JP2001176512A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001176512A
JP2001176512A JP36044099A JP36044099A JP2001176512A JP 2001176512 A JP2001176512 A JP 2001176512A JP 36044099 A JP36044099 A JP 36044099A JP 36044099 A JP36044099 A JP 36044099A JP 2001176512 A JP2001176512 A JP 2001176512A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
lithium secondary
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36044099A
Other languages
Japanese (ja)
Other versions
JP3851040B2 (en
JP2001176512A5 (en
Inventor
Hidetoshi Honbou
英利 本棒
Seiji Takeuchi
瀞士 武内
Yasushi Muranaka
康 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36044099A priority Critical patent/JP3851040B2/en
Publication of JP2001176512A publication Critical patent/JP2001176512A/en
Publication of JP2001176512A5 publication Critical patent/JP2001176512A5/ja
Application granted granted Critical
Publication of JP3851040B2 publication Critical patent/JP3851040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery superior in high temperature shelf life. SOLUTION: This lithium secondary battery has a positive electrode and a negative electrode, respectively absorbing and desorbing lithium ion, and an organic electrolyte in which the electrolyte including lithium ion is dissolved, and the positive electrode and the negative electrode are mounted through a separator. The refractory graphitic carbon forming the negative electrode is heated in an inert gas atmosphere or in an atmosphere for the graphitic carbon to slightly oxidize to remove the decomposed gas, and heated under pressure to obtain the concentration (butanol method) of the refractory graphitic carbon of 1.6-1.8 (g/cc).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話,ノート
型パーソナルコンピューター等のポータブル機器用、電
気自動車の駆動電源用,電力貯蔵用電源用等に好適なリ
チウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery suitable for a portable device such as a portable telephone or a notebook personal computer, a driving power source for an electric vehicle, and a power storage power source.

【0002】[0002]

【従来の技術】負極に非晶質炭素材料を用いたリチウム
二次電池が開発され、ノート型パーソナルコンピュータ
ーや携帯電話に広く使用されている。
2. Description of the Related Art A lithium secondary battery using an amorphous carbon material for a negative electrode has been developed and widely used in notebook personal computers and mobile phones.

【0003】負極に炭素材料を用いる従来技術として、
密度(ρ)が1.7<ρ<2.18(g/cc)のn−ド
ープ炭素材料を用いることが日本特許第2,630,93
9号に開示されている。また、メソフェーズピッチ、メ
ソフェーズピッチグリーンコークスの熱処理物で、密度
(ρ)が1.7≦ρ≦2.1(g/cc)の炭素材料を用
いることが特開平7−307164号公報に開示されて
いる。
As a conventional technique using a carbon material for the negative electrode,
Japanese Patent No. 2,630,93 discloses that an n-doped carbon material having a density (ρ) of 1.7 <ρ <2.18 (g / cc) is used.
No. 9. JP-A-7-307164 discloses the use of a carbon material having a density (ρ) of 1.7 ≦ ρ ≦ 2.1 (g / cc) in a heat-treated product of mesophase pitch and mesophase pitch green coke. ing.

【0004】さらに、ブタノール法によって測定される
密度(ρB)がρB≦1.7(g/cc)であって、ヘリ
ウム法によって測定される密度(ρH)との比ρH/ρB
≧1.15である炭素材料を負極に用いることが、特開
平8−115723号公報に開示されている。
Furthermore, the density (ρ B ) measured by the butanol method is ρ B ≦ 1.7 (g / cc), and the ratio ρ H / ρ to the density (ρ H ) measured by the helium method is B
The use of a carbon material satisfying ≧ 1.15 for the negative electrode is disclosed in JP-A-8-115723.

【0005】[0005]

【発明が解決しようとする課題】既述したように、負極
に非晶質炭素材料を用いたリチウム二次電池は、広く使
用されているが、近年、環境問題への関心の高まりか
ら、リチウム二次電池の電気自動車への搭載が検討され
ている。
As described above, lithium secondary batteries using an amorphous carbon material for the negative electrode have been widely used. The mounting of secondary batteries on electric vehicles is being studied.

【0006】しかし、こうした自動車では、夏期に電池
搭載部の温度が50〜60℃にまで上昇することが予想
され、このような高温でのリチウム二次電池の貯蔵性が
不十分であるために、実用化上の課題となっている。
However, in such automobiles, the temperature of the battery mounting portion is expected to rise to 50 to 60 ° C. in the summer, and the storability of the lithium secondary battery at such a high temperature is insufficient. Is a problem in practical use.

【0007】負極に非晶質炭素材料を用いたリチウム二
次電池の高温劣化の原因について、60℃,20日間、
充電状態で放置後の電池を解体分析して調べた。
Regarding the cause of high temperature deterioration of a lithium secondary battery using an amorphous carbon material for a negative electrode,
The battery after being left in the charged state was disassembled and analyzed.

【0008】正極と負極を取り出し、それぞれ別個に電
極特性を評価した結果、放置後の正極容量は初期容量に
対し、ほとんど変化が見られなかった。しかし、負極容
量は初期容量に対して大きく減少していることが分かっ
た。
[0008] As a result of taking out the positive electrode and the negative electrode and separately evaluating the electrode characteristics, the positive electrode capacity after standing was hardly changed from the initial capacity. However, it was found that the negative electrode capacity was greatly reduced with respect to the initial capacity.

【0009】そこで、負極について詳細に分析したとこ
ろ、負極に用いている炭素材料の粒子表面に、電解液と
負極に吸蔵されたリチウムが反応して生成したと考えら
れる炭酸リチウム等の堆積物が、多量に形成されている
ことが分かった。
Therefore, a detailed analysis of the negative electrode revealed that deposits of lithium carbonate and the like, which are considered to have been formed by the reaction between the electrolyte and lithium stored in the negative electrode, were formed on the surface of the carbon material particles used for the negative electrode. It was found that a large amount was formed.

【0010】即ち、高温放置により負極容量が大きく減
少した原因は、炭素材料の表面に生成した堆積物がリチ
ウムイオンの吸蔵放出反応を妨げていることが考えられ
る。
That is, it is considered that the reason why the capacity of the negative electrode is greatly reduced by leaving it at a high temperature is that deposits formed on the surface of the carbon material hinder the insertion and extraction of lithium ions.

【0011】従来技術として日本特許第2,630,93
9号、特開平7−307164号あるいは特開平8−1
15723号に開示された炭素材料を、負極として用い
た場合も上記と同様に長時間、高温環境下に置かれる
と、炭素表面に堆積物が生成して変質し、高温環境下で
の貯蔵時(以下、高温貯蔵と称す)において、負極特性
が維持できないことが分かった。
As a prior art, Japanese Patent No. 2,630,93
9, JP-A-7-307164 or JP-A-8-1
Similarly, when the carbon material disclosed in No. 15723 is used as a negative electrode, if the carbon material is placed in a high-temperature environment for a long time as described above, a deposit is formed on the carbon surface and the carbon material is deteriorated. (Hereinafter referred to as high-temperature storage), it was found that the negative electrode characteristics could not be maintained.

【0012】本発明の目的は、携帯電話を始めとするポ
ータブル機器用、並びに、電気自動車の駆動電源等とし
て、特に、貯蔵特性の優れた高信頼性のリチウム二次電
池を提供することにある。
An object of the present invention is to provide a highly reliable lithium secondary battery having excellent storage characteristics, particularly for portable equipment such as a cellular phone, and as a drive power source for an electric vehicle. .

【0013】[0013]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は次のとおりである。
The gist of the present invention to achieve the above object is as follows.

【0014】〔1〕 リチウムイオンを吸蔵放出する正
極と負極、前記リチウムイオンを含む電解質を溶解させ
た有機電解液を有し、前記正極と負極がセパレータを介
して配置されているリチウム二次電池において、前記負
極を形成する難黒鉛化炭素が、不活性雰囲気中あるいは
該黒鉛化炭素が僅かに酸化する程度の雰囲気中で加熱処
理して分解ガスを除去後、加圧下で熱処理し、該難黒鉛
化炭素の密度(ブタノール法)が1.6〜1.8g/cc
であることを特徴とするリチウム二次電池である。
[1] A lithium secondary battery including a positive electrode and a negative electrode that occlude and release lithium ions, and an organic electrolytic solution in which an electrolyte containing the lithium ions is dissolved, wherein the positive electrode and the negative electrode are arranged via a separator. In the above, the non-graphitizable carbon forming the negative electrode is subjected to a heat treatment in an inert atmosphere or an atmosphere in which the graphitized carbon is slightly oxidized to remove the decomposition gas, and then heat-treated under pressure to perform the heat treatment under pressure. Density of graphitized carbon (butanol method) is 1.6 to 1.8 g / cc
It is a lithium secondary battery characterized by the following.

【0015】〔2〕 上記リチウム二次電池は、リチウ
ム参照極基準で1.5〜0.02Vの負極の充放電容量が
280mAh/g以上である。
[2] In the lithium secondary battery, the charge / discharge capacity of the negative electrode of 1.5 to 0.02 V with respect to the lithium reference electrode is 280 mAh / g or more.

【0016】〔3〕 前記難黒鉛化炭素のブタノール法
による測定密度(ρB)と、ヘリウム法による測定密度
(ρH)との比(ρH/ρB)が1.05以下である。
[0016] [3] and measured density ([rho B) by butanol method of the flame graphitized carbon, the ratio of the measurement by helium Method Density (ρ H) (ρ H / ρ B) is 1.05 or less.

【0017】〔4〕 また、前記難黒鉛化炭素の六員環
層の層間距離が0.36nmより大きく、0.41nm未
満、好ましくは、0.37nmより大きく、0.39nm
未満である。
[4] The interlayer distance of the six-membered ring layer of the non-graphitizable carbon is larger than 0.36 nm and smaller than 0.41 nm, preferably larger than 0.37 nm and 0.39 nm.
Is less than.

【0018】[0018]

【発明の実施の形態】非晶質炭素の組織構造は、炭素の
六員環面(六角網面)が数nm程度積層した部分(六員
環層部分)がランダムにつながり、球殻状の構造を形成
した多孔質構造であることが報告されている。前記の日
本特許第2,630,939号、特開平7−307164
号公報、あるいは、特開平8−115723号公報に開
示されている非晶質炭素材料も、六員環が積層した部分
と球殻の空洞部分(ミクロポア)とに分けられると考え
られる。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of amorphous carbon is such that a portion (six-membered ring layer portion) in which six-membered ring surfaces (hexagonal mesh surfaces) of carbon are stacked by about several nm is randomly connected to form a spherical shell. It is reported that the structure is a porous structure. The above-mentioned Japanese Patent No. 2,630,939 and JP-A-7-307164.
It is considered that the amorphous carbon material disclosed in Japanese Unexamined Patent Application Publication No. 8-115723 is also divided into a portion in which six-membered rings are stacked and a hollow portion (micropore) of a spherical shell.

【0019】一方、これまでに、上記の非晶質炭素材料
へのリチウムイオンの吸蔵サイトは六員環層部分とミク
ロポア部分であることが、第35回電池討論会要旨集2
B09に報告されている。
On the other hand, the storage sites of lithium ions into the above-mentioned amorphous carbon material have so far been in the six-membered ring layer portion and the micropore portion.
B09.

【0020】また、六員環層部分とミクロポア部分に格
納されたリチウムは、核磁気共鳴法(NMR法)によっ
て区別することが可能であり、2本のシグナル(ナイト
シフト:20ppm近傍および120ppm近傍)とし
て観察されることが、第35回電池討論会要旨集2B1
0に報告されている。さらに、この報告ではミクロポア
部分にはリチウムが、クラスターのような形態で高密度
格納されることを報告している。
Further, lithium stored in the six-membered ring layer portion and the micropore portion can be distinguished by nuclear magnetic resonance (NMR), and two signals (night shift: around 20 ppm and around 120 ppm) ), The 35th Battery Symposium Abstracts 2B1
0 reported. Furthermore, this report reports that lithium is stored at high density in the form of clusters in the micropore portion.

【0021】こうした報告を基に、これまでの多くの研
究がミクロポアを効率的に活用し、炭素負極の充放電容
量を増大させることを目的に行われている。前記特開平
8−115723号公報に開示された技術も、ミクロポ
アへのリチウム吸蔵量を増加させることを目的に行われ
たものである。
Based on these reports, many studies have been made with the aim of efficiently utilizing micropores and increasing the charge / discharge capacity of carbon anodes. The technique disclosed in JP-A-8-115723 is also performed for the purpose of increasing the amount of lithium stored in micropores.

【0022】ところで、本発明者らは、充電反応によっ
て六員環層に吸蔵されたリチウムと、ミクロポアに吸蔵
されたリチウムとでは、高温貯蔵での電解液との副反応
の起こり易さが異なると考え、その反応性について検討
を行った。
By the way, the present inventors have found that lithium stored in the six-membered ring layer due to the charging reaction is different from lithium stored in the micropore in the ease of occurrence of a side reaction with the electrolyte during high-temperature storage. Therefore, the reactivity was examined.

【0023】非晶質炭素へリチウムイオンが吸蔵される
場合、先ず、六員環層に吸蔵され、続いてミクロポアに
吸蔵されることが第35回電池討論会要旨集2B10に
報告されている。
It has been reported in the 35th Battery Symposium Abstracts 2B10 that lithium ions are absorbed into amorphous carbon first in the six-membered ring layer and then in micropores.

【0024】そこで、充電深度の異なる負極を準備し、
60℃での貯蔵特性を調べた。その結果、ミクロポアに
リチウムが吸蔵された充電深度の大きい負極では、容量
減少が著しいことが示された。
Therefore, negative electrodes having different charge depths are prepared.
The storage characteristics at 60 ° C. were examined. As a result, it was shown that the capacity was remarkably reduced in the negative electrode having a large charge depth in which lithium was occluded in the micropore.

【0025】その原因を調べるため、容量減少の著しい
負極の炭素粒子表面を分析したところ、電解液と吸蔵リ
チウムとが反応して生成したと思われる炭酸リチウム等
の堆積物が、多量に存在することが分かった。このこと
から、ミクロポアに吸蔵されたリチウムは反応性が高
く、電解液との副反応が容易に起こることが推測され
る。
To investigate the cause, the surface of the carbon particles of the negative electrode whose capacity was remarkably reduced was analyzed. As a result, a large amount of deposits such as lithium carbonate which appeared to have been produced by the reaction between the electrolyte and the stored lithium were found. I understood that. From this, it is assumed that lithium absorbed in the micropores has high reactivity, and that a side reaction with the electrolyte easily occurs.

【0026】上記の結果から、本発明では、充放電にお
いてミクロポアへのリチウム吸蔵放出反応を、抑制する
と云う従来と異なる考えに基づき、主として六員環層に
リチウムイオンが吸蔵放出される炭素材料の開発を行っ
た。即ち、ミクロポアをリチウムイオンが侵入できない
ような閉孔とするか、あるいは、消失させてしまうこと
を行なった。その具体的手法としては、炭素材料を加圧
状態で熱処理する方法で行なった。以下にその具体的な
実施例を示す。
From the above results, in the present invention, based on a different idea of suppressing the lithium occlusion / release reaction to micropores during charging / discharging, the carbon material whose lithium ions are occluded / emitted mainly in the six-membered ring layer is considered. Developed. That is, the micropores were closed or eliminated so that lithium ions could not enter. As a specific method, a method of heat-treating the carbon material in a pressurized state was performed. The specific examples are shown below.

【0027】原料として、フェノール、フラン、メラミ
ン、エポキシ樹脂等の熱硬化性樹脂、あるいは、石油ピ
ッチ、石炭ピッチから得られた等方性ピッチを用いる。
本実施例では2段階の熱処理によって炭素材料を製造す
る。
As a raw material, a thermosetting resin such as phenol, furan, melamine, or epoxy resin, or an isotropic pitch obtained from petroleum pitch or coal pitch is used.
In this embodiment, a carbon material is manufactured by a two-stage heat treatment.

【0028】1段目では、上記の原料を不活性雰囲気あ
るいは原料が僅かに酸化する程度の雰囲気中で、100
0℃以下の温度で一旦加熱処理して分解ガスを除去す
る。
In the first stage, the above-mentioned raw material is placed in an inert atmosphere or an atmosphere in which the raw material is slightly oxidized, and
Decomposition gas is removed by heating once at a temperature of 0 ° C. or less.

【0029】2段目では、不活性雰囲気中、加圧下で1
000℃〜2000℃の高温で再度処理する。
In the second stage, the first step is performed under pressure in an inert atmosphere.
Treat again at a high temperature of 000C to 2000C.

【0030】なお、上記加圧条件は10気圧以上が望ま
しく、100気圧以上が好ましい。本発明の炭素材料
は、上記の2段階の熱処理によって得ることができる。
The above pressure condition is desirably 10 atm or more, preferably 100 atm or more. The carbon material of the present invention can be obtained by the above two-stage heat treatment.

【0031】炭素材料には、難黒鉛化炭素と易黒鉛化炭
素の2つに大きく分けられるが、本発明の炭素材料は難
黒鉛化炭素に属し、上記の加圧,高温加熱処理によって
も黒鉛化しない。
The carbon material is roughly classified into two types, ie, non-graphitizable carbon and graphitizable carbon. The carbon material of the present invention belongs to non-graphitizable carbon, and can be made of graphite by the above-mentioned pressurization and high-temperature heat treatment. Does not change.

【0032】前記の日本特許2,630,939号あるい
は特開平7−307164号公報に開示されている石油
ピッチ、石炭ピッチから得られたメソフェーズピッチ、
あるいは、石油、石炭コークスを原料に用いた場合は、
易黒鉛化炭素となってしまい、本発明での加圧,加熱処
理を行った場合も、黒鉛化してしまうために本発明の原
料として用いることはできない。
Mesophase pitch obtained from petroleum pitch, coal pitch disclosed in Japanese Patent No. 2,630,939 or JP-A-7-307164.
Alternatively, if petroleum or coal coke is used as a raw material,
It becomes graphitizable carbon and cannot be used as a raw material of the present invention because it is graphitized even when the pressure and heat treatment of the present invention is performed.

【0033】リチウム二次電池の負極として用いるため
には、加圧,加熱処理を行った後、粉砕、篩分け(分
級)する。負極材料としては、平均粒径が10〜25μ
mの範囲、粒径50μm以下の粒子が体積分率で95%
以上のものが望ましい。
In order to use as a negative electrode of a lithium secondary battery, it is subjected to pressure and heat treatment, and then crushed and sieved (classified). As the negative electrode material, the average particle size is 10 to 25 μm.
m, particles having a particle size of 50 μm or less are 95% by volume fraction.
The above is desirable.

【0034】本発明において、得られた炭素材料は、加
圧,加熱によってミクロポアが閉孔されてその割合が減
少するために、加圧しないものに比べて密度が増加する
ことが特徴である。
In the present invention, the obtained carbon material is characterized in that the density is increased as compared with the non-pressed one, because the micropores are closed by pressurization and heating and the ratio thereof is reduced.

【0035】無加圧の条件で1,000〜2,000℃の
加熱処理によって得られる炭素材料では、JISR72
12に基づくブタノール法によって測定される密度(ρ
B)が1.5(g/cc)程度である。
In the case of a carbon material obtained by a heat treatment at 1,000 to 2,000 ° C. under no pressure, JIS R72
Density (ρ) measured by the butanol method based on
B ) is about 1.5 (g / cc).

【0036】これに対して、本発明の加圧下1,000
〜2,000℃の処理を行ったものでは、密度(ρB)は
1.6〜1.8(g/cc)と増加する。さらに、別のヘ
リウム法によって測定した密度が、前記ブタノール法で
測定した場合とほぼ同じ値を示し、ブタノール法による
密度(ρB)とヘリウム法による密度(ρH)の比(ρH
/ρB)が1.05以下である。
On the other hand, under the pressure of the present invention of 1,000
It intended to have been processed to 2,000 ° C., the density ([rho B) increases with 1.6~1.8 (g / cc). Further, the density measured by another helium method shows almost the same value as that measured by the butanol method, and the ratio (ρ H ) of the density (ρ B ) obtained by the butanol method to the density (ρ H ) obtained by the helium method is obtained.
/ Ρ B ) is 1.05 or less.

【0037】ヘリウム法は、ヘリウムが侵入できるミク
ロポアが多く存在すると、ブタノール法に比べ密度が増
すと考えられる。本発明の炭素材料は加圧によってミク
ロポアが閉孔となっているために、上記の測定法による
両者の密度の差が生じない点が特徴である。
The helium method is considered to have a higher density than the butanol method if there are many micropores into which helium can enter. The carbon material of the present invention is characterized in that since the micropores are closed by pressurization, there is no difference in density between the two by the above-described measurement method.

【0038】また、本発明において、直接観察される特
徴として以下が挙げられる。それは、1段目の加熱処理
では分解ガスが発生するため、ガス噴出による気泡の痕
跡が生じる。2段目の1000〜2000℃での高温加
熱処理では加圧するため、上記のようなガス噴出による
気泡の痕跡が消失してしまい、炭素粒子表面が滑らかと
なる。こうした加圧が無い場合は高温で処理でも気泡の
痕跡が見られる。
In the present invention, the following features are directly observed. This is because, in the first stage heat treatment, a decomposition gas is generated, so that a trace of bubbles is generated by gas ejection. In the second stage of high-temperature heat treatment at 1000 to 2000 ° C., pressure is applied, so that traces of bubbles due to gas ejection as described above disappear, and the carbon particle surface becomes smooth. In the absence of such pressurization, traces of bubbles can be seen even at high temperatures.

【0039】上記によって得られた本発明の炭素粉末を
用い、以下の方法によって負極を作製後、充放電特性と
高温貯蔵特性を調べた。
Using the carbon powder of the present invention obtained as described above, a negative electrode was prepared by the following method, and the charge / discharge characteristics and high-temperature storage characteristics were examined.

【0040】本発明の炭素粉末90重量%に、バインダ
としてポリフッ化ビニリデン(PVdF)を10重量%
加え、さらに溶剤としてn−メチル−2−ピロリドン
(NMP)を適量加えペースト化した。このペーストを
集電体である銅箔に塗布した後、NMPを乾燥後、加圧
成形して負極とした。
Polyvinylidene fluoride (PVdF) was used as a binder in an amount of 10% by weight to 90% by weight of the carbon powder of the present invention.
In addition, an appropriate amount of n-methyl-2-pyrrolidone (NMP) was further added as a solvent to form a paste. After this paste was applied to a copper foil as a current collector, NMP was dried and then pressure-formed to form a negative electrode.

【0041】上記炭素粉末からなる負極21と、対極2
2および参照極23にリチウム金属を用い、図2に示す
ような電気化学セルによって、負極の充放電特性を調べ
た。その結果を図1の曲線11で、また、比較のため従
来炭素負極の充放電特性の結果を図1の曲線12に示
す。
A negative electrode 21 made of the carbon powder and a counter electrode 2
2 and the reference electrode 23 were made of lithium metal, and the charge / discharge characteristics of the negative electrode were examined using an electrochemical cell as shown in FIG. The result is shown by a curve 11 in FIG. 1, and for comparison, the result of the charge / discharge characteristics of the conventional carbon anode is shown by a curve 12 in FIG.

【0042】図1から分かるように、従来の炭素負極の
充放電特性は、まず、1.5Vから0.02Vの範囲にな
だらかに変化する領域が現れ、次に、0.02V以下の
平坦領域が現れると云う大きく2つの領域に分かれる。
As can be seen from FIG. 1, the charge / discharge characteristics of the conventional carbon anode firstly show a region where the voltage gradually changes from 1.5 V to 0.02 V, and then a flat region below 0.02 V. Is roughly divided into two areas.

【0043】これに対し、本発明の負極では、1.5V
から0.02Vの範囲のなだらかに変化する領域のみが
現れ、0.02V以下の平坦領域はほとんど見られな
い。
On the other hand, in the negative electrode of the present invention, 1.5 V
Only a gradually changing region in the range from 0.02V to 0.02V appears, and a flat region below 0.02V is hardly seen.

【0044】前記のように、充電反応でリチウムイオン
は六員環層に吸蔵され、次に、ミクロポアに吸蔵される
と考えられることから、1.5Vから0.02Vの範囲の
なだらかに変化する領域は前者による反応であり、0.
02V以下の平坦領域では後者による反応であると考え
られる。
As described above, it is considered that lithium ions are occluded in the six-membered ring layer and then occluded by the micropores in the charging reaction, so that the lithium ions gradually change in the range of 1.5 V to 0.02 V. The area is the response of the former, and
It is considered that the reaction is caused by the latter in a flat region of 02 V or less.

【0045】本発明の負極では、1.5Vから0.02V
の範囲のなだらかに変化する領域のみであることから、
充放電での反応が、主としてリチウムイオンが六員環層
に吸蔵される反応で、ミクロポアにはほとんどリチウム
イオンが吸蔵されていないことが分かる。これは本発明
の大きな特徴を示していると云える。
In the negative electrode of the present invention, 1.5 V to 0.02 V
Because it is only a smoothly changing area in the range of,
It can be seen that the reaction in charge and discharge is mainly a reaction in which lithium ions are occluded in the six-membered ring layer, and almost no lithium ions are occluded in the micropores. This can be said to be a significant feature of the present invention.

【0046】ミクロポアにリチウムイオンが吸蔵されな
い分、本発明の炭素負極の充放電容量は減少してしまう
が、1.5Vから0.02Vの範囲のなだらかに電位が変
化する領域での充放電容量を比較すると、従来の炭素負
極は200mAh/gから240mAh/g程度である
のに対し、本発明の炭素負極では280mAh/g以上
の充放電容量が得られる。これは、加圧,加熱処理を行
うことによって、ミクロポアが減少し、六員環層の割合
が増加したためと考えられる。
Although the charge / discharge capacity of the carbon anode of the present invention is reduced because lithium ions are not occluded in the micropores, the charge / discharge capacity in the region where the potential changes gradually from 1.5 V to 0.02 V is obtained. When comparing the conventional carbon anode, the charge and discharge capacity of 280 mAh / g or more can be obtained with the carbon anode of the present invention, while the conventional carbon anode is about 200 mAh / g to 240 mAh / g. This is presumably because the micropores were reduced and the ratio of the six-membered ring layer was increased by performing the pressure and heat treatment.

【0047】また、リチウム参照極基準で0Vまでリチ
ウムイオンを吸蔵させた本発明の負極および従来負極に
ついて、LiClを基準(0ppm)としたリチウムN
MR(7Li−NMR)分析を行った。
Further, with respect to the negative electrode of the present invention and the conventional negative electrode in which lithium ions were occluded to 0 V on the basis of the lithium reference electrode, the lithium N based on LiCl (0 ppm) was used.
MR (7 Li-NMR) was analyzed.

【0048】本発明の負極では約20ppmに1本のシ
グナルが確認されたのに対して、従来負極では20pp
m付近と120ppm付近に2本のシグナルが観察され
た。
In the negative electrode of the present invention, one signal was confirmed at about 20 ppm, whereas in the conventional negative electrode, 20 pp
Two signals were observed around m and 120 ppm.

【0049】LiClを基準(0ppm)とした場合の
リチウム金属のシグナルは約270ppmであり、従来
負極で確認された120ppmのシグナルはイオン性が
薄れたクラスター状態のミクロポアに吸蔵されたリチウ
ムを示すものと考えられる。
The signal of lithium metal based on LiCl as a reference (0 ppm) is about 270 ppm, and the signal of 120 ppm confirmed in the conventional negative electrode indicates lithium occluded in micropores in a cluster state with reduced ionicity. it is conceivable that.

【0050】本発明の炭素粉末では、120ppmのシ
グナルが現れないことからも、ミクロポアへのリチウム
イオンの吸蔵はほとんど無いと解析される。
Since no signal of 120 ppm appears in the carbon powder of the present invention, it is analyzed that there is almost no occlusion of lithium ions in the micropores.

【0051】さらに、0Vまでリチウムイオンを吸蔵さ
せた本発明の負極および従来負極を取り出して、電解液
に浸漬した状態で60℃,20日間放置し、放置後の放
電容量を測定して貯蔵特性を調べた。その結果、従来の
負極では50%程度容量の減少が見られたが、本発明の
負極では容量減少が20%以下で、貯蔵特性が向上する
ことが分かった。
Further, the negative electrode of the present invention and the conventional negative electrode in which lithium ions were occluded up to 0 V were taken out, left at 60 ° C. for 20 days in a state of being immersed in an electrolytic solution, and measured for discharge capacity after leaving the storage. Was examined. As a result, it was found that the capacity was reduced by about 50% in the conventional negative electrode, but the storage property was improved in the negative electrode of the present invention when the capacity was reduced to 20% or less.

【0052】ミクロポアに吸蔵されたクラスター状のリ
チウムは、イオン性が薄れ活性が高くなるため電解液と
容易に反応し、その反応生成物が堆積して充放電反応を
妨げるため、貯蔵特性が悪くなると考えられる。しか
し、六員環層に吸蔵されたリチウムはナイトシフトが小
さく、イオン性が大きいため反応性が比較的小さいと考
えられる。本発明の負極ではミクロポアへのリチウムの
吸蔵が抑制され、主として六員環に吸蔵されているた
め、高温貯蔵特性が向上するものと考えられる。
The cluster-like lithium occluded in the micropores easily reacts with the electrolytic solution because of its low ionicity and high activity, and the reaction product accumulates and hinders the charge / discharge reaction, resulting in poor storage characteristics. It is considered to be. However, lithium stored in the six-membered ring layer is considered to have relatively low reactivity because of its small night shift and high ionicity. In the negative electrode of the present invention, the occlusion of lithium into the micropores is suppressed and mainly occluded in the six-membered ring, so that the high-temperature storage characteristics are considered to be improved.

【0053】また、貯蔵特性が優れる本発明の炭素材料
の最適条件を第2段目の加圧条件および熱処理温度を変
え、種々の材料を調製して検討した。その結果、ブタノ
ール法によって測定される密度(ρB)が1.6〜1.7
未満の範囲の場合、X線回折法によって測定される六員
環層の層間距離が0.36nmより大きく、0.41nm
であり、高温貯蔵での負極容量の減少が小さかった。
Further, the optimum conditions of the carbon material of the present invention having excellent storage characteristics were examined by preparing various materials while changing the second-stage pressurizing condition and the heat treatment temperature. As a result, the density (ρ B ) measured by the butanol method is 1.6 to 1.7.
In the case where the distance is less than 0.36 nm, the interlayer distance of the six-membered ring layer measured by the X-ray diffraction method is larger than 0.36 nm and 0.41 nm.
The decrease in the capacity of the negative electrode during high-temperature storage was small.

【0054】また、ブタノール法によって測定される密
度(ρB)が1.7〜1.8、六員環層の層間距離が0.3
7nmより大きく0.39nm未満であり、高温貯蔵で
の負極容量の減少が小さかった。
The density (ρ B ) measured by the butanol method is 1.7 to 1.8, and the distance between the six-membered ring layers is 0.3.
It was larger than 7 nm and smaller than 0.39 nm, and the decrease in negative electrode capacity during high-temperature storage was small.

【0055】本発明のリチウム二次電池の正極材料とし
ては、リチウム含有遷移金属酸化物が望ましく、特に、
化学式LiCoO2、LiMxCo1-x2,LiMn
24、Li1+xMn2-x4,Li1+xyMn2-x-y
4(MはFe,Ni,Cr,Mn,Al,B,Si,T
iの少なくとも1種、x>0,y>0)で表わされる化
合物を用いることによって、貯蔵性の優れたリチウム二
次電池が実現できる。
As the positive electrode material of the lithium secondary battery of the present invention, a lithium-containing transition metal oxide is desirable.
Chemical formula LiCoO 2 , LiM x Co 1-x O 2 , LiMn
2 O 4, Li 1 + x Mn 2-x O 4, Li 1 + x M y Mn 2-xy O
4 (M is Fe, Ni, Cr, Mn, Al, B, Si, T
By using a compound represented by at least one of i, x> 0, y> 0), a lithium secondary battery having excellent storability can be realized.

【0056】本発明で用いる有機電解液の溶媒として
は、プロピレンカーボネートとエチレンカーボネートの
混合溶媒またはその単独溶媒に、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネー
ト、γ−ブチロラクトン、スルホラン、酢酸メチル、酢
酸エチル、プロピオン酸メチル、プロピオン酸エチル、
ジメトキシエタン、2−メチルテトラヒドロフランの少
なくとも1種を加えた混合溶媒であり、プロピレンカー
ボネートとエチレンカーボネートの混合溶媒または単独
溶媒の体積分率が0.3〜0.6が望ましい。
As a solvent for the organic electrolyte solution used in the present invention, a mixed solvent of propylene carbonate and ethylene carbonate or a single solvent thereof may be used. , Methyl propionate, ethyl propionate,
It is a mixed solvent to which at least one of dimethoxyethane and 2-methyltetrahydrofuran is added, and the volume fraction of a mixed solvent of propylene carbonate and ethylene carbonate or a single solvent is preferably from 0.3 to 0.6.

【0057】一方、本発明ではリチウム塩としてLiP
6,LiBF4,LiClO4,(C25SO2)2NL
i,(CF3SO2)2NLiの少なくとも1種を用い、そ
の濃度を0.5〜1.5mol/lの範囲とすることが望
ましい。
On the other hand, in the present invention, LiP is used as the lithium salt.
F 6 , LiBF 4 , LiClO 4 , (C 2 F 5 SO 2 ) 2 NL
It is desirable to use at least one kind of i, (CF 3 SO 2 ) 2 NLi, and its concentration is in a range of 0.5 to 1.5 mol / l.

【0058】また、本発明で用いるセパレータは、ポリ
エチレン製の厚みが20〜50μmの微孔膜を用いるこ
とが望ましい。
The separator used in the present invention is preferably a polyethylene microporous membrane having a thickness of 20 to 50 μm.

【0059】本発明のリチウム二次電池は、高温での貯
蔵特性が優れ、携帯電話、携帯情報端末機器、パーソナ
ルコンピュータ、または、携帯音響機器,ポータブル機
器の他、とりわけ電気自動車の駆動電源、電力貯蔵用電
源として用いられる。
The lithium secondary battery of the present invention has excellent storage characteristics at a high temperature, and is particularly suitable for a mobile phone, a portable information terminal device, a personal computer, a portable audio device, a portable device, and especially a drive power source and an electric power source for an electric vehicle. Used as a power supply for storage.

【0060】以下、本発明を図面を用いて具体的に説明
する。図2は本発明で負極の電気化学評価を行うために
用いた電気化学セルである。負極21、Li金属対極2
2、Li金属参照極23、電解液24、ガラス容器25
で構成される。Li金属を基準電位とした3極式の電気
化学セルによって、負極21へのリチウムイオンの吸蔵
放出反応を調べた。
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 2 shows an electrochemical cell used for performing an electrochemical evaluation of the negative electrode in the present invention. Negative electrode 21, Li metal counter electrode 2
2. Li metal reference electrode 23, electrolytic solution 24, glass container 25
It consists of. Using a three-electrode electrochemical cell using Li metal as a reference potential, the occlusion / release reaction of lithium ions to / from the negative electrode 21 was examined.

【0061】電解液24には、体積比で1:1のプロピ
レンカーボネート(PC)とジエチルカーボネート(D
EC)の混合溶媒に、LiPF6を1mol/l溶解さ
せた溶液を使用した。
The electrolyte 24 contains propylene carbonate (PC) and diethyl carbonate (D
A solution in which 1 mol / l of LiPF 6 was dissolved in the mixed solvent of EC) was used.

【0062】〔実施例 1〕フェノール樹脂、フラン樹
脂、メラミン樹脂、エポキシ樹脂、等方性石炭ピッチ、
等方性石油ピッチを原料として、本発明の炭素材料を調
製した。
Example 1 Phenol resin, furan resin, melamine resin, epoxy resin, isotropic coal pitch,
The carbon material of the present invention was prepared using isotropic petroleum pitch as a raw material.

【0063】それぞれの原料を用いて、1段目の熱処理
として、電気炉にN2ガスを流通した状態で、常圧,8
00℃で2時間加熱した。発生ガスはN2と共に排気し
た。
As a first stage heat treatment using each of the raw materials, the N 2 gas was passed through the electric furnace at normal pressure and 8 H.
Heat at 00 ° C. for 2 hours. The generated gas was exhausted together with N 2 .

【0064】次に、2段目の熱処理として、内部に加熱
部を備えたオートクレーブによって、1段目の熱処理で
得られた炭素材料を、100気圧,1200℃で2時間
加熱した。加熱中、オートクレーブ内にはN2ガスをパ
ージし、100気圧の状態を維持した。
Next, as a second-stage heat treatment, the carbon material obtained by the first-stage heat treatment was heated at 100 atm and 1200 ° C. for 2 hours by an autoclave having a heating section therein. During heating, the autoclave was purged with N 2 gas and maintained at 100 atm.

【0065】得られた炭素材料の密度をブタノール法お
よびヘリウム法によって測定した。また、X線回折法に
よって六員環層の層間距離を測定した。これらの結果を
表1に示す。
The density of the obtained carbon material was measured by a butanol method and a helium method. The distance between the six-membered ring layers was measured by X-ray diffraction. Table 1 shows the results.

【0066】[0066]

【表1】 [Table 1]

【0067】また、上記の方法によって調製した本発明
のそれぞれの炭素を用いて、以下の方法によって負極を
作製し、図2に示す電気化学セルによって室温での充放
電試験を行った。
Using the respective carbons of the present invention prepared by the above method, a negative electrode was prepared by the following method, and a charge / discharge test was performed at room temperature using the electrochemical cell shown in FIG.

【0068】本発明のそれぞれの炭素粉末90重量%
に、バインダとしてポリフッ化ビニリデン(PVdF)
を10重量%加え、さらに溶剤としてn−メチル−2−
ピロリドン(NMP)を適量加えてペースト化した。こ
の合剤ペーストを集電体である銅箔に塗布した後、NM
Pを乾燥後、加圧成形して負極を形成した。
90% by weight of each carbon powder of the present invention
And polyvinylidene fluoride (PVdF) as a binder
Was added as a solvent, and n-methyl-2- as a solvent was further added.
An appropriate amount of pyrrolidone (NMP) was added to form a paste. After applying this mixture paste to a copper foil as a current collector, NM
After drying P, pressure molding was performed to form a negative electrode.

【0069】充電(リチウム吸蔵)方法を定電流・定電
圧充電方式(0.5mA/cm2定電流充電0V定電圧充
電)とし、終止条件として充電時間を選択し、その条件
を24時間とした。
The charging (lithium occlusion) method was a constant current / constant voltage charging method (0.5 mA / cm 2 constant current charging, 0 V constant voltage charging), a charging time was selected as a termination condition, and the condition was 24 hours. .

【0070】室温での原料にフラン樹脂を用いた場合の
本発明の炭素負極の充放電カーブを図1の曲線11に示
す。本発明の炭素負極のリチウムイオンの吸蔵放出に伴
う電位変化は、1.5Vから0.02Vの範囲のなだらか
に変化する領域のみが現れ、0.02V以下の平坦領域
がほとんど見られない。
The charge / discharge curve of the carbon negative electrode of the present invention when a furan resin is used as a raw material at room temperature is shown as a curve 11 in FIG. The potential change of the carbon anode according to the present invention due to the insertion and extraction of lithium ions appears only in a gradually changing region in the range of 1.5 V to 0.02 V, and almost no flat region of 0.02 V or less is observed.

【0071】本実施例の全ての炭素材料が、図1中、1
1とほぼ同じ充放電カーブであり、1.5Vから0.02
Vの範囲のなだらかに変化する領域の充放電容量を表1
中にまとめる。
In the present embodiment, all the carbon materials are denoted by 1 in FIG.
1. The charge-discharge curve is almost the same as that of No. 1 and is 1.5 to 0.02
Table 1 shows the charge / discharge capacities in the region where the voltage gradually changes in the range of V.
Put it all together.

【0072】さらに、本実施例の全ての炭素材料につい
て、以下の方法によって7Li−NMR測定を行った。
充電状態で負極を取り出し、これをジメチルカーボネー
ト(DMC)で十分洗浄し、真空乾燥後、銅箔より炭素
粉末の合剤を削り取りNMRの測定サンプルとした。
Further, all the carbon materials of this example were subjected to 7 Li-NMR measurement by the following method.
The negative electrode was taken out in a charged state, washed sufficiently with dimethyl carbonate (DMC), vacuum-dried, and the carbon powder mixture was scraped off the copper foil to obtain a sample for NMR measurement.

【0073】NMR測定は、室温で観測周波数155.
37Hz、MASGNNモード、試料回転数4000H
z、積算回数100回の条件で行った。なお、外部標準
試料としてはLiClを用いた。確認された全てのシグ
ナルのシフト値を表1に示した。
The NMR measurement was carried out at room temperature at an observation frequency of 155.
37Hz, MASGNN mode, sample rotation speed 4000H
z, the number of times of integration was 100 times. Note that LiCl was used as an external standard sample. Table 1 shows the shift values of all the confirmed signals.

【0074】また、本実施例の全ての炭素材料につい
て、充電状態で取り出し、電解液に浸漬したまま大気中
の酸素や水分が混入しないように密封して、60℃,2
0日間貯蔵し、貯蔵後、再び、図2に示す電気化学セル
を構成して容量維持率を調べた。これらの結果について
表1に示す。
Further, all the carbon materials of the present embodiment were taken out in a charged state, and sealed while being immersed in the electrolyte so that oxygen and moisture in the atmosphere were not mixed.
After storing for 0 days, the electrochemical cell shown in FIG. 2 was constructed again and the capacity retention was examined. Table 1 shows these results.

【0075】〔比較例 1〕実施例1では、100気
圧,1200℃の条件で2段目の熱処理を行ったが、比
較例1では加圧せずに常圧で2段目の熱処理を行い、従
来の炭素材料を調製した。なお、本比較例1では、2段
目熱処理が常圧である以外、原料、熱処理温度等の条件
は全て実施例1と同様に行なった。
Comparative Example 1 In Example 1, the second heat treatment was performed under the conditions of 100 atm and 1200 ° C., but in Comparative Example 1, the second heat treatment was performed at normal pressure without applying pressure. A conventional carbon material was prepared. In Comparative Example 1, all the conditions such as the raw material and the heat treatment temperature were the same as in Example 1 except that the second stage heat treatment was at normal pressure.

【0076】本比較例の炭素材料を用い、実施例1と同
じ評価を全て実施した。密度、六員環層間距離、1.5
V〜0.02Vの充放電容量、MNRシフト値、60
℃,20日貯蔵後の容量維持率の測定結果を表1に示
す。
Using the carbon material of this comparative example, all the same evaluations as in Example 1 were performed. Density, 6-member ring interlayer distance, 1.5
V to 0.02 V charge / discharge capacity, MNR shift value, 60
Table 1 shows the measurement results of the capacity retention rate after storage at 200C for 20 days.

【0077】〔比較例 2〕実施例1とは炭素原料を変
えメソフェーズピッチを用いて、実施例1と同様にして
炭素粉末を調製した。本比較例の炭素材料を用い、実施
例1と同様に、密度、六員環層間距離、1.5V〜0.0
2Vの充放電容量、MNRシフト値、60℃,20日貯
蔵後の容量維持率の測定結果を表1に示す。
Comparative Example 2 A carbon powder was prepared in the same manner as in Example 1 except that the carbon material was changed and mesophase pitch was used. Using the carbon material of this comparative example, similarly to Example 1, the density, the distance between the six-membered ring layers, and 1.5 V to 0.0
Table 1 shows the measurement results of the charge / discharge capacity at 2 V, the MNR shift value, and the capacity retention rate after storage at 60 ° C. for 20 days.

【0078】実施例1と比較例1,2の測定結果の比較
から、本発明の炭素負極では、充電時におけるリチウム
の吸蔵状態が1種であるのに対して、比較例1,2では
2種であることがNMRの結果より分かる。
From the comparison of the measurement results of Example 1 and Comparative Examples 1 and 2, the carbon anode of the present invention had only one kind of occlusion state of lithium at the time of charging, whereas Comparative Examples 1 and 2 had a lithium occlusion state of 2 types. It can be seen from the NMR results that it is a species.

【0079】前記のように、比較例の炭素負極では、リ
チウムイオンが六員環層に吸蔵された状態を示す20p
pm付近のNMRシグナルと、ミクロポアに吸蔵された
状態を示す120ppm付近のNMRシグナルの両方が
観察される。しかし、実施例1の炭素負極では、20p
pm付近のNMRシグナルのみが確認された。これは充
放電での反応が、主としてリチウムイオンが六員環層に
吸蔵される反応であり、ミクロポアにはほとんどリチウ
ムイオンが吸蔵されていないことを示している。
As described above, in the carbon negative electrode of the comparative example, 20 p, which indicates a state where lithium ions are occluded in the six-membered ring layer.
Both an NMR signal near pm and an NMR signal near 120 ppm indicating the state of occlusion in the micropores are observed. However, in the carbon anode of Example 1, 20 p
Only NMR signals near pm were confirmed. This indicates that the reaction in charge and discharge is mainly a reaction in which lithium ions are occluded in the six-membered ring layer, and almost no lithium ions are occluded in the micropores.

【0080】また、1.5Vから0.02Vのなだらかに
電位が変化する領域での充放電容量を比較すると、比較
例の炭素負極は200〜240mAh/g程度であるの
に対し、実施例1の炭素負極では280mAh/g以上
の充放電容量が得られた。加圧、加熱処理を行うことに
よって、ミクロポアが減少し六員環層の割合が増加した
ことを示している。
When comparing the charge and discharge capacities in a region where the potential changes gradually from 1.5 V to 0.02 V, the carbon anode of the comparative example is about 200 to 240 mAh / g, With the carbon negative electrode, a charge / discharge capacity of 280 mAh / g or more was obtained. The results show that the application of pressure and heat treatment reduced the number of micropores and increased the ratio of the six-membered ring layer.

【0081】さらに、実施例1の炭素材料は、加圧によ
ってミクロポアが閉孔となっているため、密度測定法の
違いによる差がほとんど無く、ブタノール法により測定
される密度(ρB)とヘリウム法により測定される密度
(ρH)の比(ρH/ρB)が1.05以下で、特に、
この範囲が望ましいことが分かった。
Further, in the carbon material of Example 1, since the micropores were closed by pressurization, there was almost no difference due to the difference in density measurement method, and the density (ρB) measured by the butanol method and the helium method The ratio (ρH / ρB) of the density (ρH) measured according to
This range has been found to be desirable.

【0082】〔実施例 2〕原料にフラン樹脂を用い、
2段目の加圧条件を10〜120気圧の範囲で変更して
熱処理を行い、実施例1と同様にして炭素粉末を調製し
た。
Example 2 Using a furan resin as a raw material,
The heat treatment was performed by changing the pressure condition of the second stage in the range of 10 to 120 atm, and a carbon powder was prepared in the same manner as in Example 1.

【0083】本実施例の炭素材料を用い、実施例1と同
様に、密度、六員環層間距離、1.5V〜0.02Vの充
放電容量、60℃,20日貯蔵後の容量維持率を測定し
た。これらの結果を表2に示す。
Using the carbon material of this example, the density, the distance between the six-membered ring layers, the charge / discharge capacity of 1.5 V to 0.02 V, and the capacity retention rate after storage at 60 ° C. for 20 days, as in Example 1. Was measured. Table 2 shows the results.

【0084】[0084]

【表2】 [Table 2]

【0085】〔実施例 3〕原料として等方性石油ピッ
チを用い、2段目の熱処理温度を1000℃〜2000
℃の範囲で変更し、実施例1と同様にして炭素粉末を調
製した。
[Example 3] Isotropic petroleum pitch was used as a raw material, and the heat treatment temperature in the second stage was 1000 ° C to 2000 ° C.
The carbon powder was prepared in the same manner as in Example 1 except that the temperature was changed in the range of ° C.

【0086】本実施例の炭素材料を用い、実施例1と同
様に、密度、六員環層間距離、1.5V〜0.02Vの充
放電容量、60℃,20日貯蔵後の容量維持率を測定し
た。これらの結果を表3に示す。
Using the carbon material of this example, in the same manner as in Example 1, the density, the distance between the six-membered ring layers, the charge / discharge capacity of 1.5 V to 0.02 V, and the capacity retention rate after storage at 60 ° C. for 20 days Was measured. Table 3 shows the results.

【0087】[0087]

【表3】 [Table 3]

【0088】実施例2,3の結果より、ブタノール法に
よって測定される密度(ρB)が1.6〜1.7未満の範
囲では、六員環層の層間距離が0.36nmより大き
く、0.41nm未満の条件を満たす炭素材料が、高温
貯蔵での容量維持率が大きい。また、ブタノール法によ
って測定される密度(ρB)が1.7〜1.8の範囲であ
る場合、六員環層の層間距離が0.37nmより大き
く、0.39nm未満の条件を満たす炭素材料が高温貯
蔵での容量維持率が大きく好ましい。
From the results of Examples 2 and 3, when the density (ρB) measured by the butanol method is in the range of 1.6 to less than 1.7, the interlayer distance of the six-membered ring layer is larger than 0.36 nm, and A carbon material that satisfies the condition of less than .41 nm has a large capacity retention rate at high temperature storage. When the density (ρB) measured by the butanol method is in the range of 1.7 to 1.8, the carbon material satisfying the condition that the interlayer distance between the six-membered ring layers is larger than 0.37 nm and smaller than 0.39 nm. However, the capacity retention rate at high temperature storage is large, which is preferable.

【0089】〔実施例 4〕図3は、本発明のリチウム
二次電池の一実施例を示す模式断面図である。正極3
0、セパレータ31、負極32、セパレータ31の順で
積層し、捲回して電池缶33に収められている。正極3
0には正極タブ34、負極32には負極タブ35が取付
けられており、正極タブ34は電池内蓋36、負極タブ
35は電池缶33に接続されている。
[Embodiment 4] FIG. 3 is a schematic sectional view showing an embodiment of a lithium secondary battery of the present invention. Positive electrode 3
0, a separator 31, a negative electrode 32, and a separator 31 in this order, wound, and housed in a battery can 33. Positive electrode 3
The positive electrode tab 34 is attached to the negative electrode 32, the negative electrode tab 35 is connected to the negative electrode 32, and the negative electrode tab 35 is connected to the battery can 33.

【0090】また、電池内蓋36には安全弁(電流遮断
弁)37が接続され、10気圧以上の内圧上昇によって
安全弁(電流遮断弁)37が変形し、両者の電気的接続
が絶たれる。以下に、本実施例のリチウム二次電池の作
製方法について説明する。
Further, a safety valve (current cutoff valve) 37 is connected to the battery inner lid 36, and the safety valve (current cutoff valve) 37 is deformed by an internal pressure rise of 10 atm or more, and the electrical connection between the two is cut off. Hereinafter, a method for manufacturing the lithium secondary battery of this example will be described.

【0091】LiCoO2で表される正極活物質に、結
着剤としてポリフッ化ビニリデン(PVdF)、導電助
材として黒鉛粉末を用い、これらをそれぞれ重量で88
%、7%、5%の割合で配合し、溶剤としてN−メチル
−2−ピロリドン(NMP)を加えて正極合剤ペースト
を調製した。
For a positive electrode active material represented by LiCoO 2 , polyvinylidene fluoride (PVdF) was used as a binder, and graphite powder was used as a conductive additive.
%, 7%, and 5%, and N-methyl-2-pyrrolidone (NMP) was added as a solvent to prepare a positive electrode mixture paste.

【0092】これを厚み20μmのAl箔を用いて、該
Al箔の一方の面に、一定間隔で塗布部分と未塗布部分
を設ける間欠塗布を行なった。この後、塗布した正極合
剤ペースト中のNMPを乾燥して正極合剤膜を形成し
た。
Using an aluminum foil having a thickness of 20 μm, intermittent coating was performed on one surface of the aluminum foil, in which an applied portion and an uncoated portion were provided at regular intervals. Thereafter, the NMP in the applied positive electrode mixture paste was dried to form a positive electrode mixture film.

【0093】さらに、Al箔のもう一方の面も同様にし
て正極合剤膜を形成し、塗布電極を得た。このとき、塗
布部分と未塗布部分がAl箔の両面で丁度重なり合うよ
うにした。その後、上記の塗布電極をロールプレスによ
って加圧成形し正極シートを作製した。
Further, a positive electrode mixture film was similarly formed on the other surface of the Al foil to obtain a coated electrode. At this time, the coated portion and the uncoated portion were exactly overlapped on both sides of the Al foil. Thereafter, the above-mentioned coated electrode was pressure-formed by a roll press to produce a positive electrode sheet.

【0094】さらに、加圧成型した正極シートを、片側
に未塗布部、即ち、Al箔が露出した部分を残した状態
で短冊状に切り出し、集電体として正極タブを片側のA
l箔部分にスポット溶接して取付けた。
Further, the positive-molded positive electrode sheet was cut into strips with the uncoated portion on one side, that is, the portion where the Al foil was exposed, and the positive electrode tab was used as a current collector.
1. Spot welding was applied to the foil portion.

【0095】一方、負極活物質として、実施例1の表1
に示した原料の等方性石炭ピッチを用いて作製した本発
明の難黒鉛化炭素を用いた。この難黒鉛化炭素とポリフ
ッ化ビニリデン(PVdF)をそれぞれ重量比90%、
10%の割合で配合し、これに溶剤としてN−メチル−
2−ピロリドン(NMP)を加え、負極合剤を調製し
た。
On the other hand, Table 1 of Example 1 was used as a negative electrode active material.
The non-graphitizable carbon of the present invention produced using the isotropic coal pitch of the raw material shown in FIG. The non-graphitizable carbon and polyvinylidene fluoride (PVdF) are each 90% by weight,
10%, and N-methyl-
2-Pyrrolidone (NMP) was added to prepare a negative electrode mixture.

【0096】この負極合剤を18μmのCu箔に、前記
の正極と同様にして塗布部分と未塗布部分を設け、塗布
電極を作製し、加圧成型して負極シートを得た。さら
に、片側に未塗布部分、即ち、Cu箔の部分を残した状
態で短冊状に切り出し、集電体として負極タブを片側の
Cu箔部分にスポット溶接して取付けた。
This negative electrode mixture was coated on an 18 μm Cu foil in the same manner as the above-mentioned positive electrode, provided with an applied portion and an uncoated portion, and a coated electrode was prepared and pressed to obtain a negative electrode sheet. Further, a strip was cut out while leaving an uncoated portion on one side, that is, a portion of the Cu foil, and a negative electrode tab was attached as a current collector to the Cu foil portion on one side by spot welding.

【0097】上述の正極および負極と、ポリエチレン製
微孔膜のセパレータを用い、正極、セパレータ、負極、
セパレータの順序で積層し、これを渦巻き状に捲回して
電極群を形成した。正極タブと負極タブは互いに捲回群
の上下になるように構成した。この電極群を電池缶に納
め、電池内蓋に正極タブを、電池缶に負極タブをスポッ
ト溶接により接続した。
Using the above-described positive electrode and negative electrode and a polyethylene microporous membrane separator, a positive electrode, a separator, a negative electrode,
The electrodes were stacked in the order of the separators, which were spirally wound to form an electrode group. The positive electrode tab and the negative electrode tab were configured to be above and below the wound group. This electrode group was placed in a battery can, and the positive electrode tab was connected to the battery inner lid, and the negative electrode tab was connected to the battery can by spot welding.

【0098】電解液として、1:1のプロピレンカーボ
ネート(PC)とジエチルカーボネート(DEC)との
混合溶媒に、LiPF6を1mol/l溶解させた溶液
を調製し、これらの電解液を注液した後、電池蓋を電池
缶に取付け、円筒型電池を作製した。
As an electrolytic solution, a solution was prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of 1: 1 propylene carbonate (PC) and diethyl carbonate (DEC), and these electrolytic solutions were injected. Thereafter, the battery lid was attached to the battery can to produce a cylindrical battery.

【0099】〔比較例 3〕負極活物質として、比較例
1の表1に示した原料、等方性石炭ピッチを用いて作製
した従来の難黒鉛化炭素を用い、実施例4と同様にして
リチウム二次電池を作製した。
Comparative Example 3 A conventional non-graphitizable carbon produced using the raw materials shown in Table 1 of Comparative Example 1 and isotropic coal pitch was used as the negative electrode active material in the same manner as in Example 4. A lithium secondary battery was manufactured.

【0100】実施例4および比較例3で作製したリチウ
ム二次電池をそれぞれ5本づつ用い、電池容量が安定す
るまでのエージング充放電として、25℃で10サイク
ル行った。
Using five lithium secondary batteries prepared in Example 4 and Comparative Example 3, 10 cycles were performed at 25 ° C. as aging charge / discharge until the battery capacity was stabilized.

【0101】充電は、先ず電流0.5Aで定電流充電し
て、電池電圧が4.2Vに達した時点で、次に4.2V定
電圧充電を行い、充電開始から5時間経過した時点で充
電を終了した(以下、0.5A、4.2V、5時間終止定
電流定電圧充電と略す)。
First, the battery was charged at a constant current of 0.5 A, and when the battery voltage reached 4.2 V, the battery was then charged at a constant voltage of 4.2 V. After 5 hours from the start of charging, the battery was charged. The charging was terminated (hereinafter, abbreviated as 0.5 A, 4.2 V, 5 hour end constant current constant voltage charging).

【0102】放電は、電流0.5Aで定電流放電して、
電池電圧が2.8Vに達した時点で終了した(以下、0.
5A、2.8V終止定電流放電と略す)。
The discharge is a constant current discharge at a current of 0.5 A.
The operation was terminated when the battery voltage reached 2.8 V (hereinafter, referred to as “0.8 V”).
5A, abbreviated as 2.8V termination constant current discharge).

【0103】11サイクル目に、再度、25℃で0.5
A、4.2V、5時間終止定電流定電圧充電を行い、充
電電池を60℃の雰囲気で20日間保存した。保存後、
電池温度を室温まで冷却して、25℃で0.5A、2.8
V終止定電流放電を行って、貯蔵前後の電池容量の変化
を調べた。
At the eleventh cycle, the sample was again subjected to 0.5 at 25 ° C.
A, 4.2 V, constant-current constant-voltage charging for 5 hours, and the rechargeable battery was stored in an atmosphere at 60 ° C. for 20 days. After saving,
The battery temperature was cooled to room temperature, and 0.5 A, 2.8 at 25 ° C.
V termination constant current discharge was performed to examine changes in battery capacity before and after storage.

【0104】実施例4および比較例3においてそれぞれ
作製した5本の電池の60℃貯蔵前の10サイクル目の
充放電容量、貯蔵後の11サイクル目の充放電容量、お
よび11サイクル目の充電容量に対する放電容量の維持
率を表4に示す。
The charge / discharge capacity at the 10th cycle before storage at 60 ° C., the charge / discharge capacity at the 11th cycle after storage, and the charge capacity at the 11th cycle of the five batteries prepared in Example 4 and Comparative Example 3, respectively. Table 4 shows the retention ratio of the discharge capacity with respect to.

【0105】[0105]

【表4】 [Table 4]

【0106】本発明のリチウム二次電池の60℃貯蔵後
の容量維持率は80%以上であり、比較例の容量維持率
が50%程度であることから、本発明の二次電池が優れ
た高温貯蔵特性を有することが分かる。
Since the capacity retention of the lithium secondary battery of the present invention after storage at 60 ° C. is 80% or more, and the capacity retention of the comparative example is about 50%, the secondary battery of the present invention is excellent. It can be seen that it has high temperature storage characteristics.

【0107】[0107]

【発明の効果】本発明に用いた炭素材料は、充放電反応
でリチウムイオンが主として六員層に吸蔵放出される。
六員環層に吸蔵されたリチウムイオンは、電解液との反
応性が小さいため、負極の副反応による容量減少が低減
でき、高温貯蔵特性の優れたリチウム二次電池を実現す
ることができる。
According to the carbon material used in the present invention, lithium ions are mainly absorbed and released in the six-membered layer by the charge and discharge reaction.
Since the lithium ions occluded in the six-membered ring layer have low reactivity with the electrolytic solution, a decrease in capacity due to a side reaction of the negative electrode can be reduced, and a lithium secondary battery having excellent high-temperature storage characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素材料のリチウムイオンの吸蔵放出に伴なう
電位変化のグラフである。
FIG. 1 is a graph showing a change in potential caused by insertion and extraction of lithium ions from a carbon material.

【図2】負極のリチウムイオン吸蔵放出特性の測定に用
いた電気化学セルの模式構成図である。
FIG. 2 is a schematic configuration diagram of an electrochemical cell used for measuring lithium ion occlusion and release characteristics of a negative electrode.

【図3】本発明のリチウム二次電池の模式断面図であ
る。
FIG. 3 is a schematic sectional view of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

21…負極、22…Li金属対極、23…Li金属参照
極、24…電解液、25…ガラス容器、30…正極、3
1…セパレータ、32…負極、33…電池缶、34…正
極タブ、35…負極タブ、36…電池内蓋、37…安全
弁(電流遮断弁)、38…ガスケット、39…絶縁板、
40…電池外蓋。
Reference numeral 21: negative electrode, 22: Li metal counter electrode, 23: Li metal reference electrode, 24: electrolytic solution, 25: glass container, 30: positive electrode, 3
DESCRIPTION OF SYMBOLS 1 ... Separator, 32 ... Negative electrode, 33 ... Battery can, 34 ... Positive electrode tab, 35 ... Negative electrode tab, 36 ... Battery inner lid, 37 ... Safety valve (current cutoff valve), 38 ... Gasket, 39 ... Insulating plate,
40 ... Battery outer lid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村中 康 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H003 AA03 BA01 BB01 BC06 BD00 BD03 BD05 5H029 AJ04 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ02 CJ12 CJ28 HJ08 HJ13 HJ18 HJ19 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasushi Muranaka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. 5H003 AA03 BA01 BB01 BC06 BD00 BD03 BD05 5H029 AJ04 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ02 CJ12 CJ28 HJ08 HJ13 HJ18 HJ19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出する正極と負
極、前記リチウムイオンを含む電解質を溶解させた有機
電解液を有し、前記正極と負極がセパレータを介して配
置されているリチウム二次電池において、 前記負極を形成する難黒鉛化炭素が、不活性雰囲気中あ
るいは該黒鉛化炭素が僅かに酸化する程度の雰囲気中で
加熱処理して分解ガスを除去後、加圧下で熱処理し、該
難黒鉛化炭素の密度(ブタノール法)が1.6〜1.8g
/ccであることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode and a negative electrode that occlude and release lithium ions, an organic electrolyte in which an electrolyte containing the lithium ions is dissolved, and the positive electrode and the negative electrode are arranged via a separator. The non-graphitizable carbon forming the negative electrode is subjected to a heat treatment in an inert atmosphere or an atmosphere in which the graphitized carbon is slightly oxidized to remove the decomposition gas, and then heat-treated under pressure to obtain the non-graphite. Density of carbonized carbon (butanol method) is 1.6 to 1.8 g
/ Cc.
【請求項2】 リチウム参照極基準で1.5〜0.02V
の負極の充放電容量が280mAh/g以上である請求
項1に記載のリチウム二次電池。
2. 1.5 to 0.02 V based on a lithium reference electrode
The lithium secondary battery according to claim 1, wherein the charge / discharge capacity of the negative electrode is 280 mAh / g or more.
【請求項3】 前記難黒鉛化炭素のブタノール法による
測定密度(ρB)と、ヘリウム法による測定密度(ρH
との比(ρH/ρB)が1.05以下である請求項1また
は2に記載のリチウム二次電池。
3. The measured density (ρ B ) of the non-graphitizable carbon by a butanol method and the measured density (ρ H ) of a helium method.
The lithium secondary battery according to claim 1, wherein a ratio (ρ H / ρ B ) of the lithium secondary battery is 1.05 or less.
【請求項4】 前記難黒鉛化炭素の六員環層の層間距離
が0.36nmより大きく、0.41nm未満である請求
項1または2に記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein an interlayer distance of the six-membered ring layer of the non-graphitizable carbon is larger than 0.36 nm and smaller than 0.41 nm.
【請求項5】 前記難黒鉛化炭素の六員環層の層間距離
が0.37nmより大きく、0.39nm未満である請求
項1または2に記載のリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein an interlayer distance of the six-membered ring layer of the non-graphitizable carbon is larger than 0.37 nm and smaller than 0.39 nm.
JP36044099A 1999-12-20 1999-12-20 Lithium secondary battery Expired - Lifetime JP3851040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36044099A JP3851040B2 (en) 1999-12-20 1999-12-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36044099A JP3851040B2 (en) 1999-12-20 1999-12-20 Lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2001176512A true JP2001176512A (en) 2001-06-29
JP2001176512A5 JP2001176512A5 (en) 2005-04-07
JP3851040B2 JP3851040B2 (en) 2006-11-29

Family

ID=18469415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36044099A Expired - Lifetime JP3851040B2 (en) 1999-12-20 1999-12-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3851040B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003092150A (en) * 2001-09-17 2003-03-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPWO2005098999A1 (en) * 2004-04-05 2007-08-16 株式会社クレハ Negative electrode material for high current input / output non-aqueous electrolyte secondary battery, its manufacturing method, and battery using negative electrode material
JP2008010337A (en) * 2006-06-30 2008-01-17 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
KR100836524B1 (en) 2006-02-23 2008-06-12 한국전기연구원 Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
JP2014192150A (en) * 2013-03-28 2014-10-06 Sumitomo Bakelite Co Ltd Anode material for alkali metal ion secondary battery, anode active material for alkali metal ion secondary battery, anode for alkali metal ion secondary battery, and alkali metal ion secondary battery
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003092150A (en) * 2001-09-17 2003-03-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPWO2005098999A1 (en) * 2004-04-05 2007-08-16 株式会社クレハ Negative electrode material for high current input / output non-aqueous electrolyte secondary battery, its manufacturing method, and battery using negative electrode material
JP4975433B2 (en) * 2004-04-05 2012-07-11 株式会社クレハ Negative electrode material for high current input / output non-aqueous electrolyte secondary battery, its manufacturing method, and battery using negative electrode material
KR101267874B1 (en) 2004-04-05 2013-05-27 가부시끼가이샤 구레하 Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
KR100836524B1 (en) 2006-02-23 2008-06-12 한국전기연구원 Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
KR100880552B1 (en) 2006-02-23 2009-01-30 한국전기연구원 Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
JP2008010337A (en) * 2006-06-30 2008-01-17 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2014192150A (en) * 2013-03-28 2014-10-06 Sumitomo Bakelite Co Ltd Anode material for alkali metal ion secondary battery, anode active material for alkali metal ion secondary battery, anode for alkali metal ion secondary battery, and alkali metal ion secondary battery
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP3851040B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US7892677B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
JP5111369B2 (en) Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
KR20170075661A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP4422439B2 (en) Carbon material for electrode and manufacturing method thereof, battery electrode and manufacturing method thereof, and battery and manufacturing method thereof
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
KR101483891B1 (en) Lithium ion secondary battery
US20140065480A1 (en) Positive-Electrode Active Material, Manufacturing Method Of The Same, And Nonaqueous Electrolyte Rechargeable Battery Having The Same
JP3692547B2 (en) Charging method
JP2014035877A (en) Nonaqueous electrolyte secondary battery manufacturing method
CN108370026B (en) Non-aqueous electrolyte secondary battery
CN113994512B (en) Lithium secondary battery and method for manufacturing the same
KR20160036577A (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP2005093414A (en) Lithium cell
JP2008078199A (en) Power storage device
JP2001176512A (en) Lithium secondary battery
JP4103487B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
CN110581276B (en) Interface protection structure, preparation method thereof and battery with interface protection structure
JP2000036325A (en) Secondary power supply
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2003168427A (en) Nonaqueous electrolyte battery
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
CN116830310A (en) Nonaqueous electrolyte battery and battery pack
JPWO2016171276A1 (en) Lithium ion battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Ref document number: 3851040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term