JPH08236115A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH08236115A
JPH08236115A JP7080666A JP8066695A JPH08236115A JP H08236115 A JPH08236115 A JP H08236115A JP 7080666 A JP7080666 A JP 7080666A JP 8066695 A JP8066695 A JP 8066695A JP H08236115 A JPH08236115 A JP H08236115A
Authority
JP
Japan
Prior art keywords
battery
lithium
active material
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080666A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP7080666A priority Critical patent/JPH08236115A/en
Publication of JPH08236115A publication Critical patent/JPH08236115A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To enhance balance of safety performance with battery performance by using a lithium-containing compound capable of performing electrical oxidation-reduction reaction in accordance with releasing of a lithium ion as a positive active material and CuFeO2 in a negative electrode as a negative active material. CONSTITUTION: An aluminium foil 10 is put on the bottom of a battery can 4, and a gasket 6 is fit to the battery can 4. A negative electrode 1 using CuFeO2 as a negative active material and a positive electrode 2 using a lithium- containing compound capable of performing electrical oxidation-reduction reaction in accordance with releasing of a lithium ion as a positive active material are faced with a separator 3 interposed and housed in the center of the battery can 4, then a nonaqueous electrolyte is poured thereon. An electrode pressing plate 7 is put on the negative electrode 1, and a battery cover 5 is put thereon, then the battery can 4 is crimped through the gasket 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
の安全性の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the safety of non-aqueous electrolyte secondary batteries.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
がさらに強まっている。高性能二次電池の有力候補とし
ては非水電解液二次電池がもっとも有望で、古くからそ
の実用化が試みられてきた。従来の水溶液系の電解液で
は金属亜鉛以上に卑な電位を持つ物質は水を分解するた
め、負極活物質としては使用できなかった。しかし非水
電解液では最も卑な電位を持つリチウム金属でも負極活
物質として使用できるため、非水電解液二次電池は素電
池単位で電圧の高い電池が作成可能となる。また正極活
物質としても従来水溶液電解液には溶解するために活物
質としては使用できなかった物質も、非水電解液には溶
解しないものが多く、多くの種類の物質が非水電解液電
池の正極活物質候補となりうる。既にこれまで主なもの
でも百種類を越える物質が非水電解液二次電池用の活物
質として検討された。しかし微小容量のコイン型電池を
除き、実用できる非水電解液二次電池は出現しなかっ
た。その理由は実用電池には電気的特性だけでなく、そ
の他に種々(例えば大きさや形状、安全性、材料コス
ト、保存性能等)の必要欠くべからざる条件が要求さ
れ、何れかの特性や条件が致命的に悪ければ実用電池と
はならないからである。特に安全性の確保は最優先され
なければならない。実用可能な電池は、いかなる公知の
要素技術の組合せによって類推しても、その完成の可否
は類推不可能であり、結局、実用目的に合致する大き
さ、形で電池を作成し、実用可能か否かの確認をする以
外完成の道はない。特に実用化のための重要項目は安全
性であり、安全性についての多くは理論的に類推できな
い特性のひとつである。非水電解液二次電池では199
0年以前に唯一実用化が試みられたのは、金属リチウム
を負極活物質とし、二硫化モリブデンを正極活物質とす
る単3サイズの非水電解液二次電池ただひとつであり、
結局この電池は携帯電話で使用中に発火するという事故
を起こしてしまい、実用化は断念されてしまった。よう
やく最近になって、カーボンへのリチウムイオンの出入
りを利用するカーボン電極を負極とする非水電解液二次
電池が開発され、やっと非水電解液二次電池も実用化の
段階に入った。この電池は本発明者等によってリチウム
イオン二次電池と名付けて、1990年(雑誌Prog
ress in Batteries & Solar
Cells,Vol.9、P.209)に初めて世の
中に紹介されたもので、正極活物質にはリチウムイオン
の離脱をともなって電気化学的酸化還元反応が可能なリ
チウム含有化合物(例えばLiCoOやLiMn
等)を使用し、負極には炭素質材料を使用する。現在
では電池業界や学会でもリチウムイオン二次電池の呼び
名で認知され、次世代の二次電池とまで言われてにわか
に注目を集めているが、炭素材料(U.S.Pat.
4,423,125参照)やLiCoO(U.S.P
at.4,302,518参照)あるいはLiMn
(U.S.Pat.4,312,930参照)を非水
電解液電池の電極活物質とする提案は、個々には何れも
1980年代初めには既に提案されている公知の事実で
あった。本発明者等による前記リチウムイオン二次電池
の実用化のポイントは個々の提案を合体し、実用目的に
合致する大きさ、形で電池を作成し、実用可能か否かの
確認をしたところにある。特に実用に対して充分な安全
性が確保されるかどうかが大きな確認事項であったこと
はいうまでもない。しかし負極活物質に炭素材料を使用
する前記リチウムイオン二次電池は、いかなる状況でも
安全と言うものではなかった。もし電池温度が150℃
以上に達すると、電池は激しく発熱して発煙したり、発
火したりする。従って、前記リチウムイオン二次電池の
実用化は、内部ショートや外部短絡事故に際しても自己
発熱により電池温度が150℃を越えない小型の電池
(1〜1.5Ah以下)に限定して可能であったのであ
る。負極活物質として炭素材料を使用しているリチウム
イオン二次電池では、充電によって正極よりリチウムイ
オンが引き抜かれ、負極のカーボン中にリチウムイオン
がインターカレートする。リチウムイオンがインターカ
レートしたカーボンは比較的安定な化合物ではあるが、
やはり金属リチウムに近いかなり卑な単極電位をもつだ
けに、かなり活性であり、基本的には電解液とも反応す
る。しかし常温では電解液との反応生成物がカーボン表
面を被い、これが電解液との反応を抑制する働きをする
ため、常温ではなんとか安全に機能する。しかし高温で
は電解液との反応は激しくなり、結局150℃以上では
熱暴走してしまうものと考えられる。電池内部の温度は
取り出す電流が大きい場合には内部発熱によってかなり
上昇するので、現在のリチウムイオン二次電池は大電流
を取り出す用途には使用すべきではないし、大きいサイ
ズのリチウムイオン二次電池はもし内部ショートや外部
短絡事故などに際しては、ショート電流は電池容量に比
例して大きくなり、電池内部の発熱量はショート電流の
2乗に比例して大きくなるため、電池内部温度が急上昇
するので極めて危険である。リチウムイオン二次電池を
もっと安全な電池とするためには、リチウムイオンがイ
ンターカレートした状態の電極電位がカーボン材料の場
合よりももっと貴な電位である物質を負極活物質とする
ことが一つの方法である。しかし当然貴な負極電位は電
池電圧を低くするため、安全性はよくなっても、エネル
ギー密度は低下する。従って安全性とエネルギー密度を
よくバランスすることが重要であり、その達成には新し
い負極材料の発掘が重要な鍵である。米国特許4、98
3、476には正極活物質としてLiCoO、LiF
eO、LiMnO、LiCrO等のリチウム含有
化合物を使用し、負極にはTiS、VS、Cd
、NbS、FeS等の遷移金属の硫化物を使用
する二次電池が提案さているが、電池電圧は1〜1.2
V程度となってしまい、エネルギー密度は100wh/
l以下となってしまう。これでは既存の二次電池以下の
値であり、エネルギー密度の点で満足できるものではな
い。既存のニッケルカドミウム二次電池のエネルギー密
度は100〜150wh/lであり、リチウムイオン二
次電池に対して安全性の高さを強く要求すれども、その
エネルギー密度は150wh/l以上、好ましくは18
0wh/lを達成しなければ、既存の電池の代替とはな
りえない。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is a growing demand for high energy density secondary batteries as their power sources. Non-aqueous electrolyte secondary batteries are the most promising candidates for high-performance secondary batteries, and their practical application has been tried for a long time. In the conventional aqueous electrolyte solution, a substance having a base potential lower than that of metallic zinc decomposes water and thus cannot be used as a negative electrode active material. However, in the non-aqueous electrolytic solution, even lithium metal having the most base potential can be used as the negative electrode active material, and thus a non-aqueous electrolytic solution secondary battery can be produced with a high voltage in unit cell unit. In addition, many positive electrode active materials that could not be used as active materials because they are conventionally soluble in aqueous electrolytes are not soluble in non-aqueous electrolytes, and many types of substances are non-aqueous electrolyte batteries. Can be a positive electrode active material candidate. So far, more than 100 kinds of major substances have been studied as active materials for non-aqueous electrolyte secondary batteries. However, a non-aqueous electrolyte secondary battery that can be used practically did not appear except for a coin-type battery having a small capacity. The reason is that practical batteries are required to have not only electrical characteristics but also various other necessary and indispensable conditions (for example, size and shape, safety, material cost, storage performance, etc.). This is because if it is fatally bad, it will not be a practical battery. In particular, ensuring safety must be a top priority. It is impossible to infer the feasibility of a practical battery by analogy with any known combination of elemental technologies.In the end, it is possible to make a battery in a size and shape that matches the practical purpose and to put it into practical use. There is no way to complete it, except to confirm it. In particular, safety is an important item for practical application, and many of safety are one of the characteristics that cannot be theoretically inferred. 199 for non-aqueous electrolyte secondary batteries
Only one AA size non-aqueous electrolyte secondary battery using metallic lithium as the negative electrode active material and molybdenum disulfide as the positive electrode active material was the only one that was attempted to be put into practical use before 0 years.
Eventually, this battery caused an accident that it ignited while being used in a mobile phone, and its practical application was abandoned. Only recently, a non-aqueous electrolyte secondary battery having a carbon electrode as a negative electrode, which utilizes the inflow and outflow of lithium ions into carbon, has been developed, and finally the non-aqueous electrolyte secondary battery has also entered the stage of practical application. This battery was named by the present inventors as a lithium ion secondary battery, and was named in 1990 (Magazine Prog.
less in Batteries & Solar
Cells, Vol. 9, P.I. 209), and the positive electrode active material is a lithium-containing compound (for example, LiCoO 2 or LiMn 2 O) that is capable of electrochemical redox reaction with desorption of lithium ions.
4 etc.) and a carbonaceous material is used for the negative electrode. At present, the battery industry and academic societies have recognized it under the name of lithium-ion secondary battery, and even though it is said to be the next-generation secondary battery, it has attracted a lot of attention, but the carbon material (US Pat.
4,423,125) and LiCoO 2 (USP).
at. 4, 302, 518) or LiMn 2 O
No. 4 (see US Pat. 4, 312, 930) as an electrode active material for a non-aqueous electrolyte battery is a known fact already proposed in the early 1980s. It was The point of practical application of the lithium ion secondary battery by the present inventors is to combine the individual proposals, create a battery with a size and shape that match the practical purpose, and confirm whether it is practical or not. is there. Needless to say, a big confirmation item was whether or not sufficient safety was secured for practical use. However, the lithium ion secondary battery using a carbon material as the negative electrode active material is not safe under any circumstances. If the battery temperature is 150 ℃
When the above is reached, the battery heats up violently and smokes or ignites. Therefore, the practical use of the lithium ion secondary battery is possible only in a small battery (1 to 1.5 Ah or less) whose battery temperature does not exceed 150 ° C. due to self-heating in the event of an internal short circuit or an external short circuit. It was. In a lithium ion secondary battery using a carbon material as a negative electrode active material, lithium ions are extracted from the positive electrode by charging, and the lithium ions intercalate in the carbon of the negative electrode. Carbon intercalated with lithium ions is a relatively stable compound,
After all, it has quite a monopolar potential close to that of metallic lithium, so it is quite active and basically reacts with the electrolyte. However, at room temperature, the reaction product with the electrolytic solution covers the carbon surface, and this acts to suppress the reaction with the electrolytic solution, so that at room temperature it somehow functions safely. However, it is considered that the reaction with the electrolytic solution becomes vigorous at high temperature, and eventually thermal runaway occurs at 150 ° C or higher. The internal temperature of the battery rises considerably due to internal heat generation when the current drawn is large, so current lithium-ion secondary batteries should not be used for applications that draw large currents, and large-sized lithium-ion secondary batteries should not be used. If an internal short circuit or an external short circuit occurs, the short-circuit current will increase in proportion to the battery capacity, and the heat generation amount inside the battery will increase in proportion to the square of the short-circuit current. It is a danger. In order to make a lithium-ion secondary battery a safer battery, it is a good idea to use a substance whose electrode potential in a state in which lithium ions are intercalated is nobler than that of a carbon material, as the negative electrode active material. There are two ways. However, of course, the noble negative electrode potential lowers the battery voltage, so that the energy density is lowered although the safety is improved. Therefore, a good balance between safety and energy density is important, and the discovery of new negative electrode materials is an important key to achieving this. US Patent 4,98
3 and 476 have positive electrode active materials such as LiCoO 2 and LiF.
Using the eO 2, LiMnO 2, LiCrO lithium-containing compound such as 2, a negative electrode TiS 2, VS 2, Cd
S 2, NbS 2, although the secondary battery using the FeS sulfide of a transition metal such as 2 have been proposed, the battery voltage is 1.2
V and the energy density is 100 wh /
It becomes 1 or less. This is less than the value of the existing secondary battery, and is not satisfactory in terms of energy density. The energy density of the existing nickel-cadmium secondary battery is 100 to 150 wh / l, and although the lithium ion secondary battery is strongly required to have high safety, its energy density is 150 wh / l or more, preferably 18 wh / l.
If it does not achieve 0 wh / l, it cannot replace the existing battery.

【0003】[0003]

【発明が解決しようとする課題】本発明は既存の電池以
上のエネルギー蜜度を確保して、且つ安全性が高い非水
電解液二次電池を完成しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to complete a non-aqueous electrolyte secondary battery which secures energy density higher than that of existing batteries and has high safety.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、正極
の活物質材料にリチウム含有化合物を使用し、負極の活
物質材料にCuFeOを使用する。
As a means for solving the problems, a lithium-containing compound is used as the positive electrode active material and CuFeO 2 is used as the negative electrode active material.

【0005】[0005]

【作用】電池のエネルギー密度(wh/l)は電流容量
密度(Ah/l)と電池電圧(v)の積で与えられる。
正極にリチウム含有化合物を使用するリチウムイオン二
次電池では、75〜85Ah/l程度の電流容量密度が
得られる。従って180wh/lのエネルギー密度を持
つリチウムイオン二次電池は、平均放電電圧2.4V以
上で作動する必要がある。また安全性を向上すると言う
点からは電池電圧は低いほうが好ましいわけであるか
ら、本発明者は電池電圧を2.4〜3.5Vの範囲に目
標を定め、種々の化合物について負極材料としての可能
性を鋭意検討した結果、デラフォサイト化合物として知
られるCuFeOが目的に合致する良好な負極材料と
なりうることを見いだし本発明に至った。本発明におけ
る負極材料CuFeOは、板状の結晶粒子で、基本的
結晶構造においてはCuとFeからなる金属分子間に酸
素分子が積層された構造であり、電気伝導性においては
半導体であり、負極活物質として好都合な材料である。
負極活物質にCuFeOを使用した場合、正極活物質
にLiCoOを使用した電池では充電後の開路電圧は
約3Vとなり、平均放電電圧も2.4V以上で作動でき
る。また正極活物質にLiMnを使用した電池で
は充電後の開路電圧は約3.2Vとなり、やはり平均放
電電圧2.4V以上で作動できる。
The energy density (wh / l) of the battery is given by the product of the current capacity density (Ah / l) and the battery voltage (v).
A lithium ion secondary battery using a lithium-containing compound for the positive electrode can obtain a current capacity density of about 75 to 85 Ah / l. Therefore, a lithium ion secondary battery having an energy density of 180 wh / l needs to operate at an average discharge voltage of 2.4 V or higher. Further, since it is preferable that the battery voltage is low from the viewpoint of improving safety, the present inventor sets a target of the battery voltage in the range of 2.4 to 3.5 V, and uses various compounds as negative electrode materials. As a result of diligent examination of the possibility, it was found that CuFeO 2, which is known as a delafossite compound, can be a good negative electrode material that meets the purpose, and the present invention has been completed. The negative electrode material CuFeO 2 in the present invention is a plate-like crystal particle, and has a basic crystal structure in which oxygen molecules are stacked between metal molecules composed of Cu and Fe, and is a semiconductor in electric conductivity, It is a convenient material for the negative electrode active material.
When CuFeO 2 is used as the negative electrode active material, a battery using LiCoO 2 as the positive electrode active material has an open circuit voltage of about 3 V after charging and an average discharge voltage of 2.4 V or more. Further, in the battery using LiMn 2 O 4 as the positive electrode active material, the open circuit voltage after charging is about 3.2V, and the battery can be operated at the average discharge voltage of 2.4V or more.

【0006】[0006]

【実施例】以下、本発明によるCuFeOを負極活物
質とするリチウムイオン二次電池の実施例について、図
面を参照しながら説明する。
EXAMPLES Examples of lithium ion secondary batteries using CuFeO 2 as a negative electrode active material according to the present invention will be described below with reference to the drawings.

【0007】実施例1 正極活物質としてスピネル系リチウムマンガン複合酸化
物を使用したコイン型電池に適用した実施例を示す。図
2に示す電池構造でコイン型の非水電解液二次電池を作
成する。まず負極は次のようにして用意した。酸化第一
銅とオキシ水酸化鉄とをモル比1:1の割合で混合し、
これを1.5規定の苛性ソーダ溶液に添加混合した後、
水熱処理(350℃、12時間)し、室温まで冷却す
る。その後、蒸留水でよく水洗し、空気中で80℃〜1
00℃で乾燥し、CuFeOの微粒子(0.1〜2ミ
クロン)を得た。この微粒子はx線分析によれば六方晶
系で、a=3.05Å、c=17.16Åであっ
た。こうして得たCuFeOの微紛末はその88重量
部にアセチレンブラック3重量部、グラファイト6重量
部を加えてよく混合し、さらに結合剤としてポリフッ化
ビニリデン4重量部と溶剤であるN−メチル−2−ピロ
リドンを加えて湿式混合して、負極合剤ペーストを用意
した。この負極合剤ペーストは負極集電体(8)とする
厚さ0.02mmのアルミニウム箔の片面に均一に塗布
し、乾燥後ローラープレス機で加圧成型してシート状の
電極とした。このシート状電極からは直径15.5mm
の円板に打ち抜いてコイン型電池のための負極(1)を
作り、真空乾燥器中で温度を100℃に設定して12時
間乾燥した。
Example 1 An example applied to a coin-type battery using a spinel type lithium manganese composite oxide as a positive electrode active material will be shown. A coin type non-aqueous electrolyte secondary battery having the battery structure shown in FIG. 2 is prepared. First, the negative electrode was prepared as follows. Mixing cuprous oxide and iron oxyhydroxide at a molar ratio of 1: 1,
After adding and mixing this to a 1.5 N caustic soda solution,
Hydrothermal treatment (350 ° C., 12 hours) and cooling to room temperature. After that, rinse well with distilled water and in the air at 80 ° C-1
It was dried at 00 ° C. to obtain CuFeO 2 fine particles (0.1 to 2 μm). The microparticles in the hexagonal According to x-ray analysis, a o = 3.05Å, was c o = 17.16Å. The fine powder of CuFeO 2 thus obtained was added with 3 parts by weight of acetylene black and 6 parts by weight of graphite to 88 parts by weight of the powder and mixed well, and further 4 parts by weight of polyvinylidene fluoride as a binder and N-methyl-solvent. 2-Pyrrolidone was added and wet mixed to prepare a negative electrode mixture paste. This negative electrode mixture paste was uniformly applied to one surface of a 0.02 mm-thick aluminum foil serving as the negative electrode current collector (8), dried and then pressure-molded with a roller press machine to obtain a sheet-shaped electrode. 15.5 mm diameter from this sheet electrode
The disc was punched out to prepare a negative electrode (1) for a coin-type battery, which was dried in a vacuum dryer at a temperature of 100 ° C. for 12 hours.

【0008】次に正極活物質とするリチウム含有化合物
として、スピネル系リチウムマンガン酸化物(LiMn
)を合成した。二酸化マンガン(MnO)と炭
酸リチウム(LiCO)を1:0.27のモル比で
よく混合し、これをを空気中850℃で12時間焼成
し、室温まで温度が下がった時点で、これを平均粒径2
5ミクロンの粉末として調整し、正極活物質とするリチ
ウムマンガン酸化物(LiMn)を用意した。但
しここで合成したリチウムマンガン酸化物はX線回折で
はスピネル型LiMnの回折パターンとよく一致
するものであるが、マンガンの価数分析から判断して、
より正確にはマンガンの一部がリチウムで置換されたL
1.05Mn1.95と考えられる。用意したリ
チウムマンガン酸化物の90重量部をカーボンブラック
の3重量部、グラファイト4重量部および結合剤として
ポリフッ化ビニリデン4重量部とともに溶剤であるN−
メチル−2−ピロリドンと湿式混合してスラリー(ペー
スト状)にする。このスラリーを正極集電体(9)とす
る厚さ0.02mmのアルミニウム箔の片面に均一に塗
布し、乾燥後ローラープレス機で加圧成型してシート状
の電極とした。このシート状電極からは直径15.5m
mの円板に打ち抜いてコイン型電池のための正極(2)
を作り、真空乾燥器中で温度を100℃に設定して12
時間乾燥した。
Next, as a lithium-containing compound used as a positive electrode active material, spinel type lithium manganese oxide (LiMn
2 O 4 ) was synthesized. Manganese dioxide (MnO 2 ) and lithium carbonate (Li 2 CO 3 ) were mixed well in a molar ratio of 1: 0.27, and the mixture was calcined in air at 850 ° C. for 12 hours, and when the temperature dropped to room temperature, , Average particle size 2
A lithium manganese oxide (LiMn 2 O 4 ) was prepared as a positive electrode active material after being prepared as a powder of 5 μm. However, the lithium manganese oxide synthesized here has a good agreement with the diffraction pattern of spinel type LiMn 2 O 4 in X-ray diffraction, but it was judged from the valence analysis of manganese that
More precisely, L in which a part of manganese is replaced with lithium
It is considered to be i 1.05 Mn 1.95 O 4 . 90 parts by weight of the prepared lithium manganese oxide together with 3 parts by weight of carbon black, 4 parts by weight of graphite and 4 parts by weight of polyvinylidene fluoride as a binder, N- which is a solvent.
Wet mix with methyl-2-pyrrolidone to form a slurry (paste form). This slurry was uniformly applied to one surface of a 0.02 mm-thick aluminum foil serving as the positive electrode current collector (9), dried and then pressure-molded with a roller press machine to obtain a sheet-shaped electrode. 15.5m in diameter from this sheet electrode
Positive electrode for coin-type battery stamped into m disk (2)
And set the temperature to 100 ° C in a vacuum dryer and
Dried for hours.

【0009】電池(A)の作成 図2に示すように、電池缶(4)の底にアルミニウム箔
(10)を敷き、ガスケット(6)を設置し、作成した
負極(1)と正極(2)は、その間にポリプロピレン製
不織布のセパレータ(3)を挟んで活物質層を対向して
重ね合わせ、電池缶(4)の中央に収容し、電池缶の中
に電解液として1モル/リットルのLiPFを溶解し
たエチレンカーボネイト(EC)とジエチルカーボネー
ト(DEC)の混合溶液を注入する。その後電極押さえ
板(7)を設置し、電池蓋体(5)を重ね、電池缶と電
池蓋体はガスケット(6)を介してかしめることによっ
て電池を封口、密閉して図2に示す電池構造で電池
(A)を作成した。
Preparation of Battery (A) As shown in FIG. 2, an aluminum foil (10) was laid on the bottom of a battery can (4), a gasket (6) was installed, and the prepared negative electrode (1) and positive electrode (2) were formed. ), A non-woven polypropylene separator (3) is sandwiched between the active material layers so as to face each other and are housed in the center of the battery can (4). A mixed solution of ethylene carbonate (EC) in which LiPF 6 is dissolved and diethyl carbonate (DEC) is injected. After that, the electrode pressing plate (7) is installed, the battery lid (5) is overlaid, and the battery can and the battery lid are caulked via the gasket (6) to seal and seal the battery, and then the battery shown in FIG. A battery (A) having the structure was prepared.

【0010】テスト結果 こうして作成した電池(A)は電池内部の安定化を目的
に12時間のエージング期間を経過させた後、充電電圧
3.25Vに設定し、8時間の充電を行った。充電完了
後の電池(A)の開路電圧は平均(N=5)3.2Vで
あった。また図1にこの電池(A)の充放電カーブを示
した。
Test Results The battery (A) thus prepared was charged for 8 hours after the aging period of 12 hours had elapsed for the purpose of stabilizing the inside of the battery, then the charging voltage was set to 3.25V. The open circuit voltage of the battery (A) after completion of charging was 3.2 V on average (N = 5). In addition, FIG. 1 shows a charge / discharge curve of this battery (A).

【0011】実施例2 正極活物質してリチウムコバルト複合酸化物(LiCo
)を使用した実施例を説明する。リチウムコバルト
複合酸化物(LiCoO)は次のようにして用意し
た。市販の炭酸リチウム(LiCO)と炭酸コバル
ト(CoCO)をLiとCoの原子比が1.03:1
の組成比になるように混合し、空気中で900℃約10
時間焼成してLiCoOを得る。焼成後のLiCoO
は非常に固い塊として得られるので、これを粉砕機に
かけて平均粒径10ミクロンの粉末状とする。この粉末
状LiCoOを91重量部、導電剤としてグラファイ
トを6重量部、結合剤としてポリフッ化ビニリデン3重
量部を溶剤であるN−メチル−2−ピロリドンと湿式混
合してスラリー(ペースト状)にする。次に、このスラ
リーを正極集電体となる厚さ0.02mmのアルミニウ
ム箔の片面に均一に塗布し、乾燥後ローラープレス機で
加圧成型してシート状の電極とした。このシート状電極
からは直径15.5mmの円板に打ち抜いてコイン型電
池のための正極(2b)を作り、真空乾燥器中で、温度
100℃で12時間乾燥した。
Example 2 As a positive electrode active material, a lithium cobalt composite oxide (LiCo
An example using O 2 ) will be described. The lithium cobalt composite oxide (LiCoO 2 ) was prepared as follows. Commercially available lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) have an atomic ratio of Li and Co of 1.03: 1.
Mix so that the composition ratio is about 900 ° C in air at about 10
LiCoO 2 is obtained by firing for a time. LiCoO after firing
Since 2 is obtained as a very hard mass, it is ground into a powder with an average particle size of 10 microns. 91 parts by weight of this powdery LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were wet-mixed with N-methyl-2-pyrrolidone as a solvent to form a slurry (paste). To do. Next, this slurry was uniformly applied to one side of a 0.02 mm-thick aluminum foil serving as a positive electrode current collector, dried, and pressure-molded with a roller press machine to obtain a sheet-shaped electrode. A disk having a diameter of 15.5 mm was punched from the sheet-like electrode to prepare a positive electrode (2b) for a coin-type battery, which was dried in a vacuum dryer at 100 ° C. for 12 hours.

【0012】電池(B)の作成 負極は実施例1で作成した負極(1)と同じものを使用
し、正極(2b)を使用する以外は全く実施例1と同じ
にして、同様に図2に示す電池構造で電池(B)を作成
した。
Preparation of Battery (B) The negative electrode used was the same as the negative electrode (1) prepared in Example 1, and the same procedure as in Example 1 except that the positive electrode (2b) was used. A battery (B) was prepared with the battery structure shown in.

【0013】テスト結果 作成した電池(B)は電池内部の安定化を目的に12時
間のエージング期間を経過させた後、充電電圧3.10
Vに設定し、8時間の充電を行った。充電完了後の電池
(B)の開路電圧は平均(N=5)3.05Vであっ
た。また図3にこの電池(B)の充放電カーブを示し
た。
Test Results The prepared battery (B) was subjected to an aging period of 12 hours for the purpose of stabilizing the inside of the battery, and then the charging voltage was 3.10.
It was set to V and charged for 8 hours. The open circuit voltage of the battery (B) after completion of charging was 3.05 V on average (N = 5). Further, FIG. 3 shows a charge / discharge curve of this battery (B).

【0014】実施例3 正極活物質としてスピネル系リチウムマンガン複合酸化
物を使用し、円筒型電池に適用した実施例を示す。図5
に示す構造で円筒型非水電解液二次電池(C)を次のよ
うにして作成した。実施例1とまったく同じ手順で作成
した、CuFeOを活物質とする負極合剤ペーストを
厚さ0.02mmのアルミニウム箔の両面に均一に塗布
し、乾燥後ローラープレス機で加圧成型してシート状の
電極とした。このシート状電極は電極幅を54mmに調
整して帯状の負極(11)を作り、真空乾燥器中、10
0℃で12時間乾燥した。
Example 3 An example in which a spinel-type lithium manganese composite oxide was used as a positive electrode active material and applied to a cylindrical battery will be described. Figure 5
A cylindrical non-aqueous electrolyte secondary battery (C) having the structure shown in was prepared as follows. A negative electrode mixture paste containing CuFeO 2 as an active material, which was prepared by the same procedure as in Example 1, was uniformly applied to both sides of an aluminum foil having a thickness of 0.02 mm, dried and then pressure-molded with a roller press. A sheet-shaped electrode was used. The sheet-shaped electrode was adjusted to have an electrode width of 54 mm to form a strip-shaped negative electrode (11), which was placed in a vacuum dryer for 10
It was dried at 0 ° C. for 12 hours.

【0015】正極の作成においても実施例1とまったく
同じ手順でリチウムマンガン酸化物を活物質として作成
した正極合剤ペーストを、厚さ0.02mmのアルミニ
ウム箔の両面に均一に塗布し、乾燥後ローラープレス機
で加圧成型してシート状の電極とした。このシート状電
極も電極幅を54mmに調整して帯状の正極(12)を
作り、真空乾燥器中、100℃で12時間乾燥した。
Also in the production of the positive electrode, the positive electrode mixture paste prepared by using lithium manganese oxide as an active material was applied in exactly the same procedure as in Example 1 evenly on both sides of an aluminum foil having a thickness of 0.02 mm, and after drying. A sheet-shaped electrode was formed by pressure molding with a roller press. This sheet-shaped electrode was also adjusted to have an electrode width of 54 mm to prepare a strip-shaped positive electrode (12) and dried in a vacuum dryer at 100 ° C. for 12 hours.

【0016】帯状の負極(11)と正極(12)はその
間に幅58mmの帯状の多孔質ポリプロピレン製セパレ
ータ(13)を挟んでロール状に巻き上げて、図4に示
すような巻回体として、外径で17.1mm、高さ58
mmの電池素子を作成した。次にアルミニウム製の電池
缶(14)の底部に絶縁シート(24)を設置し、上記
電池素子を収納する。電池素子より取り出した負極リー
ド(15)を上記電池缶の底に溶接し、電池缶の中に電
解液として1モル/リットルのLiPFを溶解したエ
チレンカーボネイト(EC)とジエチルカーボネート
(DEC)の混合溶液を注入する。その後電池素子の上
部にも絶縁シート(24)を設置し、ガスケット(1
6)を嵌め、防爆弁(18)を図5に示すように電池内
部に設置する。電池素子より取り出した正極リード(1
7)はこの防爆弁に電解液を注入する前に溶接してお
く。防爆弁の上には正極外部端子となる閉塞蓋体(1
9)を重ね、電池缶の縁をかしめて、図5に示す電池構
造で、外径18.1mm、高さ65mmの電池(C)を
作成した。
The strip-shaped negative electrode (11) and the positive electrode (12) are wound into a roll with a strip-shaped porous polypropylene separator (13) having a width of 58 mm sandwiched between them to form a roll as shown in FIG. Outer diameter 17.1 mm, height 58
A mm battery element was prepared. Next, the insulating sheet (24) is placed on the bottom of the aluminum battery can (14) to house the battery element. The negative electrode lead (15) taken out from the battery element was welded to the bottom of the battery can, and 1 mol / l of LiPF 6 was dissolved as an electrolytic solution in the battery can to obtain ethylene carbonate (EC) and diethyl carbonate (DEC). Inject the mixed solution. After that, the insulating sheet (24) is also installed on the upper part of the battery element, and the gasket (1
6) is fitted and the explosion-proof valve (18) is installed inside the battery as shown in FIG. Positive electrode lead (1
7) is welded before injecting the electrolytic solution into this explosion-proof valve. On the explosion-proof valve, a closing lid (1
9) were piled up and the edge of the battery can was caulked to prepare a battery (C) having an outer diameter of 18.1 mm and a height of 65 mm with the battery structure shown in FIG.

【0017】安全性テストの結果 こうして作成した電池(C)は電池内部の安定化を目的
に12時間のエージング期間を経過させた後、充電電圧
3.25Vに設定し、8時間の充電を行った。充電完了
後の開路電圧は、実施例1のコイン型電池と同じく3.
2Vであった。充電後の電池(C)は100mAの定電
流で終始電圧2.0Vまで放電を行ったところ、約11
50mAhの容量が得られ、エネルギー密度は186W
h/lであった。その後同様な充放電を3回繰り返し
た。3回の充放電において充電電圧、放電電圧、充電容
量、放電容量にはほとんど変化はなかった。その後高温
での安全性テストを行った。前記と同様な充電条件で充
電を済ませた完全充電状態の電池(C)を、オーブン中
に入れ、オーブンの温度を徐々に上げていき、オーブン
温度が180℃に達した後、オーブン温度を180℃に
5時間保った。電池(C)には発煙、発火などは起こら
なかった。
Results of safety test The battery (C) thus prepared was charged for 8 hours after the aging period of 12 hours had elapsed for the purpose of stabilizing the inside of the battery, then the charging voltage was set to 3.25V. It was The open-circuit voltage after completion of charging is the same as that of the coin-type battery of Example 1, 3.
It was 2V. The battery (C) after charging was discharged at a constant current of 100 mA to a voltage of 2.0 V from beginning to end.
The capacity of 50mAh is obtained and the energy density is 186W.
It was h / l. After that, the same charge and discharge was repeated three times. The charge voltage, the discharge voltage, the charge capacity, and the discharge capacity were hardly changed in the three charge / discharge cycles. After that, a safety test was performed at high temperature. The battery (C) in a fully charged state, which has been charged under the same charging conditions as described above, is placed in an oven, the temperature of the oven is gradually raised, and after the oven temperature reaches 180 ° C, the oven temperature is set to 180 ° C. Hold at 5 ° C for 5 hours. The battery (C) did not emit smoke or ignite.

【0018】一方本発明による電池との比較のため、電
池(C)とほぼ同サイズの市販のリチウムイオン二次電
池(X)を入手し、これについて同様の高温での安全性
テストを行った。電池(X)は負極活物質材料として炭
素材料が使用されているものである。まずこの電池
(X)は充電電圧を4.2Vに設定し、8時間の充電を
行った。充電完了後の開路電圧は4.15Vであり、本
発明による電池より約1Vも高い電圧を示した。充電後
の電池(X)は100mAの定電流で終始電圧2.0V
まで放電を行ったところ約1200mAhの容量が得ら
れた。その後同様な充放電を3回繰り返したが、この電
池(X)においても3回の充放電において充電電圧、放
電電圧、充電容量、放電容量には大きな変化はなかっ
た。その後に高温での安全性テストを行った。前記同様
(充電電圧4.2Vで充電時間8時間)の充電条件で充
電した完全充電状態の電池(X)を、オーブン中に入
れ、オーブンの温度を徐々に上げていったところ、オー
ブン温度が155℃に達した時点で、電池(X)は発火
し、激しく発煙した。
On the other hand, for comparison with the battery according to the present invention, a commercially available lithium-ion secondary battery (X) having almost the same size as the battery (C) was obtained, and the same safety test at high temperature was carried out. . The battery (X) uses a carbon material as the negative electrode active material. First, this battery (X) was charged at a charging voltage of 4.2 V for 8 hours. The open circuit voltage after charging was 4.15V, which was about 1V higher than that of the battery according to the present invention. The battery (X) after charging has a constant current of 100 mA and a voltage of 2.0 V throughout.
When discharged up to, a capacity of about 1200 mAh was obtained. After that, the same charging / discharging was repeated 3 times, but in this battery (X) as well, the charging voltage, the discharging voltage, the charging capacity, and the discharging capacity were not significantly changed after the 3 times charging / discharging. After that, a safety test was performed at high temperature. A fully charged battery (X) charged under the same charging conditions as above (charging voltage of 4.2 V and charging time of 8 hours) was placed in the oven, and the temperature of the oven was gradually raised. When the temperature reached 155 ° C, the battery (X) ignited and smoked violently.

【0019】[0019]

【発明の効果】以上のように市販のリチウムイオン二次
電池が155℃で発火してしまうのに対して、本発明に
よる電池は180℃においても安全である。正極活物質
にリチウムマンガン酸化物やリチウムコバルト酸化物等
のリチウム含有化合物を使用するリチウムイオン二次電
池では、負極活物質としてCuFeOを使用すること
により、従来の炭素材料を負極活物質とするリチウムイ
オン二次電池に比べて、放電電圧が1V程低くなるた
め、高温状態での安全性が高くなる。しかもエネルギー
密度は180wh/l以上が確保されるので、本発明に
より、安全性能と電池性能がよくバランスしたリチウム
イオン二次電池が実現する。この結果大きい容量の電池
でも安全性が確保され、広範囲な用途で使用できる高容
量電池が提供できるようになり、その工業的価値は大で
ある。
As described above, the commercially available lithium ion secondary battery ignites at 155 ° C, whereas the battery according to the present invention is safe even at 180 ° C. In a lithium-ion secondary battery that uses a lithium-containing compound such as lithium manganese oxide or lithium cobalt oxide as a positive electrode active material, CuFeO 2 is used as a negative electrode active material so that a conventional carbon material is used as a negative electrode active material. Since the discharge voltage is about 1 V lower than that of the lithium-ion secondary battery, the safety at high temperature is high. Moreover, since an energy density of 180 wh / l or more is ensured, the present invention realizes a lithium ion secondary battery in which safety performance and battery performance are well balanced. As a result, safety is ensured even with a large capacity battery, and a high capacity battery that can be used in a wide range of applications can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池の充放電カーブ。FIG. 1 is a battery charge / discharge curve.

【図2】コイン型電池の模式的断面図。FIG. 2 is a schematic cross-sectional view of a coin battery.

【図3】電池の充放電カーブ。FIG. 3 shows a charge / discharge curve of a battery.

【図4】巻回電極構造の電池素子断面図。FIG. 4 is a cross-sectional view of a battery element having a wound electrode structure.

【図5】円筒型電池の模式的断面図。FIG. 5 is a schematic cross-sectional view of a cylindrical battery.

【符号の説明】[Explanation of symbols]

1および11は負極、2および12は正極、3および1
3はセパレータ、4および14は電池缶、5および19
は蓋体、6および16はガスケット、7は電極押さえ
板、10はアルミニウム箔、15は負極リード、17は
正極リード、18は防爆弁、20は絶縁シートである。
1 and 11 are negative electrodes, 2 and 12 are positive electrodes, 3 and 1
3 is a separator, 4 and 14 are battery cans, 5 and 19
Is a lid, 6 and 16 are gaskets, 7 is an electrode pressing plate, 10 is an aluminum foil, 15 is a negative electrode lead, 17 is a positive electrode lead, 18 is an explosion-proof valve, and 20 is an insulating sheet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極活物質にはリチウムイオンの離脱をと
もなって電気化学的酸化還元反応が可能なリチウム含有
化合物を使用する非水電解液二次電池において、負極に
はCuFeOが負極活物質として使用されることを特
徴とする非水電解液二次電池。
1. In a non-aqueous electrolyte secondary battery using a lithium-containing compound capable of an electrochemical redox reaction with desorption of lithium ions as a positive electrode active material, CuFeO 2 is used as the negative electrode in the negative electrode active material. A non-aqueous electrolyte secondary battery characterized by being used as.
JP7080666A 1995-02-28 1995-02-28 Secondary battery Pending JPH08236115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080666A JPH08236115A (en) 1995-02-28 1995-02-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080666A JPH08236115A (en) 1995-02-28 1995-02-28 Secondary battery

Publications (1)

Publication Number Publication Date
JPH08236115A true JPH08236115A (en) 1996-09-13

Family

ID=13724695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080666A Pending JPH08236115A (en) 1995-02-28 1995-02-28 Secondary battery

Country Status (1)

Country Link
JP (1) JPH08236115A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2004102703A1 (en) * 2003-05-16 2004-11-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2015082488A (en) * 2013-10-24 2015-04-27 日本電信電話株式会社 Sodium secondary battery
CN111185137A (en) * 2020-01-22 2020-05-22 青岛农业大学 Method for preparing biological carbon with magnetism and photocatalysis simultaneously by using pepper straws
CN111229162A (en) * 2020-01-22 2020-06-05 青岛农业大学 Method for preparing magnetic biochar from garlic straws

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2004102703A1 (en) * 2003-05-16 2004-11-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008156130A (en) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd Delafossite type oxide, method for manufacturing the same and exhaust gas purification catalyst
JP2015082488A (en) * 2013-10-24 2015-04-27 日本電信電話株式会社 Sodium secondary battery
CN111185137A (en) * 2020-01-22 2020-05-22 青岛农业大学 Method for preparing biological carbon with magnetism and photocatalysis simultaneously by using pepper straws
CN111229162A (en) * 2020-01-22 2020-06-05 青岛农业大学 Method for preparing magnetic biochar from garlic straws

Similar Documents

Publication Publication Date Title
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP7230221B2 (en) Negative electrode active material, manufacturing method thereof, secondary battery, battery module, battery pack, and device related thereto
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
CN106410170A (en) Composite lithium ion battery positive material, and preparation method and lithium ion battery thereof
JP2000090917A (en) Manufacture of positive electrode plate for lithium ion secondary battery
JP2004265749A (en) Lithium secondary battery
JPH07153495A (en) Secondary battery
KR101586403B1 (en) Cathode Catalyst for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
JP2000348722A (en) Nonaqueous electrolyte battery
JP2002270245A (en) Nonaqueous secondary cell
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH08236115A (en) Secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
CN113363490B (en) Based on Li content2Lithium secondary battery with O anode and negative electrode without active material and preparation method thereof
JPH07288124A (en) Nonaqueous electrolyte secondary battery
US20130236796A1 (en) Lithium battery
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JPH08241717A (en) Secondary battery
KR20130110350A (en) Zirconium-doped cerium oxide, method for producing the same and air electrode for metal-air secondary battery including the same as catalyst
JP2000156231A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
KR100500886B1 (en) Anode active material for rechargeable lithium battery, producing method thereof and lithium secondary battery using the same