JP4365633B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4365633B2
JP4365633B2 JP2003192245A JP2003192245A JP4365633B2 JP 4365633 B2 JP4365633 B2 JP 4365633B2 JP 2003192245 A JP2003192245 A JP 2003192245A JP 2003192245 A JP2003192245 A JP 2003192245A JP 4365633 B2 JP4365633 B2 JP 4365633B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
lithium secondary
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003192245A
Other languages
Japanese (ja)
Other versions
JP2005026157A (en
Inventor
勉 橋本
祐一 藤岡
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003192245A priority Critical patent/JP4365633B2/en
Publication of JP2005026157A publication Critical patent/JP2005026157A/en
Application granted granted Critical
Publication of JP4365633B2 publication Critical patent/JP4365633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器に搭載されたり、貯蔵用蓄電池として使用されたりするリチウム二次電池に関する。
【0002】
【従来の技術】
近年、高エネルギー密度を有し、自己放電が少なく、軽量にできることからリチウム二次電池が広く普及している。図2に、いわゆるコイン型リチウム二次電池の基本構造を示す。このリチウム二次電池10は、負極電極3と、正極電極4と、負極電極3と正極電極4との間に配置されたセパレータ6とを有し、これらが、リチウム塩が溶解された非水電解液溶媒に接して概略構成されている。
このリチウム二次電池10においては、ステンレス等からなる略扁平円筒状の電池ケース1に、負極電極3とセパレータ6と正極電極4とが順次積層され、その上にステンレス等からなる封口板2が配置され、さらに電池ケース1と封口板2との間にポリプロピレンからなる円環状のガスケット7が配置されている。そして、電池ケース1の上端部分を内部にカシメてガスケット7および封口板2が固定されている。
また、セパレータ6と、正極電極4および負極電極3との間にはガラスウール濾紙5,5が挿入されている。
非水電解液溶媒は、正極電極4、負極電極3、セパレータ6およびガラスウール濾紙5,5に含浸されている。
【0003】
図3に、このリチウム二次電池10の要部拡大図を示す。このリチウム二次電池10において、正極電極4は、リチウム含有遷移金属酸化物などの少なくとも1種の正極活物質11,11・・・を含有しているとともに、セパレータ6側の面とは反対側の面に、アルミ箔などの正極集電材12が積層されている。また、負極電極3は、負極活物質として炭素材料を主成分として含有しているとともに、セパレータ6側の面とは反対側の面に、銅箔などの負極集電材13が積層されている。ここで、負極電極3としては、例えば、黒鉛材料を使用することができる(例えば、特許文献1参照)。
【0004】
ところで、リチウム二次電池は、搭載される機器の高性能化などに伴って、さらなる高性能化が要求されており、例えば、大容量化が求められている。そこで、リチウム二次電池を大容量化することを目的として、負極電極に金属リチウムあるいはその合金を使用することが検討されている。
【0005】
【特許文献1】
特開2002−050403号公報(特許請求の範囲、図1)
【0006】
【発明が解決しようとする課題】
しかしながら、金属リチウムあるいはその合金からなる負極電極は、充放電に伴う膨張収縮の際の厚み変化が大きいので、電池が変形することがあった。また、充放電を繰り返していくうちに、針状結晶であるリチウムデンドライトが生成し、さらにこれが成長して、電極内で内部短絡を起こすなどの問題があった。
本発明は、前記事情を鑑みてなされたものであり、電池の変形を防止でき、内部短絡を起こさずに、大容量化できるリチウム二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のリチウム二次電池は、無機化合物粉体が含まれる負極電極を具備することを特徴としている。リチウム二次電池に具備される負極電極が無機化合物粉体を含むことで、充放電に伴う膨張収縮の際の厚み変化を小さくできるので、電池の変形を防止できる。また、無機化合物粉体上では、リチウムイオンの表面拡散が速い上に、立体的にも障害になるので、充放電を繰り返してもリチウムデンドライトが生成しにくく、内部短絡が防止されている。さらに、無機化合物粉体中にリチウムイオンが移動するので、大容量化されている。
【0008】
本発明のリチウム二次電池において、無機化合物粉体は、リチウムと直接的に化学反応しない金属酸化物粉体であるγ−アルミナ、α−アルミナ、シリカのいずれかである。これらの材料は、リチウムイオンの表面拡散をより速くできるので、さらにリチウムデンドライトの生成を抑制できる。
【0009】
上記の負極電極はカーボンブラックや銀粒子のような導電材を含有することが好ましい。無機化合物粉体は導電性が低いため、カーボンブラックや銀粒子のような導電材を混合することで、リチウム二次電池の内部抵抗を下げることが可能となる。
【0010】
上記の負極電極は金属リチウムを含有する。負極電極が金属リチウムを含有していれば、リチウム二次電池をより大容量化できる
【0011】
【発明の実施の形態】
本発明のリチウム二次電池の一実施形態例について図面を参照して説明する。本実施形態例のリチウム二次電池は、コイン型リチウム二次電池であって、図2に示したものと同じ基本構造を有するものである。すなわち、負極電極3と、正極電極4と、負極電極3と正極電極4との間に配置されたセパレータ6とを有し、これらが、リチウム塩が溶解された非水電解液溶媒に接して概略構成されている。
図1に、本実施形態例のリチウム二次電池の要部拡大図を示す。このリチウム二次電池において、負極電極3は、リチウム含有金属14中に無機化合物粉体15,15・・・が分散されたものであり、セパレータ6側の面とは反対側の面に、銅箔などの負極集電材13が積層されている。また、正極電極4は、リチウム含有遷移金属酸化物などの少なくとも1種の正極活物質11,11・・・を含有しているとともに、セパレータ6側の面とは反対側の面に、アルミ箔などの正極集電材12が積層されている。
【0012】
負極電極3における無機化合物粉体15としては、入手が容易である上に、リチウムイオンの表面拡散がより速いことから、γ−アルミナ、α−アルミナ、シリカなどの金属酸化物が好ましい。
また、無機化合物粉体15は、粒径が0.01〜10μmであることが好ましく、0.05〜0.5μmであることがより好ましく、0.1μm前後であることが特に好ましい。無機化合物粉体15の粒径が上記範囲であれば、入手容易であり、安価であるから、コストを上げずに、変形を防止し、リチウムデンドライトの生成を抑制できる。
【0013】
本実施形態例のように、負極電極3にリチウム含有金属14が含まれ、リチウム含有金属14中に無機化合物粉体15,15・・・が分散している場合には、リチウム含有金属14によって無機化合物粉体15,15・・・を結着させることができる。
リチウム含有金属14中に無機化合物粉体15を分散させる方法としては、例えば、リチウム含有金属14と、無機化合物粉体15,15・・・とを配合し、次いで、ニーダなどにより強制混合して分散させる方法などが挙げられる。このように強制混合すれば、粘土状のリチウム含有金属と無機化合物粉体15を均一に混合できる。
【0014】
負極電極3におけるリチウム含有金属14としては、より大容量化が可能になることから、リチウム単味、リチウムに3B族元素(すなわち、B,Al,Ga,In,Tl)または4B族元素(すなわち、C,Si,Ge,Sn,Pb)が添加された合金、または、リチウムに1A族元素(すなわち、Na,K,Rb,Cs,Fr)または2A族元素(すなわち、Be,Mg,Ca,Sr,Ba,Ra)が添加された合金などが好ましい。
【0015】
負極電極3には、無機化合物粉体15が好ましくは20〜80体積%、より好ましくは30〜60体積%、特に好ましくは40〜50体積%の範囲で含まれている。負極電極3に無機化合物粉体15が上記範囲で含まれていれば、リチウムイオンの表面拡散を速くすることできるとともに、負極電極3を容易に成形できるようになる。
【0016】
正極電極4における正極活物質11としては、例えば、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、鉄酸リチウム、バナジン酸リチウムなどのリチウム含有遷移金属酸化物、酸化バナジウムなどを好適に用いることができる。
これら正極活物質11は、バインダ16により結着されている。ここで、バインダ16としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂や、イミド樹脂、アミド樹脂等を用いることができる。
また、セパレータ6としては、物性に優れている上に、安価であることから、多孔質のポリプレンフィルムが好適に用いられる。
【0017】
以上説明した実施形態例のリチウム二次電池では、リチウム含有金属14中に無機化合物粉体15,15・・・が分散された負極電極3を具備しており、充放電に伴う膨張収縮の際の厚み変化が小さいので電池の変形が防止されている。また、無機化合物粉体15上のリチウムイオンの表面拡散は速い上に、立体障害にもなるので、リチウムデンドライトの生成が抑制され、内部短絡が防止されている。さらに、負極電極3に、リチウム含有金属14が含まれていることで、より大容量化されている。
【0018】
なお、本発明は、上述した実施形態例に限定されない。例えば、上述した実施形態例では、負極電極にリチウム含有金属が含まれていたが、リチウム含有金属が含まれていなくてもよい。ただし、負極電極にリチウム含有金属が含まれていない場合、すなわち、無機化合物粉体単味の場合には、無機化合物粉体同士を結着させることが困難になるので、通常はバインダを含有させる。ここで、バインダとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂や、イミド樹脂、アミド樹脂等を用いることができる。
【0019】
【実施例】
参考例1)
平均粒径0.1μmのγ−アルミナ粉体(無機化合物粉体)をPVdF(ポリフッ化ビニリデン)が溶解したNMP(N−メチルピロリドン)に加え、ミキサーで1時間混合し、重量濃度でγ−アルミナ:PVdF:NMP=50:5:45のスラリーを調製した。そして、これを銅箔上に成膜・乾燥することで厚さ50μmの負極膜を成膜した。一方、マンガン酸リチウムとカーボンブラックとをPVdF(ポリフッ化ビニリデン)が溶解したNMP(N−メチルピロリドン)に加え、ミキサーで1時間混合し、これをアルミ箔上に成膜・乾燥することで厚さ100μmの正極膜を作製した。
次いで、負極電極と正極電極との間に、多孔質ポリプロピレンフィルムからなるセパレータを挟み、これをアルミラミネート箔中に収納し、次いで、このアルミラミネート箔中に電解液1.0M−LiPF /炭酸エチレン+炭酸ジメチル(重量比:1/2)を注液した。次いで、注液口をヒートシールしてシート型リチウム二次電池を得た。
【0020】
参考例2)
平均粒径0.1μmの二酸化ケイ素(シリカ)粉体をPVdF(ポリフッ化ビニリデン)が溶解したNMP(N−メチルピロリドン)に加え、ミキサーで1時間混合し、SiO:PVdF:NMP=50:5:45のスラリーを調製した。このスラリーを銅箔上に成膜・乾燥して負極とし、この負極に参考例1と同様にしてセパレータ、正極を重ね、電解液を注液することで電池を製作した。
【0021】
参考例3)
平均粒径0.1μmのγ−アルミナ粉体に平均粒径40nmのカーボンブラック(C)を混ぜ、PVdF(ポリフッ化ビニリデン)を溶かしたNMP(N−メチルピロリドン)を加えてミキサーで1時間混合し、重量組成でγ−アルミナ:C:PVdF:NMP=45:5:5:45のスラリーを調製した。このスラリーを銅箔上に成膜して負極とし、この負極に参考例1と同様にしてセパレータ、正極を重ね、電解液を注液することで電池を製作した。
【0022】
(実施例
金属リチウムを溶解し、これに平均粒径0.1μmのγ−アルミナ粉体を、その体積濃度が50体積%になるように添加し、ニーダにより強制混合した。次いで、この混合物を押出成形して厚さ100μmの箔を得、この箔を、集電体である銅箔上に圧着させることで負極とし、この負極に参考例1と同様にしてセパレータ、正極を重ね、電解液を注液することで電池を製作した。
【0023】
(比較例)
市販の金属リチウム箔(厚さ100μm)を負極電極とし、これを銅箔上に圧着させたこと以外は参考例1と同様にしてシート型リチウム二次電池を得た。
【0024】
実施例、参考例および比較例のシート型リチウム二次電池において、上限4.2Vまで充電し、3.0Vまで放電する充放電サイクルを繰り返した。
その結果、参考例1のリチウム二次電池では、γ−アルミナの重量に対し100Ah/kg程度の容量が得られ、充放電に伴う負極電極の膨張収縮が抑制されていたので、電池の変形が防止されていた。また、100サイクル以前での著しい容量低下や内部短絡は発生していなかった。
参考例2では、シリカの重量に対し120Ah/kg程度の容量が得られ、電池の変形もなかった。また、100サイクル以前での著しい容量低下および内部短絡の発生はなかった。
参考例3では、γ−アルミナの重量に対し200Ah/kg程度の容量が得られた上に、電池の変形や100サイクル以前での著しい容量低下および内部短絡の発生はなかった。
実施例では、γ−アルミナの重量に対し400Ah/kg程度の容量が得られた上に、電池の変形や100サイクル以前での著しい容量低下および内部短絡の発生はなかった。
一方、比較例のリチウム二次電池では、容量は高くなったものの、負極電極に無機化合物粉体が含まれていないため、充放電サイクル開始前より10%程度変形したとともに、50サイクル程度で容量が低下しており、内部短絡が生じていた。
【0025】
【発明の効果】
本発明のリチウム二次電池によれば、充放電に伴う膨張収縮の際の厚み変化を小さくできるので電池の変形を防止でき、充放電を繰り返してもリチウムデンドライトが生成しにくく、内部短絡が防止されている。さらに、無機化合物粉体中にリチウムイオンが移動するので、大容量化されている。
【図面の簡単な説明】
【図1】 本発明に係るリチウム二次電池の一実施形態例の要部を拡大して示す断面図である。
【図2】 コイン型リチウム二次電池の断面図である。
【図3】 従来のリチウム二次電池の要部を拡大して示す断面図である。
【符号の説明】
3 負極電極
14 リチウム含有金属
15 無機化合物粉体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery that is mounted on an electronic device or used as a storage battery.
[0002]
[Prior art]
In recent years, lithium secondary batteries have become widespread because they have high energy density, little self-discharge, and can be lightweight. FIG. 2 shows a basic structure of a so-called coin-type lithium secondary battery. The lithium secondary battery 10 includes a negative electrode 3, a positive electrode 4, and a separator 6 disposed between the negative electrode 3 and the positive electrode 4, and these are non-aqueous materials in which a lithium salt is dissolved. It is schematically configured in contact with the electrolyte solvent.
In this lithium secondary battery 10, a negative electrode 3, a separator 6, and a positive electrode 4 are sequentially laminated on a substantially flat cylindrical battery case 1 made of stainless steel or the like, and a sealing plate 2 made of stainless steel or the like is formed thereon. Further, an annular gasket 7 made of polypropylene is disposed between the battery case 1 and the sealing plate 2. The gasket 7 and the sealing plate 2 are fixed by crimping the upper end portion of the battery case 1 inside.
Glass wool filter papers 5 and 5 are inserted between the separator 6 and the positive electrode 4 and the negative electrode 3.
The nonaqueous electrolyte solvent is impregnated in the positive electrode 4, the negative electrode 3, the separator 6, and the glass wool filter papers 5 and 5.
[0003]
In FIG. 3, the principal part enlarged view of this lithium secondary battery 10 is shown. In the lithium secondary battery 10, the positive electrode 4 contains at least one positive electrode active material 11, 11... Such as a lithium-containing transition metal oxide and is opposite to the surface on the separator 6 side. A positive electrode current collector 12 such as an aluminum foil is laminated on the surface. Further, the negative electrode 3 contains a carbon material as a main component as a negative electrode active material, and a negative electrode current collector 13 such as a copper foil is laminated on the surface opposite to the surface on the separator 6 side. Here, for example, a graphite material can be used as the negative electrode 3 (see, for example, Patent Document 1).
[0004]
By the way, the lithium secondary battery is required to have higher performance as the equipment to be mounted has higher performance. For example, the capacity of the lithium secondary battery is required to be increased. Therefore, it has been studied to use metallic lithium or an alloy thereof for the negative electrode for the purpose of increasing the capacity of the lithium secondary battery.
[0005]
[Patent Document 1]
JP 2002-050403 A (Claims, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, a negative electrode made of metallic lithium or an alloy thereof has a large thickness change during expansion / contraction due to charge / discharge, and thus the battery may be deformed. In addition, while charging / discharging was repeated, there was a problem that lithium dendrite, which was a needle-like crystal, was generated and further grown to cause an internal short circuit in the electrode.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium secondary battery that can prevent deformation of the battery and can increase the capacity without causing an internal short circuit.
[0007]
[Means for Solving the Problems]
The lithium secondary battery of the present invention includes a negative electrode containing an inorganic compound powder. Since the negative electrode provided in the lithium secondary battery contains the inorganic compound powder, the change in thickness at the time of expansion / contraction associated with charge / discharge can be reduced, so that deformation of the battery can be prevented. In addition, on the inorganic compound powder, the surface diffusion of lithium ions is fast and also sterically hindered, so that lithium dendrite is not easily generated even when charging and discharging are repeated, and internal short circuit is prevented. Furthermore, since lithium ions move into the inorganic compound powder, the capacity is increased.
[0008]
In the lithium secondary battery of the present invention, the inorganic compound powder, lithium directly chemically react with no metal oxide powder Der Ru gamma - alumina is α- alumina or silica. Since these materials can accelerate the surface diffusion of lithium ions, the generation of lithium dendrite can be further suppressed.
[0009]
The negative electrode preferably contains a conductive material such as carbon black or silver particles. Since the inorganic compound powder has low conductivity, it is possible to reduce the internal resistance of the lithium secondary battery by mixing a conductive material such as carbon black or silver particles.
[0010]
Negative electrode of the above you containing metallic lithium. If the negative electrode contains metallic lithium , the capacity of the lithium secondary battery can be increased .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a lithium secondary battery of the present invention will be described with reference to the drawings. The lithium secondary battery of the present embodiment is a coin-type lithium secondary battery, and has the same basic structure as that shown in FIG. That is, it has the negative electrode 3, the positive electrode 4, and the separator 6 arrange | positioned between the negative electrode 3 and the positive electrode 4, and these are in contact with the non-aqueous electrolyte solvent in which lithium salt was dissolved. It is roughly structured.
In FIG. 1, the principal part enlarged view of the lithium secondary battery of the example of this embodiment is shown. In this lithium secondary battery, the negative electrode 3 is obtained by dispersing inorganic compound powders 15, 15... In a lithium-containing metal 14, and copper is formed on the surface opposite to the surface on the separator 6 side. A negative electrode current collector 13 such as a foil is laminated. The positive electrode 4 contains at least one kind of positive electrode active material 11, 11... Such as a lithium-containing transition metal oxide, and an aluminum foil is provided on the surface opposite to the surface on the separator 6 side. A positive electrode current collector 12 such as is laminated.
[0012]
The inorganic compound powder 15 in the negative electrode 3 is preferably a metal oxide such as γ-alumina, α-alumina, and silica because it is easily available and the surface diffusion of lithium ions is faster.
The inorganic compound powder 15 preferably has a particle size of 0.01 to 10 μm, more preferably 0.05 to 0.5 μm, and particularly preferably around 0.1 μm. If the particle diameter of the inorganic compound powder 15 is in the above range, it is easy to obtain and inexpensive, and therefore, deformation can be prevented and production of lithium dendrite can be suppressed without increasing costs.
[0013]
When the lithium-containing metal 14 is included in the negative electrode 3 and the inorganic compound powders 15, 15... Are dispersed in the lithium-containing metal 14 as in the present embodiment, the lithium-containing metal 14 Inorganic compound powders 15, 15... Can be bound.
As a method for dispersing the inorganic compound powder 15 in the lithium-containing metal 14, for example, the lithium-containing metal 14 and the inorganic compound powders 15, 15... Are mixed and then forcibly mixed with a kneader or the like. Examples include a method of dispersing. By forcibly mixing in this way, the clay-like lithium-containing metal and the inorganic compound powder 15 can be uniformly mixed.
[0014]
As the lithium-containing metal 14 in the negative electrode 3, it becomes possible to increase the capacity. Therefore, the lithium is simple, lithium includes a group 3B element (that is, B, Al, Ga, In, Tl) or a group 4B element (that is, , C, Si, Ge, Sn, Pb) or a group 1A element (ie, Na, K, Rb, Cs, Fr) or a group 2A element (ie, Be, Mg, Ca, An alloy to which Sr, Ba, Ra) is added is preferable.
[0015]
The negative electrode 3 contains the inorganic compound powder 15 in an amount of preferably 20 to 80% by volume, more preferably 30 to 60% by volume, and particularly preferably 40 to 50% by volume. If the negative electrode electrode 3 contains the inorganic compound powder 15 in the above range, the surface diffusion of lithium ions can be accelerated and the negative electrode 3 can be easily molded.
[0016]
As the positive electrode active material 11 in the positive electrode 4, for example, lithium-containing transition metal oxides such as lithium manganate, lithium cobaltate, lithium nickelate, lithium ironate, and lithium vanadate, vanadium oxide, and the like are preferably used. it can.
These positive electrode active materials 11 are bound by a binder 16. Here, as the binder 16, for example, a fluorine-based resin such as polyvinylidene fluoride or polytetrafluoroethylene, an imide resin, an amide resin, or the like can be used.
Moreover, as the separator 6, since it is excellent in a physical property and it is cheap, a porous polypropylene film is used suitably.
[0017]
The lithium secondary battery according to the embodiment described above includes the negative electrode 3 in which the inorganic compound powder 15, 15... Is dispersed in the lithium-containing metal 14, and is expanded and contracted due to charge / discharge. Since the change in thickness of the battery is small, deformation of the battery is prevented. Further, the surface diffusion of lithium ions on the inorganic compound powder 15 is fast and also causes steric hindrance, so that the generation of lithium dendrite is suppressed and internal short circuit is prevented. Furthermore, since the negative electrode 3 contains the lithium-containing metal 14, the capacity is further increased.
[0018]
Note that the present invention is not limited to the above-described embodiments. For example, in the embodiment described above, the negative electrode includes a lithium-containing metal, but the lithium-containing metal may not be included. However, when the lithium-containing metal is not included in the negative electrode, that is, when the inorganic compound powder is simple, it is difficult to bind the inorganic compound powder to each other. . Here, as the binder, for example, a fluorine resin such as polyvinylidene fluoride and polytetrafluoroethylene, an imide resin, an amide resin, or the like can be used.
[0019]
【Example】
( Reference Example 1)
Γ-alumina powder (inorganic compound powder) having an average particle size of 0.1 μm is added to NMP (N-methylpyrrolidone) in which PVdF (polyvinylidene fluoride) is dissolved, and mixed for 1 hour with a mixer. A slurry of alumina: PVdF: NMP = 50: 5: 45 was prepared. And this was formed into a film on a copper foil and dried to form a negative electrode film having a thickness of 50 μm. On the other hand, lithium manganate and carbon black are added to NMP (N-methylpyrrolidone) in which PVdF (polyvinylidene fluoride) is dissolved, mixed with a mixer for 1 hour, and this is formed on an aluminum foil and dried. A positive electrode film having a thickness of 100 μm was prepared.
Next, a separator made of a porous polypropylene film is sandwiched between the negative electrode and the positive electrode, and this is accommodated in an aluminum laminate foil, and then an electrolytic solution 1.0M-LiPF 6 is contained in the aluminum laminate foil. / Ethylene carbonate + dimethyl carbonate (weight ratio: 1/2) was injected. Next, the liquid inlet was heat sealed to obtain a sheet type lithium secondary battery.
[0020]
( Reference Example 2)
Silicon dioxide (silica) powder having an average particle size of 0.1 μm is added to NMP (N-methylpyrrolidone) in which PVdF (polyvinylidene fluoride) is dissolved, and mixed with a mixer for 1 hour, and SiO 2 : PVdF: NMP = 50: A 5:45 slurry was prepared. This slurry was formed on a copper foil and dried to form a negative electrode. A separator and a positive electrode were stacked on the negative electrode in the same manner as in Reference Example 1, and a battery was manufactured by pouring an electrolyte solution.
[0021]
( Reference Example 3)
Carbon black (C) with an average particle size of 40 nm is mixed with γ-alumina powder with an average particle size of 0.1 μm, and NMP (N-methylpyrrolidone) in which PVdF (polyvinylidene fluoride) is dissolved is added and mixed with a mixer for 1 hour. Then, a slurry of γ-alumina: C: PVdF: NMP = 45: 5: 5: 45 by weight composition was prepared. This slurry was formed on a copper foil to form a negative electrode. A separator and a positive electrode were stacked on the negative electrode in the same manner as in Reference Example 1, and a battery was manufactured by injecting an electrolyte solution.
[0022]
(Example 1 )
Metal lithium was dissolved, and γ-alumina powder having an average particle size of 0.1 μm was added thereto so that the volume concentration thereof was 50% by volume, and forcedly mixed by a kneader. This mixture was then give foil extrusion with a thickness of 100μm, and a separator of this foil, a negative electrode by causing crimped onto a copper foil as a current collector, in the same manner as in Reference Example 1 in the negative electrode, positive electrode A battery was manufactured by injecting an electrolyte solution.
[0023]
(Comparative example)
A sheet-type lithium secondary battery was obtained in the same manner as in Reference Example 1 except that a commercially available metal lithium foil (thickness: 100 μm) was used as the negative electrode, and this was crimped onto the copper foil.
[0024]
In the sheet-type lithium secondary batteries of Examples , Reference Examples and Comparative Examples, a charge / discharge cycle in which the battery was charged to the upper limit of 4.2 V and discharged to 3.0 V was repeated.
As a result, in the lithium secondary battery of Reference Example 1, a capacity of about 100 Ah / kg was obtained with respect to the weight of γ-alumina, and the expansion and contraction of the negative electrode due to charging / discharging was suppressed, so the battery was not deformed. It was prevented. Further, no significant capacity drop or internal short circuit occurred before 100 cycles.
In Reference Example 2, a capacity of about 120 Ah / kg relative to the weight of silica was obtained, and the battery was not deformed. Further, there was no significant capacity drop or internal short circuit before 100 cycles.
In Reference Example 3, a capacity of about 200 Ah / kg with respect to the weight of γ-alumina was obtained, and further, there was no battery deformation, significant capacity drop before 100 cycles, and no internal short circuit.
In Example 1 , a capacity of about 400 Ah / kg with respect to the weight of γ-alumina was obtained, and further, there was no battery deformation, significant capacity reduction before 100 cycles, and no internal short circuit.
On the other hand, in the lithium secondary battery of the comparative example, although the capacity was high, the negative electrode did not contain inorganic compound powder. Therefore, the lithium secondary battery was deformed by about 10% from before the start of the charge / discharge cycle, and the capacity was about 50 cycles. Decreased and an internal short circuit occurred.
[0025]
【The invention's effect】
According to the lithium secondary battery of the present invention, the thickness change during expansion / contraction associated with charging / discharging can be reduced, so that deformation of the battery can be prevented, lithium dendrite is not easily generated even after repeated charging / discharging, and internal short circuit is prevented. Has been. Furthermore, since lithium ions move into the inorganic compound powder, the capacity is increased.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view showing a main part of an embodiment of a lithium secondary battery according to the present invention.
FIG. 2 is a cross-sectional view of a coin-type lithium secondary battery.
FIG. 3 is an enlarged cross-sectional view showing a main part of a conventional lithium secondary battery.
[Explanation of symbols]
3 Negative electrode 14 Lithium-containing metal 15 Inorganic compound powder

Claims (3)

金属リチウム中にγ−アルミナ、α−アルミナ、シリカのいずれかからなる無機化合物粉体が含まれる負極電極を具備し、前記負極電極には、無機化合物粉体が20〜80体積%の範囲で含まれていることを特徴とするリチウム二次電池。  It comprises a negative electrode in which an inorganic compound powder composed of any one of γ-alumina, α-alumina, and silica is contained in metallic lithium, and the negative electrode has an inorganic compound powder in a range of 20 to 80% by volume. A lithium secondary battery characterized by being contained. 前記負極電極は、導電材を含有することを特徴とする請求項1に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the negative electrode contains a conductive material. 無機化合物粉体の粒径が0.01〜10μmであることを特徴とする請求項1または2に記載のリチウム二次電池。The lithium secondary battery according to claim 1 or 2 the particle size of the inorganic compound powder is characterized in that it is a 0.01 to 10 [mu] m.
JP2003192245A 2003-07-04 2003-07-04 Lithium secondary battery Expired - Fee Related JP4365633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192245A JP4365633B2 (en) 2003-07-04 2003-07-04 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192245A JP4365633B2 (en) 2003-07-04 2003-07-04 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005026157A JP2005026157A (en) 2005-01-27
JP4365633B2 true JP4365633B2 (en) 2009-11-18

Family

ID=34189601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192245A Expired - Fee Related JP4365633B2 (en) 2003-07-04 2003-07-04 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4365633B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104901A (en) * 2007-10-23 2009-05-14 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
KR20090084693A (en) * 2008-02-01 2009-08-05 소니 가부시끼가이샤 Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP5351618B2 (en) * 2009-06-05 2013-11-27 株式会社神戸製鋼所 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP6137637B2 (en) * 2010-09-03 2017-05-31 株式会社Gsユアサ battery
JP5818150B2 (en) 2010-11-05 2015-11-18 株式会社Gsユアサ Electrode for power storage element, power storage element using the same, and method for manufacturing electrode for power storage element

Also Published As

Publication number Publication date
JP2005026157A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN101515641B (en) Anode and secondary battery
WO2013042610A1 (en) Lithium-ion secondary battery
JPH08171917A (en) Cell
JP2000090917A (en) Manufacture of positive electrode plate for lithium ion secondary battery
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP4365633B2 (en) Lithium secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP2001057233A (en) Non-aqueous electrolyte secondary battery
JP2002373655A (en) Lithium secondary battery
WO2020090591A1 (en) Secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP3624793B2 (en) Lithium ion battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2008243643A (en) Lithium secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JPH0434855A (en) Spiral type non-aqueous electrolyte battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001126760A (en) Nonaqueous electrolyte secondary battery
JP2002270182A (en) Non-aqueous electrolyte secondary battery
JP3704514B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees