JP2000012034A - Graphite material for lithium secondary battery and its manufacture - Google Patents

Graphite material for lithium secondary battery and its manufacture

Info

Publication number
JP2000012034A
JP2000012034A JP10185710A JP18571098A JP2000012034A JP 2000012034 A JP2000012034 A JP 2000012034A JP 10185710 A JP10185710 A JP 10185710A JP 18571098 A JP18571098 A JP 18571098A JP 2000012034 A JP2000012034 A JP 2000012034A
Authority
JP
Japan
Prior art keywords
graphite
peak
graphite material
temperature
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185710A
Other languages
Japanese (ja)
Inventor
Toshio Tamaki
敏夫 玉木
Tomimori Hosotsubo
富守 細坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petoca Ltd
Original Assignee
Petoca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petoca Ltd filed Critical Petoca Ltd
Priority to JP10185710A priority Critical patent/JP2000012034A/en
Publication of JP2000012034A publication Critical patent/JP2000012034A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a graphite material for a lithium secondary battery with high charging/discharging capacity and high charging/discharging cycle characteristics by using a graphite material having a specific structure capable of identifying by Raman spectroscopic analysis. SOLUTION: Graphite material is obtained by graphitizing a carbon material under the existence of a boron compound at 2,500 deg.C or higher, and has a spacing of (d002) as determined by the X-ray diffraction of 0.338 nm or less, a crystallite size in the direction of a (c)-axis (Lc) of 35 nm or less, a crystallite size in the direction of an (a)-axis (La) of 50 nm or more, a peak ratio of (101) diffraction peak to (100) diffraction peak (P101/P100) is 1.0 or higher and moreover a peak intensity ratio (I1340/I1580) as determined by Raman spectroscopic analysis is 0.5 or higher, and also has shoulder-shape of 1,310-1,320 cm-1 in the peak in the vicinity of 1,340 cm-1. The graphite material is mesophase pitch family graphite milled fibers. When the carbon material is graphitized under the existence of the boron compound at 2,500 deg.C or higher, the carbon material is kept at a constant temperature between 2,200-2,400 deg.C for 20 minutes or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素化合物(ホ
ウ素単体も含む)の存在下で黒鉛化処理し得られたリチ
ウム二次電池負極用黒鉛材の改良に関する。詳細には、
本発明は、X線回折により明らかなように高度に黒鉛構
造が進み且つラマン分析で特定化されるショルダー状の
ピークが存在する特異な黒鉛構造を有する、電池性能の
優れたリチウム二次電池負極用黒鉛材に関する。更に、
本発明は、炭素材の黒鉛化処理に際し、特殊な熱処理条
件を保つ点に特徴のある黒鉛材の改良された製造法に関
する。本発明の黒鉛材を用いたリチウム二次電池は、放
充電容量が大きく、高エネルギー密度を有し、且つ充放
電サイクル特性に優れている特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a graphite material for a negative electrode of a lithium secondary battery obtained by performing a graphitization treatment in the presence of a boron compound (including boron alone). For details,
The present invention relates to a lithium secondary battery negative electrode having excellent battery performance, having a unique graphite structure in which the graphite structure is highly advanced as evident from X-ray diffraction and a shoulder-like peak specified by Raman analysis is present. Related to graphite materials. Furthermore,
The present invention relates to an improved method for producing a graphite material characterized in that special heat treatment conditions are maintained during the graphitization of a carbon material. The lithium secondary battery using the graphite material of the present invention has features that it has a large discharge / charge capacity, a high energy density, and excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。このような非水電解
液リチウム二次電池は、携帯用電子機器電源として実用
化されており、さらに、電気自動車、電力貯蔵用などの
高性能電池としての実用化が期待されている。リチウム
二次電池の負極材としては、炭素材を利用することが検
討され実用化されており、特に、黒鉛材の使用がサイク
ル特性に優れる等の利点から主流になりつつある。しか
し、実用化されている黒鉛材の充放電容量は、310m
Ah/g程度であり、黒鉛材の理論容量372mAh/
gと比較し、まだ改善の余地があると見られ、高容量化
の研究開発が継続して行われている。
2. Description of the Related Art In general, a secondary battery using an alkali metal, for example, lithium as a negative electrode active material has a high energy density and a high electromotive force. It has many advantages such as excellent storage, light weight and small size. Such a non-aqueous electrolyte lithium secondary battery has been put to practical use as a power source for portable electronic devices, and is expected to be put into practical use as a high-performance battery for electric vehicles, power storage, and the like. The use of a carbon material as a negative electrode material of a lithium secondary battery has been studied and put to practical use. In particular, the use of a graphite material is becoming mainstream because of its advantages such as excellent cycle characteristics. However, the charge and discharge capacity of a graphite material that has been put to practical use is 310 m.
Ah / g, and the theoretical capacity of graphite material is 372 mAh /
Compared with g, there is still room for improvement, and research and development for higher capacity is ongoing.

【0003】本発明者は、炭素材をホウ素化合物の存在
下で黒鉛化処理した黒鉛材(特に黒鉛繊維ミルド)とす
ることで、黒鉛化構造を高度に発達させ、また黒鉛層の
微細構造がリチウムの出入をより容易にし、電池の容量
を向上させ、またサイクル特性の劣化を少なくすると言
う黒鉛構造の改良を図ることができることを見出し、特
開平9−63584号公報、9−63585号公報とし
て既に提案した。また、本発明者は、ホウ素化合物の存
在下での黒鉛化処理の後処理について特願平8−331
410号の出願を行い、さらに、ホウ素化合物をピッチ
に添加する方法についても特願平9−68985号、9
−72824号として既に出願を行った。
The inventor of the present invention has developed a highly graphitized structure by using a graphite material (particularly a milled graphite fiber) obtained by graphitizing a carbon material in the presence of a boron compound. It has been found that it is possible to improve the graphite structure, which facilitates the inflow and outflow of lithium, improve the capacity of the battery, and reduce the deterioration of the cycle characteristics, as disclosed in JP-A-9-63584 and 9-63585. Already proposed. Further, the present inventor has disclosed a post-graphitization treatment in the presence of a boron compound in Japanese Patent Application No. 8-331.
Application No. 410, and a method of adding a boron compound to pitch is disclosed in Japanese Patent Application Nos. 9-68985 and 9-68985.
No.-72824 has already been filed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
に、従来のリチウム二次電池が理論容量よりまだ小さい
という課題を解決することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem that the conventional lithium secondary battery is still smaller than the theoretical capacity as described above.

【0005】[0005]

【課題を解決するための手段】このように、本発明者
は、リチウム二次電池負極用炭素材として、ホウ素化合
物の存在下で黒鉛化処理された黒鉛材を種々研究するな
か、電池の充放電容量と黒鉛材の構造の関連に着目し検
討した結果、ラマン分析で特定化されるショルダー状の
ピークが存在する特異な黒鉛構造を有するものが、放充
電容量が大きく、高エネルギー密度を有し、且つ充放電
サイクル特性に優れたリチウム二次電池用黒鉛材を提供
できることを見出し、且つそのために黒鉛化処理に際
し、特殊な熱処理条件を保つことにより、本発明を完成
するに至った。
As described above, the present inventor has studied various graphite materials which have been graphitized in the presence of a boron compound as a carbon material for a negative electrode of a lithium secondary battery. As a result of examining the relationship between the discharge capacity and the structure of the graphite material, those with a unique graphite structure with a shoulder-shaped peak specified by Raman analysis have a large discharge capacity and high energy density. In addition, the present inventors have found that a graphite material for a lithium secondary battery having excellent charge-discharge cycle characteristics can be provided, and for that purpose, the present invention has been completed by maintaining special heat treatment conditions in the graphitization treatment.

【0006】即ち、本発明は: 炭素材をホウ素化合物の存在下2500℃以上の温
度で黒鉛化処理した黒鉛材であって、該黒鉛材のX線回
折による(a) 黒鉛層間距離(d002 )が0.338nm
以下で、 (b)C軸方向の結晶子の大きさ(Lc)が35
nm以上で、(c) a軸方向の結晶子の大きさ(La)が
50nm以上で、(d) (101)回折ピークと(10
0)回折ピークのピーク比(P101 /P100 )が1.0
以上で、かつラマンスペクトル分析による(e) ピーク強
度比(I1340/I1580)が0.5以上で、(f) 1340
cm-1近辺のピークには1310〜1320cm-1のシ
ョルダー状のピークが存在するリチウム二次電池用黒鉛
材を提供する。また、 黒鉛材がメソフェーズピッチを原料とした黒鉛繊維
ミルドである点にも特徴を有する。また、 炭素材をホウ素化合物の存在下2500℃以上の温
度で黒鉛化処理するに当たり、2200〜2400℃の
温度領域で20分間以上一定温度で保持する、又は
記載のリチウム二次電池用黒鉛材の製造方法を提供す
る。
That is, the present invention relates to a graphite material obtained by subjecting a carbon material to graphitization at a temperature of 2500 ° C. or more in the presence of a boron compound, and (a) a graphite interlayer distance (d 002 ) obtained by X-ray diffraction of the graphite material. ) Is 0.338 nm
(B) The crystallite size (Lc) in the C-axis direction is 35
(c) When the crystallite size (La) in the a-axis direction is 50 nm or more, (d) the (101) diffraction peak and (10)
0) The peak ratio of diffraction peaks (P 101 / P 100 ) is 1.0
(E) peak intensity ratio (I 1340 / I 1580 ) by Raman spectrum analysis is 0.5 or more, and (f) 1340
The peak near cm -1 to provide a lithium secondary battery graphite material is present shoulder-shaped peak of 1310~1320cm -1. Another feature is that the graphite material is a graphite fiber mill made from mesophase pitch. In addition, when the carbon material is graphitized at a temperature of 2500 ° C. or more in the presence of a boron compound, the carbon material is held at a constant temperature in a temperature range of 2200 to 2400 ° C. for 20 minutes or more. A manufacturing method is provided.

【0007】以下、本発明を詳細に説明する。 (1) 黒鉛材について; (i)黒鉛材の構造; 本発明の黒鉛材は、ホウ素の存在下2500℃以上、好
ましくは2600℃以上の温度で黒鉛化処理された、黒
鉛構造が発達し、以下の特徴を有するリチウム二次電池
負極用として適した材料である。この熱処理温度の上限
はなるべく高温度であることが望ましく特に制限されな
いが、経済的効率を考えると3000℃程度で十分であ
る。黒鉛材の形態としては、特に限定されるものではな
く、繊維状、ミルド繊維状、ペーパー状、フィルム状及
びメソカーボンマイクロビーズのような球状の形状のも
のを包含する。本発明では、以下に記述のように、ミル
ド化した炭素繊維(特にメソフェーズピッチ系)を黒鉛
化処理した黒鉛材が、電池の高容量化の面で好ましく使
用される。本発明の黒鉛化後の黒鉛材の構造は、X線回
折と、ラマン分析により構造が特定されるものである。
Hereinafter, the present invention will be described in detail. (1) Regarding graphite material; (i) Structure of graphite material; The graphite material of the present invention is graphitized at a temperature of 2500 ° C. or more, preferably 2600 ° C. or more in the presence of boron, and a graphite structure develops. It is a material suitable for a negative electrode of a lithium secondary battery having the following characteristics. The upper limit of the heat treatment temperature is desirably as high as possible, and is not particularly limited. However, considering economic efficiency, about 3000 ° C. is sufficient. The form of the graphite material is not particularly limited, and includes a fibrous form, a milled fibrous form, a paper form, a film form, and a spherical form such as mesocarbon microbeads. In the present invention, as described below, a graphite material obtained by graphitizing milled carbon fibers (particularly, mesophase pitch type) is preferably used in terms of increasing the capacity of a battery. The structure of the graphite material after graphitization of the present invention is specified by X-ray diffraction and Raman analysis.

【0008】 X線回折 本発明の黒鉛材は、黒鉛層間距離(d002 )が0.33
8nm以下、好ましくは0.336nm以下、C軸方向
の結晶子の大きさ(Lc)が35nm以上、好ましくは
45nm以上、a軸方向の結晶子の大きさ(La)が5
0nm以上、好ましくは60nm以上で、且つ(10
1)回折ピークと(100)回折ピークのピーク比(P
101 /P100 )が1.0以上、好ましくは1.4以上で
ある。該回折ピーク比の上限は他の要素との関係もあり
一律に限定されないが、通常1.8程度あることが好ま
しい。これらは、黒鉛材の黒鉛化の度合いを表す指標で
あり、本発明においてすべてを満足することが電池の性
能を向上させる上で要求される。
X-ray Diffraction The graphite material of the present invention has a graphite interlayer distance (d 002 ) of 0.33.
8 nm or less, preferably 0.336 nm or less, the crystallite size (Lc) in the C-axis direction is 35 nm or more, preferably 45 nm or more, and the crystallite size (La) in the a-axis direction is 5
0 nm or more, preferably 60 nm or more, and (10
1) Peak ratio of diffraction peak to (100) diffraction peak (P
101 / P 100) is 1.0 or more, preferably 1.4 or more. The upper limit of the diffraction peak ratio is not limited uniformly because of the relationship with other factors, but it is usually preferably about 1.8. These are indices indicating the degree of graphitization of the graphite material, and satisfying all of them in the present invention is required to improve the performance of the battery.

【0009】X線回折法とは、CukαをX線源、標準
物質に高純度シリコンを使用し、炭素繊維等に対し回折
パターンを測定するもので、その002回折パターンの
ピーク位置、半値幅から、それぞれ黒鉛層間距離d
(002) 、c軸方向の結晶子の大きさLc(002) 、及び1
10回折パターンのピーク位置、半値幅からa軸方向の
結晶子の大きさLa(110) を算出する。算出方法は学振
法に基づき算出する。また、101/100の回折ピー
ク比の測定は、得られた回折線図にベースラインを引
き、このベースラインから101(2θ≒44.5)、
100(2θ≒42.5)の各ピークの高さを測定し、
101の回折ピーク高さを100回折ピーク高さで除し
て求める。
The X-ray diffraction method uses Cukα as an X-ray source and high-purity silicon as a standard substance, and measures the diffraction pattern of carbon fibers and the like. , Respectively, the distance d between graphite layers
(002), the c-axis direction of the crystallite size Lc (002), and 1
The size La (110) of the crystallite in the a-axis direction is calculated from the peak positions and the half widths of the ten diffraction patterns. The calculation method is based on the Gakushin method. In the measurement of the diffraction peak ratio of 101/100, a base line was drawn on the obtained diffraction diagram, and 101 (2θ ≒ 44.5) was obtained from the base line.
Measure the height of each peak of 100 (2θ ≒ 42.5),
It is determined by dividing the 101 diffraction peak height by the 100 diffraction peak height.

【0010】 ラマン分析 炭素材料のラマンスペクトルには、1340cm-1近辺
と1580cm-1近辺に2つのピークが観察される。前
者は黒鉛の結晶構造が発達していないエッジ部等の炭素
結合に由来し、後者は黒鉛構造が発達した炭素二重結合
に由来する。通常、高度に黒鉛化した材料では通常13
40cm-1近辺のピークが消失しているか、あるいは非
常に強度の低いピークとなっている。このため、2つの
ピークの強度比(I1340/I1580)は炭素材表面の黒鉛
化度を表すことができ、一般的に、黒鉛材は、この強度
比が0.4以下になる。しかし、特開平8−31422
号公報にも開示があるように、ホウ素を含有する黒鉛材
には、1340cm-1近辺のピークが顕著に存在してい
る。
Raman Analysis In the Raman spectrum of a carbon material, two peaks are observed around 1340 cm −1 and 1580 cm −1 . The former is derived from a carbon bond in an edge portion where the crystal structure of graphite is not developed, and the latter is derived from a carbon double bond in which the graphite structure is developed. Usually, for highly graphitized materials, typically 13
The peak around 40 cm -1 has disappeared or has a very low intensity. Therefore, the intensity ratio of the two peaks (I 1340 / I 1580 ) can represent the degree of graphitization of the surface of the carbon material. Generally, the intensity ratio of graphite material is 0.4 or less. However, Japanese Patent Application Laid-Open No. Hei 8-31422
As disclosed in Japanese Unexamined Patent Publication, a peak near 1340 cm -1 is remarkably present in the graphite material containing boron.

【0011】このため、本発明においては、この強度比
が0.5以上、好ましくは0.6以上である黒鉛材がリ
チウム電池用として適している。特に、該ピーク強度比
の上限はX線回折値にも影響されて一律に限定されない
が、通常0.9程度あることが好ましい。ホウ素含有の
黒鉛材は、理由は不明であるが、X線回折とラマン分析
の結果から、内部は黒鉛化構造が高度に発達し、一方、
表層はエッジ部等の炭素結合が残った状態を保持してい
ると判断される。さらに、本発明の最大の特徴は、13
40cm-1近辺のピークには、1310〜1320cm
-1の近辺にショルダー状のピークが存在することにあ
る。
Therefore, in the present invention, a graphite material having an intensity ratio of 0.5 or more, preferably 0.6 or more is suitable for a lithium battery. In particular, the upper limit of the peak intensity ratio is not limited uniformly by the X-ray diffraction value, but is usually preferably about 0.9. The reason for the boron-containing graphite material is unknown, but from the results of X-ray diffraction and Raman analysis, a highly graphitized structure develops inside,
It is determined that the surface layer retains the state in which the carbon bond remains at the edge and the like. Further, the most important feature of the present invention is that
The peak around 40 cm -1 has 1310 to 1320 cm
This is due to the presence of a shoulder-like peak near -1 .

【0012】このピークは、黒鉛結晶の六角網平面内の
炭素原子の一部がホウ素原子に置換わった構造に由来す
ると考えられ、このような状態でホウ素原子が黒鉛結晶
内に存在することにより、黒鉛結晶内の電子エネルギー
レベルが変化し、黒鉛結晶層間へのリチウムのインター
カレーションを容易にし、電池負極材とした時の充放電
容量を増加させる効果をもたらすものと考えられる。な
お、本発明のラマン分析は、波長632.8nmのHe
Neレーザーを用いて、室温で分解能0.2cm-1、測
定範囲1000〜1800cm-1で実施した。また、ピ
ーク強度比は、測定結果から1340cm-1近辺と15
80cm-1近辺の2つのピークの高さを算出し、その比
で求めた。
[0012] This peak is considered to be derived from a structure in which part of carbon atoms in the hexagonal mesh plane of the graphite crystal is replaced by boron atoms. In such a state, boron atoms are present in the graphite crystal. It is considered that the electron energy level in the graphite crystal changes, thereby facilitating the intercalation of lithium between the graphite crystal layers, and increasing the charge / discharge capacity when used as a battery negative electrode material. Note that the Raman analysis of the present invention is performed using He at a wavelength of 632.8 nm.
Using Ne laser was performed at a resolution 0.2 cm -1, the measurement range 1000~1800Cm -1 at room temperature. Further, the peak intensity ratio was found to be around 1340 cm −1 and 15
The heights of the two peaks near 80 cm −1 were calculated, and the heights were calculated.

【0013】(2) 黒鉛材の製造:本発明に好適な黒鉛材
である黒鉛繊維ミルドの製造例を以下に説明する。 (i) 炭素繊維原料 本発明に用いる炭素繊維用原料としては、任意の易黒鉛
化質の炭化水素を使用することができる。例えばナフタ
レン、フェナントレン等の縮合多環炭化水素化合物や石
油、石炭系ピッチ等の縮合複素環化合物等を挙げること
ができる。特に石油、石炭系ピッチの使用、好ましくは
光学的異方性ピッチ,すなわちメソフェーズピッチを用
いることが、電池の高容量化の面で好ましい。このメソ
フェーズピッチとしては、紡糸可能ならば特に限定され
るものでないが、メソフェーズ含有量100%のもの
が、電池の高容量化に加え、紡糸性、品質の安定性の面
からも好ましい。
(2) Production of graphite material: An example of producing a graphite fiber mill, which is a graphite material suitable for the present invention, will be described below. (i) Carbon fiber raw material As the carbon fiber raw material used in the present invention, any easily graphitizable hydrocarbon can be used. Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum and coal pitch. In particular, the use of petroleum or coal pitch, preferably the use of an optically anisotropic pitch, ie, a mesophase pitch, is preferable from the viewpoint of increasing the capacity of a battery. The mesophase pitch is not particularly limited as long as it can be spun, but a mesophase content of 100% is preferable in terms of spinnability and quality stability in addition to increasing the capacity of the battery.

【0014】(ii)ミルド化した炭素繊維の製造 上記原料を、常法により紡糸、不融化し、さらにそのま
ま或いは軽度炭化処理した後にミルド化する。 (イ) 紡糸等 原料ピッチを溶融紡糸する方法としては、特に限定され
るものではなく、メルトスピニング、メルトブロー、遠
心紡糸、渦流紡糸等種々の方法を使用することが出来る
が、紡糸時の生産性や得られる繊維の品質の観点から、
メルトブロー法が好ましい。メルトブロー時の紡糸孔の
大きさは、0.1mmΦ以上0.5mmΦ以下、好まし
くは0.15mmΦ以上0.3mmΦ以下である。紡糸
孔の大きさが0.5mmΦを越えると、繊維径が25μ
m以上と大きくなり易く、かつ繊維径がバラツキ易く品
質管理上好ましくない。紡糸孔の大きさが0.1mmΦ
未満では、紡糸時目詰まりが生じ易く、また紡糸ノズル
の制作が困難となり好ましくない。
(Ii) Production of Milled Carbon Fiber The above raw material is spun and infusibilized by a conventional method, and then milled as it is or after light carbonization. (B) Spinning etc. The method for melt-spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and vortex spinning can be used. From the viewpoint of the quality of the obtained fiber
Melt blowing is preferred. The size of the spinning hole at the time of melt blowing is from 0.1 mmΦ to 0.5 mmΦ, preferably from 0.15 mmΦ to 0.3 mmΦ. When the size of the spinning hole exceeds 0.5 mmΦ, the fiber diameter becomes 25μ.
m or more, and the fiber diameter tends to vary, which is not preferable in quality control. Spinning hole size is 0.1mmΦ
If it is less than 1, clogging tends to occur during spinning, and production of a spinning nozzle is difficult, which is not preferable.

【0015】紡糸速度は、生産性の面から毎分500m
以上、好ましくは毎分1500m以上、さらに好ましく
は毎分2000m以上である。紡糸温度は、原料ピッチ
により幾分変化するが、原料ピッチの軟化点以上でピッ
チが変質しない温度以下であれば良く、通常300℃以
上400℃以下、好ましくは300℃以上380℃以下
である。また、メルトブロー法は、数十ポイズ以下の低
粘度で紡糸し、かつ高速冷却することにより、黒鉛層面
が繊維軸に平行に配列し易くなる利点もある。原料ピッ
チの軟化点も、特に限定されるものではないが、前記紡
糸温度との関係から、軟化点が低くまた不融化反応速度
の速いものが、製造コスト及び安定性の面で有利であ
る。これより、原料ピッチの軟化点は230℃以上35
0℃以下、好ましくは250℃以上310℃以下であ
る。
The spinning speed is 500 m / min from the viewpoint of productivity.
Above, preferably 1500 m / min or more, more preferably 2000 m / min or more. The spinning temperature varies somewhat depending on the raw material pitch, but may be any temperature as long as it is higher than the softening point of the raw material pitch and lower than the temperature at which the pitch does not deteriorate, and is usually 300 to 400 ° C, preferably 300 to 380 ° C. The melt blow method also has an advantage that the graphite layer surface is easily arranged in parallel to the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed. Although the softening point of the raw material pitch is not particularly limited, those having a low softening point and a high infusibilization reaction rate are advantageous in terms of production cost and stability in view of the spinning temperature. Accordingly, the softening point of the raw material pitch is 230 ° C. or higher and 35
0 ° C. or less, preferably 250 ° C. or more and 310 ° C. or less.

【0016】(ロ) 不融化等 紡糸後のピッチ繊維は、常法により不融化処理する。不
融化方法としては、例えば、二酸化窒素や酸素等の酸化
性ガス雰囲気中で加熱処理する方法や、硝酸やクロム酸
等の酸化性水溶液中で処理する方法、さらには、光やγ
線等により重合処理する方法等を使用することが可能で
ある。より簡便な不融化方法は、空気中で加熱処理する
方法であり、原料により若干異なるが平均昇温速度3℃
/分以上、好ましくは5℃/分以上で、350℃程度ま
で昇温させながら加熱処理する。
(B) Infusibilization, etc. The pitch fiber after spinning is infusibilized by a conventional method. Examples of the infusibilization method include a method of performing heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide and oxygen, a method of performing treatment in an oxidizing aqueous solution such as nitric acid and chromic acid, and a method of treating light or γ.
It is possible to use a method of performing a polymerization treatment using a wire or the like. A simpler infusibilizing method is a method in which heat treatment is performed in the air.
Heat treatment at a rate of at least 350 ° C./min, preferably at least 5 ° C./min.

【0017】(ハ) 炭素繊維のミルド化 1)炭素繊維ミルド 本発明に用いる炭素繊維は、黒鉛化処理前に所定の粒径
に粉砕(ミルド化)した炭素繊維ミルドを用いることが
好ましい。通常、リチウム二次電池負極用黒鉛材料は、
1〜200μm程度の粒径のものが使用されており、本
発明の炭素繊維ミルドも平均粒径が、5〜50μmの範
囲が好ましい。平均粒径が、好ましい範囲より小さい場
合は、活性な表面がいたずらに多くなり電解液の分解が
激しくなり、初期充放電効率が小さく、サイクル劣化も
激しくなる。一方、大きい場合は、電極の嵩密度が低く
なり容積当りのエネルギー密度が小さくなり好ましくな
い。また、短絡の観点からも好ましくない。上記平均粒
径は、レーザー回折方式による粒度分布から算出する。
また、本発明の炭素繊維ミルドのアスペクト比(繊維の
直径に対する長さの比)が1以上30以下、好ましくは
1以上20以下であることが望ましい。
(C) Milling of carbon fiber 1) Carbon fiber milling The carbon fiber used in the present invention is preferably a milled carbon fiber milled to a predetermined particle size before the graphitization treatment. Usually, graphite materials for negative electrodes of lithium secondary batteries are:
Those having a particle size of about 1 to 200 μm are used, and the average particle size of the milled carbon fiber of the present invention is preferably in the range of 5 to 50 μm. If the average particle size is smaller than the preferred range, the number of active surfaces is unnecessarily increased, the decomposition of the electrolytic solution becomes severe, the initial charge / discharge efficiency is small, and the cycle deterioration is severe. On the other hand, if it is large, the bulk density of the electrode becomes low and the energy density per volume becomes small, which is not preferable. It is also not preferable from the viewpoint of short circuit. The average particle size is calculated from a particle size distribution by a laser diffraction method.
The aspect ratio (the ratio of the length to the diameter of the fiber) of the milled carbon fiber of the present invention is preferably 1 or more and 30 or less, more preferably 1 or more and 20 or less.

【0018】アスペクト比が30を越えると、即ち、繊
維長の比較的長い炭素繊維ミルドを用いると嵩密度が低
くなり容積当りのエネルギー密度が小さくなりかつ、
正、負極の短絡の原因ともなり好ましくない。また、ア
スペクト比が1未満になると、繊維軸方向への縦割れを
生じる繊維が多くなり好ましくない。上記アスペクト比
は、得られた炭素繊維ミルドの抜き取り個数100個の
値の平均値で示す。上記平均粒径と、アスペクト比の観
点から、ミルド化前の繊維径としては、ミルド化時、及
び黒鉛化処理時の体積減少も考慮し、4μm以上25μ
m以下が好ましい。以下にミルド化方法について記す。
When the aspect ratio exceeds 30, that is, when a carbon fiber mill having a relatively long fiber length is used, the bulk density decreases, the energy density per volume decreases, and
This may cause a short circuit between the positive and negative electrodes, which is not preferable. On the other hand, if the aspect ratio is less than 1, the number of fibers that cause longitudinal cracks in the fiber axis direction increases, which is not preferable. The above-mentioned aspect ratio is shown by the average value of the values of 100 pieces of the obtained carbon fiber milled samples. From the viewpoint of the average particle size and the aspect ratio, the fiber diameter before milling is 4 μm or more and 25 μm in consideration of the volume reduction during milling and graphitization.
m or less is preferable. The milling method is described below.

【0019】2)炭素繊維ミルドの製造 ミルド化は、不融化処理した繊維の段階で行っても良い
が、不融化処理した繊維を、250℃以上1500℃以
下の温度で、好ましくは500℃以上900℃以下の温
度で不活性ガス中軽度に炭化した後、ミルド化すること
が望ましい。不融化繊維を250℃以上1500℃以下
で軽度に炭化しミルド化することは、ミルド化後の繊維
の縦割れが比較的に防げることと、ミルド化時に新たに
表面に露出した黒鉛層面がより高温での黒鉛化処理時に
縮重合・環化反応が進み易くなる傾向があり、その表面
の活性度が低下し、電解液の分解を阻止する効果があり
有利である。繊維を、1500℃以上の温度で熱処理
(炭化或いは黒鉛化)しミルド化すると、繊維軸方向に
発達した黒鉛層面に沿って開裂が発生し易くなり、ミル
ド化された炭素繊維の全表面積中に占める破断面表面積
の割合が大きくなり、破断黒鉛層面における電子の極在
化による電解液の分解が起こり好ましくない。 また、
250℃以下の温度では炭化がほとんど起こらず処理す
る効果がない。
2) Production of milled carbon fiber Milling may be performed at the stage of the infusibilized fiber. However, the infusibilized fiber is treated at a temperature of 250 ° C or more and 1500 ° C or less, preferably 500 ° C or more. It is desirable to mildly carbonize in an inert gas at a temperature of 900 ° C. or less and then mill. Mild carbonization of the infusibilized fiber at a temperature of 250 ° C or more and 1500 ° C or less can be relatively prevented from longitudinal cracking of the fiber after the milling, and the graphite layer surface newly exposed to the surface during the milling can be more improved. At the time of graphitization treatment at a high temperature, the condensation polymerization / cyclization reaction tends to proceed easily, the activity of the surface is reduced, and the effect of inhibiting the decomposition of the electrolytic solution is advantageous. When the fiber is heat-treated (carbonized or graphitized) at a temperature of 1500 ° C. or more and milled, cracks easily occur along the graphite layer surface developed in the fiber axis direction, and the total surface area of the milled carbon fiber is increased. The proportion of the fracture surface area occupying becomes large, and the decomposition of the electrolytic solution due to the localization of electrons on the fractured graphite layer surface is not preferable. Also,
At a temperature of 250 ° C. or less, carbonization hardly occurs and there is no effect of treatment.

【0020】3)ミルド化技術 不融化後または軽度な炭化後の繊維をミルド化するに
は、ビクトリーミル、ジェットミル、高速回転ミル等を
使用することが有効である。本発明に適したミルド化を
効率良く実施するためには、上記各種方法に共通するこ
とであるが、例えばプレートを取り付けたローターを高
速に回転することにより、繊維軸に対し直角方向に繊維
を寸断する方法が適切である。ミルド化された繊維の繊
維長は、ローターの回転数、プレートの角度等を調整す
ることによりコントロールされる。該ミルド化には、ボ
ールミル等の磨砕機による方法もあるが、これらの方法
によると繊維の直角方向への加圧力が働き、繊維軸方向
への縦割れの発生が多くなり好ましくない。また、この
方法はミルド化に長時間を要し、適切なミルド化方法と
は言い難い。
3) Milling technology In order to mill the fiber after infusibilization or after mild carbonization, it is effective to use a Victory mill, a jet mill, a high-speed rotation mill, or the like. In order to efficiently carry out milling suitable for the present invention, it is common to the above-mentioned various methods that, for example, by rotating a rotor attached with a plate at a high speed, the fibers are perpendicular to the fiber axis. The shredding method is appropriate. The fiber length of the milled fiber is controlled by adjusting the number of rotations of the rotor, the angle of the plate, and the like. The milling may be performed by a grinding machine such as a ball mill. However, according to these methods, a pressing force in a direction perpendicular to the fiber acts, and longitudinal cracks in the fiber axis direction increase, which is not preferable. In addition, this method requires a long time for milling, and is not an appropriate milling method.

【0021】(iii) 黒鉛化処理 1)ホウ素化合物の添加等 本発明の黒鉛材の製造方法においては、ホウ素化合物の
存在下、2500℃以上、好ましくは2600℃以上の
高温で黒鉛化処理することで、前述のような黒鉛構造を
持つ高度に黒鉛構造が発達し、電池容量が大幅に向上す
る黒鉛材を製造する点に大きな特長がある。このため、
炭素繊維ミルド等の炭素材料にホウ素化合物を添加し、
黒鉛化処理する必要がある。ホウ素化合物の添加は、通
常、固形のホウ素化合物を直接添加し必要に応じ均一に
混合する方法及びホウ素化合物を溶媒溶液とし浸漬する
方法等が取られるが特に制限されるものではない。ま
た、特願平9−68985号公報、9−72824号公
報に記されるように原料ピッチの段階でホウ素化合物を
添加することも可能である。
(Iii) Graphitization treatment 1) Addition of boron compound, etc. In the method for producing a graphite material of the present invention, graphitization treatment is performed at a high temperature of 2500 ° C. or more, preferably 2600 ° C. or more in the presence of a boron compound. Thus, there is a great feature in that a graphite material having a graphite structure as described above is developed at a high degree, and a graphite material whose battery capacity is greatly improved is manufactured. For this reason,
Add boron compound to carbon material such as carbon fiber milled,
It needs to be graphitized. The method of adding the boron compound generally includes, but not limited to, a method of directly adding a solid boron compound and uniformly mixing as necessary, and a method of immersing the boron compound in a solvent solution. Further, as described in Japanese Patent Application Nos. 9-68985 and 9-72824, it is also possible to add a boron compound at the stage of the raw material pitch.

【0022】ホウ素化合物の添加量は、黒鉛化処理され
る材料に対しホウ素として15重量%以下、好ましく
は、1〜10重量%である。1重量%未満では本発明の
効果が薄く、15重量%を越えるとコストに対しての効
果が低下する。また、黒鉛化後の炭素材中にホウ素の残
存量が増加し炭素材同士が固着する等の問題を生じ好ま
しくない。ホウ素化合物としては、ホウ素単体の他に、
炭化ホウ素(B4 C)、塩化ホウ素、ホウ酸、酸化ホウ
素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸銅、ホ
ウ酸ニッケル等が挙げられる。溶媒溶液とするための溶
媒としては、例えば水、メタノール、グリセリン、アセ
トン等が挙げられ、使用するホウ素化合物に合わせ適宜
選択すればよい。また、固形で使用する際は、ミルド等
と均一に混合するために平均粒径を500μm以下、好
ましくは200μm以下のホウ素化合物として使用する
のがよい。
The boron compound is added in an amount of not more than 15% by weight, preferably 1 to 10% by weight, based on the material to be graphitized. If the amount is less than 1% by weight, the effect of the present invention is small, and if it exceeds 15% by weight, the effect on cost is reduced. In addition, the residual amount of boron in the carbon material after the graphitization increases, which causes a problem that the carbon materials adhere to each other, which is not preferable. As the boron compound, in addition to boron alone,
Examples include boron carbide (B 4 C), boron chloride, boric acid, boron oxide, sodium borate, potassium borate, copper borate, and nickel borate. Examples of the solvent for forming the solvent solution include water, methanol, glycerin, acetone and the like, and may be appropriately selected according to the boron compound to be used. When used as a solid, it is preferable to use a boron compound having an average particle size of 500 μm or less, preferably 200 μm or less, in order to uniformly mix with a mill or the like.

【0023】2)特殊な熱処理条件 本発明では、炭素繊維ミルド等炭素材料を、内部は高度
に黒鉛化させ、かつ、ラマン分析からピーク強度比(I
1340/I1580)が0.5以上で、且つ1340cm-1
辺のピークに1310〜1320cm-1のショルダー状
ピークが存在する、表層部に炭素結合が残り、ホウ素原
子が一部炭素原子と置き換わった黒鉛材であることが重
要である。このためには、ホウ素化合物の存在下、1〜
30℃/分、好ましくは2〜8℃/分の昇温速度で25
00℃以上、好ましくは2600℃以上の温度で黒鉛化
処理をする必要がある。ホウ素化合物添加による作用の
原理は不明であるが、ホウ素化合物の融点(ホウ素の融
点は2080℃、炭化ホウ素の融点は2450℃)近辺
の温度から、黒鉛化をより促進させる効果が得られピー
ク強度比(I1340/I1580)が0.5以上となることが
良い。
2) Special heat treatment conditions In the present invention, the inside of a carbon material such as a milled carbon fiber is highly graphitized, and the peak intensity ratio (I
In 1340 / I 1580) of 0.5 or more, and 1340cm there is a shoulder-shaped peak of 1310~1320Cm -1 to the peak near -1, remainder carbon bond in the surface layer portion, replacing the boron atom is part carbon atoms It is important that the graphite material is used. For this purpose, in the presence of a boron compound,
25 ° C. at a rate of 30 ° C./min, preferably 2 to 8 ° C./min.
It is necessary to perform the graphitization treatment at a temperature of at least 00 ° C, preferably at least 2600 ° C. Although the principle of the action by the addition of the boron compound is unknown, the effect of further promoting graphitization is obtained from the temperature around the melting point of the boron compound (the melting point of boron is 2080 ° C. and the melting point of boron carbide is 2450 ° C.), and the peak intensity is obtained. Preferably, the ratio (I 1340 / I 1580 ) is 0.5 or more.

【0024】更に、理由は明確ではないが、炭素材料を
2500℃以上に昇温して黒鉛化処理する際に、220
0〜2400℃の温度領域で、20分間以上、好ましく
は30〜150分間、より好ましくは30〜120分間
一定温度で保持する条件を選定することにより、131
0〜1320cm-1のショルダー状ピークが現れ、電池
容量の増加が見られることが分かった。この2200〜
2400℃の温度領域は、前述のホウ素と炭素との置換
が最も起こり易い温度領域と判断され、この温度域の特
定温度で一定時間保持することに意義があるものと考え
られる。このため、保持時間が20分間未満と短いと、
ショルダー状ピークが現れず好ましくなく、一方上限は
特に限定されるものではないが、長すぎると黒鉛化のコ
ストが著しく増大するので150分間程度で充分であ
る。また、炭素材料の黒鉛化処理は、酸素の不存在下、
例えば窒素、アルゴンガス等の不活性雰囲気で行うこと
が好ましい。これは、酸素が炭素材中の炭素と反応し、
二酸化炭素ガス等を生成し、炭素材の収率を低下させる
傾向があることによる。
Further, although the reason is not clear, when the temperature of the carbon material is raised to 2500 ° C. or more and the carbon material is graphitized, 220 ° C.
By selecting conditions for maintaining the temperature at a constant temperature in a temperature range of 0 to 2400 ° C. for 20 minutes or more, preferably 30 to 150 minutes, more preferably 30 to 120 minutes, 131
A shoulder-like peak at 0 to 1320 cm -1 appeared, and it was found that an increase in battery capacity was observed. This 2200
The temperature range of 2400 ° C. is determined to be the temperature range in which the above-mentioned substitution of boron and carbon is most likely to occur, and it is considered significant to maintain the temperature at a specific temperature in this temperature range for a certain period of time. Therefore, if the holding time is as short as less than 20 minutes,
Although no shoulder-like peak appears, it is not preferable. On the other hand, the upper limit is not particularly limited. However, if it is too long, the cost of graphitization increases remarkably, so that about 150 minutes is sufficient. In addition, the graphitization of carbon material is performed in the absence of oxygen.
For example, it is preferably performed in an inert atmosphere such as nitrogen gas or argon gas. This is because oxygen reacts with carbon in carbon material,
This is because carbon dioxide gas and the like tend to be generated and the yield of carbon material tends to be reduced.

【0025】(3) リチウムイオン二次電池用負極材: 1)負極黒鉛材の形状 本発明により得られた黒鉛材は、ポリエチレンやポリテ
トラフルオロエチレン等のバインダーを添加し、負極と
するに好適な形状、例えばシート又は板状に加圧ロール
成形した後、対極にリチウム金属を用いて還元処理を行
うことによって容易に高性能な負極とすることができ
る。このようにして作られた黒鉛材からの負極は、単位
体積当たりの容量が大きく、電池の小型化に好適であ
る。 2)電解液等 また、本発明による黒鉛材を負極に用い、リチウムイオ
ン二次電池を作成する場合には、電解液としてはリチウ
ム塩を溶解し得るものであればよいが、特に非プロトン
性の誘電率が大きい有機溶媒が好ましい。上記有機溶媒
としては、例えば、プロピレンカーボネート、エチレン
カーボネート、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、ジオキソラン、4−メチル−ジオキソラ
ン、アセトニトリル、ジメチルカーボネート、メチルエ
チルカーボネート、ジエチルカーボネート等を挙げるこ
とができる。これらの溶媒を単独あるいは適宜混合して
用いることが可能である。電解質としては、安定なアニ
オンを生成するリチウム塩、例えば、過塩素酸リチウ
ム、ホウフッ化リチウム、六塩化アンチモン酸リチウ
ム、六フッ化アンチモン酸リチウム等が好適である。
(3) Negative electrode material for lithium ion secondary battery: 1) Shape of negative electrode graphite material The graphite material obtained by the present invention is suitable for forming a negative electrode by adding a binder such as polyethylene or polytetrafluoroethylene. A high-performance negative electrode can be easily obtained by performing a reduction treatment using lithium metal as a counter electrode after forming a pressure roll into a sheet or plate, for example. The negative electrode made of the graphite material thus produced has a large capacity per unit volume and is suitable for miniaturization of a battery. 2) Electrolyte etc. When a graphite material according to the present invention is used for a negative electrode to produce a lithium ion secondary battery, the electrolyte may be any as long as it can dissolve a lithium salt. Organic solvents having a large dielectric constant are preferred. Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyl-dioxolan, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like. These solvents can be used alone or in a suitable mixture. As the electrolyte, a lithium salt that generates a stable anion, such as lithium perchlorate, lithium borofluoride, lithium antimonate hexachloride, or lithium antimonate hexafluoride, is suitable.

【0026】3)正極 また、リチウムイオン二次電池の正極としては、例え
ば、酸化クロム、酸化チタン、酸化コバルト、五酸化バ
ナジウム等の金属酸化物や、リチウムマンガン酸化物
(LiMn24 )、リチウムコバルト酸化物(LiC
oO2 )、リチウムニッケル酸化物(LiNiO2 )等
のリチウム金属酸化物;硫化チタン、硫化モリブデン等
の遷移金属のカルコゲン化合物;及びポリアセチレン、
ポリパラフェニレン、ポリピロール等の導電性を有する
共役系高分子物質等を用いることが出来る。 4)その他 これらの正極と負極との間に合成繊維製又はガラス繊維
製の不織布、織布やポリオレフィン系多孔質膜、ポリテ
トラフルオロエチレンの不織布等のセパレータを設け
る。また、従来の電池と同様に集電体を使用することが
できる。負極集電体としては、電極、電解液等に電気化
学的に不活性な導体、例えば銅、ニッケル、チタン、ス
テンレス鋼などの金属を板、箔、棒の形態で使用でき
る。本発明の二次電池は、前記セパレータ、集電体、ガ
スケット、封口板、ケース等の電池構成要素と本発明の
特定の負極を用い、常法に従って円筒型、角型或いはボ
タン型等の形態のリチウムイオン二次電池に組立てるこ
とができる。
3) Positive Electrode As the positive electrode of the lithium ion secondary battery, for example, metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, lithium manganese oxide (LiMn 2 O 4 ), Lithium cobalt oxide (LiC
oO 2 ), lithium metal oxides such as lithium nickel oxide (LiNiO 2 ); transition metal chalcogen compounds such as titanium sulfide and molybdenum sulfide; and polyacetylene;
A conductive conjugated polymer substance such as polyparaphenylene or polypyrrole can be used. 4) Others A separator such as a nonwoven fabric made of synthetic fiber or glass fiber, a woven fabric, a polyolefin-based porous membrane, or a nonwoven fabric made of polytetrafluoroethylene is provided between the positive electrode and the negative electrode. In addition, a current collector can be used as in the case of a conventional battery. As the negative electrode current collector, a conductor that is electrochemically inert to an electrode, an electrolyte, or the like, for example, a metal such as copper, nickel, titanium, or stainless steel can be used in the form of a plate, a foil, or a rod. The secondary battery of the present invention uses the above-mentioned battery components such as the separator, current collector, gasket, sealing plate, and case and the specific negative electrode of the present invention, and has a form such as a cylindrical type, a square type, or a button type according to a conventional method. Can be assembled into a lithium ion secondary battery.

【0027】[0027]

【作用】本発明では、このようにホウ素化合物を存在さ
せながら、炭素繊維ミルド等の炭素材料を黒鉛化処理す
ることにより、ホウ素化合物の作用原理は明らかではな
いが、高度に黒鉛化が進み、かつ、ラマン分析で特定さ
れる特異な構造により充放電容量及び充放電効率が大き
い性能の優れたリチウム二次電池負極用黒鉛材を提供す
ることができる。
According to the present invention, the principle of action of a boron compound is not clear by graphitizing a carbon material such as a milled carbon fiber while the boron compound is present, but the graphitization is highly advanced. In addition, it is possible to provide a graphite material for a negative electrode of a lithium secondary battery having excellent performance with large charge / discharge capacity and charge / discharge efficiency due to a unique structure specified by Raman analysis.

【0028】[0028]

【実施例】以下実施例により更に具体的に説明するが、
これらは本発明の範囲を制限するものではない。 (実施例1)光学的に異方性で比重1.25の石油系メ
ソフェーズピッチを原料として、幅3mmのスリットの
中に直径0.2mmφの紡糸孔を一列に500個有する
口金を用い、スリットから加熱空気を噴出させて、溶融
ピッチを牽引して平均直径13μmのピッチ繊維を製造
した。この時、紡糸温度は360℃、吐出量は0.8g
/H・分であった。紡出された繊維を、補修部分が20
メッシュのステンレス製金網で出来たベルトの背面から
吸引しつつベルト上に捕集した。この捕集したマットを
空気中、室温から300℃まで平均昇温速度6℃/分で
昇温して不融化処理を行った。引続き、この不融化糸を
700℃で軽度に炭化処理した後、高速回転ミルで粉砕
し平均粒径18μmの炭素繊維ミルドを得た。
The present invention will be described more specifically with reference to the following examples.
They do not limit the scope of the invention. (Example 1) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a spinneret having a width of 3 mm and a spinning hole having 500 spinning holes of 0.2 mmφ in a line was used. , Heated air was blown out of the melt to pull the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C and the discharge amount was 0.8 g.
/ H · min. The spun fiber is repaired by 20
It was collected on the belt while sucking from the back of the belt made of mesh stainless steel wire mesh. The collected mat was heated in air from room temperature to 300 ° C. at an average heating rate of 6 ° C./min to perform infusibility treatment. Subsequently, the infusibilized yarn was lightly carbonized at 700 ° C. and then pulverized by a high-speed rotating mill to obtain a carbon fiber mill having an average particle size of 18 μm.

【0029】この炭素繊維ミルドに平均粒径10μmの
炭化ホウ素を5重量%添加し、均一になるように撹拌混
合した後、アルゴン雰囲気下で、2300℃まで3℃/
分の速度で昇温した後、2300℃で40分間保持し、
次いで3℃/分の速度で3000℃まで昇温し、さらに
3000℃で1時間保持したのち降温し黒鉛繊維ミルド
を得た。該黒鉛繊維ミルドのX線回折の測定結果を表1
に、ラマン分析の結果を図1と表1に示す。図1から、
1310〜1320cm-1のショルダー状ピークの存在
が確認された。
5% by weight of boron carbide having an average particle size of 10 μm was added to the milled carbon fiber, and the mixture was stirred and mixed so as to be uniform.
After heating at a speed of 2 minutes, the temperature is maintained at 2300 ° C. for 40 minutes,
Next, the temperature was raised to 3000 ° C. at a rate of 3 ° C./min, and further maintained at 3000 ° C. for 1 hour, followed by cooling to obtain a milled graphite fiber. Table 1 shows the measurement results of the X-ray diffraction of the graphite fiber mill.
FIG. 1 and Table 1 show the results of the Raman analysis. From FIG.
The presence of a shoulder-like peak at 1310 to 1320 cm -1 was confirmed.

【0030】次に、該黒鉛繊維ミルド4.85gを0.
15gのポリテトラフルオロエチレンと混練しペレット
を作製し負極とした後、3極セルで充放電試験を行っ
た。試験は、陽極及び標準電極に金属リチウムを用い、
エチレンカーボネート(EC)/ジメチルカーボネート
(DMC)を体積比で1/1に調整した混合炭酸エステ
ル溶媒に、電解質として過塩素酸リチウム(LiClO
4 )を1モルの濃度で溶解させた電解液中で実施し、充
放電容量特性を測定した。充放電容量特性の測定は、1
00mA/gの定電流充放電下で行い、測定電位範囲は
対標準電位(0〜2V/Li/Li+ )で、10回繰返
し測定とした。測定結果を合わせて表1に示す。初回の
放電容量350mAh/g、充放電効率93%、10回
目の放電容量349mAh/g、充放電効率100%と
いずれも高い値を示した。
Next, 4.85 g of the milled graphite fiber was added to 0.1 g of the milled graphite fiber.
After a pellet was prepared by kneading with 15 g of polytetrafluoroethylene to form a negative electrode, a charge / discharge test was performed in a three-electrode cell. The test uses metallic lithium for the anode and standard electrode,
Lithium perchlorate (LiClO) was used as an electrolyte in a mixed carbonate solvent in which ethylene carbonate (EC) / dimethyl carbonate (DMC) was adjusted to a volume ratio of 1/1.
4 ) was carried out in an electrolytic solution having a concentration of 1 mol, and the charge / discharge capacity characteristics were measured. The measurement of charge / discharge capacity characteristics is as follows.
The measurement was performed under a constant current charge / discharge of 00 mA / g, and the measurement potential range was set to a standard potential (0 to 2 V / Li / Li + ), and the measurement was repeated 10 times. Table 1 shows the measurement results. The first discharge capacity was 350 mAh / g, the charge / discharge efficiency was 93%, and the tenth discharge capacity was 349 mAh / g, and the charge / discharge efficiency was 100%.

【0031】(比較例1)実施例1で得られた炭素繊維
ミルドを、ホウ素化合物を添加せず、アルゴン雰囲気下
で、3000℃まで3℃/分の速度で昇温し、さらに3
000℃で1時間保持したのち降温し黒鉛繊維ミルドを
得た。該黒鉛繊維ミルドのX線回折の測定結果を表1
に、ラマン分析の結果を図2と表1に示す。図2から、
1310〜1320cm-1のショルダー状ピークの存在
が認められなかった。また、該黒鉛繊維ミルドを用い、
実施例1と同様に負極を作製し、充放電容量特性を測定
した結果も合わせて表1に示す。
(Comparative Example 1) The milled carbon fiber obtained in Example 1 was heated to 3000 ° C at a rate of 3 ° C / min in an argon atmosphere without adding a boron compound.
After maintaining at 000 ° C. for 1 hour, the temperature was lowered to obtain a milled graphite fiber. Table 1 shows the measurement results of the X-ray diffraction of the graphite fiber mill.
FIG. 2 and Table 1 show the results of the Raman analysis. From FIG.
The presence of a shoulder-like peak at 1310 to 1320 cm -1 was not recognized. Also, using the graphite fiber mill,
A negative electrode was produced in the same manner as in Example 1, and the results obtained by measuring the charge / discharge capacity characteristics are also shown in Table 1.

【0032】(比較例2)実施例1で得られた炭素繊維
ミルドに実施例1と同様に平均粒径10μmの炭化ホウ
素を5重量%添加し、均一になるように撹拌混合した
後、アルゴン雰囲気下で、3000℃まで3℃/分の速
度で昇温し、さらに3000℃で1時間保持したのち降
温し黒鉛繊維ミルドを得た。該黒鉛繊維ミルドのX線回
折の測定結果を表1に、ラマン分析の結果を図3と表1
に示す。図3から、1310〜1320cm-1のショル
ダー状ピークの存在が認められなかった。また、該黒鉛
繊維ミルドを用い、実施例1と同様に負極を作製し、充
放電容量特性を測定した結果も合わせて表1に示す。
(Comparative Example 2) To the milled carbon fiber obtained in Example 1, 5% by weight of boron carbide having an average particle diameter of 10 μm was added in the same manner as in Example 1, and the mixture was stirred and mixed so as to be uniform. Under an atmosphere, the temperature was raised to 3000 ° C. at a rate of 3 ° C./min, and further kept at 3000 ° C. for 1 hour, and then lowered to obtain a milled graphite fiber. Table 1 shows the measurement results of the X-ray diffraction of the graphite fiber mill, and FIG. 3 and Table 1 show the results of the Raman analysis.
Shown in From FIG. 3, the presence of a shoulder-like peak at 1310 to 1320 cm −1 was not recognized. A negative electrode was produced using the milled graphite fiber in the same manner as in Example 1, and the results of measuring the charge / discharge capacity characteristics are also shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明により、炭素材料をホウ素化合物
の存在下で黒鉛化処理することにより、高度に黒鉛化
し、且つ、ラマン分析で特定可能な特異な構造を持たす
ことにより充放電容量が大きく、且つ充放電サイクル特
性に優れたリチウム二次電池用負極に適した黒鉛材を提
供することを可能にした。
According to the present invention, a carbon material is graphitized in the presence of a boron compound, thereby being highly graphitized, and having a unique structure that can be specified by Raman analysis, thereby increasing the charge / discharge capacity. In addition, it has become possible to provide a graphite material suitable for a negative electrode for a lithium secondary battery having excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の黒鉛材のラマン分析結果を表すグラ
フである。
FIG. 1 is a graph showing Raman analysis results of the graphite material of Example 1.

【図2】比較例1の黒鉛材のラマン分析結果を表すグラ
フである。
FIG. 2 is a graph showing a Raman analysis result of the graphite material of Comparative Example 1.

【図3】比較例2の黒鉛材のラマン分析結果を表すグラ
フである。
FIG. 3 is a graph showing a Raman analysis result of the graphite material of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 EA02 EA06 EB02 EC02 EC05 EC06 4L037 CS04 FA02 FA05 PC05 PF12 PF23 PG02 PG03 PG05 PP38 PS02 PS12 UA04 5H003 AA02 AA04 BA01 BB01 BB02 BC06 BD00 BD01 BD02 BD03 5H014 AA02 BB01 EE08 HH00 HH01 HH08  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G046 EA02 EA06 EB02 EC02 EC05 EC06 4L037 CS04 FA02 FA05 PC05 PF12 PF23 PG02 PG03 PG05 PP38 PS02 PS12 UA04 5H003 AA02 AA04 BA01 BB01 BB02 BC06 BD00 BD01 BD02 BD03 H00H01A HH08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材をホウ素化合物の存在下2500
℃以上の温度で黒鉛化処理した黒鉛材であって、該黒鉛
材のX線回折による(a) 黒鉛層間距離(d002 )が0.
338nm以下で、 (b)C軸方向の結晶子の大きさ(L
c)が35nm以上で、(c) a軸方向の結晶子の大きさ
(La)が50nm以上で、(d) (101)回折ピーク
と(100)回折ピークのピーク比(P101 /P100
が1.0以上で、かつラマンスペクトル分析による(e)
ピーク強度比(I1340/I1580)が0.5以上で、(f)
1340cm-1近辺のピークには1310〜1320c
-1のショルダー状のピークが存在することを特徴とす
るリチウム二次電池用黒鉛材。
1. A method for producing a carbon material in the presence of a boron compound at 2500
A graphite material which has been graphitized at a temperature of at least 100 ° C., wherein the graphite material has an (a) graphite interlayer distance (d 002 ) of 0.
338 nm or less, and (b) the crystallite size (L
c) is 35 nm or more, (c) the crystallite size (La) in the a-axis direction is 50 nm or more, and (d) the peak ratio (P 101 / P 100 ) of the (101) diffraction peak and the (100) diffraction peak. )
Is 1.0 or more, and by Raman spectrum analysis (e)
When the peak intensity ratio (I 1340 / I 1580 ) is 0.5 or more, (f)
The peak around 1340 cm -1 has 1310 to 1320 c
A graphite material for lithium secondary batteries, characterized by having a shoulder-shaped peak at m -1 .
【請求項2】 黒鉛材がメソフェーズピッチを原料とし
た黒鉛繊維ミルドであるこを特徴とする、請求項1記載
のリチウム二次電池用黒鉛材。
2. The graphite material for a lithium secondary battery according to claim 1, wherein the graphite material is a graphite fiber mill made from mesophase pitch.
【請求項3】 炭素材をホウ素化合物の存在下2500
℃以上の温度で黒鉛化処理するに当たり、2200〜2
400℃の温度領域で20分間以上一定温度で保持する
ことを特徴とする、請求項1又は2記載のリチウム二次
電池用黒鉛材の製造方法。
3. The method according to claim 1, wherein the carbon material is 2,500 in the presence of a boron compound.
When performing the graphitization treatment at a temperature of at least
The method for producing a graphite material for a lithium secondary battery according to claim 1, wherein the temperature is maintained at a constant temperature in a temperature range of 400 ° C. for 20 minutes or more.
JP10185710A 1998-06-17 1998-06-17 Graphite material for lithium secondary battery and its manufacture Pending JP2000012034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10185710A JP2000012034A (en) 1998-06-17 1998-06-17 Graphite material for lithium secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185710A JP2000012034A (en) 1998-06-17 1998-06-17 Graphite material for lithium secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2000012034A true JP2000012034A (en) 2000-01-14

Family

ID=16175511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185710A Pending JP2000012034A (en) 1998-06-17 1998-06-17 Graphite material for lithium secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2000012034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080508A1 (en) * 2002-03-27 2003-10-02 Jfe Chemical Corporation Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell
FR2864708A1 (en) * 2003-12-26 2005-07-01 Shin Kobe Electric Machinery SECONDARY LITHIUM ION BATTERY
JP2005225751A (en) * 2004-01-14 2005-08-25 Frontier Carbon Corp Carbon material and method of producing the same
WO2009044789A1 (en) * 2007-10-02 2009-04-09 Nippon Oil Corporation Artificial graphite for negative electrode of lithium ion secondary battery, and method for production thereof
JP2009206065A (en) * 2008-02-29 2009-09-10 Tdk Corp Negative electrode active material, lithium-ion secondary battery using the same, and manufacturing method for negative electrode active material
JP2018195559A (en) * 2017-05-16 2018-12-06 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080508A1 (en) * 2002-03-27 2003-10-02 Jfe Chemical Corporation Methophase spherule graphatized substance, negative plate material using same, negative plate, and lithium ion secondary cell
FR2864708A1 (en) * 2003-12-26 2005-07-01 Shin Kobe Electric Machinery SECONDARY LITHIUM ION BATTERY
JP2005225751A (en) * 2004-01-14 2005-08-25 Frontier Carbon Corp Carbon material and method of producing the same
WO2009044789A1 (en) * 2007-10-02 2009-04-09 Nippon Oil Corporation Artificial graphite for negative electrode of lithium ion secondary battery, and method for production thereof
JP2009206065A (en) * 2008-02-29 2009-09-10 Tdk Corp Negative electrode active material, lithium-ion secondary battery using the same, and manufacturing method for negative electrode active material
JP2018195559A (en) * 2017-05-16 2018-12-06 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
US5698341A (en) Carbon material for lithium secondary battery and process for producing the same
EP0742295B1 (en) Carbon fibre for secondary battery and process for producing the same
JP3540478B2 (en) Anode material for lithium ion secondary battery
JP3175801B2 (en) Negative electrode for secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
US6287729B1 (en) Graphite materials for negative electrode used in lithium secondary battery
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2003077473A (en) Graphite material for lithium ion secondary battery negative electrode
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JP2000251889A (en) Manufacture of graphite material for high capacity lithium ion secondary battery negative electrode
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH10312809A (en) Graphite material for high capacity nonaqueous secondary battery negative electrode and manufacture therefor
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery
JPH10162829A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof