon black was used as the conductive additive to prepare a coating solution, which had a thickness of 0.02 mm.
The aluminum foil was coated on both sides, dried and then calendar roll pressed to produce a strip-shaped positive electrode.

【0023】帯状負極活物質層の寸法は短軸方向57m
m、長軸方向(x)1,000mmで、この活物質層の片
面の厚さ(t)は0.04mmであつた。また、帯状正極
活物質層の寸法は短軸方向57mm、長軸方向900mm
で、この活物質層の片面の厚さは0.04mmであつた。
これらの帯状正負極を、両者間に厚さが0.02mmのポ
リエチレン製帯状セパレ―タを介して捲回し、渦巻状電
極体とした。
The strip-shaped negative electrode active material layer has a dimension of 57 m in the minor axis direction.
m, the major axis direction (x) was 1,000 mm, and the thickness (t) on one surface of the active material layer was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer is 57 mm in the short axis direction and 900 mm in the long axis direction.
The thickness of one side of this active material layer was 0.04 mm.
These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm interposed therebetween to form a spiral electrode body.

【0024】この渦巻状電極体を、18650型の円筒
鉄缶〔直径(y)18mm、高さ65mm〕に組み入れ、電
解液として、ジメトキシエタンとプロピレンカ―ボネ―
トとの体積比1:1の混合溶媒に1.0モル/リツトル
のLiPF6 を溶解させてなる溶液を注入し、常法にし
たがつて封口して、リチウム二次電池を作製した。この
電池のx/y2 は3.09であつた。
This spirally wound electrode body was incorporated into a 18650 type cylindrical iron can [diameter (y) 18 mm, height 65 mm], and as a liquid electrolyte, dimethoxyethane and propylene carbonate were used.
A solution obtained by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent having a volume ratio of 1: 1 with that of the solution was injected, and the solution was sealed according to a conventional method to prepare a lithium secondary battery. The x / y 2 of this battery was 3.09.

【0025】実施例2 負極活物質としてカ―ボンBからなる粉末を用い、これ
とバインダにPVDFを用いて塗液を調製し、これを厚
さが0.018mmの銅箔の両面に塗布し、乾燥したの
ち、カレンダ―ロ―ルプレスして帯状負極を作製した。
また、正極活物質としてリチウムニツケル酸化物(Li
NiO2 )からなる粉末を用い、これとバインダにPV
DF、導電助剤にカ―ボンブラツクを用いて塗液を調製
し、これを厚さが0.02mmのアルミニウム箔の両面に
塗布し、乾燥したのち、カレンダ―ロ―ルプレスして、
帯状正極を作製した。
Example 2 A powder of carbon B was used as the negative electrode active material, and a coating liquid was prepared using PVDF as this and a binder, and this was coated on both sides of a copper foil having a thickness of 0.018 mm. After drying, a calendar roll was pressed to produce a strip negative electrode.
Further, as a positive electrode active material, lithium nickel oxide (Li
NiO 2 ) powder is used as a binder and PV
DF, using a carbon black as a conductive aid to prepare a coating solution, apply this to both sides of an aluminum foil with a thickness of 0.02 mm, dry, and then calender roll press,
A strip positive electrode was produced.

【0026】帯状負極活物質層の寸法は短軸方向57m
m、長軸方向(x)800mmで、この活物質層の片面の
厚さ(t)は0.04mmであつた。また、帯状正極活物
質層の寸法は短軸方向57mm、長軸方向720mmで、こ
の活物質層の片面の厚さは0.06mmであつた。これら
の帯状正負極を、両者間に厚さが0.02mmのポリエチ
レン製帯状セパレ―タを介して捲回し、渦巻状電極体と
した。
The strip-shaped negative electrode active material layer has a dimension of 57 m in the minor axis direction.
The length (m) was 800 mm in the major axis direction (x), and the thickness (t) on one surface of the active material layer was 0.04 mm. The dimension of the belt-shaped positive electrode active material layer was 57 mm in the minor axis direction and 720 mm in the major axis direction, and the thickness of one surface of the active material layer was 0.06 mm. These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm interposed therebetween to form a spiral electrode body.

【0027】この渦巻状電極体を、18650型の円筒
鉄缶〔直径(y)18mm、高さ65mm〕に組み入れ、電
解液として、ジメトキシエタンとプロピレンカ―ボネ―
トとの体積比1:1の混合溶媒に1.0モル/リツトル
のLiPF6 を溶解させてなる溶液を注入し、常法にし
たがつて封口して、リチウム二次電池を作製した。この
電池のx/y2 は2.47であつた。
This spiral electrode body was incorporated into a 18650 type cylindrical iron can [diameter (y) 18 mm, height 65 mm], and dimethoxyethane and propylene carbon were used as electrolytes.
A solution obtained by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent having a volume ratio of 1: 1 with that of the solution was injected, and the solution was sealed according to a conventional method to prepare a lithium secondary battery. The x / y 2 of this battery was 2.47.

【0028】実施例3 負極活物質としてカ―ボンCからなる粉末を用い、これ
とバインダにPVDFを用いて塗液を調製し、これを厚
さが0.018mmの銅箔の両面に塗布し、乾燥したの
ち、カレンダ―ロ―ルプレスして帯状負極を作製した。
また、正極活物質としてリチウムニツケル酸化物(Li
NiO2 )からなる粉末を用い、これとバインダにPV
DF、導電助剤にカ―ボンブラツクを用いて塗液を調製
し、これを厚さが0.02mmのアルミニウム箔の両面に
塗布し、乾燥したのち、カレンダ―ロ―ルプレスして、
帯状正極を作製した。
Example 3 A powder of carbon C was used as the negative electrode active material, and PVDF was used as a binder for the powder to prepare a coating solution, which was applied to both sides of a copper foil having a thickness of 0.018 mm. After drying, a calendar roll was pressed to produce a strip negative electrode.
Further, as a positive electrode active material, lithium nickel oxide (Li
NiO 2 ) powder is used as a binder and PV
DF, using a carbon black as a conductive aid to prepare a coating solution, apply this to both sides of an aluminum foil with a thickness of 0.02 mm, dry, and then calender roll press,
A strip positive electrode was produced.

【0029】帯状負極活物質層の寸法は短軸方向57m
m、長軸方向(x)620mmで、この活物質層の片面の
厚さ(t)は0.04mmであつた。また、帯状正極活物
質層の寸法は短軸方向57mm、長軸方向560mmで、こ
の活物質層の片面の厚さは0.09mmであつた。これら
の帯状正負極を、両者間に厚さが0.02mmのポリエチ
レン製帯状セパレ―タを介して捲回し、渦巻状電極体と
した。
The strip-shaped negative electrode active material layer has a dimension of 57 m in the minor axis direction.
The length (m) was 620 mm in the major axis direction (x), and the thickness (t) on one surface of the active material layer was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 57 mm in the minor axis direction and 560 mm in the major axis direction, and the thickness of one surface of the active material layer was 0.09 mm. These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm interposed therebetween to form a spiral electrode body.

【0030】この渦巻状電極体を、18650型の円筒
鉄缶〔直径(y)18mm、高さ65mm〕に組み入れ、電
解液として、ジメトキシエタンとプロピレンカ―ボネ―
トとの体積比1:1の混合溶媒に1.0モル/リツトル
のLiPF6 を溶解させてなる溶液を注入し、常法にし
たがつて封口して、リチウム二次電池を作製した。この
電池のx/y2 は1.91であつた。
This spiral electrode body was incorporated into a 18650 type cylindrical iron can [diameter (y) 18 mm, height 65 mm], and as a liquid electrolyte, dimethoxyethane and propylene carbonate were used.
A solution obtained by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent having a volume ratio of 1: 1 with that of the solution was injected, and the solution was sealed according to a conventional method to prepare a lithium secondary battery. The x / y 2 of this battery was 1.91.

【0031】比較例1 帯状負極活物質層の長軸方向(x)を550mm(x/y
2 は1.71)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
495mm、その活物質層の片面の厚さを0.067mmと
した以外は、実施例1と同様にして、リチウム二次電池
を作製した。
Comparative Example 1 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 550 mm (x / y).
2 is 1.71), the thickness (t) of one surface of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 495 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 1 except that the thickness was 0.067 mm.

【0032】比較例2 帯状負極活物質層の長軸方向(x)を500mm(x/y
2 は1.54)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
450mm、その活物質層の片面の厚さを0.11mmとし
た以外は、実施例2と同様にして、リチウム二次電池を
作製した。
Comparative Example 2 500 mm (x / y) in the major axis direction (x) of the strip-shaped negative electrode active material layer.
2 is 1.54), the thickness (t) of one side of the active material layer is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 450 mm, and the thickness of one side of the active material layer is 0 mm. A lithium secondary battery was produced in the same manner as in Example 2 except that the thickness was set to 0.11 mm.

【0033】比較例3 帯状負極活物質層の長軸方向(x)を390mm(x/y
2 は1.20)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
355mm、その活物質層の片面の厚さを0.16mmとし
た以外は、実施例3と同様にして、リチウム二次電池を
作製した。
COMPARATIVE EXAMPLE 3 The strip-shaped negative electrode active material layer had a major axis direction (x) of 390 mm (x / y).
2 is 1.20), the thickness (t) of one surface of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 355 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 3 except that the size was 0.16 mm.

【0034】上記の実施例1〜3および比較例1〜3の
リチウム二次電池(18650型)について、1Cおよ
び3Cの電流密度での放電容量(充電電流:1C)と、
1C容量に対する3C容量の容量保持率とを調べた。た
だし、充放電電圧範囲は4.2V〜1.0Vとした。
With respect to the lithium secondary batteries (18650 type) of Examples 1 to 3 and Comparative Examples 1 to 3 described above, discharge capacities (charging current: 1 C) at current densities of 1 C and 3 C,
The capacity retention ratio of the 3C capacity to the 1C capacity was examined. However, the charge / discharge voltage range was 4.2V to 1.0V.

【0035】結果は、下記の表1に示されるとおりであ
つた。なお、負極に黒鉛を用いている市販の18650
型のリチウム二次電池は、通常t=0.07〜0.13
mm、x/y2 は0.8〜1.7で、1C容量は1,00
0〜1,300mAh、3C容量は870〜1,200
mAhである。
The results are shown in Table 1 below. A commercially available 18650 that uses graphite for the negative electrode
Type lithium secondary battery is usually t = 0.07-0.13.
mm, x / y 2 is 0.8 to 1.7, and 1C capacity is 1.00
0-1,300mAh, 3C capacity is 870-1,200
mAh.

【0036】 [0036]

【0037】上記の表1の結果より、比較例1〜3のリ
チウム二次電池では、1C容量はカ―ボンA〜Cで1,
260〜1,530mAhで、カ―ボン重量あたり黒鉛
の1.5〜3倍の高容量を有する低結晶性カ―ボンを用
いた効果があまり認められない。また、3C容量はカ―
ボンA〜Cで830〜1,010mAhで、1C容量に
対する3C容量の保持率は、黒鉛の85%以上と比べ
て、66〜70%と低下しており、負荷特性が非常に悪
くなつている。
From the results shown in Table 1 above, in the lithium secondary batteries of Comparative Examples 1 to 3, the 1C capacity was 1,
The effect of using a low crystalline carbon having a high capacity of 260 to 1,530 mAh, which is 1.5 to 3 times as high as that of graphite per weight of carbon, is not recognized so much. Also, the 3C capacity is
At 830 to 1,010 mAh for carbons A to C, the retention rate of 3C capacity to 1C capacity is 66 to 70%, which is lower than 85% or more of graphite, and the load characteristics are very poor. .

【0038】これに対し、本発明の実施例1〜3のリチ
ウム二次電池では、1C容量はカ―ボンA〜Cで2,0
10〜2,500mAhと著しく増加し、また、3C容
量はカ―ボンA〜Cで1,830〜2,205mAh
で、1C容量に対する3C容量の保持率は88%以上と
なり、負荷特性が著しく向上していた。
On the other hand, in the lithium secondary batteries of Examples 1 to 3 of the present invention, the 1C capacity is 2,0 for carbons A to C.
Remarkably increased to 10 to 2,500 mAh, and 3C capacity is 1,830 to 2,205 mAh for carbons A to C.
The retention rate of the 3C capacity with respect to the 1C capacity was 88% or more, and the load characteristics were remarkably improved.

【0039】実施例4 帯状負極活物質層の寸法を短軸方向42mm、長軸方向
(x)790mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向42mm、長軸方向713mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これを16500型の円筒鉄缶〔直径(y)16mm、高
さ50mm〕に組み入れるようにした以外は、実施例1と
同様にして、リチウム二次電池を作製した。この電池の
x/y2 は3.09であつた。
Example 4 The dimensions of the strip-shaped negative electrode active material layer were 42 mm in the short axis direction and 790 mm in the long axis direction (x), and the thickness (t) on one side of the active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 42 mm in the short axis direction and 713 mm in the long axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 1 except that this was incorporated into a 16500 type cylindrical iron can [diameter (y) 16 mm, height 50 mm]. The x / y 2 of this battery was 3.09.

【0040】実施例5 帯状負極活物質層の寸法を短軸方向42mm、長軸方向
(x)650mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向42mm、長軸方向590mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これを16500型の円筒鉄缶〔直径(y)16mm、高
さ50mm〕に組み入れるようにした以外は、実施例2と
同様にして、リチウム二次電池を作製した。この電池の
x/y2 は2.54であつた。
Example 5 The dimension of the strip-shaped negative electrode active material layer was 42 mm in the minor axis direction and 650 mm in the major axis direction (x), and the thickness (t) on one side of this active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 42 mm in the minor axis direction and 590 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 2 except that this was incorporated into a 16500 type cylindrical iron can [diameter (y) 16 mm, height 50 mm]. The x / y 2 of this battery was 2.54.

【0041】実施例6 帯状負極活物質層の寸法を短軸方向42mm、長軸方向
(x)485mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向42mm、長軸方向435mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これを16500型の円筒鉄缶〔直径(y)16mm、高
さ50mm〕に組み入れるようにした以外は、実施例3と
同様にして、リチウム二次電池を作製した。この電池の
x/y2 は1.89であつた。
Example 6 The dimension of the strip-shaped negative electrode active material layer was 42 mm in the short axis direction and 485 mm in the long axis direction (x), and the thickness (t) of one side of this active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 42 mm in the minor axis direction and 435 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 3 except that this was incorporated into a 16500 type cylindrical iron can [diameter (y) 16 mm, height 50 mm]. The x / y 2 of this battery was 1.89.

【0042】比較例4 帯状負極活物質層の長軸方向(x)を440mm(x/y
2 は1.72)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
395mm、その活物質層の片面の厚さを0.067mmと
した以外は、実施例4と同様にして、リチウム二次電池
を作製した。
Comparative Example 4 The long axis direction (x) of the strip-shaped negative electrode active material layer was 440 mm (x / y).
2 is 1.72), the thickness (t) of one side of the active material layer is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 395 mm, and the thickness of one side of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 4 except that the thickness was 0.067 mm.

【0043】比較例5 帯状負極活物質層の長軸方向(x)を400mm(x/y
2 は1.56)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
360mm、その活物質層の片面の厚さを0.11mmとし
た以外は、実施例5と同様にして、リチウム二次電池を
作製した。
Comparative Example 5 The longitudinal axis direction (x) of the strip-shaped negative electrode active material layer was 400 mm (x / y).
2 is 1.56), the thickness (t) of one side of the active material layer is 0.07 mm, the longitudinal direction of the belt-shaped positive electrode active material layer is 360 mm, and the thickness of one side of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 5 except that the thickness was set to 0.11 mm.

【0044】比較例6 帯状負極活物質層の長軸方向(x)を310mm(x/y
2 は1.21)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
280mm、その活物質層の片面の厚さを0.16mmとし
た以外は、実施例6と同様にして、リチウム二次電池を
作製した。
Comparative Example 6 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 310 mm (x / y).
2 is 1.21), the thickness (t) of one surface of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 280 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was made in the same manner as in Example 6 except that the thickness was set to 0.16 mm.

【0045】上記の実施例4〜6および比較例4〜6の
リチウム二次電池(16500型)について、前記と同
様にして、1Cおよび3Cの電流密度での放電容量(充
電電流:1C)と、1C容量に対する3C容量の容量保
持率とを調べた。結果は、下記の表2に示されるとおり
であつた。
With respect to the lithium secondary batteries (16500 type) of Examples 4 to 6 and Comparative Examples 4 to 6, the discharge capacities (charging current: 1 C) at current densities of 1 C and 3 C were obtained in the same manner as described above. The capacity retention ratio of 3C capacity to 1C capacity was investigated. The results are as shown in Table 2 below.

【0046】 [0046]

【0047】上記の表2の結果より、16500型のリ
チウム二次電池においても、表1の18650型のリチ
ウム二次電池の場合と同様に、本発明の範囲外である比
較例4〜6の電池では低容量でかつ低い容量保持率しか
示さないのに対し、本発明の特定の負極構成とした実施
例4〜6の電池にあつては高容量でかつ改善された負荷
特性が得られているものであることがわかる。
From the results of Table 2 above, also in the 16500 type lithium secondary battery, as in the case of the 18650 type lithium secondary battery in Table 1, Comparative Examples 4 to 6 which are outside the scope of the present invention. The batteries have low capacity and low capacity retention, whereas the batteries of Examples 4 to 6 having the specific negative electrode constitution of the present invention have high capacity and improved load characteristics. You can see that it is.

【0048】実施例7 帯状負極活物質層の寸法を短軸方向54mm、長軸方向
(x)3,550mmとし、この活物質層の片面の厚さ
(t)を0.04mmとした。また、帯状正極活物質層の
寸法を短軸方向54mm、長軸方向3,200mmとした。
これらの帯状正負極を両者間に厚さが0.02mmのポリ
エチレン製帯状セパレ―タを介して捲回して、渦巻状電
極体とし、これをR20型の円筒鉄缶〔直径(y)3
4.2mm、高さ61.5mm〕に組み入れるようにした以
外は、実施例1と同様にして、リチウム二次電池を作製
した。この電池のx/y2 は3.07であつた。
Example 7 The dimensions of the strip-shaped negative electrode active material layer were 54 mm in the short axis direction and 3,550 mm in the long axis direction (x), and the thickness (t) on one surface of the active material layer was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 54 mm in the minor axis direction and 3,200 mm in the major axis direction.
These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body, which was an R20 cylindrical iron can [diameter (y) 3
A lithium secondary battery was produced in the same manner as in Example 1 except that the lithium secondary battery was assembled in a height of 4.2 mm and a height of 61.5 mm. The x / y 2 of this battery was 3.07.

【0049】実施例8 帯状負極活物質層の寸法を短軸方向54mm、長軸方向
(x)2,900mmとし、この活物質層の片面の厚さ
(t)を0.04mmとした。また、帯状正極活物質層の
寸法を短軸方向54mm、長軸方向2,600mmとした。
これらの帯状正負極を両者間に厚さが0.02mmのポリ
エチレン製帯状セパレ―タを介して捲回して、渦巻状電
極体とし、これをR20型の円筒鉄缶〔直径(y)3
4.2mm、高さ61.5mm〕に組み入れるようにした以
外は、実施例2と同様にして、リチウム二次電池を作製
した。この電池のx/y2 は2.47であつた。
Example 8 The strip-shaped negative electrode active material layer had a dimension of 54 mm in the short axis direction and 2,900 mm in the long axis direction (x), and the thickness (t) of one surface of the active material layer was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 54 mm in the minor axis direction and 2,600 mm in the major axis direction.
These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body, which was an R20 cylindrical iron can [diameter (y) 3
A lithium secondary battery was produced in the same manner as in Example 2 except that the lithium secondary battery was assembled in a height of 4.2 mm and a height of 61.5 mm. The x / y 2 of this battery was 2.47.

【0050】実施例9 帯状負極活物質層の寸法を短軸方向54mm、長軸方向
(x)2,250mmとし、この活物質層の片面の厚さ
(t)を0.04mmとした。また、帯状正極活物質層の
寸法を短軸方向54mm、長軸方向2,030mmとした。
これらの帯状正負極を両者間に厚さが0.02mmのポリ
エチレン製帯状セパレ―タを介して捲回して、渦巻状電
極体とし、これをR20型の円筒鉄缶〔直径(y)3
4.2mm、高さ61.5mm〕に組み入れるようにした以
外は、実施例3と同様にして、リチウム二次電池を作製
した。この電池のx/y2 は1.92であつた。
Example 9 The strip negative electrode active material layer had a dimension of 54 mm in the minor axis direction and 2,250 mm in the major axis direction (x), and the thickness (t) of one surface of the active material layer was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 54 mm in the minor axis direction and 2,030 mm in the major axis direction.
These strip-shaped positive and negative electrodes were wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body, which was an R20 cylindrical iron can [diameter (y) 3
A lithium secondary battery was produced in the same manner as in Example 3 except that the lithium secondary battery was assembled in a height of 4.2 mm and a height of 61.5 mm. The x / y 2 of this battery was 1.92.

【0051】比較例7 帯状負極活物質層の長軸方向(x)を2,000mm(x
/y2 は1.71)、その活物質層の片面の厚さ(t)
を0.07mmとし、また、帯状正極活物質層の長軸方向
を1,800mm、その活物質層の片面の厚さを0.06
7mmとした以外は、実施例7と同様にして、リチウム二
次電池を作製した。
Comparative Example 7 The long axis direction (x) of the strip-shaped negative electrode active material layer was 2,000 mm (x
/ Y 2 is 1.71), and the thickness (t) of one side of the active material layer
Is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 1,800 mm, and the thickness of one side of the active material layer is 0.06 mm.
A lithium secondary battery was produced in the same manner as in Example 7 except that the thickness was 7 mm.

【0052】比較例8 帯状負極活物質層の長軸方向(x)を1,800mm(x
/y2 は1.54)、その活物質層の片面の厚さ(t)
を0.07mmとし、また、帯状正極活物質層の長軸方向
を1,630mm、その活物質層の片面の厚さを0.11
mmとした以外は、実施例8と同様にして、リチウム二次
電池を作製した。
Comparative Example 8 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 1,800 mm (x
/ Y 2 is 1.54), the thickness of one side of the active material layer (t)
Is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 1,630 mm, and the thickness of one side of the active material layer is 0.11.
A lithium secondary battery was produced in the same manner as in Example 8 except that the thickness was changed to mm.

【0053】比較例9 帯状負極活物質層の長軸方向(x)を1,410mm(x
/y2 は1.21)、その活物質層の片面の厚さ(t)
を0.07mmとし、また、帯状正極活物質層の長軸方向
を1,270mm、その活物質層の片面の厚さを0.16
mmとした以外は、実施例9と同様にして、リチウム二次
電池を作製した。
Comparative Example 9 1,410 mm (x) in the major axis direction (x) of the strip-shaped negative electrode active material layer
/ Y 2 is 1.21), the thickness (t) of one side of the active material layer
Is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 1,270 mm, and the thickness of one side of the active material layer is 0.16 mm.
A lithium secondary battery was produced in the same manner as in Example 9 except that the thickness was changed to mm.

【0054】上記の実施例7〜9および比較例7〜9の
リチウム二次電池(R20型)について、前記と同様に
して、1Cおよび3Cの電流密度での放電容量(充電電
流:1C)と、1C容量に対する3C容量の容量保持率
とを調べた。結果は、下記の表3に示されるとおりであ
つた。
Regarding the lithium secondary batteries (R20 type) of Examples 7 to 9 and Comparative Examples 7 to 9 described above, discharge capacities (charging current: 1C) at current densities of 1C and 3C were obtained in the same manner as described above. The capacity retention ratio of 3C capacity to 1C capacity was investigated. The results are as shown in Table 3 below.

【0055】 [0055]

【0056】上記の表3の結果より、R20型のリチウ
ム二次電池においても、表1の18650型および表2
の16500型のリチウム二次電池の場合と同様に、本
発明の範囲外である比較例7〜9の電池では低容量でか
つ低い容量保持率しか示さないのに対し、本発明の特定
の負極構成とした実施例7〜9の電池にあつては高容量
でかつ改善された負荷特性が得られているものであるこ
とがわかる。
From the results shown in Table 3 above, also in the R20 type lithium secondary battery, the 18650 type and Table 2 of Table 1 were obtained.
As in the case of the 16500 type lithium secondary battery of Comparative Example 7, the batteries of Comparative Examples 7 to 9, which are outside the scope of the present invention, have a low capacity and a low capacity retention, whereas the specific negative electrode of the present invention. It can be seen that the batteries of Examples 7 to 9 having the structure have high capacity and improved load characteristics.

【0057】実施例10 帯状負極活物質層の寸法を短軸方向43mm、長軸方向
(x)650mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向43mm、長軸方向585mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR6型の円筒鉄缶〔直径(y)14.5mm、高さ
50.5mm〕に組み入れるようにした以外は、実施例1
と同様にして、リチウム二次電池を作製した。この電池
のx/y2 は3.09であつた。
Example 10 The strip-shaped negative electrode active material layer had dimensions of 43 mm in the minor axis direction and 650 mm in the major axis direction (x), and the thickness (t) of one surface of the active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 43 mm in the minor axis direction and 585 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
Example 1 except that this was incorporated into an R6 type cylindrical iron can [diameter (y) 14.5 mm, height 50.5 mm].
A lithium secondary battery was produced in the same manner as in. The x / y 2 of this battery was 3.09.

【0058】実施例11 帯状負極活物質層の寸法を短軸方向43mm、長軸方向
(x)525mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向43mm、長軸方向470mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR6型の円筒鉄缶〔直径(y)14.5mm、高さ
50.5mm〕に組み入れるようにした以外は、実施例2
と同様にして、リチウム二次電池を作製した。この電池
のx/y2 は2.50であつた。
Example 11 The dimension of the strip-shaped negative electrode active material layer was 43 mm in the minor axis direction and 525 mm in the major axis direction (x), and the thickness (t) on one side of this active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 43 mm in the minor axis direction and 470 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
Example 2 except that this was incorporated into an R6 type cylindrical iron can [diameter (y) 14.5 mm, height 50.5 mm].
A lithium secondary battery was produced in the same manner as in. The x / y 2 of this battery was 2.50.

【0059】実施例12 帯状負極活物質層の寸法を短軸方向43mm、長軸方向
(x)410mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向43mm、長軸方向370mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR6型の円筒鉄缶〔直径(y)14.5mm、高さ
50.5mm〕に組み入れるようにした以外は、実施例3
と同様にして、リチウム二次電池を作製した。この電池
のx/y2 は1.95であつた。
Example 12 The dimension of the strip-shaped negative electrode active material layer was 43 mm in the short axis direction and 410 mm in the long axis direction (x), and the thickness (t) of one side of this active material layer.
Was 0.04 mm. The dimension of the belt-shaped positive electrode active material layer was 43 mm in the minor axis direction and 370 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
Example 3 except that this was incorporated into an R6 type cylindrical iron can [diameter (y) 14.5 mm, height 50.5 mm].
A lithium secondary battery was produced in the same manner as in. The x / y 2 of this battery was 1.95.

【0060】比較例10 帯状負極活物質層の長軸方向(x)を360mm(x/y
2 は1.71)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
325mm、その活物質層の片面の厚さを0.067mmと
した以外は、実施例10と同様にして、リチウム二次電
池を作製した。
Comparative Example 10 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 360 mm (x / y).
2 is 1.71), the thickness (t) of one surface of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 325 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 10 except that the thickness was 0.067 mm.

【0061】比較例11 帯状負極活物質層の長軸方向(x)を320mm(x/y
2 は1.52)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
290mm、その活物質層の片面の厚さを0.11mmとし
た以外は、実施例11と同様にして、リチウム二次電池
を作製した。
Comparative Example 11 The long axis direction (x) of the strip-shaped negative electrode active material layer was 320 mm (x / y).
2 is 1.52), the thickness (t) of one surface of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 290 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 11 except that the thickness was set to 0.11 mm.

【0062】比較例12 帯状負極活物質層の長軸方向(x)を255mm(x/y
2 は1.21)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
230mm、その活物質層の片面の厚さを0.16mmとし
た以外は、実施例12と同様にして、リチウム二次電池
を作製した。
Comparative Example 12 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 255 mm (x / y).
2 is 1.21), the thickness (t) of one side of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 230 mm, and the thickness of one side of the active material layer is 0 mm. A lithium secondary battery was produced in the same manner as in Example 12 except that the thickness was set to 0.16 mm.

【0063】上記の実施例10〜12および比較例10
〜12のリチウム二次電池(R6型)について、前記と
同様にして、1Cおよび3Cの電流密度での放電容量
(充電電流:1C)と、1C容量に対する3C容量の容
量保持率とを調べた。結果は、下記の表4に示されると
おりであつた。
Examples 10 to 12 and Comparative Example 10 described above
For the lithium secondary batteries (R6 type) of Nos. 12 to 12, the discharge capacities (charging current: 1C) at current densities of 1C and 3C and the capacity retention ratio of the 3C capacity to the 1C capacity were examined in the same manner as above. . The results are as shown in Table 4 below.

【0064】 [0064]

【0065】上記の表4の結果より、R6型のリチウム
二次電池においても、表1の18650型、表2の16
500型および表3のR20型のリチウム二次電池の場
合と同様に、本発明の範囲外である比較例10〜12の
電池では低容量でかつ低い容量保持率しか示さないのに
対し、本発明の特定の負極構成とした実施例10〜12
の電池にあつては高容量でかつ改善された負荷特性が得
られているものであることがわかる。
From the results of Table 4 above, also in the R6 type lithium secondary battery, the 18650 type of Table 1 and the 16 type of Table 2 were used.
Similar to the case of the 500-type and R20-type lithium secondary batteries of Table 3, the batteries of Comparative Examples 10 to 12, which are out of the scope of the present invention, have low capacity and low capacity retention ratio. Examples 10-12 with specific negative electrode configurations of the invention
It can be seen that the above battery has high capacity and improved load characteristics.

【0066】実施例13 帯状負極活物質層の寸法を短軸方向37mm、長軸方向
(x)350mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向37mm、長軸方向315mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR03型の円筒鉄缶〔直径(y)10.5mm、高
さ44.5mm〕に組み入れるようにした以外は、実施例
1と同様にして、リチウム二次電池を作製した。この電
池のx/y2 は3.17であつた。
Example 13 The dimensions of the strip-shaped negative electrode active material layer were set to 37 mm in the short axis direction and 350 mm in the long axis direction (x), and the thickness (t) of one surface of the active material layer was set.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 37 mm in the short axis direction and 315 mm in the long axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 1 except that this was incorporated into an R03 type cylindrical iron can [diameter (y) 10.5 mm, height 44.5 mm]. The x / y 2 of this battery was 3.17.

【0067】実施例14 帯状負極活物質層の寸法を短軸方向37mm、長軸方向
(x)280mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向37mm、長軸方向255mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR03型の円筒鉄缶〔直径(y)10.5mm、高
さ44.5mm〕に組み入れるようにした以外は、実施例
2と同様にして、リチウム二次電池を作製した。この電
池のx/y2 は2.54であつた。
Example 14 The dimension of the strip-shaped negative electrode active material layer was set to 37 mm in the short axis direction and 280 mm in the long axis direction (x), and the thickness (t) on one side of this active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 37 mm in the minor axis direction and 255 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 2 except that this was incorporated into an R03 type cylindrical iron can [diameter (y) 10.5 mm, height 44.5 mm]. The x / y 2 of this battery was 2.54.

【0068】実施例15 帯状負極活物質層の寸法を短軸方向37mm、長軸方向
(x)210mmとし、この活物質層の片面の厚さ(t)
を0.04mmとした。また、帯状正極活物質層の寸法を
短軸方向37mm、長軸方向190mmとした。これらの帯
状正負極を両者間に厚さが0.02mmのポリエチレン製
帯状セパレ―タを介して捲回して、渦巻状電極体とし、
これをR03型の円筒鉄缶〔直径(y)10.5mm、高
さ44.5mm〕に組み入れるようにした以外は、実施例
3と同様にして、リチウム二次電池を作製した。この電
池のx/y2 は1.90であつた。
Example 15 The dimension of the strip-shaped negative electrode active material layer was 37 mm in the minor axis direction and 210 mm in the major axis direction (x), and the thickness (t) of one side of this active material layer.
Was 0.04 mm. The dimension of the strip-shaped positive electrode active material layer was 37 mm in the minor axis direction and 190 mm in the major axis direction. These strip-shaped positive and negative electrodes are wound with a polyethylene strip-shaped separator having a thickness of 0.02 mm between them to form a spiral electrode body.
A lithium secondary battery was produced in the same manner as in Example 3 except that this was incorporated into an R03 type cylindrical iron can [diameter (y) 10.5 mm, height 44.5 mm]. The x / y 2 of this battery was 1.90.

【0069】比較例13 帯状負極活物質層の長軸方向(x)を190mm(x/y
2 は1.72)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
170mm、その活物質層の片面の厚さを0.067mmと
した以外は、実施例13と同様にして、リチウム二次電
池を作製した。
Comparative Example 13 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 190 mm (x / y).
2 is 1.72), the thickness (t) of one surface of the active material layer is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 170 mm, and the thickness of one surface of the active material layer is 0 mm. A lithium secondary battery was produced in the same manner as in Example 13 except that the thickness was 0.067 mm.

【0070】比較例14 帯状負極活物質層の長軸方向(x)を170mm(x/y
2 は1.54)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
155mm、その活物質層の片面の厚さを0.11mmとし
た以外は、実施例14と同様にして、リチウム二次電池
を作製した。
Comparative Example 14 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 170 mm (x / y).
2 is 1.54), the thickness (t) of one side of the active material layer is 0.07 mm, the longitudinal direction of the strip-shaped positive electrode active material layer is 155 mm, and the thickness of one side of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 14 except that the thickness was set to 0.11 mm.

【0071】比較例15 帯状負極活物質層の長軸方向(x)を135mm(x/y
2 は1.22)、その活物質層の片面の厚さ(t)を
0.07mmとし、また、帯状正極活物質層の長軸方向を
123mm、その活物質層の片面の厚さを0.16mmとし
た以外は、実施例15と同様にして、リチウム二次電池
を作製した。
Comparative Example 15 The longitudinal direction (x) of the strip-shaped negative electrode active material layer was 135 mm (x / y).
2 is 1.22), the thickness (t) of one surface of the active material layer is 0.07 mm, the major axis direction of the strip-shaped positive electrode active material layer is 123 mm, and the thickness of one surface of the active material layer is 0. A lithium secondary battery was produced in the same manner as in Example 15 except that the thickness was set to 0.16 mm.

【0072】上記の実施例13〜15および比較例13
〜15のリチウム二次電池(R03型)について、前記
と同様にして、1Cおよび3Cの電流密度での放電容量
(充電電流:1C)と、1C容量に対する3C容量の容
量保持率とを調べた。結果は、下記の表5に示されると
おりであつた。
Examples 13 to 15 and Comparative Example 13 described above
With respect to the lithium secondary batteries (R03 type) of Nos. 15 to 15, the discharge capacities (charging current: 1C) at current densities of 1C and 3C and the capacity retention ratio of the 3C capacity to the 1C capacity were examined in the same manner as described above. . The results are as shown in Table 5 below.

【0073】 [0073]

【0074】上記の表5の結果より、R03型のリチウ
ム二次電池においても、表1の18650型、表2の1
6500型、表3のR20型および表4のR6型のリチ
ウム二次電池の場合と同様に、本発明の範囲外である比
較例13〜15の電池では低容量でかつ低い容量保持率
しか示さないのに対し、本発明の特定の負極構成とした
実施例13〜15の電池にあつては高容量でかつ改善さ
れた負荷特性が得られているものであることがわかる。
From the results of Table 5 above, also in the R03 type lithium secondary battery, 18650 type of Table 1 and 1 of Table 2
6500 type, R20 type of Table 3 and R6 type of lithium secondary batteries of Table 4, the batteries of Comparative Examples 13 to 15, which are outside the scope of the present invention, show low capacity and low capacity retention rate. On the contrary, it can be seen that the batteries of Examples 13 to 15 having the specific negative electrode constitution of the present invention have high capacity and improved load characteristics.

【0075】実施例16〜21 負極活物質としてカ―ボンA〜Cを用い、帯状負極活物
質層の寸法〔短軸方向と長軸方向(y)〕および片面の
厚さを変更し、またこれに伴つて帯状正極活物質層の寸
法(短軸方向と長軸方向)を適当に変更した以外は、実
施例1〜3と同様にして、18650型の6種のリチウ
ム二次電池を作製した。帯状負極活物質層の片面の厚さ
(t)とx/y2 は、表6に示した。
Examples 16 to 21 Carbons A to C were used as the negative electrode active material, and the dimensions of the strip-shaped negative electrode active material layer (minor axis direction and major axis direction (y)) and the thickness of one side were changed. Along with this, except that the dimensions of the strip-shaped positive electrode active material layer (short axis direction and long axis direction) were changed appropriately, 18650-type six types of lithium secondary batteries were produced in the same manner as in Examples 1 to 3. did. Table 6 shows the thickness (t) and x / y 2 on one surface of the strip negative electrode active material layer.

【0076】上記の実施例16〜21のリチウム二次電
池(18650型)について、前記と同様にして、1C
および3Cの電流密度での放電容量(充電電流:1C)
と、1C容量に対する3C容量の容量保持率とを調べ
た。結果は、下記の表6に示されるとおりであつた。
Regarding the lithium secondary batteries (18650 type) of Examples 16 to 21 described above, 1C was prepared in the same manner as described above.
And discharge capacity at 3C current density (charging current: 1C)
And the capacity retention ratio of 3C capacity to 1C capacity were investigated. The results are as shown in Table 6 below.

【0077】 [0077]

【0078】上記の表6の結果より、負極活物質層の厚
さ(t)を0.03mm(実施例16〜18)および0.
02mm(実施例19〜21)とし、その際、x/y2
値を本発明の範囲内に設定することにより、負極活物質
層の厚さ(t)を0.04mm(実施例1〜3)とした表
1の電池の場合と同様に、高容量でかつ改善された負荷
特性が得られているものであることがわかる。
From the results shown in Table 6 above, the thickness (t) of the negative electrode active material layer was 0.03 mm (Examples 16 to 18) and 0.
The thickness (t) of the negative electrode active material layer was 0.04 mm (Examples 1 to 21) by setting the value of x / y 2 within the range of the present invention. As in the case of the battery of Table 1 described in 3), it can be seen that a high capacity and improved load characteristics are obtained.

【0079】実施例22 帯状負極活物質層の長軸方向(x)を1,020mm、こ
の負極活物質層の片面の厚さ(t)を0.04mmとし、
また、帯状正極活物質層の長軸方向を920mm、この正
極活物質層の片面の厚さを0.035mmとした以外は、
実施例1と同様にして、18650型のリチウム二次電
池を作製した。この二次電池のx/y2は3.16であ
つた。
Example 22 The major axis direction (x) of the strip-shaped negative electrode active material layer was 1,020 mm, and the thickness (t) of one surface of this negative electrode active material layer was 0.04 mm,
Further, except that the long axis direction of the strip-shaped positive electrode active material layer is 920 mm and the thickness of one surface of this positive electrode active material layer is 0.035 mm,
A 18650 type lithium secondary battery was produced in the same manner as in Example 1. The x / y 2 of this secondary battery was 3.16.

【0080】実施例23 帯状負極活物質層の長軸方向(x)を1,075mm、こ
の負極活物質層の片面の厚さ(t)を0.04mmとし、
また、帯状正極活物質層の長軸方向を965mm、この正
極活物質層の片面の厚さを0.03mmとした以外は、実
施例1と同様にして、18650型のリチウム二次電池
を作製した。この二次電池のx/y2 は3.33であつ
た。
Example 23 The belt-shaped negative electrode active material layer had a major axis direction (x) of 1,075 mm, and the thickness (t) of one surface of the negative electrode active material layer was 0.04 mm,
Further, a 18650 type lithium secondary battery was produced in the same manner as in Example 1 except that the long axis direction of the strip-shaped positive electrode active material layer was 965 mm and the thickness of one surface of the positive electrode active material layer was 0.03 mm. did. The x / y 2 of this secondary battery was 3.33.

【0081】上記の実施例22,23のリチウム二次電
池は、正極活物質層の厚さを薄くすることにより正極活
物質に対する負極活物質の重量比を増加させるようにし
た、つまり、正極活物質の重量を下げることにより正極
の許容充電容量をもつて電池の充電容量を制御させるよ
うにしたものである。これらの電池について、1Cの電
流密度での放電容量(充電電流:1C)と、放電容量が
初期の80%に達したときのサイクル数を調べた。これ
らの結果は、下記の表7に示されるとおりであつた。な
お、同表には、実施例1および比較例1のリチウム二次
電池について上記と同様にして調べた結果を、併記し
た。
In the lithium secondary batteries of Examples 22 and 23, the weight ratio of the negative electrode active material to the positive electrode active material was increased by decreasing the thickness of the positive electrode active material layer, that is, the positive electrode active material. By reducing the weight of the substance, the charge capacity of the battery can be controlled with the allowable charge capacity of the positive electrode. For these batteries, the discharge capacity at a current density of 1 C (charging current: 1 C) and the number of cycles when the discharge capacity reached 80% of the initial value were examined. These results were as shown in Table 7 below. In addition, in the same table, the results of examining the lithium secondary batteries of Example 1 and Comparative Example 1 in the same manner as above are also shown.

【0082】 [0082]

【0083】上記の表7の結果より、実施例22,23
のリチウム二次電池は、負極充電容量で制御された実施
例1の電池に比べて、容量は若干減少するが、サイクル
特性の向上が認められており、本発明の範囲外である比
較例1の電池に比べて、高容量でかつサイクル特性にす
ぐれた電池が得られるものであることがわかる。サイク
ル特性の向上は、負極許容容量より幾分低い容量で充電
を行つており、カ―ボン材料に対する負担が小さいため
と考えられる。
From the results of Table 7 above, Examples 22 and 23
The lithium secondary battery of Comparative Example 1, which has a capacity slightly decreased as compared with the battery of Example 1 controlled by the negative electrode charge capacity, is recognized to have improved cycle characteristics and is outside the scope of the present invention. It can be seen that a battery having a high capacity and excellent cycle characteristics can be obtained as compared with the battery of No. It is thought that the improvement in cycle characteristics is due to the fact that charging is performed at a capacity somewhat lower than the negative electrode allowable capacity, and the burden on the carbon material is small.

【0084】[0084]

【発明の効果】以上説明したように、本発明は、平均層
間距離d002 が3.4Å以上、c軸方向の結晶子サイズ
Lcが100Å以下である低結晶性カ―ボンを用いたリ
チウム二次電池などの非水電解液二次電池において、帯
状負極活物質層の片面の厚さを0.04mm以下とし、か
つこの層の長軸方向の長さをxmm、円筒型電池の(外)
直径をymmとしたとき、x/y2 が1.8以上となるよ
うな構成としたことにより、低結晶性カ―ボンが有する
高容量を十分に活かせた電池を作製することができ、し
かも短所であつた低負荷特性を改善することができる。
As described above, according to the present invention, a lithium crystal using a low crystalline carbon having an average interlayer distance d 002 of 3.4 Å or more and a crystallite size Lc in the c-axis direction of 100 Å or less is used. In a non-aqueous electrolyte secondary battery such as a secondary battery, the thickness of one surface of the strip-shaped negative electrode active material layer is 0.04 mm or less, and the length of this layer in the major axis direction is x mm, which is the outer surface of the cylindrical battery.
When the diameter is ymm, x / y 2 is set to be 1.8 or more, whereby a battery in which the high capacity of the low crystalline carbon can be fully utilized can be manufactured, and It is possible to improve the low load characteristic, which is a drawback.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の一例を示す分解
斜視図である。
FIG. 1 is an exploded perspective view showing an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】帯状正極の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a strip positive electrode.

【図3】帯状負極の構成を示す断面図である。FIG. 3 is a cross-sectional view showing a structure of a strip negative electrode.

【符号の説明】[Explanation of symbols]

1 帯状正極 10 帯状正極集電体 11A,11B 正極活物質層 2 帯状負極 20 帯状負極集電体 21A,21B 負極活物質層 3 帯状セパレ―タ 5 円筒型の電池缶 t 負極活物質層の片面の厚さ x 帯状の負極活物質層の長軸方向の長さ y 円筒型電池の直径 1 band-shaped positive electrode 10 band-shaped positive electrode current collector 11A, 11B positive electrode active material layer 2 band-shaped negative electrode 20 band-shaped negative electrode current collector 21A, 21B negative electrode active material layer 3 band-shaped separator 5 cylindrical battery can t negative electrode active material layer one side Thickness x length of the strip-shaped negative electrode active material layer in the major axis direction y diameter of the cylindrical battery

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 帯状正極集電体の両面にリチウム含有遷
移金属カルコゲナイドを活物質として用いた正極活物質
層を有する帯状正極と、帯状負極集電体の両面に炭素材
料を活物質として用いた負極活物質層を有する帯状負極
とを、帯状セパレ―タを介して捲回してなる円筒型の非
水電解液二次電池において、上記の負極活物質層は、平
均層間距離d002 が3.4Å以上で、c軸方向の結晶子
サイズLcが100Å以下である低結晶性カ―ボンを含
有してなり、この負極活物質層の片面の厚さが0.04
mm以下であり、かつ帯状の負極活物質層の長軸方向の長
さをxmm、円筒型電池の直径をymmとしたとき、x/y
2 が1.8以上であることを特徴とする円筒型の非水電
解液二次電池。
1. A strip positive electrode having a positive electrode active material layer using a lithium-containing transition metal chalcogenide as an active material on both sides of the strip positive electrode collector, and a carbon material used as an active material on both sides of the strip negative electrode collector. In a cylindrical non-aqueous electrolyte secondary battery formed by winding a strip negative electrode having a negative electrode active material layer via a strip separator, the negative electrode active material layer has an average interlayer distance d 002 of 3. It contains low crystalline carbon having a crystallite size Lc in the c-axis direction of 100 Å or less and a crystallite size Lc of 4 Å or more.
x / y, where the length of the strip-shaped negative electrode active material layer in the major axis direction is x mm and the diameter of the cylindrical battery is y mm.
2. A cylindrical non-aqueous electrolyte secondary battery, wherein 2 is 1.8 or more.
JP00422496A 1996-01-12 1996-01-12 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3694557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00422496A JP3694557B2 (en) 1996-01-12 1996-01-12 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00422496A JP3694557B2 (en) 1996-01-12 1996-01-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09199114A true JPH09199114A (en) 1997-07-31
JP3694557B2 JP3694557B2 (en) 2005-09-14

Family

ID=11578627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00422496A Expired - Fee Related JP3694557B2 (en) 1996-01-12 1996-01-12 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3694557B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
WO2007114245A1 (en) * 2006-03-30 2007-10-11 Matsushita Electric Industrial Co., Ltd. Electrochemical element
JP2007294440A (en) * 2006-03-30 2007-11-08 Matsushita Electric Ind Co Ltd Electrochemical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP4626105B2 (en) * 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
WO2007114245A1 (en) * 2006-03-30 2007-10-11 Matsushita Electric Industrial Co., Ltd. Electrochemical element
JP2007294440A (en) * 2006-03-30 2007-11-08 Matsushita Electric Ind Co Ltd Electrochemical element
US8129045B2 (en) 2006-03-30 2012-03-06 Panasonic Corporation Electrochemical element

Also Published As

Publication number Publication date
JP3694557B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
KR101560471B1 (en) Anode for lithium secondary battery and lithium secondary battery comprising the same
US7462422B2 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
EP3171432A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
KR102277734B1 (en) Negative electrode active material for lithium secondary battery, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2012003997A (en) Nonaqueous electrolyte secondary cell
US20230282822A1 (en) Positive electrode active material and lithium secondary battery comprising the same
US11631849B2 (en) Lithium composite oxide and lithium secondary battery comprising the same
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
US11837725B2 (en) Positive electrode active material and lithium secondary battery comprising the same
JP2000090983A (en) Lithium secondary cell
CN116210102A (en) Negative electrode material, and negative electrode and secondary battery comprising same
KR20220037675A (en) Negative electrode and secondary battery comprising the same
US20230139863A1 (en) Positive electrode active material and lithium secondary battery including the same
JP2000090932A (en) Lithium secondary battery
KR102132878B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102581269B1 (en) Positive electrode active material, positive electrode and lithium secondary battery compring the same
KR100481229B1 (en) Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
KR101044577B1 (en) Lithium Secondary Battery
JPH10284060A (en) Lithium secondary battery
JP3694557B2 (en) Non-aqueous electrolyte secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
KR100557714B1 (en) Method of Fabricating Electrode of Lithium Secondary Battery and Lithium Secondary Battery with the Electrode
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
KR100473621B1 (en) Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees