JP2000090917A - Manufacture of positive electrode plate for lithium ion secondary battery - Google Patents

Manufacture of positive electrode plate for lithium ion secondary battery

Info

Publication number
JP2000090917A
JP2000090917A JP10264092A JP26409298A JP2000090917A JP 2000090917 A JP2000090917 A JP 2000090917A JP 10264092 A JP10264092 A JP 10264092A JP 26409298 A JP26409298 A JP 26409298A JP 2000090917 A JP2000090917 A JP 2000090917A
Authority
JP
Japan
Prior art keywords
positive electrode
dispersion
lithium
composite oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10264092A
Other languages
Japanese (ja)
Other versions
JP3654005B2 (en
Inventor
Kenji Nakai
賢治 中井
Manabu Ochita
学 落田
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP26409298A priority Critical patent/JP3654005B2/en
Publication of JP2000090917A publication Critical patent/JP2000090917A/en
Application granted granted Critical
Publication of JP3654005B2 publication Critical patent/JP3654005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode plate for a lithium ion secondary battery capable of preventing gelation of positive electrode material slurry without increasing production cost and decreasing high rate discharge capacity of a battery. SOLUTION: Dispersion is prepared by dispersing 11 wt.% lithium nickel composite oxide (LiNi0.8Co0.2O2) into water. The dispersion is stirred and pH of the dispersion is adjusted to 7.1-11.2. The dispersion is filtered and the lithium nickel composite oxide obtained is dried. The lithium nickel composite oxide obtained is used for a positive electrode material of a positive electrode plate for a lithium ion secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池用正極板の製造方法に関するものである。
The present invention relates to a method for manufacturing a positive electrode plate for a lithium ion secondary battery.

【0002】[0002]

【従来の技術】LiCoO2 等からなるリチウム複合酸
化物を正極材として用いる正極板と、リチウムイオンを
吸蔵、放出する炭素材料等を負極材として用いる負極板
とが非水電解質を介して積層されたリチウムイオン二次
電池が知られている。一般にリチウムイオン二次電池の
正極板は、前述のリチウム複合酸化物(正極材)と、バ
インダと、有機溶媒とを含む正極材スラリーを集電体上
に塗布してからこの正極材スラリーを乾燥して製造す
る。リチウムイオン二次電池は、エネルギー密度が高
く、主にVTRカメラ,ノートパソコン,携帯電話等の
ポータブル機器に使用されている。最近では、このリチ
ウムイオン二次電池のエネルギー密度を更に高めること
が求められている。そこでLiCoO2 に代えて、Li
NiO2 ,LiNix Coy O2 等の少なくともリチウ
ム元素及びニッケル元素を含むリチウムニッケル複合酸
化物を主成分とする正極材を用いるリチウムイオン二次
電池が開発された。リチウムニッケル複合酸化物の単位
重量あたりの容量(180〜200 mAh/g)は、LiC
oO2 の単位重量あたりの容量(145〜150 mAh/
g)に比べて大幅に高い。
2. Description of the Related Art A positive electrode plate using a lithium composite oxide made of LiCoO 2 or the like as a positive electrode material and a negative electrode plate using a carbon material or the like that occludes and releases lithium ions as a negative electrode material are laminated via a non-aqueous electrolyte. Lithium ion secondary batteries are known. Generally, a positive electrode plate of a lithium ion secondary battery is formed by applying a positive electrode material slurry containing the above-described lithium composite oxide (positive electrode material), a binder, and an organic solvent onto a current collector, and then drying the positive electrode material slurry. To manufacture. Lithium ion secondary batteries have a high energy density and are mainly used for portable devices such as VTR cameras, notebook computers, and mobile phones. Recently, it has been required to further increase the energy density of the lithium ion secondary battery. Therefore, instead of LiCoO 2 , Li
A lithium-ion secondary battery using a positive electrode material mainly composed of a lithium-nickel composite oxide containing at least a lithium element and a nickel element such as NiO 2 and LiNix Coy O 2 has been developed. The capacity per unit weight (180-200 mAh / g) of the lithium nickel composite oxide is LiC
Capacity per unit weight of oO 2 (145 to 150 mAh /
significantly higher than g).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うなリチウムニッケル複合酸化物を用いて正極材スラリ
ーを作ると正極材スラリーが流動性を失いゲル化すると
いう問題が生じる。これは次のような理由によると考え
られる。他のリチウム含有複合酸化物に比べて、少なく
ともリチウム元素及びニッケル元素を含むリチウムニッ
ケル複合酸化物は、生成された段階において、Li2
等のフリーのリチウムが不純物として残留しやすい。こ
のLi2 Oがスラリー中に微量に含まれる水分と反応す
ると、Li2 O+H2 O→2LiOHの反応式で水酸化
リチウム(LiOH)を生成し、スラリーが比較的強い
アルカリ性になる。例えば、この種のリチウムニッケル
複合酸化物を水に対して約11重量%分散させて分散液
を作ると、分散液のpHは約12になる。これにより、
スラリー中のバインダが三次元化して正極材スラリーが
ゲル化すると考えられる。特にバインダとして、ポリフ
ッ化ビニリデン(PVDF)を用い、有機溶媒としてN
−メチル−2−ピロリドン(NMP)を用いるとバイン
ダの三次元化が著しい。そこで、正極材スラリー生成時
に除湿等の雰囲気対策を講じることも考えられるが、こ
のような対策を講じると、製造コストが高くなる。ま
た、このような対策を講じても活物質中にLi2 Oが存
在するので、活物質中にLiOHやLi2 CO3 が生成
され、電池の充放電が阻害されて高負荷時の放電容量が
低くなる。
However, when a positive electrode material slurry is prepared using such a lithium nickel composite oxide, there is a problem that the positive electrode material slurry loses fluidity and gels. This is considered for the following reasons. Compared with other lithium-containing composite oxides, a lithium-nickel composite oxide containing at least a lithium element and a nickel element is Li 2 O
Free lithium such as is likely to remain as impurities. When this Li 2 O reacts with a small amount of water contained in the slurry, lithium hydroxide (LiOH) is generated by a reaction formula of Li 2 O + H 2 O → 2LiOH, and the slurry becomes relatively strongly alkaline. For example, when this kind of lithium nickel composite oxide is dispersed in water by about 11% by weight to form a dispersion, the pH of the dispersion becomes about 12. This allows
It is considered that the binder in the slurry becomes three-dimensional and the positive electrode material slurry gels. In particular, polyvinylidene fluoride (PVDF) is used as a binder, and N is used as an organic solvent.
When -methyl-2-pyrrolidone (NMP) is used, the binder is significantly three-dimensional. Therefore, it is conceivable to take measures against the atmosphere, such as dehumidification, when the positive electrode material slurry is generated. However, if such measures are taken, the manufacturing cost increases. In addition, even if such measures are taken, since Li 2 O is present in the active material, LiOH and Li 2 CO 3 are generated in the active material, charging and discharging of the battery are hindered, and the discharge capacity at high load is reduced. Becomes lower.

【0004】本発明の目的は、製造コストを高めたり、
電池の高負荷時の放電容量を低下させることなく、正極
材スラリーがゲル化するのを防止できるリチウムイオン
二次電池用正極板の製造方法を提供することにある。
It is an object of the present invention to increase manufacturing costs,
An object of the present invention is to provide a method for manufacturing a positive electrode plate for a lithium ion secondary battery, which can prevent the positive electrode material slurry from gelling without lowering the discharge capacity of the battery under a high load.

【0005】[0005]

【課題を解決するための手段】本発明は、少なくともリ
チウム元素及びニッケル元素を含むリチウムニッケル複
合酸化物を主成分とする正極材と、バインダと、有機溶
媒とを含むスラリーを集電体上に塗布してリチウムイオ
ン二次電池用正極板を製造する方法を改良の対象にす
る。ここでいう、少なくともリチウム元素及びニッケル
元素を含むリチウムニッケル複合酸化物とは、LiNi
2 のようにLi及びNiを含むリチウムニッケル複合
酸化物、またはLiNix Coy O2 (x +y =1)の
ようにLi及びNiに加えて、Li及びNi以外の元素
も少なくとも1つ有するリチウムニッケル複合酸化物で
ある。本発明では、正極材を水に対して8〜12重量%
分散させて分散液を作った場合に、分散液のpHが7.
1〜11.2になるものを正極材として用いる。
SUMMARY OF THE INVENTION According to the present invention, there is provided a slurry comprising a positive electrode material containing a lithium-nickel composite oxide containing at least a lithium element and a nickel element as a main component, a binder and an organic solvent. A method for producing a positive electrode plate for a lithium ion secondary battery by coating is intended to be improved. Here, the lithium-nickel composite oxide containing at least the lithium element and the nickel element is LiNi
Lithium nickel composite oxide containing Li and Ni such as O 2 , or lithium nickel having at least one element other than Li and Ni in addition to Li and Ni such as LiNix Coy O 2 (x + y = 1) It is a composite oxide. In the present invention, the cathode material is 8 to 12% by weight based on water.
When a dispersion is prepared by dispersing, the pH of the dispersion is adjusted to 7.
A material that becomes 1 to 11.2 is used as a positive electrode material.

【0006】このようにして水に分散しても強いアルカ
リ性にならないリチウムニッケル複合酸化物を作れば、
正極材スラリーに微量に水分が含まれていても、正極材
スラリーは、ほぼ中性または弱アルカリ性になり、バイ
ンダの三次元化を抑制して、正極材スラリーがゲル化す
るのを防ぐことができる。なお、分散液のpHが7.1
を下回ると、活物質が電解液に溶解しやすくなるため、
放電容量が低くなる。このような正極材は、種々の方法
で生成できる。例えば、Li2 Oとリチウムニッケル複
合酸化物とを含むリチウムニッケル複合酸化物材料を水
に対して8〜12重量%分散させて分散液を作り、この
分散液のpHが7.1〜11.2になるまで分散液を撹
拌する。次にこの分散液を濾過して、残渣を取出してか
ら、乾燥して正極材を生成する。このようにすれば、分
散液を撹拌する際に空気中のCO2 が分散液に溶け込ん
でH2 CO3 になる。このH2 CO3 は次の式により、
Li2 Oと水とが反応して生成された分散液中のLiO
Hと反応する。
In this way, if a lithium nickel composite oxide which does not become strongly alkaline even when dispersed in water is produced,
Even if a slight amount of water is contained in the positive electrode material slurry, the positive electrode material slurry becomes almost neutral or weakly alkaline, suppressing the three-dimensional formation of the binder and preventing the positive electrode material slurry from gelling. it can. The pH of the dispersion was 7.1.
If the value is lower than the range, the active material is easily dissolved in the electrolytic solution.
The discharge capacity decreases. Such a positive electrode material can be produced by various methods. For example, a lithium-nickel composite oxide material containing Li 2 O and a lithium-nickel composite oxide is dispersed in water in an amount of 8 to 12% by weight to prepare a dispersion, and the pH of the dispersion is 7.1 to 11. Stir the dispersion until 2. Next, the dispersion is filtered to remove the residue, and then dried to produce a positive electrode material. In this way, when the dispersion is stirred, CO 2 in the air dissolves into the dispersion to become H 2 CO 3 . This H 2 CO 3 is given by the following equation:
LiO in the dispersion formed by the reaction of Li 2 O and water
Reacts with H.

【0007】[0007]

【化1】 これにより、分散液のpHは小さくなり、分散液が中性
化する。この時のpHは、分散液の撹拌速度または撹拌
時間等により調整すればよい。
Embedded image As a result, the pH of the dispersion is reduced, and the dispersion is neutralized. The pH at this time may be adjusted by the stirring speed or the stirring time of the dispersion.

【0008】本方法で製造された正極板の正極材は、上
記式で生成されたLi2 CO3 が分散液濾過後に残留す
ることになる。即ち、リチウムニッケル複合酸化物に加
えてLi2 CO3 を含むことになる。
[0008] In the positive electrode material of the positive electrode plate manufactured by the present method, Li 2 CO 3 produced by the above formula remains after filtration of the dispersion. That is, Li 2 CO 3 is included in addition to the lithium nickel composite oxide.

【0009】また他の方法では、Li2 Oとリチウムニ
ッケル複合酸化物とを含むリチウムニッケル複合酸化物
材料を水に対して8〜12重量%分散させて分散液を作
り、分散液のpHが7.1〜11.2になるまで分散液
に燐酸(H3 PO4 )を加える。次にこの分散液を濾過
して、残渣を取出してから、乾燥して正極材を生成す
る。このようにすれば、H3 PO4 は次の式によりLi
2 Oと水とが反応して生成された分散液中のLiOHと
反応する。
In another method, a lithium-nickel composite oxide material containing Li 2 O and a lithium-nickel composite oxide is dispersed in water in an amount of 8 to 12% by weight to form a dispersion. until 7.1 to 11.2 is added phosphoric acid (H 3 PO 4) to the dispersion. Next, the dispersion is filtered to remove the residue, and then dried to produce a positive electrode material. In this way, H 3 PO 4 is Li by the following equation:
The reaction between 2 O and water reacts with LiOH in the dispersion produced.

【0010】[0010]

【化2】 これにより、分散液のpHは小さくなり、分散液が中性
化する。
Embedded image As a result, the pH of the dispersion is reduced, and the dispersion is neutralized.

【0011】なお、本発明者が試験したところ、分散液
のpHを低下させるために、塩酸、硫酸、硝酸、硼酸、
塩素酸等の燐酸以外の無機酸または有機酸を用いても十
分な放電容量を得ることはできなかった。
Incidentally, when the present inventor tested, in order to lower the pH of the dispersion, hydrochloric acid, sulfuric acid, nitric acid, boric acid,
Even if an inorganic or organic acid other than phosphoric acid such as chloric acid was used, a sufficient discharge capacity could not be obtained.

【0012】本方法で製造された正極板の正極材は、上
記式で生成されたLi3 PO4 が分散液濾過後に残留す
ることになる。即ち、リチウムニッケル複合酸化物に加
えてLi3 PO4 を含むことになる。
In the positive electrode material of the positive electrode plate manufactured by the present method, Li 3 PO 4 produced by the above formula remains after filtration of the dispersion. That is, Li 3 PO 4 is included in addition to the lithium nickel composite oxide.

【0013】前述したように、バインダとしてポリフッ
化ビニリデン(PVDF)を用い、有機溶媒としてN−
メチル−2−ピロリドン(NMP)を用いた場合に、ス
ラリーが比較的強いアルカリ性になった際のバインダの
三次元化が著しい。そこで、このようなバインダ(PV
DF)及び有機溶媒(NMP)を用いた場合には、本発
明の効果は著しく高くなる。
As described above, polyvinylidene fluoride (PVDF) is used as a binder, and N-
When methyl-2-pyrrolidone (NMP) is used, the binder becomes remarkably three-dimensional when the slurry becomes relatively strongly alkaline. Therefore, such a binder (PV
When DF) and an organic solvent (NMP) are used, the effect of the present invention is significantly enhanced.

【0014】[0014]

【発明の実施の形態】試験に用いた各リチウムイオン二
次電池用正極板の正極材スラリーを次のようにして作っ
た。まず、Li2 OとLiNi0.8 Co0.2 2 とを含
むリチウムニッケル複合酸化物材料5gを水45gに分
散して(リチウムニッケル複合酸化物材料を水に対して
11重量%分散させて)分散液を作る。本例では、本莊
FMCエナジー株式会社から販売されているリチウムニ
ッケル複合酸化物材料を用いた。このリチウムニッケル
複合酸化物材料に含まれるLi2 Oの量は定かではな
い。しかしながら、下記の表1の比較例1に示される撹
拌時間が0分のときのpH値は、リチウムニッケル複合
酸化物材料に含まれるLi2 Oの量に比例している。即
ち、Li2 Oの含有量が多ければ撹拌時間が0分のとき
のpH値は大きくなり、Li2 Oの含有量が少ないとき
にはこのpH値は小さくなる。したがってこのpH値よ
りLi2 Oの含有量は、計算によりある程度求めること
は可能である。Li2 Oの含有量が不明であっても、撹
拌時間によってpH値の調整ができるため、Li2 Oの
含有量は不明であっても問題にはならない。次にマグネ
ットスターラーを用いて表1に示す時間の撹拌を分散液
にそれぞれ行って、pH値の異なる各分散液を作った。
このように分散液を撹拌すると空気中のCO2 が分散液
に溶け込む。そのため、撹拌時間が長いほど分散液のp
H値は小さくなる。なお、本試験では、pH測定器を汚
さないために、分散液を撹拌後60分間静止してから、
分散液の上澄液のpH値を測定した。次に分散液をそれ
ぞれ濾過してリチウムニッケル複合酸化物を取出した。
次にこれらを90℃の温度で24時間加熱して乾燥し、
平均粒径20μmの各リチウムニッケル複合酸化物を得
た。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode material slurry of each positive electrode plate for a lithium ion secondary battery used in the test was prepared as follows. First, 5 g of a lithium-nickel composite oxide material containing Li 2 O and LiNi 0.8 Co 0.2 O 2 was dispersed in 45 g of water (by dispersing the lithium-nickel composite oxide material by 11% by weight with respect to water). make. In this example, a lithium nickel composite oxide material sold by Honjo FMC Energy Co., Ltd. was used. The amount of Li 2 O contained in this lithium nickel composite oxide material is not certain. However, the pH value when the stirring time is 0 minutes shown in Comparative Example 1 in Table 1 below is proportional to the amount of Li 2 O contained in the lithium nickel composite oxide material. That, pH value when the stirring time The greater the content of Li 2 O is 0 minutes increases, the pH value when a small content of Li 2 O is small. Therefore, the Li 2 O content can be determined to some extent by calculation from the pH value. Even if the content of Li 2 O is unknown, since the pH value can be adjusted by the stirring time, there is no problem even if the content of Li 2 O is unknown. Next, each of the dispersion liquids was stirred for the time shown in Table 1 using a magnetic stirrer to prepare dispersion liquids having different pH values.
When the dispersion is stirred in this manner, CO 2 in the air dissolves in the dispersion. Therefore, the longer the stirring time, the higher the p
The H value decreases. In addition, in this test, in order not to contaminate the pH meter, after the dispersion liquid was left stationary for 60 minutes after stirring,
The pH value of the supernatant of the dispersion was measured. Next, each dispersion was filtered to take out a lithium nickel composite oxide.
Next, they are dried by heating at a temperature of 90 ° C. for 24 hours,
Each lithium nickel composite oxide having an average particle size of 20 μm was obtained.

【0015】また、これらのリチウムニッケル複合酸化
物とは別にLi2 OとLiNi0.8Co0.2 2 とを含
むリチウムニッケル複合酸化物5gを水45gに分散し
て(リチウムニッケル複合酸化物材料を水に対して11
重量%分散させて)分散液を作った。次に濃度8.5重
量%の燐酸(H3 PO4 )を表2に示す量だけ分散液に
それぞれ滴下してから、マグネットスターラーを用いて
5分間撹拌した。そして、分散液を60分間静止して、
分散液の上澄液のpH値を測定した。次に分散液をそれ
ぞれ濾過してリチウムニッケル複合酸化物を取出した。
次にこれらを90℃の温度で24時間加熱して乾燥し、
平均粒径20μmの各リチウムニッケル複合酸化物を得
た。
Further, separately from these lithium-nickel composite oxides, 5 g of a lithium-nickel composite oxide containing Li 2 O and LiNi 0.8 Co 0.2 O 2 is dispersed in 45 g of water (the lithium-nickel composite oxide material is 11 for
A dispersion was made (by weight percent dispersion). Next, phosphoric acid (H 3 PO 4 ) having a concentration of 8.5% by weight was added dropwise to the dispersion in an amount shown in Table 2, and the mixture was stirred for 5 minutes using a magnetic stirrer. Then, the dispersion is allowed to stand for 60 minutes,
The pH value of the supernatant of the dispersion was measured. Next, each dispersion was filtered to take out a lithium nickel composite oxide.
Next, they are dried by heating at a temperature of 90 ° C. for 24 hours,
Each lithium nickel composite oxide having an average particle size of 20 μm was obtained.

【0016】次に上記各リチウムニッケル複合酸化物8
0重量%を、平均粒径0.5μmの黒鉛からなる導電剤
10重量%と、ポリフッ化ビニリデン(PVDF)から
なるバインダ10重量%とにそれぞれ混合した。次にこ
れにN−メチル−2−ピロリドン(NMP)からなる有
機溶媒を適量加えて十分に混練して各正極材スラリーを
作った。なお、正極材スラリー作成時の雰囲気は50%
RHとした。次に20μm×50mm×450mmの帯
状のアルミニウム箔からなる正極集電体の両面にロール
トゥロール転写により正極材スラリーを塗布してから乾
燥、プレスして両面にそれぞれ厚み80μmの正極材層
を形成して、表1及び2に示す比較例1A,1B及び実
施例1A〜1E並びに比較例2A〜2C及び実施例2A
〜2Dの各正極板を作った。表1及び2には、各正極板
の製造時の正極材スラリーの流動性の有無が示されてい
る。
Next, each of the above lithium nickel composite oxides 8
0% by weight was mixed with 10% by weight of a conductive agent composed of graphite having an average particle size of 0.5 μm and 10% by weight of a binder composed of polyvinylidene fluoride (PVDF). Next, an appropriate amount of an organic solvent composed of N-methyl-2-pyrrolidone (NMP) was added thereto and sufficiently kneaded to prepare each positive electrode material slurry. The atmosphere during the preparation of the positive electrode material slurry was 50%
RH. Next, a positive electrode material slurry is applied by roll-to-roll transfer to both surfaces of a positive electrode current collector made of a 20 μm × 50 mm × 450 mm strip-shaped aluminum foil, dried and pressed to form a positive electrode material layer having a thickness of 80 μm on both surfaces. Then, Comparative Examples 1A and 1B and Examples 1A to 1E and Comparative Examples 2A to 2C and Example 2A shown in Tables 1 and 2
~ 2D positive electrode plates were made. Tables 1 and 2 show the presence or absence of fluidity of the positive electrode material slurry at the time of manufacturing each positive electrode plate.

【0017】[0017]

【表1】 [Table 1]

【表2】 表1及び2より分散液のpH値が11.2を上回る比較
例1A,1B,2A,2Bでは、正極材スラリーの流動
性がなく電池として有効に機能する正極板を形成するこ
とができなかった。
[Table 2] According to Comparative Examples 1A, 1B, 2A, and 2B in which the pH value of the dispersion liquid exceeds 11.2 from Tables 1 and 2, the positive electrode material slurry did not have fluidity, and a positive electrode plate that effectively functions as a battery could not be formed. Was.

【0018】次に比較例1A,1B,2A,2Bを除く
各正極板を用いて図1に示す試験用のリチウムイオン二
次電池を作った。本図に示すように、リチウムイオン二
次電池は、巻回式極板群1が電池缶2内に収納された構
造を有している。そして、巻回式極板群1は、正極板3
と負極板4とが電解質層(セパレータ)5を介して積層
するように巻回された構造を有している。正極板3は正
極集電体6の両面に正極材層7が形成された構造を有し
ている。また、負極板4は負極集電体8の両面に負極材
層9が形成された構造を有している。リチウムイオン二
次電池は次のように製造した。まず、負極板4を製造し
た。最初に、平均粒子径15μmの黒鉛の炭素材料から
なる負極材90重量%と、ポリフッ化ビニリデンからな
るバインダ10重量%とを混合した。なお、負極材とし
ては非晶質炭素を用いることもできる。これにN−メチ
ル−2−ピロリドン(NMP)からなる溶媒を適量加え
て十分に混練して負極スラリーを作った。次に10μm
×50mm×490mmの帯状の銅箔からなる負極集電
体8の両面にロールトゥロール転写により負極材スラリ
ーを塗布してから乾燥、プレスして両面にそれぞれ厚み
105μmの負極材層9を形成して負板4を作った。な
お、この負極材層9の密度は1.3〜1.45g/cm
3 である。
Next, a test lithium ion secondary battery shown in FIG. 1 was prepared using each positive electrode plate except Comparative Examples 1A, 1B, 2A and 2B. As shown in the figure, the lithium ion secondary battery has a structure in which a wound electrode group 1 is housed in a battery can 2. Then, the wound electrode group 1 includes the positive electrode plate 3
And a negative electrode plate 4 are wound so as to be laminated with an electrolyte layer (separator) 5 interposed therebetween. The positive electrode plate 3 has a structure in which a positive electrode material layer 7 is formed on both surfaces of a positive electrode current collector 6. The negative electrode plate 4 has a structure in which a negative electrode material layer 9 is formed on both surfaces of a negative electrode current collector 8. The lithium ion secondary battery was manufactured as follows. First, the negative electrode plate 4 was manufactured. First, 90% by weight of a negative electrode material made of a graphite carbon material having an average particle diameter of 15 μm and 10% by weight of a binder made of polyvinylidene fluoride were mixed. Note that amorphous carbon can also be used as the negative electrode material. An appropriate amount of a solvent composed of N-methyl-2-pyrrolidone (NMP) was added thereto, and the mixture was sufficiently kneaded to prepare a negative electrode slurry. Next, 10 μm
A negative electrode material slurry is applied to both surfaces of a negative electrode current collector 8 made of a strip-shaped copper foil of × 50 mm × 490 mm by roll-to-roll transfer, dried and pressed to form a negative electrode material layer 9 having a thickness of 105 μm on both surfaces. To make a negative plate 4. The density of the negative electrode material layer 9 is 1.3 to 1.45 g / cm.
3

【0019】次に、前述の各正極板3と負極板4とを厚
み25μmのポリエチレン微多孔膜からなる帯状のセパ
レータ5を介してそれぞれ巻回して極板群1を作った。
次に、極板群1をNiめっき鉄からなる円筒形の電池缶
2内に配置してから、予め負極集電体8に溶接してある
ニッケルタブ端子11を電池缶2の底部2aに溶接し
た。次に炭酸エチレンと炭酸ジメチルと炭酸ジエチルと
を体積比30:50:20で混合した溶媒にLiPF6
からなるリチウム塩を1モル/lの濃度で溶解した有機
電解液(非水電解液)を電池缶2内に5ml注入した。
次に予め正極集電体6に溶接してあるアルミニウムタブ
端子10を電流遮断機構(圧力スイッチ)及び弁(図示
せず)を備える電池蓋12に溶接した。なお、この弁は
電流遮断機構(圧力スイッチ)が作動する圧力より高い
圧力で開放作動を行う。そして、電池蓋12を絶縁性の
ポリプロピレンからなるガスケット13を介して電池缶
2の上部に配置してから、これをかしめて電池缶2内を
密閉して円筒形の各リチウムイオン二次電池を作った。
Next, each of the positive electrode plate 3 and the negative electrode plate 4 was wound around a strip-shaped separator 5 made of a 25 μm-thick polyethylene microporous film to form an electrode plate group 1.
Next, after disposing the electrode plate group 1 in the cylindrical battery can 2 made of Ni-plated iron, the nickel tab terminal 11 previously welded to the negative electrode current collector 8 is welded to the bottom 2 a of the battery can 2. did. Next, LiPF 6 was added to a solvent in which ethylene carbonate, dimethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 30:50:20.
5 ml of an organic electrolyte solution (non-aqueous electrolyte solution) in which a lithium salt of 1 mol / l was dissolved was injected into the battery can 2.
Next, the aluminum tab terminal 10 previously welded to the positive electrode current collector 6 was welded to a battery lid 12 provided with a current cutoff mechanism (pressure switch) and a valve (not shown). This valve opens at a pressure higher than the pressure at which the current cutoff mechanism (pressure switch) operates. Then, after the battery lid 12 is arranged on the upper portion of the battery can 2 via the gasket 13 made of insulating polypropylene, this is caulked and the inside of the battery can 2 is sealed, and each of the cylindrical lithium ion secondary batteries is sealed. Had made.

【0020】次に各リチウムイオン二次電池を25℃の
雰囲気中において4.21Vの低電圧(制限電流320
mAh)で8時間充電してから、1.6Aで終止電圧
2.5Vまで放電して正極材(リチウムニッケル複合酸
化物)1gあたりの放電容量を求めた。表1及び2に
は、各正極板を用いて作った電池の放電容量が示されて
いる。表2よりpH値が7.1を下回る比較例2Cで
は、活物質が電解液に溶解するため、放電容量が低くな
るのが分かる。
Next, each lithium ion secondary battery was placed in a 25 ° C. atmosphere at a low voltage of 4.21 V (with a limiting current of 320
mAh) for 8 hours, and then discharged to a final voltage of 2.5 V at 1.6 A to obtain a discharge capacity per 1 g of the positive electrode material (lithium nickel composite oxide). Tables 1 and 2 show the discharge capacities of the batteries made using each positive electrode plate. From Table 2, it can be seen that in Comparative Example 2C where the pH value was lower than 7.1, the active material was dissolved in the electrolytic solution, so that the discharge capacity was low.

【0021】次に、表3に示すように、分散液の撹拌時
間または燐酸の添加量を変えて、pH値が11.2を上
回る値でそれぞれ異なるリチウムニッケル複合酸化物を
得た。そして、各リチウムニッケル複合酸化物を用い
て、除湿装置による3%RHの雰囲気中で正極材スラリ
ー作成し、リチウムイオン二次電池を作った。なお、正
極材スラリー及びリチウムイオン二次電池は、雰囲気の
湿度を除いては、前述の試験と同じ条件で製造した。そ
して、正極材スラリーの流動性の有無及びリチウムイオ
ン二次電池の正極材(リチウムニッケル複合酸化物)1
gあたりの放電容量を調べた。表3はその測定結果を示
している。
Next, as shown in Table 3, by changing the stirring time of the dispersion or the added amount of phosphoric acid, different lithium nickel composite oxides having different pH values exceeding 11.2 were obtained. Then, using each lithium nickel composite oxide, a positive electrode material slurry was prepared in an atmosphere of 3% RH by a dehumidifier to prepare a lithium ion secondary battery. The positive electrode material slurry and the lithium ion secondary battery were manufactured under the same conditions as the above-mentioned test except for the humidity of the atmosphere. Then, the presence or absence of fluidity of the positive electrode material slurry and the positive electrode material (lithium nickel composite oxide) 1 of the lithium ion secondary battery
The discharge capacity per g was examined. Table 3 shows the measurement results.

【0022】[0022]

【表3】 表3より、3%RHの雰囲気中で作成した各正極材スラ
リーは流動性を有しているのが分かる。しかしながら、
各正極材スラリーを用いて製造した電池は、高負荷時の
放電容量が154〜158mAh/gと低く、十分な容
量を得ることができないのが分る。したがって、正極材
スラリー生成時に除湿の雰囲気対策を講じても、高負荷
時の放電容量は低いままであるのが分る。
[Table 3] Table 3 shows that each positive electrode material slurry prepared in an atmosphere of 3% RH has fluidity. However,
It can be seen that the batteries manufactured using each of the positive electrode material slurries have a low discharge capacity at a high load of 154 to 158 mAh / g, and a sufficient capacity cannot be obtained. Therefore, it can be seen that the discharge capacity under a high load remains low even if countermeasures against dehumidification are taken when the positive electrode material slurry is generated.

【0023】[0023]

【発明の効果】本発明によれば、水に分散しても強いア
ルカリ性にならないリチウムニッケル複合酸化物を用い
て正極材スラリーを作るので、正極材スラリーに微量に
水分が含まれていても、正極材スラリーは、ほぼ中性ま
たは弱アルカリ性になり、バインダの三次元化を抑制し
て、正極材スラリーがゲル化するのを防ぐことができ
る。
According to the present invention, a positive electrode material slurry is prepared using a lithium nickel composite oxide which does not become strongly alkaline even when dispersed in water. Therefore, even if a slight amount of water is contained in the positive electrode material slurry, The positive electrode material slurry becomes substantially neutral or weakly alkaline, thereby suppressing the three-dimensional formation of the binder and preventing the positive electrode material slurry from being gelled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の方法で製造したリチウムイオ
ン二次電池の端面図である。
FIG. 1 is an end view of a lithium ion secondary battery manufactured by a method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 巻回式極板群 2 電池缶 3 正極板 4 負極板 5 電解質層(セパレータ) 6 正極集電体 7 正極材層 8 負極集電体 9 負極材層 DESCRIPTION OF SYMBOLS 1 Wound type electrode group 2 Battery can 3 Positive electrode plate 4 Negative electrode plate 5 Electrolyte layer (separator) 6 Positive electrode collector 7 Positive electrode layer 8 Negative electrode collector 9 Negative electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 克典 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ00 AJ14 AK03 AL06 AM02 AM03 AM07 BJ02 BJ14 CJ07 CJ08 CJ12 CJ22 DJ07 DJ08 EJ12 HJ01 HJ02 HJ10  ────────────────────────────────────────────────── ─── Continued on the front page (72) Katsunori Suzuki 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H029 AJ00 AJ14 AK03 AL06 AM02 AM03 AM07 BJ02 BJ14 CJ07 CJ08 CJ12 CJ22 DJ07 DJ08 EJ12 HJ01 HJ02 HJ10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくともリチウム元素及びニッケル元
素を含むリチウムニッケル複合酸化物を主成分とする正
極材と、バインダと、有機溶媒とを含むスラリーを集電
体上に塗布してリチウムイオン二次電池用正極板を製造
する方法において、 前記正極材として、前記正極材を水に対して8〜12重
量%分散させて分散液を作った場合に、前記分散液のp
Hが7.1〜11.2になるものを用いることを特徴と
するリチウムイオン二次電池用正極板の製造方法。
1. A lithium ion secondary battery comprising: applying a slurry containing a positive electrode material containing a lithium nickel composite oxide containing at least a lithium element and a nickel element as a main component, a binder, and an organic solvent on a current collector; In the method of manufacturing a positive electrode plate for use, when the positive electrode material is dispersed in water by 8 to 12% by weight to form a dispersion,
A method for producing a positive electrode plate for a lithium ion secondary battery, wherein a material having H of 7.1 to 11.2 is used.
【請求項2】 Li2 Oとリチウムニッケル複合酸化物
とを含むリチウムニッケル複合酸化物材料を水に対して
8〜12重量%分散させて分散液を作り、 前記分散液のpHが7.1〜11.2になるまで前記分
散液を撹拌し、 次に前記分散液を濾過して、残渣を取出し、 前記残渣を乾燥したものを前記正極材として用いること
を特徴とする請求項1に記載のリチウムイオン二次電池
用正極板の製造方法。
2. A dispersion is prepared by dispersing a lithium nickel composite oxide material containing Li 2 O and lithium nickel composite oxide in water in an amount of 8 to 12% by weight, and the dispersion has a pH of 7.1. The dispersion is stirred until the dispersion becomes about 11.2, and then the dispersion is filtered to take out a residue, and the residue is dried and used as the positive electrode material. The method for producing a positive electrode plate for a lithium ion secondary battery according to the above.
【請求項3】 Li2 Oとリチウムニッケル複合酸化物
とを含むリチウムニッケル複合酸化物材料を水に対して
8〜12重量%分散させて分散液を作り、 前記分散液のpHが7.1〜11.2になるまで前記分
散液に燐酸を加え、 次に前記分散液を濾過して、残渣を取出し、 前記残渣を乾燥したものを前記正極材として用いること
を特徴とする請求項1に記載のリチウムイオン二次電池
用正極板の製造方法。
3. A dispersion is prepared by dispersing a lithium nickel composite oxide material containing Li 2 O and lithium nickel composite oxide in water in an amount of 8 to 12% by weight, and the dispersion has a pH of 7.1. The phosphoric acid is added to the dispersion until the solution reaches ~ 11.2, the dispersion is filtered to remove a residue, and the residue is dried to be used as the positive electrode material. A method for producing a positive electrode plate for a lithium ion secondary battery according to the above.
【請求項4】 前記バインダとして、ポリフッ化ビニリ
デンを用い、前記有機溶媒としてN−メチル−2−ピロ
リドンを用いることを特徴とする請求項2または3に記
載のリチウムイオン二次電池用正極板の製造方法。
4. The positive electrode plate for a lithium ion secondary battery according to claim 2, wherein polyvinylidene fluoride is used as the binder, and N-methyl-2-pyrrolidone is used as the organic solvent. Production method.
【請求項5】 少なくともリチウム元素及びニッケル元
素を含むリチウムニッケル複合酸化物を主成分とする正
極材と、バインダと、有機溶媒とを含むスラリーが集電
体上に塗布されて形成されるリチウムイオン二次電池用
正極板において、 前記正極材は、Li2 CO3 を含んでいるリチウムイオ
ン二次電池用正極板。
5. A lithium ion formed by applying a slurry containing a cathode material mainly containing a lithium nickel composite oxide containing at least a lithium element and a nickel element, a binder, and an organic solvent onto a current collector. In the positive electrode plate for a secondary battery, the positive electrode material includes Li 2 CO 3, and the positive electrode plate for a lithium ion secondary battery.
【請求項6】 少なくともリチウム元素及びニッケル元
素を含むリチウムニッケル複合酸化物を主成分とする正
極材と、バインダと、有機溶媒とを含むスラリーが集電
体上に塗布されて形成されるリチウムイオン二次電池用
正極板において、 前記正極材は、Li3 PO4 を含んでいるリチウムイオ
ン二次電池用正極板。
6. A lithium ion formed by applying a slurry containing a positive electrode material mainly composed of a lithium nickel composite oxide containing at least a lithium element and a nickel element, a binder, and an organic solvent onto a current collector. A positive electrode plate for a lithium ion secondary battery, wherein the positive electrode material contains Li 3 PO 4 .
JP26409298A 1998-09-18 1998-09-18 Method for producing positive electrode plate for lithium ion secondary battery Expired - Fee Related JP3654005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26409298A JP3654005B2 (en) 1998-09-18 1998-09-18 Method for producing positive electrode plate for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26409298A JP3654005B2 (en) 1998-09-18 1998-09-18 Method for producing positive electrode plate for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2000090917A true JP2000090917A (en) 2000-03-31
JP3654005B2 JP3654005B2 (en) 2005-06-02

Family

ID=17398407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26409298A Expired - Fee Related JP3654005B2 (en) 1998-09-18 1998-09-18 Method for producing positive electrode plate for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3654005B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2005085471A (en) * 2003-09-04 2005-03-31 Toyota Motor Corp Secondary battery and its manufacturing method
CN100352087C (en) * 2004-07-29 2007-11-28 肇庆市风华锂电池有限公司 Adhesion agent of anode, pulp for anode obtained, lithium battery ,and preparation method
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
JP2009087885A (en) * 2007-10-03 2009-04-23 Sony Corp Method for manufacturing positive electrode
JP2010108624A (en) * 2008-10-28 2010-05-13 Furukawa Battery Co Ltd:The Manufacturing method of cathode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
WO2012043765A1 (en) 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
JP2012160463A (en) * 2012-04-05 2012-08-23 Sony Corp Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
WO2017124859A1 (en) 2016-01-18 2017-07-27 Grst International Limited Method of preparing battery electrodes
US9755239B2 (en) 2012-11-05 2017-09-05 Samsung Sdi Co., Ltd. Composition for positive electrode of lithium secondary battery and lithium secondary battery using same
KR20190074315A (en) * 2017-07-19 2019-06-27 니혼 스핀들 세이조 가부시키가이샤 Method of manufacturing slurry for positive electrode of non-aqueous electrolyte secondary battery and apparatus therefor
JP2019125525A (en) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 Method of cleaning kneader
JP2019153462A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
US10581079B2 (en) 2012-11-20 2020-03-03 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and rechargeable lithium battery
JP2022022446A (en) * 2018-03-02 2022-02-03 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
US11646401B2 (en) 2020-06-08 2023-05-09 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode and method of manufacturing all-solid-state battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123755A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP4507537B2 (en) * 2003-09-04 2010-07-21 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2005085471A (en) * 2003-09-04 2005-03-31 Toyota Motor Corp Secondary battery and its manufacturing method
CN100352087C (en) * 2004-07-29 2007-11-28 肇庆市风华锂电池有限公司 Adhesion agent of anode, pulp for anode obtained, lithium battery ,and preparation method
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
JP2009087885A (en) * 2007-10-03 2009-04-23 Sony Corp Method for manufacturing positive electrode
JP2010108624A (en) * 2008-10-28 2010-05-13 Furukawa Battery Co Ltd:The Manufacturing method of cathode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010157361A (en) * 2008-12-26 2010-07-15 Tdk Corp Method of manufacturing positive electrode for lithium-ion secondary battery, method of manufacturing lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
WO2012043765A1 (en) 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
CN103140964A (en) * 2010-09-30 2013-06-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
US9214665B2 (en) 2010-09-30 2015-12-15 Asahi Glass Company, Limited Positive electrode material mixture, and positive electrode for non-aqueous secondary battery and secondary battery, employing it
JP2012160463A (en) * 2012-04-05 2012-08-23 Sony Corp Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
US9755239B2 (en) 2012-11-05 2017-09-05 Samsung Sdi Co., Ltd. Composition for positive electrode of lithium secondary battery and lithium secondary battery using same
US10581079B2 (en) 2012-11-20 2020-03-03 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery and rechargeable lithium battery
EP3836253A1 (en) * 2016-01-18 2021-06-16 GRST International Limited Method of preparing battery electrodes
WO2017124859A1 (en) 2016-01-18 2017-07-27 Grst International Limited Method of preparing battery electrodes
EP3408883A4 (en) * 2016-01-18 2019-09-11 GRST International Limited Method of preparing battery electrodes
CN110915031A (en) * 2017-07-19 2020-03-24 日本斯频德制造株式会社 Method and apparatus for producing slurry for positive electrode of nonaqueous electrolyte secondary battery
KR20190074315A (en) * 2017-07-19 2019-06-27 니혼 스핀들 세이조 가부시키가이샤 Method of manufacturing slurry for positive electrode of non-aqueous electrolyte secondary battery and apparatus therefor
KR102271788B1 (en) * 2017-07-19 2021-06-30 니혼 스핀들 세이조 가부시키가이샤 Method for producing slurry for positive electrode of non-aqueous electrolyte secondary battery and device therefor
JP2019125525A (en) * 2018-01-18 2019-07-25 トヨタ自動車株式会社 Method of cleaning kneader
JP2019153462A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2022022446A (en) * 2018-03-02 2022-02-03 トヨタ自動車株式会社 Method for producing positive electrode active material particle, method for producing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP7024505B2 (en) 2018-03-02 2022-02-24 トヨタ自動車株式会社 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
CN114497503A (en) * 2018-03-02 2022-05-13 丰田自动车株式会社 Method for producing positive electrode active material particles, method for producing positive electrode paste, method for producing positive electrode plate, and method for producing lithium ion secondary battery
CN114497503B (en) * 2018-03-02 2023-10-03 丰田自动车株式会社 Method for producing positive electrode active material particles, method for producing positive electrode paste, method for producing positive electrode plate, and method for producing lithium ion secondary battery
US11646401B2 (en) 2020-06-08 2023-05-09 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode and method of manufacturing all-solid-state battery

Also Published As

Publication number Publication date
JP3654005B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3654005B2 (en) Method for producing positive electrode plate for lithium ion secondary battery
JP5568023B2 (en) Non-aqueous electrolyte battery
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
CN112582596B (en) Secondary battery, battery module, battery pack and device containing same
CN106233498B (en) Nonaqueous electrolytic solution secondary battery
KR101939142B1 (en) ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
JPH0982361A (en) Square nonaqueous electrolyte secondary battery
WO2022134541A1 (en) Positive electrode material, preparation method therefor, and electrochemical device
CA3040031C (en) Battery module for starting a power equipment
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
KR100743982B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
KR20090084693A (en) Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP4232277B2 (en) Non-aqueous electrolyte battery
JP7262418B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3972577B2 (en) Lithium secondary battery
JP2014207238A (en) Nonaqueous electrolyte battery and battery pack
JPH11120993A (en) Nonaqueous electrolyte secondary battery
KR101888775B1 (en) Nonaqueous electrolyte secondary battery
JP2013114983A (en) Nonaqueous electrolyte battery
US20220123295A1 (en) Method of manufacturing positive electrode active material for lithium ion secondary battery
JP2002075460A (en) Lithium secondary cell
JPH03108261A (en) Nonaqueous solvent secondary battery
JP4365633B2 (en) Lithium secondary battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees