JPH08264179A - Lithium battery - Google Patents
Lithium batteryInfo
- Publication number
- JPH08264179A JPH08264179A JP7094351A JP9435195A JPH08264179A JP H08264179 A JPH08264179 A JP H08264179A JP 7094351 A JP7094351 A JP 7094351A JP 9435195 A JP9435195 A JP 9435195A JP H08264179 A JPH08264179 A JP H08264179A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- battery
- active material
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム電池に係わ
り、詳しくは高容量なリチウム電池を提供することを目
的とした、正極活物質の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to improvement of a positive electrode active material for the purpose of providing a high capacity lithium battery.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池が、水の分解電圧を考慮する必要がなく、
正極活物質を適宜選定することにより高電圧化を図るこ
とが可能であることから、注目されつつある。2. Description of the Related Art In recent years,
The lithium battery does not need to consider the decomposition voltage of water,
Attention is being paid because it is possible to increase the voltage by appropriately selecting the positive electrode active material.
【0003】この種の電池の代表的な正極活物質は金属
酸化物である。例えば、正極活物質としてLiCoO2
(リチウム−コバルト複合酸化物)を使用したリチウム
電池が既に実用化されている。LiCoO2 は、リチウ
ム原料とコバルト原料との所定の割合の混合物を所定の
温度で焼成する固相法により、120mAh/g以上の
かなり大きな容量を有するものが容易に得られる。A typical positive electrode active material for this type of battery is a metal oxide. For example, as a positive electrode active material, LiCoO 2
A lithium battery using (lithium-cobalt composite oxide) has already been put into practical use. LiCoO 2 having a considerably large capacity of 120 mAh / g or more can be easily obtained by a solid phase method in which a mixture of a lithium raw material and a cobalt raw material in a predetermined ratio is fired at a predetermined temperature.
【0004】これに対して、LiTi2 O4 等のリチウ
ム−チタン複合酸化物については、結晶構造からは充放
電に適していると思われるにもかかわらず、この種の電
池の正極活物質としては従来殆ど検討されていない。こ
れは、リチウム−チタン複合酸化物は、充放電電位が低
いために容量が総じて小さいことによるものである。On the other hand, lithium-titanium composite oxides such as LiTi 2 O 4 are suitable as a positive electrode active material for batteries of this type, although they are considered to be suitable for charge and discharge due to their crystal structure. Has not been studied so far. This is because the lithium-titanium composite oxide has a low charge / discharge potential and therefore has a generally small capacity.
【0005】そこで、リチウム−チタン複合酸化物の正
極材料としての実用化を図るべく鋭意研究した結果、本
発明者らは、リチウム原料及びチタン原料の混合物を熱
処理する際にさらに特定の化合物を添加するようにすれ
ば、LiCoO2 と比べても遜色のない大きな容量を有
する複合酸化物が固相法により容易に得られることを見
出した。Then, as a result of earnest research aimed at putting the lithium-titanium composite oxide into practical use as a positive electrode material, the present inventors have further added a specific compound when heat-treating a mixture of a lithium raw material and a titanium raw material. By doing so, it was found that a complex oxide having a large capacity comparable to that of LiCoO 2 can be easily obtained by the solid phase method.
【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、特定の複合酸化
物を正極活物質とする高容量なリチウム電池を提供する
にある。The present invention has been made on the basis of such findings, and an object thereof is to provide a high-capacity lithium battery using a specific composite oxide as a positive electrode active material.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム電池(本発明電池)は、式Li
x Ti1-y My Oz (式中、MはB、Na、Mg、A
l、Si、K、Ca、Sc、V、Cr、Mn、Fe、C
o、Ni、Cu、Zn、Ga、Ge、Zr、Nb、R
u、Ag、Ta、Bi、In、Mo及びWよりなる群か
ら選ばれた少なくとも一種の元素、0<x≦1.3、
0.02≦y≦0.20、1.8≦z≦2.2)で表さ
れる複合酸化物を正極活物質とするものである。To achieve the above object, the lithium battery according to the present invention (the battery of the present invention) has the formula Li
x Ti in 1-y M y O z (wherein, M is B, Na, Mg, A
l, Si, K, Ca, Sc, V, Cr, Mn, Fe, C
o, Ni, Cu, Zn, Ga, Ge, Zr, Nb, R
at least one element selected from the group consisting of u, Ag, Ta, Bi, In, Mo and W, 0 <x ≦ 1.3,
The composite oxide represented by 0.02 ≦ y ≦ 0.20 and 1.8 ≦ z ≦ 2.2) is used as the positive electrode active material.
【0008】本発明電池のリチウムを活物質とする負極
は、リチウムイオンを電気化学的に吸蔵及び放出するこ
とが可能な物質又は金属リチウムを電極材料に使用して
作製される。リチウムイオンを電気化学的に吸蔵及び放
出することが可能な物質としては、黒鉛、コークス、有
機物焼成体等の炭素材料、リチウム合金(リチウム−ア
ルミニウム合金、リチウム−鉛合金、リチウム−錫合
金)及び正極に対して電位の卑な金属酸化物(例えばニ
オブ酸化物)が例示される。The negative electrode using lithium as an active material of the battery of the present invention is produced by using a material capable of electrochemically absorbing and desorbing lithium ions or metallic lithium as an electrode material. Examples of substances capable of electrochemically absorbing and desorbing lithium ions include carbon materials such as graphite, coke, and organic burned materials, lithium alloys (lithium-aluminum alloys, lithium-lead alloys, lithium-tin alloys) and Examples are base metal oxides having a potential lower than that of the positive electrode (for example, niobium oxide).
【0009】本発明電池の正極活物質は、式Lix Ti
1-y My Oz (式中、MはB、Na、Mg、Al、S
i、K、Ca、Sc、V、Cr、Mn、Fe、Co、N
i、Cu、Zn、Ga、Ge、Zr、Nb、Ru、A
g、Ta、Bi、In、Mo及びWよりなる群から選ば
れた少なくとも一種の元素、0<x≦1.3、0.02
≦y≦0.20、1.8≦z≦2.2)で表される複合
酸化物である。この複合酸化物は、例えばリチウム化合
物(LiOH、Li2 CO3 など)と、チタン化合物
(TiO2 、Ti(OH)4 など)と、元素Mの酸化
物、水酸化物、炭酸塩又は硝酸塩などとの混合物を乾燥
空気雰囲気下にて400〜1000°Cの温度で4〜4
0時間熱処理することにより得られる。式中のyの値
(チタン置換量)が0.02〜0.20に規制されるの
は、yの値が0.02未満の場合は充放電電位が充分に
高くならならないため、一方yの値が0.20を越える
とリチウム吸蔵放出量が減少するため、いずれの場合も
複合酸化物の容量が小さくなり、本発明が企図する高容
量なリチウム電池が得られなくなるからである。The positive electrode active material of the battery of the present invention has the formula Li x Ti
1-y M y O z (wherein, M is B, Na, Mg, Al, S
i, K, Ca, Sc, V, Cr, Mn, Fe, Co, N
i, Cu, Zn, Ga, Ge, Zr, Nb, Ru, A
at least one element selected from the group consisting of g, Ta, Bi, In, Mo and W, 0 <x ≦ 1.3, 0.02
≦ y ≦ 0.20, 1.8 ≦ z ≦ 2.2). This composite oxide is, for example, a lithium compound (LiOH, Li 2 CO 3, etc.), a titanium compound (TiO 2 , Ti (OH) 4, etc.), an oxide of element M, a hydroxide, a carbonate or a nitrate. 4 to 4 at a temperature of 400 to 1000 ° C under a dry air atmosphere.
Obtained by heat treatment for 0 hours. The value of y in the formula (titanium substitution amount) is regulated to 0.02 to 0.20 because the charge / discharge potential does not become sufficiently high when the value of y is less than 0.02. If the value of exceeds 0.20, the amount of lithium occlusion and release decreases, and in any case, the capacity of the composite oxide becomes small, and the high capacity lithium battery contemplated by the present invention cannot be obtained.
【0010】本発明の特徴は、充放電電位の低いリチウ
ム−チタン複合酸化物に代えて、充放電電位の高い特定
の複合酸化物を正極活物質として使用した点にある。そ
れゆえ、非水電解質など、電池を構成する他の部材につ
いては、従来リチウム電池用として提案され、或いは実
用されている種々の材料を特に制限なく用いることが可
能である。A feature of the present invention is that a specific composite oxide having a high charge / discharge potential is used as a positive electrode active material in place of the lithium-titanium composite oxide having a low charge / discharge potential. Therefore, for the other members constituting the battery such as the non-aqueous electrolyte, various materials conventionally proposed or put into practical use for lithium batteries can be used without particular limitation.
【0011】例えば、非水電解質として液体電解質を使
用する場合の溶媒としては、エチレンカーボネート、ビ
ニレンカーボネート、プロピレンカーボネートなどの高
誘電率溶媒や、これらとジエチルカーボネート、ジメチ
ルカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、エトキシメトキシエタンなどの低沸
点溶媒との混合溶媒が、同溶質としては、LiPF6 、
LiClO4 、LiCF3 SO3 、LiN(CF3 SO
2 )2 、LiBF4 、LiAsF6 が、それぞれ例示さ
れる。また、固体電解質を使用することも可能である。For example, when the liquid electrolyte is used as the non-aqueous electrolyte, the solvent is a high dielectric constant solvent such as ethylene carbonate, vinylene carbonate or propylene carbonate, or a diethyl carbonate, dimethyl carbonate or 1,2-dimethoxyethane solvent. , 1,2-
A mixed solvent with a low boiling point solvent such as diethoxyethane and ethoxymethoxyethane is LiPF 6 ,
LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO
2 ) 2 , LiBF 4 , and LiAsF 6 are each exemplified. It is also possible to use a solid electrolyte.
【0012】[0012]
【作用】充放電電位の高い特定の複合酸化物が正極活物
質として使用されているので、本発明電池は、LiTi
2 O4 等のリチウム−チタン複合酸化物を正極活物質と
して使用したリチウム電池に比べて、容量が格段大き
い。Since a specific composite oxide having a high charge / discharge potential is used as the positive electrode active material, the battery of the present invention is made of LiTi
The capacity is significantly larger than that of a lithium battery using a lithium-titanium composite oxide such as 2 O 4 as a positive electrode active material.
【0013】[0013]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.
【0014】(実施例1〜29) 〔正極の作製〕LiOH(リチウム原料)と、TiO2
(チタン原料)と、表1に示す各原料(M原料)とを種
々の割合で混合し、乾燥空気雰囲気下にて850°Cで
20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉
砕して、正極活物質としての種々の複合酸化物粉末を作
製した。表1中のyは、各複合酸化物粉末の作製におい
てLiOHとTiO2 と各M原料とをLi:Ti:Mの
原子比が0.5:1−y:yとなるように混合したこと
を示す。例えば、yの値が0.02の実施例1の複合酸
化物は、LiOHとTiO2 とB2 O3 とをLi:T
i:Mの原子比が0.5:0.98:0.02となるよ
うに混合して得た混合物を焼成して得たものであり、組
成式Li0.5 Ti0.98B0.02O2 で表されるものであ
る。Examples 1 to 29 [Preparation of Positive Electrode] LiOH (lithium raw material) and TiO 2
(Titanium raw material) and each raw material (M raw material) shown in Table 1 are mixed at various ratios, heat-treated (baked) at 850 ° C. for 20 hours in a dry air atmosphere, and then used in an Ishikawa-type Raikai mortar. It was pulverized to prepare various composite oxide powders as a positive electrode active material. Y in Table 1 is that LiOH, TiO 2 and each M raw material were mixed in the preparation of each composite oxide powder so that the atomic ratio of Li: Ti: M was 0.5: 1-y: y. Indicates. For example, in the composite oxide of Example 1 in which the value of y is 0.02, LiOH, TiO 2, and B 2 O 3 are mixed with Li: T.
It is obtained by firing a mixture obtained by mixing so that the atomic ratio of i: M is 0.5: 0.98: 0.02, and is represented by the composition formula Li 0.5 Ti 0.98 B 0.02 O 2 . It is what is done.
【0015】[0015]
【表1】 [Table 1]
【0016】次いで、各複合酸化物粉末と、導電剤とし
てのアセチレンブラックと、結着剤としてのフッ素樹脂
粉末とを、重量比率90:6:4で混合して正極合剤を
調製し、この正極合剤を成形圧2トン/cm2 で直径2
0mmの円盤状に加圧成型し、250°Cで2時間熱処
理して正極を作製した。Next, each composite oxide powder, acetylene black as a conductive agent, and fluororesin powder as a binder are mixed in a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. diameter cathode mixture at a molding pressure of 2 t / cm 2 2
A 0 mm disk shape was pressure-molded and heat-treated at 250 ° C. for 2 hours to prepare a positive electrode.
【0017】〔負極の作製〕金属リチウム圧延板を直径
20mmの円盤状に打ち抜いて、負極を作製した。[Preparation of Negative Electrode] A rolled lithium metal plate was punched into a disk having a diameter of 20 mm to prepare a negative electrode.
【0018】〔非水電解液の調製〕プロピレンカーボネ
ートと1,2−ジメトキシエタンとの体積比1:1の混
合溶媒に、LiClO4 を1モル/リットル溶かして非
水電解液を調製した。[Preparation of Non-Aqueous Electrolyte] LiClO 4 was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 to prepare a non-aqueous electrolyte.
【0019】〔電池の組立〕以上の各正極と負極と非水
電解液とを用いて扁平型のリチウム電池A1〜A29を
組み立てた(電池寸法:直径24.0mm、厚さ3.0
mm)。なお、セパレータとしては、ポリプロピレン製
の微多孔膜を使用し、これに非水電解液を含浸させた。[Battery Assembly] Flat lithium batteries A1 to A29 were assembled using the above positive and negative electrodes and a non-aqueous electrolyte (battery size: diameter 24.0 mm, thickness 3.0).
mm). As the separator, a polypropylene microporous film was used and impregnated with the non-aqueous electrolyte.
【0020】図1は、組み立てたリチウム電池の模式的
断面図であり、図示のリチウム電池Aは、正極1、負極
2、これら両電極1,2を互いに離間するセパレータ
3、正極缶4、負極缶5、正極集電体6、負極集電体7
及びポリプロピレン製の絶縁パッキング8などからな
る。FIG. 1 is a schematic cross-sectional view of the assembled lithium battery. The lithium battery A shown in the drawing has a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode. Can 5, positive electrode current collector 6, negative electrode current collector 7
And an insulating packing 8 made of polypropylene.
【0021】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other through a separator 3 impregnated with a non-aqueous electrolyte solution, and the positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.
【0022】(比較例1)LiOHとTiO2 とをモル
比0.5:1で混合し、850°Cで20時間熱処理し
た後、石川式らいかい乳鉢にて粉砕して、組成式LiT
i2 O4 で表されるリチウム−チタン複合酸化物粉末を
作製した。(Comparative Example 1) LiOH and TiO 2 were mixed at a molar ratio of 0.5: 1, heat-treated at 850 ° C. for 20 hours, and then crushed in an Ishikawa-type Raikai mortar to prepare a composition formula LiT.
A lithium-titanium composite oxide powder represented by i 2 O 4 was produced.
【0023】次いで、このリチウム−チタン複合酸化物
粉末を正極活物質として使用したこと以外は実施例1〜
29と同様にして、比較電池B1を組み立てた。Then, Examples 1 to 1 were repeated except that this lithium-titanium composite oxide powder was used as a positive electrode active material.
A comparative battery B1 was assembled in the same manner as 29.
【0024】(比較例2〜27)LiOHと、TiO2
と、表2に示す各原料(M原料)とを、Li:Ti:M
の原子比が0.5:0.75:0.25となるように混
合し、乾燥空気雰囲気下にて850°Cで20時間熱処
理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極
活物質としての種々の複合酸化物粉末を作製した。(Comparative Examples 2 to 27) LiOH and TiO 2
And each raw material (M raw material) shown in Table 2, Li: Ti: M
Are mixed to have an atomic ratio of 0.5: 0.75: 0.25, heat-treated (baked) for 20 hours at 850 ° C in a dry air atmosphere, and crushed in an Ishikawa-type Raikai mortar. Various composite oxide powders as positive electrode active materials were prepared.
【0025】[0025]
【表2】 [Table 2]
【0026】次いで、これらの各複合酸化物粉末を正極
活物質として使用したこと以外は実施例1〜29と同様
にして、比較電池B2〜B27を組み立てた。Next, comparative batteries B2 to B27 were assembled in the same manner as in Examples 1 to 29 except that each of these composite oxide powders was used as the positive electrode active material.
【0027】〔放電容量〕各電池を1mAで4.3Vま
で充電した後、3mAで2.0Vまで放電して、各正極
活物質の放電容量を求めた。結果を先の表1又は表2に
示す。また、本発明電池A1〜A4及び比較電池B1,
B2の結果については、図2にも示す。図2は、使用せ
る複合酸化物を表す組成式Li0.5 Ti1-y By O2 中
のyの値と放電容量の関係を、縦軸に正極活物質の単位
重量当たりの放電容量を、また横軸にyの値をとって、
示したグラフである。さらに、本発明電池A2と比較電
池B1の各放電曲線を図3に示す。図3は、縦軸に電池
電圧(V)を、また横軸に放電容量(mAh/g)をと
って示したグラフである。[Discharge Capacity] Each battery was charged to 4.3 V at 1 mA and then discharged to 2.0 V at 3 mA to determine the discharge capacity of each positive electrode active material. The results are shown in Table 1 or Table 2 above. Further, the present invention batteries A1 to A4 and the comparative battery B1,
The result of B2 is also shown in FIG. FIG. 2 shows the relationship between the value of y in the composition formula Li 0.5 Ti 1- y By O 2 representing the complex oxide to be used and the discharge capacity, and the vertical axis represents the discharge capacity per unit weight of the positive electrode active material. Also, taking the value of y on the horizontal axis,
It is the graph shown. Further, each discharge curve of the present battery A2 and the comparative battery B1 is shown in FIG. FIG. 3 is a graph in which the vertical axis represents the battery voltage (V) and the horizontal axis represents the discharge capacity (mAh / g).
【0028】表1及び表2より、本発明電池A1〜A2
9に使用した各正極活物質は、比較電池B1に使用した
正極活物質(LiTi2 O4 :リチウム−チタン複合酸
化物)よりもはるかに大きな放電容量を有することが分
かる。本発明電池A2及びA5〜A29(いずれもyの
値は0.1)のうちA2、A7、A8、A9、A12〜
A17、A24及びA26の正極活物質の放電容量が1
30mAh/g以上と特に大きいことから、Tiの置換
元素MとしてはB、Al、Si、K、V、Cr、Mn、
Fe、Co、Ni、Ru及びInが特に好ましいことが
分かる。また、図2及び表2より、放電容量の大きい正
極活物質を得る上で、yの値は0.02〜0.20の範
囲内とする必要があることが分かる。なお、B以外の他
の元素でTiを置換する場合についてもyの値が0.0
2〜0.20の範囲内とした場合に放電容量の大きい正
極活物質が得られることを確認した。また、yの値はリ
チウム量すなわちxの値に関係なく0.02〜0.20
の範囲内とする必要があることも確認した。さらに、図
3より、本発明電池の正極活物質が比較電池の正極活物
質に比べて放電容量が大きい理由が、放電電圧が高いこ
とによるものであることが分かる。From Tables 1 and 2, the batteries A1 and A2 of the present invention are shown.
It can be seen that each positive electrode active material used in No. 9 has a much larger discharge capacity than the positive electrode active material (LiTi 2 O 4 : lithium-titanium composite oxide) used in Comparative Battery B1. A2, A7, A8, A9, A12-of the batteries A2 and A5-A29 of the present invention (y values are 0.1)
The discharge capacity of the positive electrode active material of A17, A24 and A26 is 1
Since it is particularly large at 30 mAh / g or more, the substitutional element M of Ti is B, Al, Si, K, V, Cr, Mn,
It can be seen that Fe, Co, Ni, Ru and In are particularly preferable. Further, it can be seen from FIG. 2 and Table 2 that the value of y needs to be in the range of 0.02 to 0.20 in order to obtain a positive electrode active material having a large discharge capacity. When y is replaced with an element other than B, the value of y is 0.0
It was confirmed that a positive electrode active material having a large discharge capacity was obtained when the content was in the range of 2 to 0.20. The value of y is 0.02 to 0.20 regardless of the amount of lithium, that is, the value of x.
It was also confirmed that it should be within the range. Further, FIG. 3 shows that the reason why the positive electrode active material of the battery of the present invention has a larger discharge capacity than the positive electrode active material of the comparative battery is that the discharge voltage is high.
【0029】(実施例30〜33)LiOHとTiO2
とB2 O3 とNaOHとをLi:Ti:B:Naの原子
比が0.5:0.8:0.2−p:p(p=0.18、
0.1、0.05又は0.02)となるように混合し、
乾燥空気雰囲気下にて850°Cで20時間熱処理(焼
成)し、石川式らいかい乳鉢にて粉砕して、正極活物質
としての組成式Li0.5 Ti0.8 B0.2-p Nap O2 で
表される4種の複合酸化物粉末を作製した。(Examples 30 to 33) LiOH and TiO 2
And B 2 O 3 and NaOH, the atomic ratio of Li: Ti: B: Na is 0.5: 0.8: 0.2-p: p (p = 0.18,
0.1, 0.05 or 0.02) to mix,
Heat-treated (baked) at 850 ° C for 20 hours in a dry air atmosphere, crushed in an Ishikawa type Raikai mortar, and expressed as a composition formula Li 0.5 Ti 0.8 B 0.2-p Na p O 2 as a positive electrode active material. 4 types of composite oxide powders were prepared.
【0030】次いで、これらの各複合酸化物粉末を正極
活物質として使用したこと以外は実施例1〜29と同様
にして、本発明電池A30(p=0.18,y=0.2
0)、A31(p=0.1,y=0.20)、A32
(p=0.05,y=0.20)、A33(p=0.0
2,y=0.20)を組み立てた。Then, the battery A30 of the present invention (p = 0.18, y = 0.2) was prepared in the same manner as in Examples 1 to 29 except that each of these composite oxide powders was used as the positive electrode active material.
0), A31 (p = 0.1, y = 0.20), A32
(P = 0.05, y = 0.20), A33 (p = 0.0
2, y = 0.20) was assembled.
【0031】(比較例28)LiOHとTiO2 とB2
O3 とNaOHとをLi:Ti:B:Naの原子比が
0.5:0.75:0.2:0.05となるように混合
し、乾燥空気雰囲気下にて850°Cで20時間熱処理
(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活
物質としての複合酸化物粉末(y=0.25)を作製し
た。(Comparative Example 28) LiOH, TiO 2 and B 2
O 3 and NaOH were mixed so that the atomic ratio of Li: Ti: B: Na was 0.5: 0.75: 0.2: 0.05, and 20 at 850 ° C in a dry air atmosphere. It was heat-treated (calcined) for a period of time and crushed in an Ishikawa type mortar mortar to prepare a composite oxide powder (y = 0.25) as a positive electrode active material.
【0032】次いで、この複合酸化物粉末を正極活物質
として使用したこと以外は実施例1〜29と同様にし
て、比較電池B28を組み立てた。Then, a comparative battery B28 was assembled in the same manner as in Examples 1 to 29 except that this composite oxide powder was used as the positive electrode active material.
【0033】〔放電容量〕各電池を先と同じ条件で充放
電して、放電容量を求めた。結果を表3に示す。[Discharge Capacity] Each battery was charged and discharged under the same conditions as above to determine the discharge capacity. The results are shown in Table 3.
【0034】[0034]
【表3】 [Table 3]
【0035】表3に示すように、本発明電池A30〜A
33に使用した正極活物質の放電容量が大きいのに対し
て比較電池B28に使用した正極活物質の放電容量は極
めて小さい。このことから、正極活物質として使用する
複合酸化物はチタンの一部を2種以上の置換元素Mで置
換したものであってもよいが、置換元素MによるTiの
トータル置換量を式Lix Ti1-y My Oz 中のyの値
が0.02〜0.20の範囲となるようにする必要があ
ることが分かる。なお、他の置換元素Mについてもyの
値がこの範囲を外れると、正極活物質の放電容量が低下
することを確認した。As shown in Table 3, the batteries of the present invention A30 to A30
The discharge capacity of the positive electrode active material used for 33 is large, whereas the discharge capacity of the positive electrode active material used for Comparative Battery B28 is extremely small. From this fact, the composite oxide used as the positive electrode active material may be one obtained by substituting a part of titanium with two or more substitution elements M, but the total substitution amount of Ti by the substitution element M is represented by the formula Li x. It can be seen that it is necessary to set the value of y in Ti 1-y M y O z within the range of 0.02 to 0.20. It was confirmed that the discharge capacity of the positive electrode active material was also reduced when the value of y was out of this range for the other substitutional elements M.
【0036】上記実施例では、本発明を扁平型のリチウ
ム二次電池に適用する場合を例に挙げて説明したが、本
発明は電池形状に特に制限があるわけではなく、円筒
型、角型など、他の種々の形状のリチウム二次電池に適
用し得るものであるとともに、一次電池にも適用可能な
ものである。In the above embodiments, the case where the present invention is applied to the flat type lithium secondary battery has been described as an example, but the present invention is not particularly limited in the shape of the battery, and is a cylindrical type or a square type. The present invention can be applied to various other shapes of lithium secondary batteries, and can also be applied to primary batteries.
【0037】また、上記実施例では、非水電解質として
液体電解質を使用したが、本発明は固体電解質電池にも
適用可能なものである。Further, although the liquid electrolyte is used as the non-aqueous electrolyte in the above-mentioned embodiment, the present invention can be applied to the solid electrolyte battery.
【0038】[0038]
【発明の効果】正極活物質として充放電電位の高い特定
の複合酸化物が使用されているので、本発明電池は容量
が大きい。Since the specific composite oxide having a high charge / discharge potential is used as the positive electrode active material, the battery of the present invention has a large capacity.
【図1】実施例で組み立てた扁平型のリチウム電池の断
面図である。FIG. 1 is a cross-sectional view of a flat type lithium battery assembled in an example.
【図2】式Li0.5 Ti1-y By O2 中のyの値と放電
容量の関係を示すグラフである。2 is a graph showing the relationship between the value and the discharge capacity of the formula Li 0.5 Ti 1-y B y O 2 in of y.
【図3】本発明電池及び比較電池の放電曲線を示すグラ
フである。FIG. 3 is a graph showing discharge curves of a battery of the present invention and a comparative battery.
A リチウム電池 1 正極 2 負極 3 セパレータ A lithium battery 1 positive electrode 2 negative electrode 3 separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.
Claims (2)
B、Na、Mg、Al、Si、K、Ca、Sc、V、C
r、Mn、Fe、Co、Ni、Cu、Zn、Ga、G
e、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo
及びWよりなる群から選ばれた少なくとも一種の元素、
0<x≦1.3、0.02≦y≦0.20、1.8≦z
≦2.2)で表される複合酸化物を正極活物質とするリ
チウム電池。1. The formula Li x Ti 1-y M y O z (wherein M is B, Na, Mg, Al, Si, K, Ca, Sc, V, C).
r, Mn, Fe, Co, Ni, Cu, Zn, Ga, G
e, Zr, Nb, Ru, Ag, Ta, Bi, In, Mo
And at least one element selected from the group consisting of W,
0 <x ≦ 1.3, 0.02 ≦ y ≦ 0.20, 1.8 ≦ z
A lithium battery using the composite oxide represented by ≦ 2.2) as a positive electrode active material.
B、Al、Si、K、V、Cr、Mn、Fe、Co、N
i、Ru及びInよりなる群から選ばれた少なくとも一
種の元素、0<x≦1.3、0.02≦y≦0.20、
1.8≦z≦2.2)で表される複合酸化物を正極活物
質とするリチウム電池。2. The formula Li x Ti 1-y M y O z (wherein M is B, Al, Si, K, V, Cr, Mn, Fe, Co, N
at least one element selected from the group consisting of i, Ru and In, 0 <x ≦ 1.3, 0.02 ≦ y ≦ 0.20,
A lithium battery comprising a composite oxide represented by 1.8 ≦ z ≦ 2.2) as a positive electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09435195A JP3197779B2 (en) | 1995-03-27 | 1995-03-27 | Lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09435195A JP3197779B2 (en) | 1995-03-27 | 1995-03-27 | Lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264179A true JPH08264179A (en) | 1996-10-11 |
JP3197779B2 JP3197779B2 (en) | 2001-08-13 |
Family
ID=14107869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09435195A Expired - Fee Related JP3197779B2 (en) | 1995-03-27 | 1995-03-27 | Lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3197779B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004442A1 (en) * | 1997-07-15 | 1999-01-28 | Sony Corporation | Non-aqueous electrolyte secondary cell |
JP2000090933A (en) * | 1998-07-13 | 2000-03-31 | Ngk Insulators Ltd | Lithium secondary battery |
US6277521B1 (en) * | 1997-05-15 | 2001-08-21 | Fmc Corporation | Lithium metal oxide containing multiple dopants and method of preparing same |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6582852B1 (en) | 1997-05-15 | 2003-06-24 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
KR100389655B1 (en) * | 2000-10-14 | 2003-06-27 | 삼성에스디아이 주식회사 | Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity |
US6589499B2 (en) | 1998-11-13 | 2003-07-08 | Fmc Corporation | Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same |
JP2005504693A (en) * | 2000-12-05 | 2005-02-17 | ハイドロ−ケベック | Particle groups mainly composed of Li4Ti5O12, Li (4-α) ZαTi5O12, or Li4ZβTi (5-β) O12, a method for obtaining these particle groups, and a method for using these particle groups in an electrochemical device |
JP2008091079A (en) * | 2006-09-29 | 2008-04-17 | Toshiba Corp | Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and automobile |
JP2011154928A (en) * | 2010-01-28 | 2011-08-11 | Gs Yuasa Corp | Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2011181222A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Ltd | Lithium ion battery |
KR20130005222A (en) * | 2011-07-05 | 2013-01-15 | 삼성에스디아이 주식회사 | Composite, mamufacturing method, anode active material, anode including the anode active material, and lithium secondary battery including the anode |
KR20130052500A (en) * | 2011-11-11 | 2013-05-22 | 삼성에스디아이 주식회사 | Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode |
SE2150677A1 (en) * | 2020-08-14 | 2022-02-15 | Tiotech As | An electrode material and a battery comprising titanium dioxide bronze |
-
1995
- 1995-03-27 JP JP09435195A patent/JP3197779B2/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277521B1 (en) * | 1997-05-15 | 2001-08-21 | Fmc Corporation | Lithium metal oxide containing multiple dopants and method of preparing same |
US6582852B1 (en) | 1997-05-15 | 2003-06-24 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
US6794085B2 (en) | 1997-05-15 | 2004-09-21 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
US6120938A (en) * | 1997-07-15 | 2000-09-19 | Sony Corporation | Non-aqueous electrolyte secondary cell |
WO1999004442A1 (en) * | 1997-07-15 | 1999-01-28 | Sony Corporation | Non-aqueous electrolyte secondary cell |
JP2000090933A (en) * | 1998-07-13 | 2000-03-31 | Ngk Insulators Ltd | Lithium secondary battery |
US6620400B2 (en) | 1998-11-13 | 2003-09-16 | Fmc Corporation | Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases |
US7074382B2 (en) | 1998-11-13 | 2006-07-11 | Fmc Corporation | Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same |
US6589499B2 (en) | 1998-11-13 | 2003-07-08 | Fmc Corporation | Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6932922B2 (en) | 1999-12-10 | 2005-08-23 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
KR100389655B1 (en) * | 2000-10-14 | 2003-06-27 | 삼성에스디아이 주식회사 | Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity |
JP2005504693A (en) * | 2000-12-05 | 2005-02-17 | ハイドロ−ケベック | Particle groups mainly composed of Li4Ti5O12, Li (4-α) ZαTi5O12, or Li4ZβTi (5-β) O12, a method for obtaining these particle groups, and a method for using these particle groups in an electrochemical device |
JP4790204B2 (en) * | 2000-12-05 | 2011-10-12 | ハイドロ−ケベック | Particle groups mainly composed of Li4Ti5O12, Li (4-α) ZαTi5O12, or Li4ZβTi (5-β) O12, a method for obtaining these particle groups, and a method for using these particle groups in an electrochemical device |
US10734647B2 (en) | 2000-12-05 | 2020-08-04 | Hydro-Quebec | Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12, particles, processes for obtaining same and use as electrochemical generators |
JP2010280560A (en) * | 2000-12-05 | 2010-12-16 | Hydro Quebec | PARTICLE ASSEMBLAGE INCLUDING Li4Ti5O12, Li(4-alpha)ZalphaTi5O12 OR Li4ZbetaTi(5-beta)O12 AS MAIN COMPONENT, METHOD FOR OBTAINING THE SAME, AND METHOD FOR APPLYING THE PARTICLE ASSEMBLAGE IN ELECTROCHEMICAL EQUIPMENT |
US9559356B2 (en) | 2000-12-05 | 2017-01-31 | Hydro-Quebec | Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12 particles, processes for obtaining same and use as electrochemical generators |
US9077031B2 (en) | 2000-12-05 | 2015-07-07 | Hydro-Quebec | Li4Ti5O12, Li(4-α)ZαTi5O12or Li4ZβTi(5-β)O12 particles, processes for obtaining same and their use in electrochemical generators |
JP2008091079A (en) * | 2006-09-29 | 2008-04-17 | Toshiba Corp | Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and automobile |
JP4602306B2 (en) * | 2006-09-29 | 2010-12-22 | 株式会社東芝 | Anode active material for non-aqueous electrolyte battery, non-aqueous electrolyte battery, battery pack and automobile |
KR100895554B1 (en) * | 2006-09-29 | 2009-04-29 | 가부시끼가이샤 도시바 | Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack and vehicle |
JP2011154928A (en) * | 2010-01-28 | 2011-08-11 | Gs Yuasa Corp | Active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2011181222A (en) * | 2010-02-26 | 2011-09-15 | Hitachi Ltd | Lithium ion battery |
KR20130005222A (en) * | 2011-07-05 | 2013-01-15 | 삼성에스디아이 주식회사 | Composite, mamufacturing method, anode active material, anode including the anode active material, and lithium secondary battery including the anode |
JP2013016465A (en) * | 2011-07-05 | 2013-01-24 | Samsung Sdi Co Ltd | Composite material, method for manufacturing composite material, anode active material containing composite material, anode containing anode active material, and lithium secondary battery comprising anode |
US9011713B2 (en) | 2011-07-05 | 2015-04-21 | Samsung Sdi Co., Ltd. | Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode |
KR20130052500A (en) * | 2011-11-11 | 2013-05-22 | 삼성에스디아이 주식회사 | Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode |
SE2150677A1 (en) * | 2020-08-14 | 2022-02-15 | Tiotech As | An electrode material and a battery comprising titanium dioxide bronze |
SE546073C2 (en) * | 2020-08-14 | 2024-05-07 | Tiotech As | An electrode material and a battery comprising titanium dioxide bronze |
Also Published As
Publication number | Publication date |
---|---|
JP3197779B2 (en) | 2001-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100838338B1 (en) | Nonaqueous electrolyte secondary battery | |
JP3670875B2 (en) | Lithium secondary battery | |
JP2000235857A (en) | Lithium secondary battery | |
JPH11273677A (en) | Lithium secondary battery | |
KR20080021710A (en) | Lithium manganese compounds and methods of making the same | |
JPH09330720A (en) | Lithium battery | |
JPH1167209A (en) | Lithium secondary battery | |
JP3197779B2 (en) | Lithium battery | |
JP3615415B2 (en) | Non-aqueous secondary battery | |
JPH06243871A (en) | Nonaqueous secondary battery | |
JP3188026B2 (en) | Non-aqueous battery | |
JP3768046B2 (en) | Lithium secondary battery | |
JPH08250119A (en) | Lithium secondary battery | |
JP2000100434A (en) | Lithium secondary battery | |
JPH0684542A (en) | Nonaqueous electrolytic solution secondary battery | |
JP3625679B2 (en) | Lithium secondary battery | |
JP3268924B2 (en) | Non-aqueous electrolyte battery | |
KR100555972B1 (en) | Cathode active material and lithium secondary battery employing the same | |
JPH05182668A (en) | Nonaqueous electrolyte secondary battery | |
JPH06111820A (en) | Nonaqueous battery | |
JPH10144291A (en) | Non-aqueous electrolyte battery and manufacture of its positive electrode | |
JP3167577B2 (en) | Lithium battery | |
JPH06243869A (en) | Nonaqueous secondary battery | |
JP2000058068A (en) | Nonaqueous electrolyte secondary battery | |
JP3406636B2 (en) | Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080608 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |