JP3188026B2 - Non-aqueous battery - Google Patents

Non-aqueous battery

Info

Publication number
JP3188026B2
JP3188026B2 JP08413393A JP8413393A JP3188026B2 JP 3188026 B2 JP3188026 B2 JP 3188026B2 JP 08413393 A JP08413393 A JP 08413393A JP 8413393 A JP8413393 A JP 8413393A JP 3188026 B2 JP3188026 B2 JP 3188026B2
Authority
JP
Japan
Prior art keywords
battery
composite oxide
positive electrode
discharge capacity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08413393A
Other languages
Japanese (ja)
Other versions
JPH06275274A (en
Inventor
真弓 上原
俊之 能間
宏史 黒河
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13822011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3188026(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08413393A priority Critical patent/JP3188026B2/en
Publication of JPH06275274A publication Critical patent/JPH06275274A/en
Application granted granted Critical
Publication of JP3188026B2 publication Critical patent/JP3188026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水系電池に係わり、詳
しくは放電容量を増大させることを目的とした正極活物
質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery, and more particularly, to an improvement of a positive electrode active material for the purpose of increasing discharge capacity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池等の非水系電池が、含水電解液を使用した
水系電池と異なり水の分解電圧を考慮する必要がないた
め高電圧設計が可能であるなどの理由から、脚光を浴び
つつある。
2. Description of the Related Art In recent years,
A non-aqueous battery such as a lithium battery is attracting attention because it does not need to consider the decomposition voltage of water unlike an aqueous battery using a water-containing electrolyte, so that a high-voltage design is possible.

【0003】而して、この種の電池の好適な正極活物質
として、高電位を示すことから、組成式LiNiy Co
1-y 2 (0≦y≦1)で表される複合酸化物が提案さ
れている。
[0003] As a suitable positive electrode active material for this type of battery, it exhibits a high potential, and therefore has the composition formula LiNi y Co
A composite oxide represented by 1-y O 2 (0 ≦ y ≦ 1) has been proposed.

【0004】しかしながら、上記の複合酸化物を使用し
た電池には、放電容量が未だ充分でないという問題があ
った。
However, batteries using the above-described composite oxide have a problem that the discharge capacity is not yet sufficient.

【0005】そこで、鋭意研究した結果、本発明者ら
は、使用するLiNiy Co1-y 2の結晶の格子面
(003)面の結晶子の大きさと、その放電容量との間
に密接な関係があることを見出した。因みに、従来は、
10〜40Å程度の結晶子の大きさのものが正極活物質
として一般的に使用されていた。
Therefore, as a result of intensive studies, the present inventors have found that the size of the crystallite on the lattice plane (003) plane of the LiNi y Co 1-y O 2 crystal used and the discharge capacity thereof are closely related. I found that there was a relationship. By the way, conventionally,
Crystallites having a crystallite size of about 10 to 40 ° have been generally used as positive electrode active materials.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、放電容量が大き
い非水系電池を提供するにある。
[0006] The present invention has been made based on such knowledge, and an object of the present invention is to provide a non-aqueous battery having a large discharge capacity.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電池(以下、「第1電池」と称す
る。)は、負極にリチウムイオンを吸蔵放出可能な材料
又は金属リチウムが使用され、正極活物質として組成式
Lix Niy Co1-y a (0<x<1.3;0≦y≦
1;1.8≦a≦2.2)で表される複合酸化物が使用
されてなる非水系電池であって、前記複合酸化物の格子
面(003)面における結晶子の大きさ(以下、単に
「結晶子の大きさ」と略称する。)が50Å以上であ
り、且つ格子体積が0.295〜0.305nm 3 であ
ることを特徴とする。また、別の本発明に係る非水系電
池(以下、「第2電池」と称する。)は、負極にリチウ
ムイオンを吸蔵放出可能な材料又は金属リチウムが使用
され、正極活物質として組成式Li x Ni y Co 1-y
a (0<x<1.3;0≦y≦1;1.8≦a≦2.
2)で表される複合酸化物が使用されてなる非水系電池
であって、前記複合酸化物の格子面(003)面におけ
る結晶子の大きさが50Å以上であり、且つ粒径が10
μm以下であることを特徴とする。第1電池と第2電池
を本発明電池と総称する。
In order to achieve the above object, a non-aqueous battery according to the present invention (hereinafter referred to as a " first battery ") comprises a material or a metal lithium capable of inserting and extracting lithium ions in a negative electrode. And a composition formula Li x Ni y Co 1-y O a (0 <x <1.3; 0 ≦ y ≦
1; 1.8 ≦ a ≦ 2.2) is a non-aqueous battery using a complex oxide represented by the following formula: , Simply referred to as “crystallite size”) is 50 ° or more.
Ri, and the lattice volume is characterized 0.295~0.305Nm 3 der <br/> Rukoto. In addition, another non-aqueous electric
A pond (hereinafter, referred to as a “second battery”) has a lithium anode
Uses materials that can absorb and release muons or lithium metal
And the composition formula Li x Ni y Co 1-y O
a (0 <x <1.3; 0 ≦ y ≦ 1; 1.8 ≦ a ≦ 2.
Non-aqueous battery using the composite oxide represented by 2)
Wherein a lattice plane (003) plane of the composite oxide
The crystallite size is 50 ° or more and the particle size is 10
μm or less. First battery and second battery
Are collectively referred to as the battery of the present invention.

【0008】本発明が改良せんとする電池(対象電池)
は、負極に金属リチウム、又はリチウム合金、コーク
ス、黒鉛などのリチウムイオンを吸蔵放出可能な材料が
使用され、正極活物質として組成式Lix Niy Co
1-y a (0<x<1.3;0≦y≦1;1.8≦a≦
2.2)で表される複合酸化物が使用されてなる電池電
圧が約3.5〜4V、或いはそれ以上の高電圧型の非水
系電池である。
A battery to be improved by the present invention (target battery)
For the negative electrode, a material capable of inserting and extracting lithium ions such as lithium metal, lithium alloy, coke, and graphite is used, and a composition formula Li x Ni y Co is used as a positive electrode active material.
1-y O a (0 <x <1.3; 0 ≦ y ≦ 1; 1.8 ≦ a ≦
A high-voltage non-aqueous battery having a battery voltage of about 3.5 to 4 V or more using the composite oxide represented by 2.2).

【0009】本発明では、複合酸化物(正極活物質)の
結晶子の大きさが50Å以上に規制される。150Å以
上がより好ましい。結晶子の大きさが50Å未満の場合
は、後述する実施例に示すように、放電容量が150m
Ah/g未満と小さくなる。
In the present invention, the size of the crystallite of the composite oxide (positive electrode active material) is restricted to 50 ° or more. More than 150 ° is more preferable. When the crystallite size is less than 50 °, the discharge capacity is 150 m, as shown in the examples described later.
It becomes small when it is less than Ah / g.

【0010】本発明における複合酸化物は、例えばリチ
ウムの水酸化物、酸化物、炭酸塩又は硝酸塩と、ニッケ
ルの水酸化物、酸化物、炭酸塩又は硝酸塩と、コバルト
の水酸化物、酸化物、炭酸塩又は硝酸塩とを所定の割合
で混合し、焼成することにより得られる。焼成温度、焼
成時間及び焼成後の冷却速度などを変えることにより所
望の結晶子の大きさのものが得られる。
The composite oxide in the present invention includes, for example, lithium hydroxide, oxide, carbonate or nitrate, nickel hydroxide, oxide, carbonate or nitrate, cobalt hydroxide and oxide. , Carbonate or nitrate at a predetermined ratio, followed by firing. The desired crystallite size can be obtained by changing the firing temperature, firing time, cooling rate after firing, and the like.

【0011】第1電池では、上記複合酸化物として、結
晶子の大きさが50Å以上であるとともに、その格子体
積が0.295〜0.305nm3 であるものが、また
第2電池では、結晶子の大きさが50Å以上であるとと
もに、粒径が10μm以下であるものが使用される。放
電容量が大きいからである。
[0011] In the first cell, as the composite oxide, with the size of the crystallite is 50Å or more, the lattice volume is what is 0.295~0.305Nm 3, also
In the second battery, if the crystallite size is 50 ° or more,
In particular, those having a particle size of 10 μm or less are used. Release
This is because the electric capacity is large.

【0012】本発明電池は、上述した如く、負極にリチ
ウムイオンを吸蔵放出可能な材料又は金属リチウムが使
用されてなる非水系電池の正極活物質として、放電容量
の大きな、結晶子の大きさが50Å以上且つ格子体積が
0.295〜0.305nm 3 又は結晶子の大きさが5
0Å以上且つ粒径が10μm以下の特定の複合酸化物を
使用した点に最大の特徴を有する。それゆえ、本発明電
池を構成する電解液等の他の部材については特に制限さ
れず、非水系電池用として従来使用され、或いは提案さ
れている種々の材料を制限無く使用することが可能であ
る。
As described above, the battery of the present invention has a large discharge capacity and a large crystallite size as a positive electrode active material of a non-aqueous battery in which a material capable of inserting and extracting lithium ions or lithium metal is used for the negative electrode. 50 ° or more and lattice volume
0.295-0.305 nm 3 or crystallite size 5
The greatest feature is that a specific composite oxide having a particle size of 0 ° or more and a particle size of 10 μm or less is used. Therefore, other members such as an electrolytic solution constituting the battery of the present invention are not particularly limited, and various materials conventionally used or proposed for non-aqueous batteries can be used without limitation. .

【0013】たとえば、電解液としては、プロピレンカ
ーボネート、エチレンカーボネート、ビニレンカーボネ
ートなどの有機溶媒や、これらとジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF6 、Li
ClO4 、LiCF3 SO3 などの電解液溶質を0.7
〜1.5M(モル/リットル)、就中1Mの割合で溶か
した溶液が例示される。
For example, examples of the electrolyte include organic solvents such as propylene carbonate, ethylene carbonate and vinylene carbonate, and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane and ethoxymethoxyethane. Mixed solvent with a low boiling point solvent such as LiPF 6 , LiPF
Electrolyte solutes such as ClO 4 , LiCF 3 SO 3
For example, a solution dissolved at a rate of 1.51.5 M (mol / liter), particularly 1 M is exemplified.

【0014】[0014]

【作用】本発明電池においては、放電容量の大きな正極
活物質が使用されているので、電池容量が大きくなる。
In the battery of the present invention, the positive electrode active material having a large discharge capacity is used, so that the battery capacity is increased.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0016】(実施例1)扁平型の非水系電池(本発明
電池)を作製した。
Example 1 A flat nonaqueous battery (battery of the present invention) was manufactured.

【0017】〔正極の作製〕水酸化リチウムと水酸化ニ
ッケルと水酸化コバルトとをモル比10:9:1の割合
で乳鉢中で混合し、750°Cで40時間焼成した後、
1°C/分の冷却速度で室温まで冷却し、次いでこれを
石川式らいかい乳鉢中で120分間粉砕して組成式Li
Ni0.9 Co0.1 2 で表される複合酸化物粉末を得
た。この複合酸化物粉末の結晶子の大きさ、格子体積及
び粒径は、それぞれ200Å、0.300nm3 、1μ
mであった。
[Preparation of Positive Electrode] Lithium hydroxide, nickel hydroxide and cobalt hydroxide were mixed at a molar ratio of 10: 9: 1 in a mortar and fired at 750 ° C. for 40 hours.
Cool to room temperature at a cooling rate of 1 ° C./min.
A composite oxide powder represented by Ni 0.9 Co 0.1 O 2 was obtained. The crystallite size, lattice volume and particle size of the composite oxide powder were 200 °, 0.300 nm 3 and 1 μm, respectively.
m.

【0018】結晶子の大きさは、粉末X線回折パターン
(線源:CuKα線)の2θ=19°(格子面(00
3)面の回折ピーク位置)付近のピークの積分幅より、
下記のシェラー(Sherrer)の式をもとに算出した。格子
体積は、JCPDSカード9−63(LiNiO2 )に
示されるミラー指数より格子定数を求めて算出した。ま
た、粒径は、レーザー回折法により求めた。
The size of the crystallite is 2θ = 19 ° of the powder X-ray diffraction pattern (source: CuKα ray) (lattice plane (00
3) From the integral width of the peak near the diffraction peak position on the plane),
It was calculated based on the following Sherrer equation. The lattice volume was calculated by calculating the lattice constant from the Miller index shown in JCPDS card 9-63 (LiNiO 2 ). The particle size was determined by a laser diffraction method.

【0019】ε=λ/(βcosθ) 但し、ε:結晶子の大きさの平均(Å) λ:測定X線波長(Å) β:積分幅(積分強度/ピーク強度) θ:回折線のブラッグ角(度)Ε = λ / (β cos θ) where ε: average crystallite size (Å) λ: measured X-ray wavelength (Å) β: integral width (integral intensity / peak intensity) θ: Bragg of diffraction line angle)

【0020】上記複合酸化物粉末と、導電剤としてのア
セチレンブラックと、結着剤としてのフッ素樹脂粉末と
を、重量比率90:6:4で混合して正極合剤を得た。
この正極合剤を成形圧2トン/cm2 で加圧成形した
後、250°Cで加熱処理して、直径20mmの円板状
の正極を作製した。なお、正極集電体として、ステンレ
ス鋼板(SUS304)を使用した。
The above composite oxide powder, acetylene black as a conductive agent, and a fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4 to obtain a positive electrode mixture.
This positive electrode mixture was press-molded at a molding pressure of 2 ton / cm 2 and then heat-treated at 250 ° C. to produce a disk-shaped positive electrode having a diameter of 20 mm. Note that a stainless steel plate (SUS304) was used as the positive electrode current collector.

【0021】〔負極の作製〕リチウム圧延板を打ち抜い
て、金属リチウムからなる直径20mmの円板状の負極
を作製した。なお、負極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Preparation of Negative Electrode] A rolled lithium plate was punched out to prepare a disc-shaped negative electrode made of metallic lithium and having a diameter of 20 mm. Note that a stainless steel plate (SUS304) was used as the negative electrode current collector.

【0022】〔電解液の調製〕プロピレンカーボネート
(PC)と1,2−ジメトキシエタン(DME)との等
体積混合溶媒に、LiClO4 (過塩素酸リチウム)を
1M(モル/リットル)の割合で溶かして電解液を調製
した。
[Preparation of Electrolyte Solution] LiClO 4 (lithium perchlorate) was mixed at a ratio of 1 M (mol / liter) in an equal volume mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME). This was dissolved to prepare an electrolytic solution.

【0023】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(電池寸法:直径2
4mm、厚み:3.0mm)を作製した。セパレータと
しては、ポリプロピレン製の微多孔膜(ポリプラスチッ
クス社製、商品名「セルガード」)を使用し、これに先
に述べた電解液を含浸させた。
[Preparation of Battery] A flat-type battery BA1 of the present invention (battery size: diameter 2
4 mm, thickness: 3.0 mm). As the separator, a microporous membrane made of polypropylene (manufactured by Polyplastics, trade name "Celgard") was used and impregnated with the above-mentioned electrolytic solution.

【0024】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。
FIG. 1 is a cross-sectional view schematically showing a fabricated battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0025】正極1及び負極2は、電解液を含浸したセ
パレータ3を介して対向して正負両極缶4、5が形成す
る電池ケース内に収容されており、正極1は正極集電体
6を介して正極缶4に、また負極2は負極集電体7を介
して負極缶5に接続され、電池内部で生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 face each other via a separator 3 impregnated with an electrolyte and are housed in a battery case formed by positive and negative bipolar cans 4 and 5. The negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7 and the negative electrode 2 is connected to the negative electrode can 5 by passing chemical energy generated inside the battery as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5. It can be taken out.

【0026】(実施例2〜9及び比較例)焼成温度、焼
成時間、冷却温度及び粉砕時間を、表1に示すように変
えたこと以外は実施例1と同様にして、同組成の複合酸
化物粉末を作製し、以後も実施例1と同様にして本発明
電池BA2〜BA9及び比較電池BC1を作製した。各
電池に使用した複合酸化物粉末の結晶子の大きさ、格子
体積及び粒径を表2に示す。
(Examples 2 to 9 and Comparative Examples) A composite oxide having the same composition was prepared in the same manner as in Example 1 except that the firing temperature, the firing time, the cooling temperature and the pulverizing time were changed as shown in Table 1. Powders, and batteries BA2 to BA9 of the present invention and a comparative battery BC1 were fabricated in the same manner as in Example 1. Table 2 shows the crystallite size, lattice volume, and particle size of the composite oxide powder used for each battery.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】〔結晶子の大きさ、格子体積及び粒径と放
電容量との関係〕室温(25°C)下、3mAで充電終
止電圧4.2Vまで充電した後、3mAで放電終止電圧
2.75Vまで放電して、結晶子の大きさと放電容量と
の関係、格子体積と放電容量との関係、及び、粒径と放
電容量との関係を調べた。結果を図2〜図4に示す。
[Relationship between Discharge Capacity and Crystallite Size, Lattice Volume and Particle Size] At room temperature (25 ° C.), the battery was charged at 3 mA to a charge end voltage of 4.2 V, and then discharged at 3 mA at a discharge end voltage of 2. After discharging to 75 V, the relationship between the crystallite size and the discharge capacity, the relationship between the lattice volume and the discharge capacity, and the relationship between the particle size and the discharge capacity were examined. The results are shown in FIGS.

【0030】図2は、結晶子の大きさと放電容量との関
係を、縦軸に正極活物質単位重量当たりの放電容量(m
Ah/g)を、横軸に結晶子の大きさ(Å)をとって示
したグラフであり、同図より結晶子の大きさが50Å以
上の場合に放電容量が150mAh/g以上となり、結
晶子の大きさが150Å以上の場合は放電容量が180
mAh/gと格段に大きくなることが分かる。
FIG. 2 shows the relationship between the crystallite size and the discharge capacity, and the vertical axis shows the discharge capacity per unit weight of the positive electrode active material (m).
Ah / g) is a graph showing the crystallite size (Å) on the horizontal axis. When the crystallite size is 50 ° or more, the discharge capacity becomes 150 mAh / g or more when the crystallite size is 50 ° or more. When the size of the child is 150 mm or more, the discharge capacity is 180
It can be seen that mAh / g is remarkably large.

【0031】図3は、格子体積と放電容量との関係を、
縦軸に正極活物質単位重量当たりの放電容量(mAh/
g)を、横軸に格子体積(nm3 )をとって示したグラ
フであり、同図より格子体積が0.295〜0.305
nm3 の場合に放電容量が150mAh/g以上となる
ことが分かる。
FIG. 3 shows the relationship between the lattice volume and the discharge capacity.
The vertical axis shows the discharge capacity per unit weight of the positive electrode active material (mAh /
g) is a graph showing the lattice volume (nm 3 ) on the horizontal axis, where the lattice volume is 0.295 to 0.305.
It can be seen that the discharge capacity is 150 mAh / g or more in the case of nm 3 .

【0032】図4は、粒径と放電容量との関係を、縦軸
に正極活物質単位重量当たりの放電容量(mAh/g)
を、横軸に粒径(μm)をとって示したグラフであり、
同図より粒径が10μm以下の場合に放電容量が165
mAh/g以上となることが分かる。
FIG. 4 shows the relationship between the particle size and the discharge capacity, and the vertical axis shows the discharge capacity per unit weight of the positive electrode active material (mAh / g).
Is a graph showing the particle size (μm) on the horizontal axis,
The figure shows that the discharge capacity is 165 when the particle size is 10 μm or less.
It turns out that it becomes mAh / g or more.

【0033】叙上の実施例では、本発明を扁平型の非水
系二次電池に適用する場合を例に挙げて説明したが、電
池の形状は特に限定されず、円筒型、角型など種々の形
状の非水系二次電池に適用し得るものである。
In the embodiments described above, the case where the present invention is applied to a flat type non-aqueous secondary battery has been described as an example. However, the shape of the battery is not particularly limited, and various shapes such as a cylindrical type and a square type are used. The present invention can be applied to a non-aqueous secondary battery having the following shape.

【0034】また、複合酸化物の原料としてリチウム、
ニッケル、コバルトの各水酸化物を使用する場合を一例
として説明したが、先に示した他の材料を使用してなる
複合酸化物を使用した場合においても上述した本発明電
池BA1〜BA9と同様の放電容量の大きな非水系電池
が得られる。
Further, lithium as a raw material of the composite oxide,
The case where each hydroxide of nickel and cobalt is used has been described as an example, but the same as the above-described batteries BA1 to BA9 of the present invention described above when a composite oxide using the other material shown above is used. , A non-aqueous battery having a large discharge capacity can be obtained.

【0035】[0035]

【発明の効果】本発明電池では特定の複合酸化物が正極
活物質として使用されているので放電容量が大きいな
ど、本発明は優れた特有の効果を奏する。
According to the battery of the present invention, since the specific composite oxide is used as the positive electrode active material, the present invention has excellent unique effects such as a large discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】扁平型の非水系電池(本発明電池)の断面図で
ある。
FIG. 1 is a cross-sectional view of a flat nonaqueous battery (battery of the present invention).

【図2】格子面(003)面における結晶子の大きさと
放電容量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a crystallite size and a discharge capacity in a lattice (003) plane.

【図3】格子体積と放電容量との関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a lattice volume and a discharge capacity.

【図4】粒径と放電容量との関係を示すグラフである。FIG. 4 is a graph showing a relationship between a particle size and a discharge capacity.

【符号の説明】[Explanation of symbols]

BA1 非水系電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 Nonaqueous battery (battery of the present invention) 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平6−181062(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, inventor 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-6-181062 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用され、正極活物質として組成
式Lix Niy Co1-y a (0<x<1.3;0≦y
≦1;1.8≦a≦2.2)で表される複合酸化物が使
用されてなる非水系電池であって、前記複合酸化物の格
子面(003)面における結晶子の大きさが50Å以上
であり、且つ格子体積が0.295〜0.305nm 3
であることを特徴とする非水系電池。
A negative electrode is made of a material capable of inserting and extracting lithium ions or metallic lithium, and has a composition formula Li x Ni y Co 1 -y O a (0 <x <1.3; 0 ≦ y) as a positive electrode active material.
.Ltoreq.1; 1.8.ltoreq.a.ltoreq.2.2), wherein the composite oxide has a crystallite size in a lattice plane (003) plane of the composite oxide. der least 50Å is, and the lattice volume 0.295~0.305Nm 3
Non-aqueous battery according to claim der Rukoto.
【請求項2】負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用され、正極活物質として組成
式Lix Niy Co1-y a (0<x<1.3;0≦y
≦1;1.8≦a≦2.2)で表される複合酸化物が使
用されてなる非水系電池であって、前記複合酸化物の格
子面(003)面における結晶子の大きさが50Å以上
であり、且つ粒径が10μm以下であることを特徴とす
る非水系電池。
2. A negative electrode is made of a material capable of inserting and extracting lithium ions or metallic lithium, and has a composition formula Li x Ni y Co 1 -y O a (0 <x <1.3; 0 ≦ y) as a positive electrode active material.
.Ltoreq.1; 1.8.ltoreq.a.ltoreq.2.2), wherein the composite oxide has a crystallite size in a lattice plane (003) plane of the composite oxide. der least 50Å is, and non-aqueous battery having a particle size is characterized der Rukoto below 10 [mu] m.
JP08413393A 1993-03-17 1993-03-17 Non-aqueous battery Expired - Lifetime JP3188026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08413393A JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08413393A JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH06275274A JPH06275274A (en) 1994-09-30
JP3188026B2 true JP3188026B2 (en) 2001-07-16

Family

ID=13822011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08413393A Expired - Lifetime JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3188026B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668185B (en) 2009-12-22 2015-07-08 Jx日矿日石金属株式会社 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
CN102804461B (en) 2010-02-05 2016-03-02 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
EP2533334B1 (en) 2010-02-05 2019-12-11 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102754254B (en) 2010-03-04 2016-01-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108598A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102714312A (en) 2010-12-03 2012-10-03 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
WO2012098724A1 (en) 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
TWI513663B (en) 2011-03-29 2015-12-21 Jx Nippon Mining & Metals Corp Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP5963745B2 (en) 2011-03-31 2016-08-03 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery

Also Published As

Publication number Publication date
JPH06275274A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
US6346348B1 (en) Rechargeable lithium battery with a lithium molybdenum oxide electrode
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP4954481B2 (en) Lithium secondary battery
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2000195516A (en) Lithium secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JP3188026B2 (en) Non-aqueous battery
JP2006236830A (en) Lithium secondary battery
JP3615415B2 (en) Non-aqueous secondary battery
JPH06243871A (en) Nonaqueous secondary battery
JP3197779B2 (en) Lithium battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3054511B2 (en) Non-aqueous secondary battery
JPH06275275A (en) Nonaqueous battery
JPH06243869A (en) Nonaqueous secondary battery
JP3167577B2 (en) Lithium battery
JP3321541B2 (en) Lithium secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
US6764790B2 (en) Lithium secondary battery
JPH06275273A (en) Nonaqueous secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12