KR100743982B1 - Active material, manufacturing method thereof and lithium secondary battery comprising the same - Google Patents

Active material, manufacturing method thereof and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR100743982B1
KR100743982B1 KR1020060032715A KR20060032715A KR100743982B1 KR 100743982 B1 KR100743982 B1 KR 100743982B1 KR 1020060032715 A KR1020060032715 A KR 1020060032715A KR 20060032715 A KR20060032715 A KR 20060032715A KR 100743982 B1 KR100743982 B1 KR 100743982B1
Authority
KR
South Korea
Prior art keywords
lithium
active material
positive electrode
transition metal
secondary battery
Prior art date
Application number
KR1020060032715A
Other languages
Korean (ko)
Inventor
김현수
김기택
문성인
송기섭
김우성
Original Assignee
한국전기연구원
대정화금주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원, 대정화금주식회사 filed Critical 한국전기연구원
Priority to KR1020060032715A priority Critical patent/KR100743982B1/en
Application granted granted Critical
Publication of KR100743982B1 publication Critical patent/KR100743982B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are an active material which is excellent in high rate characteristics and cycle lifetime, a method for preparing the active material, and a lithium secondary battery using the active material. An active material comprises a lithium transition metal oxide represented by Li_x M_a M'_b M''_c O_d which is coated with lithium aluminum oxide (LiAlO2), wherein 0.5<=x<=1; 0<=a<=1; 0<b<=1; 0<=c<=1; 0.5<=d<=4; M is an element selected from the group consisting of Ni, Co and Mn; M' is an element selected from the group consisting of Ni, CO, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe and Cu; and M'' is an element selected from the group consisting of Ni, CO, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe and Cu.

Description

활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지{Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same}Active material. The manufacturing method and a lithium secondary battery having the same {Active Material, Manufacturing Method and And Lithium Secondary Battery Comprising The Same}

도 1은 본 발명의 일실시예에 따른 리튬 이차 전지의 구성도,1 is a block diagram of a lithium secondary battery according to an embodiment of the present invention,

도 2는 본 발명의 일실시예에 따른 활물질의 XRD 회절분석 결과도, 2 is an XRD diffraction analysis of the active material according to an embodiment of the present invention,

도 3a 및 도 3b는 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 리튬전이금속산화물의 SEM 사진을 도시한 도,3a and Fig. 3b is an uncoated LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition shows a SEM photograph of a metal oxide,

도 4a 및 4b는 본 발명의 일실시예에 따른 3 중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2 리튬전이금속산화물의 SEM 사진을 나타낸 도,4a and 4b are SEM pictures of LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition metal oxide coated with 3% by weight lithium oxide according to an embodiment of the present invention;

도 5a 및 5b는 본 발명의 일실시예에 따른 5 중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2 리튬전이금속산화물의 SEM 사진을 나타낸 도,5a and 5b are SEM pictures showing LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition metal oxide coated with 5 wt% lithium aluminum oxide according to one embodiment of the present invention;

도 6은 산화리튬알루미늄이 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질을 사용한 리튬이차전지의 율별방전 특성을 나타낸 도, 6 is a diagram showing the yulbyeol discharge characteristics of the non-oxide coated lithium aluminum LiNi 1/3 Mn 1/3 Co 1/3 O 2, a lithium secondary battery using the active material,

도 7은 본 발명의 일실시예에 따른 3중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2 활물질을 사용한 리튬이차전지의 율별방전 특성을 나타낸 도,7 is a view showing the rate-specific discharge characteristics of a lithium secondary battery using a LiNi 1/3 Mn 1/3 Co 1/3 O 2 active material coated with 3% by weight lithium aluminum oxide according to an embodiment of the present invention,

도 8은 산화리튬알루미늄이 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질을 사용한 리튬이차전지의 사이클수명 특성을 나타낸 도, 8 is a diagram showing the cycle life characteristics of the lithium secondary battery using a non-oxide coated lithium aluminum LiNi 1/3 Mn 1/3 Co 1/3 O 2 active material,

도 9는 본 발명의 일실시예에 따른 3 중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2 활물질의 사이클수명 특성을 나타낸 도이다.9 is a view showing cycle life characteristics of 3% by weight of lithium aluminum oxide coated LiNi 1/3 Mn 1/3 Co 1/3 O 2 active material according to an embodiment of the present invention.

** 도면의 주요부호에 대한 설명 **** Description of the main symbols in the drawings **

1: 리튬 이차 전지 2: 부극1: lithium secondary battery 2: negative electrode

3: 정극 4: 세퍼레이터3: positive electrode 4: separator

5: 전지용기 6: 봉입부재5: battery container 6: sealing member

본 발명은 활물질, 그 제조방법 및 이를 구비한 리튬 이차 전지에 관한 것이다.The present invention relates to an active material, a method of manufacturing the same, and a lithium secondary battery having the same.

최근 전자, 정보통신 산업의 발전은 전자기기의 휴대화, 소형화, 경량화, 고성능화를 통하여 급속한 성장을 보이고 있다. 휴대전화, 노트북 PC 등 기기의 소형 화 및 경량화에 따른 전지의 고성능화가 요구되고 있다. 특히, 기기 본체의 소형화에 대응하기 위하여 전지의 소형화와 용량의 동시 확보, 즉 고에너지 밀도화가 요구된다. 따라서 이들 휴대용 전자기기의 전원으로 고성능의 리튬이차전지로 채용되고 있으며, 수요가 급증하고 있다. 충전과 방전을 거듭하며 사용하는 이차 전지는 정보통신을 위한 휴대용 전자기기나 전기자전거, 전기자동차 등의 전원으로 필수적이다. 특히 이들의 제품성능이 핵심부품인 전지에 의해 좌우되므로 고성능 전지에 대한 요구는 대단히 크다. 전지에 요구되는 특성은 충방전 특성, 수명, 고율 특성과 고온에서의 안정성 등 여러 가지 측면이 있으며 가장 많이 사용되고 있는 것이 리튬 이차 전지이다.Recently, the development of the electronic and information communication industry is showing rapid growth through the portable, miniaturized, lightweight, and high-performance electronic devices. As the size of devices such as mobile phones and notebook PCs become smaller and lighter, there is a demand for higher battery performance. In particular, in order to cope with the miniaturization of the main body of the apparatus, miniaturization of the battery and securing of capacity at the same time, that is, high energy density are required. Therefore, high-performance lithium secondary batteries are employed as power sources for these portable electronic devices, and demand is increasing rapidly. Secondary batteries used with repeated charging and discharging are essential as power sources for portable electronic devices, electric bicycles, and electric vehicles for information and communication. In particular, since their product performance depends on batteries, which are core components, the demand for high performance batteries is very large. The characteristics required for the battery include various aspects such as charge and discharge characteristics, lifespan, high rate characteristics, and stability at high temperatures, and lithium secondary batteries are most commonly used.

리튬 이차 전지는 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이며 전해질에 따라서 액체를 쓰는 액체형 전지, 액체와 폴리머를 혼용해서 쓰는 젤형 폴리머 전지와 순수하게 고분자만을 사용하는 고체형 폴리머 전지로 구분하기도 한다.Lithium secondary batteries are the ones that are attracting the most attention because they have high voltage and high energy density. They are liquid type batteries using liquids according to electrolytes, gel polymer batteries using a mixture of liquids and polymers, and solid polymer batteries using pure polymers. It can also be distinguished.

리튬 이차 전지는 정극, 부극, 전해질, 격리막(separator), 외장재 등으로 주로 구성된다. 정극은 전류집전체에 정극 활물질, 도전제와 바인더(binder) 등의 혼합물이 결착되어 구성된다. 정극 활물질은 결정구조 내로 리튬이온이 삽입/탈리(intercalation/deintercalation)가 되며 전기화학적 반응 전위가 높다. The lithium secondary battery is mainly composed of a positive electrode, a negative electrode, an electrolyte, a separator, a packaging material, and the like. The positive electrode is formed by binding a mixture of a positive electrode active material, a conductive agent, and a binder to a current collector. The positive electrode active material has intercalation / deintercalation of lithium ions into the crystal structure and has a high electrochemical reaction potential.

부극 활물질은 리튬금속, 탄소 또는 흑연 등이 주로 사용되며 정극 활물질과 는 반대로 전기화학적 반응 전위가 낮다. 전해질은 주로 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 메틸에틸 카보네이트 등의 극성 유기용매에 LiCF3SO3, Li(CF3SO2)2, LiPF6 , LiBF4, LiClO4, LiN(SO2C2F5)2 등의 리튬이온을 포함하는 염을 용해시켜 사용한다. Lithium metal, carbon or graphite is mainly used as the negative electrode active material, and has a low electrochemical reaction potential as opposed to the positive electrode active material. The electrolyte is mainly composed of LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 , LiPF 6 , LiBF 4 , LiClO 4 , LiN ( A salt containing lithium ions such as SO 2 C 2 F 5 ) 2 is dissolved and used.

정극과 부극을 전기적으로 절연시키며 이온의 통로를 제공해주는 역할을 하는 격리막은 다공성 폴리에틸렌 등 폴리올레틴계 폴리머를 주로 사용한다. 전지의 내용물을 보호하며 전지외부로 전기적 통로를 제공하는 외장재로는 금속캔 또는 알루미늄과 몇 겹의 폴리머층으로 구성된 포장재를 주로 사용한다.As the separator that electrically insulates the positive electrode and the negative electrode and provides a passage of ions, a polyolefin polymer such as porous polyethylene is mainly used. As an exterior material that protects the contents of the battery and provides an electrical passage to the outside of the battery, a metal can or a packaging material composed of aluminum and several layers of polymer layers is mainly used.

액체를 전해질로 쓰는 리튬이온 2차 전지는 과충전이나 기타 부주의한 사용으로 인해 화재나 폭발의 위험성을 갖고 있다. 이러한 안전성의 문제와 더욱 얇고 자유로운 형태의 전지를 제조하기 위해 폴리머를 전해질로 사용하는 리튬이온 폴리머 전지의 개발이 많이 진행되고 있다. 리튬이온 폴리머 전지는 폴리비닐리덴 플루오라이드, 폴리에틸렌 옥사이드, 폴리아크릴로니트릴 등의 고분자 물질들의 메트릭스 내에 액체 전해질을 함침시킨 형태로 구성된다. 따라서, 액체 전해질의 누액 위험이 적고 금속캔 대신 알루미늄박과 폴리머층들로 구성된 포장재를 사용할 수 있어 얇으면서도 형태를 자유롭게 할 수 있는 이점을 갖게 되는 것이다.Lithium-ion secondary batteries that use liquids as electrolytes present a risk of fire or explosion due to overcharging or other careless use. In order to manufacture such a safety problem and a thinner and free battery, there are many developments of a lithium ion polymer battery using a polymer as an electrolyte. The lithium ion polymer battery is constructed by impregnating a liquid electrolyte in a matrix of polymer materials such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, and the like. Therefore, there is less risk of leakage of the liquid electrolyte, and instead of a metal can, a packaging material composed of aluminum foil and polymer layers can be used, thereby having an advantage of being thin and free of shapes.

리튬 이차 전지는, 충전 및 방전의 반복적인 조작으로 직류전력을 저장하고, 필요에 따라서 외부로 직류를 공급할 수 있도록 하는 전지로서 사용되고 있다. 이러한 이차 전지는 정극과 부극이 전해액을 사이에 두고 동일한 케이싱내에 위치되며, 이들 전극은 외부부하와 연결됨으로 전류의 흐름이 이루어질 수 있는 구성을 갖는다. 이와 같은 작용을 위하여 상기한 정극과 부극에는, 외부회로로 전기 에너지를 발생시켜 내보내기 위한 화학물질로서의 기능을 하는 이른바 활물질이 코팅 또는 캐스팅된다. BACKGROUND OF THE INVENTION A lithium secondary battery is used as a battery that stores DC power by repetitive operations of charging and discharging and can supply DC to the outside as needed. Such a secondary battery has a structure in which a positive electrode and a negative electrode are positioned in the same casing with an electrolyte therebetween, and these electrodes are connected to an external load so that current can flow. To this end, the positive electrode and the negative electrode are coated or cast with a so-called active material which functions as a chemical substance for generating and exporting electrical energy to an external circuit.

일반적으로 사용되는 정극 활물질로는 LiCoO2 등이 있으나, 용량이 작고, 열적 안정성이 낮으며, 원재료가 고가인 단점이 있다. 이러한 활물질은 전지의 성능에 결정적인 역할을 하므로 이에 대한 연구는 과거에도 있어왔고, 현재도 진행하고 있으며, 미래에도 변함없이 개선을 위한 연구가 요구될 것이다. Generally used positive electrode active material is LiCoO 2 Etc., but the capacity is small, the thermal stability is low, the raw materials are expensive. Since the active material plays a decisive role in the performance of the battery, research on this has been in the past, is ongoing, and will be required to study for improvement without change in the future.

본 발명은 상기한 종래의 활물질의 문제점을 개선하기 위한 것으로, 고율방전특성, 결정구조의 안정성 및 사이클 수명 특성 등 전기화학적 특성이 우수한 활물질을 제공하는 것을 목적으로 한다.The present invention is to improve the problems of the conventional active material, and an object of the present invention is to provide an active material having excellent electrochemical properties such as high rate discharge characteristics, stability of crystal structure and cycle life characteristics.

또한, 고율방전특성, 결정구조의 안정성 및 사이클 수명 특성 등 전기화학적 특성이 우수한 활물질의 제조방법 및 이를 구비한 리튬이차전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for preparing an active material having excellent electrochemical characteristics such as high rate discharge characteristics, stability of crystal structure, and cycle life characteristics, and a lithium secondary battery having the same.

상기의 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

산화리튬알루미늄(LiAlO2)이 코팅된 하기 화학식 1의 리튬전이금속산화물이 포함된 활물질을 제공한다.Provided is an active material including a lithium transition metal oxide of Formula 1 coated with lithium aluminum oxide (LiAlO 2 ).

[화학식 1][Formula 1]

LixMaM'bM"cOd Li x M a M ' b M " c O d

(상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4,

M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn,

M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu,

M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.)

또한, 상기 화학식 1의 리튬전이금속산화물은 LiNi1 /3Mn1 /3Co1 /3O2 인 것을 특징으로 하는 활물질을 제공한다.In addition, the lithium transition metal oxide of Formula 1 is LiNi 1/3 Mn 1/3 Co 1/3 O 2 It provides an active material characterized in that.

또한, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물 총중량에서 산화리튬알루미늄은 0.1 ~ 5 중량% 포함되는 것을 특징으로 하는 활물질을 제공한다.In addition, the lithium aluminum oxide is coated with lithium aluminum oxide coated lithium aluminum oxide in the total weight provides an active material, characterized in that it comprises 0.1 to 5% by weight.

또한, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물은 알루미늄알콕사이드, 리튬하이드록사이드와 상기 리튬전이금속산화물을 혼합한 후 열처리하여 얻어지는 것을 특징으로 하는 활물질을 제공한다.In addition, the lithium transition metal oxide coated with lithium aluminum oxide provides an active material, which is obtained by heat treatment after mixing the aluminum alkoxide, lithium hydroxide and the lithium transition metal oxide.

또한, 상기 알루미늄알콕사이드는 알루미늄이소프로폭사이드(Aluminum isopropoxide)인 것을 특징으로 하는 활물질을 제공한다.In addition, the aluminum alkoxide provides an active material, characterized in that aluminum isopropoxide (Aluminum isopropoxide).

본 발명은 또한, 알루미늄알콕사이드, 리튬하이드록사이드를 용제에 첨가하여 코팅액을 제조하는 단계; 상기 코팅액과 하기 화학식 1의 리튬전이금속산화물을 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 열처리하여 상기 리튬전이금속산화물에 산화리튬알루미늄을 코팅하는 단계;를 포함하여 이루어지는 활물질 제조방법을 제공한다.The present invention also comprises the steps of preparing a coating solution by adding aluminum alkoxide and lithium hydroxide to the solvent; Preparing a mixture by mixing the coating solution with a lithium transition metal oxide of Formula 1; And heat treating the mixture to coat lithium aluminum oxide on the lithium transition metal oxide.

[화학식 1][Formula 1]

LixMaM'bM"cOd Li x M a M ' b M " c O d

(상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4,

M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn,

M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군 에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu,

M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.)

또한, 상기 알루미늄알콕사이드는 알루미늄이소프로폭사이드인 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, the aluminum alkoxide provides an active material manufacturing method characterized in that the aluminum isopropoxide.

또한, 상기 용제는 물인 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, the solvent provides a method for producing an active material, characterized in that the water.

또한, 상기 혼합물은 졸(Sol) 형태로 만들어지는 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, the mixture provides a method for producing an active material, characterized in that the sol (Sol) form.

또한, 상기 혼합물을 제조한 후에 80 ~ 150 ℃에서 건조시키는 단계를 더 포함하는 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, after preparing the mixture provides a method for producing an active material, characterized in that it further comprises the step of drying at 80 ~ 150 ℃.

또한, 상기 열처리하는 단계는 400 ~ 1000 ℃ 범위내에서 열처리하는 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, the heat treatment step provides an active material manufacturing method characterized in that the heat treatment in the range 400 ~ 1000 ℃.

또한, 상기 열처리는 1 ~ 7시간 수행하는 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, the heat treatment provides a method for producing an active material, characterized in that performed for 1 to 7 hours.

또한, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물의 총중량에서 산화리튬알루미늄이 0.1 ~ 5 중량% 포함되는 것을 특징으로 하는 활물질 제조방법을 제공한다.In addition, it provides a method for producing an active material, characterized in that the lithium aluminum oxide is coated in the total weight of the lithium transition metal oxide coated with lithium aluminum oxide 0.1 to 5% by weight.

본 발명은 또한, 정극 활물질을 포함하는 정극과 부극 활물질을 포함하는 부극 및 이온전도체를 구비한 리튬 이차 전지에 있어서, 상기 정극 활물질은 산화리튬알루미늄이 코팅된 하기 화학식 1의 리튬전이금속산화물을 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지를 제공한다.The present invention also provides a lithium secondary battery having a positive electrode including a positive electrode active material and a negative electrode and an ion conductor including a negative electrode active material, wherein the positive electrode active material includes a lithium transition metal oxide of Formula 1 coated with lithium aluminum oxide It provides a lithium secondary battery, characterized in that made.

[화학식 1][Formula 1]

LixMaM'bM"cOd Li x M a M ' b M " c O d

(상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4,

M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn,

M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu,

M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.)

또한, 상기 정극은 도전재인 카본 블랙(Super P Black)을 더 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지을 제공한다.In addition, the positive electrode provides a lithium secondary battery, further comprising carbon black (Super P Black) as a conductive material.

또한, 상기 정극은 바인더인 폴리비닐리덴플로라이드(PVDF)를 더 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지을 제공한다.In addition, the positive electrode provides a lithium secondary battery, further comprising a polyvinylidene fluoride (PVDF) as a binder.

또한, 상기 이온전도체는 전해액 또는 고분자 전해질인 것을 특징으로 하는 리튬 이차 전지을 제공한다.In addition, the ion conductor provides a lithium secondary battery, characterized in that the electrolyte or polymer electrolyte.

또한, 상기 정극 활물질은 전술한 활물질인 것을 특징으로 하는 리튬 이차 전지을 제공한다.In addition, the positive electrode active material provides a lithium secondary battery, characterized in that the active material described above.

또한, 상기 정극 활물질은 전술한 제조방법으로 제조된 활물질인 것을 특징으로 하는 리튬 이차 전지를 제공한다.In addition, the positive electrode active material provides a lithium secondary battery, characterized in that the active material manufactured by the above-described manufacturing method.

이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

먼저, 본 발명에 따른 활물질을 설명한다.First, the active material according to the present invention will be described.

본 발명에 따른 활물질은, 산화리튬알루미늄(LiAlO2)이 코팅된 하기 화학식 1의 리튬전이금속산화물이 포함된 것을 특징으로 한다.The active material according to the present invention is characterized in that lithium aluminum oxide (LiAlO 2 ) is coated with a lithium transition metal oxide of the formula (1).

[화학식 1][Formula 1]

LixMaM'bM"cOd Li x M a M ' b M " c O d

(상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4,

M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn,

M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu,

M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.)

상기 화학식 1의 리튬전이금속산화물 표면에 산화리튬알루미늄을 코팅하여 전기화학적, 구조적인 성능 향상을 실현하였다. 상기 리튬전이금속산화물은 상기 화학식 1을 만족하는 물질이라면 제한되지 않고 본 발명에 포함되며 특히 상기 리튬전이금속산화물은 LiNi1 /3Mn1 /3Co1 /3O2 인 것이 바람직하다.Lithium aluminum oxide was coated on the surface of the lithium transition metal oxide of Chemical Formula 1 to realize electrochemical and structural performance improvement. The lithium transition metal oxide is included in the present invention is not limited if the material that satisfies the above formula (1) in particular the lithium-transition metal oxide is LiNi 1/3 Mn 1/3 Co 1/3 O 2 Is preferably.

상기 정극 활물질에서 산화리튬알루미늄의 코팅 함량은 제한되지 않으나 산화리튬알루미늄이 코팅된 상기 리튬전이금속산화물의 총중량의 0.1 ~ 5 중량% 포함 되는 것이 바람직하다. The coating content of lithium aluminum oxide in the positive electrode active material is not limited, but preferably 0.1 to 5% by weight of the total weight of the lithium transition metal oxide coated with lithium aluminum oxide.

상기 산화리튬알루미늄이 코팅된 상기 화학식 1의 리튬전이금속산화물의 산화리튬알루미늄 코팅 전구체로 알루미늄알콕사이드와 리튬히드록사이드를 사용하는 것이 바람직하며, 알루미늄알콕사이드의 일례로, 알루미늄이소프로폭사이드를 사용할 수 있다. It is preferable to use aluminum alkoxide and lithium hydroxide as the lithium aluminum oxide coating precursor of the lithium transition metal oxide of Formula 1 coated with lithium aluminum oxide. As an example of aluminum alkoxide, aluminum isopropoxide may be used. have.

본 발명에 따른 정극 활물질은 전술한 산화리튬알루미늄이 코팅된 상기 화학식 1의 리튬전이금속산화물 이외에도 본 발명의 기술분야에서 사용되는 정극 활물질을 혼합하여 사용할 수도 있으며 이도 본 발명에 포함된다. The positive electrode active material according to the present invention may be used by mixing the positive electrode active material used in the technical field of the present invention in addition to the lithium transition metal oxide of the above formula 1 coated with lithium aluminum oxide, which is also included in the present invention.

이하에서는 본 발명에 따른 정극 활물질의 제조방법을 설명한다. Hereinafter, a method of manufacturing the positive electrode active material according to the present invention will be described.

본 발명에 따른 정극 활물질의 제조방법은, 알루미늄알콕사이드, 리튬히드록사이드를 용제에 첨가하여 코팅액을 제조하는 단계, 상기 코팅액과 하기 화학식 1의 리튬전이금속산화물을 혼합하여 혼합물을 제조하는 단계, 및 상기 혼합물을 열처리하여 상기 리튬전이금속산화물에 산화리튬알루미늄을 코팅하는 단계를 포함하여 이루어지는 것을 특징으로 한다.Method for producing a positive electrode active material according to the present invention comprises the steps of preparing a coating solution by adding aluminum alkoxide and lithium hydroxide to the solvent, mixing the coating solution and the lithium transition metal oxide of the formula (1) to prepare a mixture, and And heat-treating the mixture to coat lithium aluminum oxide on the lithium transition metal oxide.

이하 제조 수순으로 구체적 일례를 들어 상술한다.A specific example is given to the following with the manufacturing procedure, and is explained in full detail.

먼저, 산화리튬알루미늄의 전구체로 사용되는 알루미늄알콕사이드를 용제에 녹이고, 리튬히드록사이드를 첨가하여 코팅액을 제조한다. 보다 원활히 알루미늄알콕사이드를 녹이기 위해 유기용매를 50℃ 정도로 가열하고 마그네틱 바를 이용하여 교반하여 녹이는 것이 좋다. 리튬히드록사이드는 알루미늄 알콕사이드와 동일한 몰 수를 첨가하는 것이 좋다.First, an aluminum alkoxide used as a precursor of lithium aluminum oxide is dissolved in a solvent, and lithium hydroxide is added to prepare a coating solution. In order to more smoothly dissolve the aluminum alkoxide, the organic solvent may be heated to about 50 ° C. and stirred by using a magnetic bar to dissolve it. Lithium hydroxide is preferably added in the same mole number as aluminum alkoxide.

상기 알루미늄알콕사이드의 알콕사이드는 탄소수 1~7의 범위내가 바람직하며 특히 알루미늄이소프로폭사이드가 가장 바람직하다. 상기 용제는 알루미늄알콕사이드를 용해할 수 있는 용매라면 제한되지 않고 선택될 수 있으며, 바람직하기로는 물, 특히 증류수를 사용하는 것이 좋다. The alkoxide of the aluminum alkoxide is preferably in the range of 1 to 7 carbon atoms, particularly preferably aluminum isopropoxide. The solvent may be selected without limitation as long as it is a solvent capable of dissolving aluminum alkoxide, preferably water, in particular distilled water is preferably used.

다음, 상기 제조된 코팅액과 상기 화학식 1의 리튬전이금속산화물을 혼합하여 혼합물을 제조한다. 상기 코팅액에 상기 리튬전이금속산화물을 넣어 잘 혼합되도록 교반한다. 졸(Sol) 형태가 되도록 만드는 것이 좋다.Next, a mixture is prepared by mixing the prepared coating solution with the lithium transition metal oxide of Formula 1. The lithium transition metal oxide is added to the coating solution and stirred to mix well. It is a good idea to make it into a Sol form.

필요에 따라, 상기 혼합물을 제조한 후에 80 ~ 150 ℃에서 건조시키는 단계를 더 포함할 수 있다.If necessary, after the preparation of the mixture may further comprise the step of drying at 80 ~ 150 ℃.

다음, 상기 혼합물을 열처리하여 상기 리튬전이금속산화물에 산화리튬알루미늄을 코팅한다. 열처리 온도는, 제한되지 않으나 400 ~ 1000 ℃, 특히 600 ℃에서 열처리하는 것이 바람직하다. 상기 열처리 시간은 제한되지 않으며 산화리튬알루미늄 코팅이 충분히 될 수 있도록 하며 1 ~ 7시간 수행하는 것이 바람직하다.Next, the mixture is heat-treated to coat lithium aluminum oxide on the lithium transition metal oxide. The heat treatment temperature is not limited but is preferably heat treated at 400 to 1000 ° C, especially 600 ° C. The heat treatment time is not limited, and the lithium aluminum oxide coating may be sufficiently performed, preferably performed for 1 to 7 hours.

상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물의 총중량에서 산화리튬알루미늄이 0.1 ~ 5 중량% 포함되도록 알루미늄알콕사이드, 리튬히드록사이드와 리튬전이금속산화물의 양을 조절하는 것이 바람직하다.It is preferable to adjust the amount of aluminum alkoxide, lithium hydroxide and lithium transition metal oxide so that lithium aluminum oxide is coated with 0.1 to 5% by weight in the total weight of the lithium transition metal oxide coated with lithium aluminum oxide.

상기의 과정을 통해 제조된 본 발명의 일실시예에 따른 산화리튬알루미늄이 코팅된 리튬전이금속산화물을 포함한 정극 활물질의 전기화학적, 물리적 특성을 측정하였으며 그 측정결과를 후술할 실시예 및 실험예에서 보다 상세하게 설명한다.The electrochemical and physical properties of the positive electrode active material including a lithium transition metal oxide coated with lithium aluminum oxide according to an embodiment of the present invention prepared by the above process was measured and the measurement results in Examples and Experimental Examples to be described later. It demonstrates in more detail.

이하에서는, 본 발명의 일실시예에 따른 정극 활물질을 구비한 리튬 이차 전지를 상세히 설명한다.Hereinafter, a lithium secondary battery having a positive electrode active material according to an embodiment of the present invention will be described in detail.

본 발명에 따른 정극 활물질을 구비한 리튬 이차 전지는, 정극 활물질을 포함하는 정극과 부극 활물질을 포함하는 부극 및 이온전도체를 구비한 리튬 이차 전지에 있어서, 상기 정극 활물질은 산화리튬알루미늄이 코팅된 상기 화학식 1의 리튬전이금속산화물을 포함하여 이루어진 것을 특징으로 한다. 상기 정극 활물질은 전술한 본 발명에 따른 정극 활물질을 적용할 수 있으며, 또한 전술한 제조방법에 의해 제조된 정극 활물질일 수 있다.A lithium secondary battery having a positive electrode active material according to the present invention is a lithium secondary battery having a positive electrode including a positive electrode active material and a negative electrode and an ion conductor containing a negative electrode active material, wherein the positive electrode active material is coated with lithium aluminum oxide Characterized in that it comprises a lithium transition metal oxide of the formula (1). The positive electrode active material may apply the positive electrode active material according to the present invention described above, and may also be a positive electrode active material prepared by the above-described manufacturing method.

본 발명의 일실시예에 따른 리튬 이차 전지는 전술한 정극 활물질 이외에도 본 발명의 기술분야에서 알려진 정극 활물질을 더 포함하여 이루어질 수 있다. The lithium secondary battery according to an embodiment of the present invention may further include a cathode active material known in the art, in addition to the above-described cathode active material.

도 2은 본 발명의 실시 형태인 리튬 이차 전지(1)를 나타낸 것이다. 리튬 이차 전지(1)는 부극(2), 정극(3), 상기 부극(2)과 정극(3) 사이에 배치된 세퍼레이터(4), 상기 부극(2), 정극(3) 및 세퍼레이터(4)에 함침된 이온전도체와, 전지 용기(5)와, 전지 용기(5)를 봉입하는 봉입부재(6)를 주된 부분으로 하여 구성되어 있다. 도 2에 도시된 리튬 이차 전지의 형태는 원통형이나 이외에 원통형, 각형, 코인형, 또는 쉬트형 등의 다양한 형상으로 될 수 있다.2 shows a lithium secondary battery 1 which is an embodiment of the present invention. The lithium secondary battery 1 includes a negative electrode 2, a positive electrode 3, a separator 4 disposed between the negative electrode 2 and the positive electrode 3, the negative electrode 2, a positive electrode 3, and a separator 4. ), The ion conductor impregnated in the ()), the battery container (5), and the sealing member (6) for sealing the battery container (5) as a main portion. The shape of the lithium secondary battery illustrated in FIG. 2 may be in the form of a cylinder, in addition to various shapes such as a cylinder, a square, a coin, or a sheet.

상기 정극(3)은 정극 활물질, 도전재 및 바인더로 이루어진 정극 합제를 구비하여 된 것이다. 정극 활물질은 본 발명에 따른 정극 활물질을 사용할 수 있으며 충분히 전술하였으므로 생략한다. 상기 도전재로는 카본 블랙(Super P Black)을 사용하며, 바인더로는 폴리비닐리덴플로라이드(PVDF)를 사용하는 것이 좋다.The said positive electrode 3 is equipped with the positive mix which consists of a positive electrode active material, a electrically conductive material, and a binder. As the positive electrode active material, the positive electrode active material according to the present invention can be used, and since it has been described above sufficiently, it is omitted. Carbon black (Super P Black) is used as the conductive material, and polyvinylidene fluoride (PVDF) is preferably used as the binder.

상기 부극(2)은 활물질, 도전재 및 바인더로 이루어진 전극합제를 구비하여 된 것이다. 부극 활물질로는 제한되지 않으나 리튬금속, 탄소 또는 흑연 등이 있다. 다만, 상기 활물질로 본 발명이 제한되지 않으며 본 기술분야에서 사용될 수 있는 활물질은 모두 본 발명에 포함된다.The negative electrode 2 is provided with an electrode mixture composed of an active material, a conductive material and a binder. Examples of the negative electrode active material include, but are not limited to, lithium metal, carbon, graphite, and the like. However, the present invention is not limited to the active material and all active materials that can be used in the art are included in the present invention.

세퍼레이터(4)로는 제한되지 않으나 폴리에틸렌, 폴리프로필렌 등의 올레핀계 다공질 필름을 사용할 수 있다.Although not limited to the separator 4, olefin porous films, such as polyethylene and a polypropylene, can be used.

상기 이온전도체는, 전해액으로 프로필렌 카보네이트(이하, PC), 에틸렌 카보네이트(이하 EC), 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸 테트라히드로퓨란, γ-부티로락톤, 디옥솔란, 4-메틸디옥솔란, N,N-디메틸포름아미드, 디메틸아세토아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸 카보네이트(이하, DMC), 에틸메틸 카보네이트(이하, EMC), 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸이소프로필 카보네이트, 에틸부틸 카보네이트, 디프로필 카보네이트, 디이소프로필카보네이트, 디부틸 카보네이트, 디에틸렌글리콜, 디메틸에테르 등의 비프로톤성 용매, 또는 이들 용매 중 2종 이상을 혼합한 혼합 용매에, LiCF3SO3, Li(CF3SO2)2, LiPF6 , LiBF4, LiClO4, LiN(SO2C2F5)2 등의 리튬염으로 이루어진 전해질 1종 또는 2종 이상을 혼합시킨 것을 용해한 것을 사용할 수 있다.The ion conductor may be propylene carbonate (hereinafter referred to as PC), ethylene carbonate (hereinafter referred to as EC), butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, γ-butyrolactone, dioxane, and the like. Solan, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetoamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate ( Hereinafter, DMC), ethyl methyl carbonate (hereinafter EMC), diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 , LiPF 6 , LiBF 4 , LiClO 4 , LiN (S) in an aprotic solvent such as or a mixed solvent of two or more of these solvents mixed. O 2 C 2 F 5) may be used that prepared by dissolving a mixture of the electrolyte alone or in combination of two or more made of a lithium salt of 2, and so on.

또한 상기 전해액 대신에 고분자 고체 전해질을 사용하여도 좋으며, 이 경우는 리튬이온에 대한 이온도전성이 높은 고분자를 사용하는 것이 바람직하고, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리에틸렌이민 등을 사용할 수 있고, 또한 이것의 고분자에 상기 용매와 용질을 첨가하여 겔상으로 한 것을 사용할 수도 있다.In addition, a polymer solid electrolyte may be used instead of the electrolyte solution. In this case, it is preferable to use a polymer having high ion conductivity with respect to lithium ions, and polyethylene oxide, polypropylene oxide, polyethyleneimine and the like can be used. The solvent and the solute may be added to the polymer of to form a gel.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기의 실시 예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.

<실시예 1><Example 1>

활물질의 제조Preparation of Active Material

LiNi1 /3Mn1 /3Co1 /3O2 리튬전이금속산화물 표면에 LiAlO2를 코팅하기 위해, 0.9g의 알루미늄 이소프로폭사이드(Aluminum isopropoxide)를 20ml의 증류수에 넣고 상온에서 1시간 가량 교반하여 완전히 용해시킨다. 알루미늄 이소프로폭사이드와 동일 몰비로 반응시키기 위해 리튬히드록사이드 0.185g을 상기 용액에 첨가하여 코팅액을 완성한다. 30g의 상기 리튬전이금속산화물이 담긴 도가니에 만들어진 코팅액을 넣고 잘 섞어주고 120℃의 오븐에서 잘 건조시킨 다음 600℃에서 3시간동안 열처리하여 코팅을 완료하여 활물질을 제조한다. LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition to coat a LiAlO 2 in the metal oxide surface, place the aluminum isopropoxide (Aluminum isopropoxide) of 0.9g in 20ml of distilled water for about 1 hour at room temperature Stir and dissolve completely. To react with aluminum isopropoxide in the same molar ratio, 0.185 g of lithium hydroxide is added to the solution to complete the coating solution. Put the coating solution made in a crucible containing 30g of the lithium transition metal oxide, mix well, dry well in an oven at 120 ° C., and heat-treat at 600 ° C. for 3 hours to prepare an active material.

<실험예 1> 정극 활물질의 특성 분석Experimental Example 1 Characterization of the Positive Electrode Active Material

재료의 결정 구조 특성은 X-선 회절분석기(X-ray diffractometer, XRD)를 사용하였으며 PHILIPS사의 PW1830 모델을 사용하였고, 재료의 표면 형상은 FE-SEM(Scanning Electron Microscope), HITACHI사의 S-4800 모델을 사용하였다. The crystal structure of the material was determined by X-ray diffractometer (XRD) and PHILIPS PW1830 model. The surface shape of the material was FE-SEM (Scanning Electron Microscope) and HITACHI S-4800 model. Was used.

실험결과는 다음과 같다.The experimental results are as follows.

도 2는 XRD 분석결과를 나타낸 것으로, 산화리튬알루미늄으로 코팅된 리튬전이금속산화물과 코팅되지 않은 리튬전이금속산화물의 XRD 패턴을 보여준다.Figure 2 shows the XRD analysis results, it shows the XRD pattern of lithium transition metal oxide and lithium coating metal oxide coated with lithium aluminum oxide.

도 3a 및 3b는 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 리튬전이금속산화물의 SEM 사진을 도시한 도이며, 도 4a 및 4b는 3 중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2의 SEM 사진을 나타낸 도이며, 도 5a 및 5b는 5 중량% 산화리튬알루미늄이 코팅된 LiNi1 /3Mn1 /3Co1 /3O2의 SEM 사진을 나타낸 도이다. SEM 분석결과 코팅되지 않은 물질(bare material)은 나노크기의 주입자들이 구형으로 뭉쳐져 있는 상태를 확인할 수 있었다. 3 중량% 산화리튬알루미늄이 코팅된 활물질은 코팅되기 전의 활물질에 부분적으로 산화리튬알루미늄이 코팅되어 있는 형태를 띄었다. 한편, 5 중량% 산화알루미튬이 코팅된 리튬전이금속산화물은 균일하게 LiNi1 /3Mn1 /3Co1 /3O2 리튬전이금속산화물을 감싸고 있는 모습을 확인할 수 있었다. Figures 3a and 3b are uncoated LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition a diagram showing a SEM photograph of a metal oxide, 4a and 4b of the 3% lithium oxide aluminum weight coating LiNi 1/3 Mn 1/3 a diagram showing a SEM photograph of a Co 1/3 O 2, Figures 5a and 5b is 5% by weight of the oxidized lithium aluminum coating of LiNi 1/3 Mn 1/3 Co 1/3 O 2 It is a figure which shows SEM photograph. As a result of SEM analysis, the bare material was found to be in the form of spherical nano-injectors. The active material coated with 3 wt% lithium aluminum oxide was partially coated with lithium aluminum oxide on the active material before coating. On the other hand, the lithium transition metal oxide is 5% by weight lithium-aluminum oxide coated silver was confirmed in a state uniformly LiNi 1/3 Mn 1/3 Co 1/3 O 2 lithium transition metal surrounding the oxide.

<실시예 2> 리튬이차전지의 제조Example 2 Fabrication of Lithium Secondary Battery

본 발명에 따른 산화리튬알루미늄이 코팅된 리튬전이금속산화물 정극 활물질의 전기화학적 특성을 실험하기 위한 전지의 제조는 다음과 같다. 2032규격의 코인셀(coin cell)을 구성하여 평가하였다. Fabrication of a battery for experimenting the electrochemical characteristics of the lithium aluminum oxide-coated lithium transition metal oxide positive electrode active material according to the present invention is as follows. A 2032 standard coin cell was constructed and evaluated.

상기의 방법으로 코팅되어 제조된 정극 활물질을 적용하여 극판을 만들고 이를 이용하여 코인셀을 제작하였다. 도전재와 바인더로는 Super-P Black과 폴리비닐 리덴플로라이드(PVDF)를 각각 사용하였다. 정극활물질:도전재:바인더는 86:8:6 의 조성으로 실험을 진행하였다. 전극을 제작하는데 총 10g의 합제를 만든다고 할 때 실험순서는 다음과 같다. Coated cells were fabricated using the positive electrode active material coated and prepared by the above method, and using the same, to manufacture a coin cell. Super-P Black and polyvinylidene fluoride (PVDF) were used as the conductive material and the binder, respectively. The positive electrode active material: conductive material: binder was tested with the composition of 86: 8: 6. In order to make a total of 10g of mixture to make the electrode, the experimental sequence is as follows.

먼저 0.6g의 바인더에 10ml의 N-메틸-2-피롤리돈(NMP)를 넣고 컨디셔닝 믹서(conditioning mixer)로 20분간 교반하여 바인더 용액을 만든다. 상기 활물질 8.6g에 도전재 0.8g을 넣어 가볍게 저어준 후 미리 만들어둔 바인더 용액에 넣고 점도를 확인해가며 N-메틸-2-피롤리돈(NMP)를 8~10ml 정도 추가하고 컨디셔닝 믹서로 1시간 가량 교반한다. 유리판위에 알루미늄 집전체를 깔고 이렇게 만들어진 슬러리(slurry)를 전극 캐스팅(casting)용 전산을 이용하여 캐스팅하고 100℃에서 오버나잇(overnight) 조건으로 건조시킨다. 건조된 전극은 120℃의 롤압착기( roll press machine)로 20~25%의 압착률로 압착시켜 전극을 완성한다. First, 10 ml of N-methyl-2-pyrrolidone (NMP) is added to 0.6 g of a binder and stirred for 20 minutes using a conditioning mixer to prepare a binder solution. 0.8 g of the conductive material was added to 8.6 g of the active material, and the mixture was stirred in a binder solution prepared beforehand. Then, 8 to 10 ml of N-methyl-2-pyrrolidone (NMP) was added to the binder solution. Stir about. An aluminum current collector is placed on a glass plate, and the slurry thus produced is cast using a computer for electrode casting, and dried at 100 ° C. in an overnight condition. The dried electrode is pressed at a compression rate of 20-25% with a roll press machine at 120 ° C. to complete the electrode.

상기 제작된 전극으로 코인셀을 제작하였다. 코인셀은 2032규격을 사용하였으며 상기 제작된 전극을 정극으로 하고, 부극으로는 리튬 메탈을 사용하였고 전해질(electrolyte)은 1.1M LiPF6, EC/PC/DMC/EMC/DEC(30/10/10/30/20)를 사용하였다. A coin cell was manufactured using the prepared electrode. Coin cell was used as a standard 2032, the electrode was used as a positive electrode, lithium metal was used as a negative electrode and the electrolyte (electrolyte) 1.1M LiPF6, EC / PC / DMC / EMC / DEC (30/10/10 / 30/20).

<실험예 2> 리튬이차전지의 특성 분석Experimental Example 2 Characterization of the Lithium Secondary Battery

상기 제조된 리튬이차전지의 특성을 종래에 알려진 방법으로 분석하였으며, 충방전기는 TOYO사의 TOSCAT-3100U 모델을 사용하여 실험을 진행하였다.The characteristics of the manufactured lithium secondary battery were analyzed by a conventionally known method, and the charger / discharger was tested using a TOOS TOSCAT-3100U model.

도 6은 산화리튬알루미늄이 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질을 사용한 리튬이차전지의 율별방전 특성을 나타낸 도이며, 도 7은 3중량% 산화리튬알루미늄이 코팅된 LiNi1 /3Mn1 /3Co1 /3O2 활물질을 사용한 리튬이차전지의 율별방전 특성을 나타낸 것이다. 0.2C 대비 2C 방전율에서의 용량유지비율은 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질의 경우 약 86.9%이나, 3 중량% 산화리튬알루미늄이 코팅된 LiNi1/3Mn1/3Co1/3O2 활물질의 경우 89.4%로 향상되었다. 6 is a non-oxide of lithium aluminum coating LiNi 1/3 Mn 1/3 Co 1/3 O is a diagram showing the yulbyeol discharge characteristics of the lithium secondary battery using a second active material, 7 is a 3% by weight of lithium oxide aluminum coating the yulbyeol shows the discharge characteristics of LiNi 1/3 Mn 1/3 Co 1/3 O 2, a lithium secondary battery using the active material. Capacity retention rate at 0.2C compared to 2C discharge rate uncoated LiNi 1/3 Mn 1/3 Co 1/3 O 2 active material is about 86.9%, or 3% by weight of the oxide coated lithium aluminum LiNi 1/3 Mn for In the case of 1/3 Co 1/3 O 2 active material, it was improved to 89.4%.

도 8은 산화리튬알루미늄이 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질을 사용한 리튬이차전지의 사이클수명 특성을 나타낸 도이며, 도 9는 3 중량% 산화리튬알루미늄이 코팅된 LiNi1 /3Mn1 /3Co1 /3O2 활물질의 사이클수명 특성을 나타낸 것이다. 30 사이클의 충방전 후 코팅되지 않은 LiNi1 /3Mn1 /3Co1 /3O2 활물질의 경우 약 93.5%의 용량유지율을 나타내나, 3 중량% 산화리튬알루미늄이 코팅된 LiNi1 /3Mn1 /3Co1 /3O2 활물질의 경우 98.5%로 향상되었다. 8 is a non-oxide of lithium aluminum coating LiNi 1/3 Mn 1/3 Co 1/3 O is a diagram showing the cycle life characteristics of the lithium secondary battery using a second active material, 9 to 3% by weight of lithium oxide aluminum coating a it shows the cycle life characteristics of LiNi 1/3 Mn 1/3 Co 1/3 O 2 active material. Uncoated and then charging and discharging of 30 cycles of LiNi 1/3 Mn 1/3 Co 1/3 O 2 , if the active material or indicate the capacity maintenance rate of about 93.5%, and 3% by weight of the oxidized lithium aluminum coating LiNi 1/3 Mn 1/3 of the Co 1/3 O 2 active material was improved to 98.5%.

본 발명에 따른 활물질 및 리튬 이차 전지는, 물리적 특성 및 전기 화학적 특성을 분석한 결과, 고율특성 및 사이클 수명이 우수하며, 본 발명에 따른 활물질의 제조방법은 고에너지밀도 전지를 용이하게 제작할 수 있는 방법을 제공하므로 산업적으로 유용하다.The active material and the lithium secondary battery according to the present invention, as a result of analyzing the physical properties and electrochemical properties, excellent in the high rate characteristics and cycle life, the method of manufacturing the active material according to the present invention can easily produce a high energy density battery It is industrially useful because it provides a method.

Claims (19)

산화리튬알루미늄(LiAlO2)이 코팅된 하기 화학식 1의 리튬전이금속산화물이 포함된 활물질.Lithium aluminum oxide (LiAlO 2 ) is coated with an active material containing a lithium transition metal oxide of the formula (1). [화학식 1][Formula 1] LixMaM'bM"cOd Li x M a M ' b M " c O d (상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4, M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn, M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu, M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.) 제1항에 있어서, 상기 화학식 1의 리튬전이금속산화물은 LiNi1 /3Mn1 /3Co1 /3O2 인 것을 특징으로 하는 활물질.The method of claim 1, wherein the lithium transition metal oxide of Formula 1 is LiNi 1/3 Mn 1/3 Co 1/3 O 2 It is an active material characterized by the above-mentioned. 제1항에 있어서, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물 총중량에서 산화리튬알루미늄은 0.1 ~ 5 중량% 포함되는 것을 특징으로 하는 활물질.The active material according to claim 1, wherein the lithium aluminum oxide is contained in an amount of 0.1 to 5 wt% based on the total weight of the lithium transition metal oxide coated with lithium aluminum oxide. 제1항에 있어서, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물은 알루미늄알콕사이드, 리튬하이드록사이드와 상기 리튬전이금속산화물을 혼합한 후 열처리하여 얻어지는 것을 특징으로 하는 활물질.The active material according to claim 1, wherein the lithium transition metal oxide coated with lithium aluminum oxide is obtained by mixing an aluminum alkoxide, lithium hydroxide, and the lithium transition metal oxide, followed by heat treatment. 제4항에 있어서, 상기 알루미늄알콕사이드는 알루미늄이소프로폭사이드(Aluminum isopropoxide)인 것을 특징으로 하는 활물질.The active material according to claim 4, wherein the aluminum alkoxide is aluminum isopropoxide. 알루미늄알콕사이드, 리튬하이드록사이드를 용제에 첨가하여 코팅액을 제조하는 단계;Preparing a coating solution by adding aluminum alkoxide and lithium hydroxide to a solvent; 상기 코팅액과 하기 화학식 1의 리튬전이금속산화물을 혼합하여 혼합물을 제조하는 단계; 및Preparing a mixture by mixing the coating solution with a lithium transition metal oxide of Formula 1; And 상기 혼합물을 열처리하여 상기 리튬전이금속산화물에 산화리튬알루미늄을 코팅하는 단계;를 포함하여 이루어지는 활물질 제조방법.And heat-treating the mixture to coat lithium aluminum oxide on the lithium transition metal oxide. [화학식 1][Formula 1] LixMaM'bM"cOd Li x M a M ' b M " c O d (상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4, M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn, M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu, M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.) 제6항에 있어서, 상기 알루미늄알콕사이드는 알루미늄이소프로폭사이드인 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the aluminum alkoxide is aluminum isopropoxide. 제6항에 있어서, 상기 용제는 물인 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the solvent is water. 제6항에 있어서, 상기 혼합물은 졸(Sol) 형태로 만들어지는 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the mixture is made in the form of a sol. 제6항에 있어서, 상기 혼합물을 제조한 후에 80 ~ 150 ℃에서 건조시키는 단계를 더 포함하는 것을 특징으로 하는 활물질 제조방법.The method of claim 6, further comprising drying the mixture at 80 to 150 ° C. after the preparation of the mixture. 제6항에 있어서, 상기 열처리하는 단계는 400 ~ 1000 ℃ 범위내에서 열처리하는 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the heat treatment comprises heat treatment within a range from 400 to 1000 ° C. 8. 제6항에 있어서, 상기 열처리는 1 ~ 7시간 수행하는 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the heat treatment is performed for 1 to 7 hours. 제6항에 있어서, 상기 산화리튬알루미늄이 코팅된 리튬전이금속산화물의 총중량에서 산화리튬알루미늄이 0.1 ~ 5 중량% 포함되는 것을 특징으로 하는 활물질 제조방법.The method of claim 6, wherein the lithium aluminum oxide is coated with lithium aluminum oxide in an amount of 0.1 to 5 wt% based on the total weight of the lithium transition metal oxide. 정극 활물질을 포함하는 정극과 부극 활물질을 포함하는 부극 및 이온전도체 를 구비한 리튬 이차 전지에 있어서, In the lithium secondary battery provided with a positive electrode containing a positive electrode active material, the negative electrode containing a negative electrode active material, and an ion conductor, 상기 정극 활물질은 산화리튬알루미늄이 코팅된 하기 화학식 1의 리튬전이금속산화물을 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지.The positive electrode active material is a lithium secondary battery comprising a lithium transition metal oxide of the general formula (1) coated with lithium aluminum oxide. [화학식 1][Formula 1] LixMaM'bM"cOd Li x M a M ' b M " c O d (상기 식에서, 0.5≤x≤1, 0≤a≤1, 0<b≤1, 0≤c≤1, 0.5≤d≤4 이고,(Wherein, 0.5≤x≤1, 0≤a≤1, 0 <b≤1, 0≤c≤1, 0.5≤d≤4, M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 원소이고,M is an element selected from the group consisting of Ni, Co and Mn, M'는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 로 이루어지는 군에서 선택되는 원소이고,M 'is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu, M"는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu로 이루어지는 군에서 선택되는 원소이다.)M "is an element selected from the group consisting of Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu.) 제14항에 있어서, 상기 정극은 도전재인 카본 블랙(Super P Black)을 더 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery according to claim 14, wherein the cathode further comprises carbon black (Super P Black) as a conductive material. 제14항에 있어서, 상기 정극은 바인더인 폴리비닐리덴플로라이드(PVDF)를 더 포함하여 이루어진 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery according to claim 14, wherein the positive electrode further comprises polyvinylidene fluoride (PVDF) as a binder. 제14항에 있어서, 상기 이온전도체는 전해액 또는 고분자 전해질인 것을 특징으로 하는 리튬 이차 전지. The lithium secondary battery of claim 14, wherein the ion conductor is an electrolyte or a polymer electrolyte. 제14항에 있어서, 상기 정극 활물질은 제2항 내지 제5항 중 어느 한 항의 정극 활물질인 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery according to claim 14, wherein the positive electrode active material is the positive electrode active material of any one of claims 2 to 5. 제14항에 있어서, 상기 정극 활물질은 제6항 내지 제13항 중 어느 한 항의 제조방법으로 제조된 정극 활물질인 것을 특징으로 하는 리튬 이차 전지.The lithium secondary battery according to claim 14, wherein the positive electrode active material is a positive electrode active material manufactured by the manufacturing method of claim 6.
KR1020060032715A 2006-04-11 2006-04-11 Active material, manufacturing method thereof and lithium secondary battery comprising the same KR100743982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060032715A KR100743982B1 (en) 2006-04-11 2006-04-11 Active material, manufacturing method thereof and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060032715A KR100743982B1 (en) 2006-04-11 2006-04-11 Active material, manufacturing method thereof and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
KR100743982B1 true KR100743982B1 (en) 2007-08-01

Family

ID=38601362

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060032715A KR100743982B1 (en) 2006-04-11 2006-04-11 Active material, manufacturing method thereof and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR100743982B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923442B1 (en) 2007-08-01 2009-10-27 주식회사 엘 앤 에프 New cathode active material
CN107706390A (en) * 2017-10-10 2018-02-16 长沙理工大学 Preparation method of fast ion conductor and conductive polymer dual-modified lithium ion battery ternary positive electrode material
CN110380037A (en) * 2019-07-24 2019-10-25 中南大学 A kind of anode material for lithium-ion batteries and preparation method that reaction infiltration is modified
US10868300B2 (en) 2013-11-27 2020-12-15 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including the same
CN112928252A (en) * 2021-01-22 2021-06-08 中国科学院过程工程研究所 Sodium-ion battery positive electrode material and preparation method and application thereof
CN113363475A (en) * 2021-03-23 2021-09-07 万向一二三股份公司 Preparation method of cobalt-free high-nickel magnesium-doped layered positive electrode material
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036283A (en) * 2000-11-09 2002-05-16 김순택 Lithium secondary battery
KR20030093166A (en) * 2003-11-18 2003-12-06 선양국 Cathod material for Lithium second battery of which surface is processed and manufacturing method thereof
KR20050000353A (en) * 2003-06-23 2005-01-03 주식회사 엘지화학 Method for the synthesis of surface-modified materials
KR20060051055A (en) * 2004-09-24 2006-05-19 주식회사 엘지화학 Composition precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036283A (en) * 2000-11-09 2002-05-16 김순택 Lithium secondary battery
KR20050000353A (en) * 2003-06-23 2005-01-03 주식회사 엘지화학 Method for the synthesis of surface-modified materials
KR20030093166A (en) * 2003-11-18 2003-12-06 선양국 Cathod material for Lithium second battery of which surface is processed and manufacturing method thereof
KR20060051055A (en) * 2004-09-24 2006-05-19 주식회사 엘지화학 Composition precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923442B1 (en) 2007-08-01 2009-10-27 주식회사 엘 앤 에프 New cathode active material
US10868300B2 (en) 2013-11-27 2020-12-15 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including the same
CN107706390A (en) * 2017-10-10 2018-02-16 长沙理工大学 Preparation method of fast ion conductor and conductive polymer dual-modified lithium ion battery ternary positive electrode material
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
CN110380037A (en) * 2019-07-24 2019-10-25 中南大学 A kind of anode material for lithium-ion batteries and preparation method that reaction infiltration is modified
CN110380037B (en) * 2019-07-24 2022-06-10 中南大学 Reaction infiltration modified lithium ion battery positive electrode material and preparation method thereof
CN112928252A (en) * 2021-01-22 2021-06-08 中国科学院过程工程研究所 Sodium-ion battery positive electrode material and preparation method and application thereof
CN113363475A (en) * 2021-03-23 2021-09-07 万向一二三股份公司 Preparation method of cobalt-free high-nickel magnesium-doped layered positive electrode material
CN113363475B (en) * 2021-03-23 2022-05-13 万向一二三股份公司 Preparation method of cobalt-free high-nickel magnesium-doped layered positive electrode material

Similar Documents

Publication Publication Date Title
KR101042009B1 (en) Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
KR20070066453A (en) Positive electrode active material, manufacturing method thereof and lithium secondary battery comprising the same
KR101463114B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
US20080081258A1 (en) Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
KR101939142B1 (en) ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
EP1609201A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
EP2784853B1 (en) Lithium transistion metal titanate with a spinel structure, method for its manufacturing, its use, Li-ion cell and battery
KR100743982B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
Kosilov et al. Effect of overdischarge (overlithiation) on electrochemical properties of LiMn 2 O 4 samples of different origin
KR20040080932A (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
KR100824931B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
KR100788257B1 (en) Lithium secondary battery comprising electrode composition for high voltage
KR100698372B1 (en) Manufacturing Mathod of Negative Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
JP3111927B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR102253763B1 (en) Manufacturing method of solid-state composite electrolyte membrane for secondary battery having compact structure
JP2002175836A (en) Nonaqueous electrolyte battery
KR100814329B1 (en) Negative active material, manufacturing method thereof and lithium secondary battery comprising the same
KR100836515B1 (en) Lithium secondary battery comprising an electrolyte for high voltage
KR100743053B1 (en) Negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
Xu et al. Oxalate co-precipitation synthesis of LiNi0. 45Cr0. 05Mn1. 5O4/Ag composite for lithium-ion batteries
TWI857380B (en) Positive electrode active material for lithium electronic battery, lithium battery and method of manufacturing the same
KR102254814B1 (en) Method of preparing secondary battery and secondary battery thereby

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130717

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160726

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 13