JP2005225751A - Carbon material and method of producing the same - Google Patents

Carbon material and method of producing the same Download PDF

Info

Publication number
JP2005225751A
JP2005225751A JP2005004048A JP2005004048A JP2005225751A JP 2005225751 A JP2005225751 A JP 2005225751A JP 2005004048 A JP2005004048 A JP 2005004048A JP 2005004048 A JP2005004048 A JP 2005004048A JP 2005225751 A JP2005225751 A JP 2005225751A
Authority
JP
Japan
Prior art keywords
carbon material
containing gas
carbon
peak
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004048A
Other languages
Japanese (ja)
Inventor
Koji Suemura
耕二 末村
Tetsuo Kasai
鉄夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Carbon Corp
Original Assignee
Frontier Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Carbon Corp filed Critical Frontier Carbon Corp
Priority to JP2005004048A priority Critical patent/JP2005225751A/en
Publication of JP2005225751A publication Critical patent/JP2005225751A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel carbon material having a characteristic property of high volume electric resistance. <P>SOLUTION: The carbon material is insoluble in organic solvents and has peak height ratio H(B)/H(A) of 0.2 to 0.9, wherein H(A) represents height of the most intensive peak at the diffraction angle 2θ of 12°-16° and H(B) represents height of peak at the diffraction angle 2θ of 22°. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素材料に関するものであり、詳しくは、体積電気抵抗が高いという特徴的な性質を有し、カーボンブラック等の従来の炭素材料とは異なる新規な炭素材料に関する。   The present invention relates to a carbon material, and more particularly to a novel carbon material having a characteristic property of high volume electric resistance and different from conventional carbon materials such as carbon black.

代表的な炭素材料であるカーボンブラックは、軽量、耐熱性、導電性、耐化学薬品性などの機能を有しており、従来より、顔料、耐光安定剤、導電性付与剤、充填剤などとして、プラスチックス、ゴム、溶剤などに配合され、各種インク、トナー、樹脂、タイヤ等の汎用品、レース用ブレーキ、航空機などの特殊用途、更には、インクジェット、e−ペーパー(マイクロカプセル内にカーボンブラックとチタニアを封入し、両者の正負逆の帯電性を利用して画像形成する新規ディスプレイ)、電極、導電性樹脂などの情報電子分野用途に使用されている。   Carbon black, which is a typical carbon material, has functions such as light weight, heat resistance, conductivity, and chemical resistance. Conventionally, as a pigment, light stabilizer, conductivity enhancer, filler, etc. , Plastics, rubber, solvent, etc., general-purpose products such as various inks, toners, resins, tires, brakes for racing, special applications such as aircraft, ink jet, e-paper (carbon black in microcapsules) And a novel display that forms an image by using both positive and negative charging characteristics), electrodes, and conductive resins.

しかしながら、カーボンブラックは、導電性であるため、絶縁性が要求される部材や帯電性を利用する分野で使用するには、導電性を除去して絶縁性を付与する必要がある。そのため、樹脂で表面をコーティングする樹脂添着などの後処理工程が必須となり、コストアップ要因となる。しかも、完全被覆が困難なため、絶縁性も不充分という問題がある。
特開平11−60988号
However, since carbon black is conductive, in order to use it in a member that requires insulation or in a field that uses chargeability, it is necessary to remove the conductivity to provide insulation. Therefore, a post-treatment process such as resin attachment for coating the surface with a resin is essential, which increases costs. Moreover, since complete coating is difficult, there is a problem that insulation is insufficient.
Japanese Patent Laid-Open No. 11-60988

本発明の目的は、体積電気抵抗が高いという特徴的な性質を有し、従来のカーボンブラックとは異なる新規な炭素材料を提供することにある。   An object of the present invention is to provide a novel carbon material having a characteristic property of high volume electric resistance and different from conventional carbon black.

すなわち、本発明の第1の要旨は、有機溶媒に不溶であり、かつ、CuKα線を使用したX線回折測定結果における回折角2θが12〜16゜の間の最も強いピークの高さをH(A)、回折角2θが22度のピークの高さをH(B)とし、励起波長5145Åでのラマンスペクトル測定結果において、バンドG1590±20cm−1のピーク強度をI(G)、バンドD1340±40cm−1のピーク強度をI(D)とした際、前者のピーク高さ比H(B)/H(A)をX軸に、後者のピーク強度比I(D)/I(G)をY軸とした場合における両者の数値が、図1に示す座標において、(X,Y)=(0.86,0.71)、(0.65,0.86)、(0.28,0.59)及び(0.23,0.63)の4点で囲まれる範囲内にあることを特徴とする炭素材料に存する。 That is, the first gist of the present invention is that the height of the strongest peak in which the diffraction angle 2θ is in the range of 12 to 16 ° in the X-ray diffraction measurement result using the CuKα ray is H. (A), the peak height at a diffraction angle 2θ of 22 degrees is H (B), and in the Raman spectrum measurement result at an excitation wavelength of 5145 ピ ー ク, the peak intensity of band G1590 ± 20 cm −1 is I (G), and band D1340 When the peak intensity at ± 40 cm −1 is I (D), the former peak height ratio H (B) / H (A) is taken as the X axis, and the latter peak intensity ratio I (D) / I (G) When the Y axis is the Y axis, both values are (X, Y) = (0.86, 0.71), (0.65, 0.86), (0.28, 0.59) and (0.23, 0.63) It consists in the carbon material characterized.

そして、本発明の第2の要旨は、反応炉に設けた吐出部から当該反応炉内に原料炭化水素含有化合物と酸素含有ガスとを吐出させて燃焼させ、次いで、生成した煤を回収した後、有機溶媒に接触させる、上記の炭素材料の製造方法において、上記の煤を生成するに際し、前記原料炭化水素含有ガスと前記酸素含有ガスの吐出部からの平均吐出速度を75cm/secを超え且つ1000cm/sec以下、前記反応炉内の圧力を20〜100Torr、前記原料炭化水素含有ガスが燃焼する際の前記酸素含有ガス中の酸素に対する当該原料炭化水素含有ガス中の炭素の元素組成比を0.89〜1.56の範囲に設定することを特徴とする上記の炭素材料の製造方法に存する。   The second gist of the present invention is that after the raw material hydrocarbon-containing compound and the oxygen-containing gas are discharged from the discharge portion provided in the reaction furnace into the reaction furnace and burned, and then the generated soot is recovered In the method for producing a carbon material, which is brought into contact with an organic solvent, when generating the soot, an average discharge rate from the discharge portion of the raw material hydrocarbon-containing gas and the oxygen-containing gas exceeds 75 cm / sec and 1000 cm / sec or less, the pressure in the reactor is 20 to 100 Torr, and the elemental composition ratio of carbon in the raw material hydrocarbon-containing gas to oxygen in the oxygen-containing gas when the raw material hydrocarbon-containing gas burns is 0 The present invention resides in the above carbon material manufacturing method, characterized by being set in the range of 89 to 1.56.

本発明によれば、体積電気抵抗が高いという特徴的な性質を有して従来のカーボンブラックとは異なる新規な炭素材料が提供される。斯かる本発明の炭素材料は、例えば、液晶ディスプレイの新規技術であるカラーフィルター・オン・アレイ等の高抵抗炭素材料が求められている用途への適用に極めて有望である。また、帯電性に優れることが予想されるため、カーボンブラックを樹脂中に分散したコピー用トナー、e−ペーパー等、カーボンブラックの帯電性を利用する用途に対しても有望な材料であると考えられる。更に、熱伝導性が低いと予想され、熱遮断が求められる部材用コーティング組成物中のフィラーとしての利用も期待できる。   According to the present invention, there is provided a novel carbon material having a characteristic property of high volume electric resistance and different from conventional carbon black. Such a carbon material of the present invention is extremely promising for application to uses where a high resistance carbon material such as a color filter-on-array, which is a new technology for liquid crystal displays, is required. In addition, since it is expected to be excellent in chargeability, it is considered to be a promising material for applications utilizing the chargeability of carbon black, such as copying toner and e-paper in which carbon black is dispersed in a resin. It is done. Furthermore, it can be expected to be used as a filler in a coating composition for a member that is expected to have low thermal conductivity and requires thermal insulation.

以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。   Hereinafter, the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of embodiments of the present invention, and the present invention is not limited to these contents.

(炭素材料)
本発明の炭素材料は、元素分析による炭素含有量が通常90重量%以上、好ましくは95重量%以上である。本発明の炭素材料は、カーボンブラックと同様に、例えば、水酸基、カルボキシル等の官能基を少量含むことがある。本発明の炭素材料は、通常1〜100nmの1次粒子の凝集体から成る粉体である。
(Carbon material)
The carbon material of the present invention has a carbon content by elemental analysis of usually 90% by weight or more, preferably 95% by weight or more. The carbon material of the present invention may contain a small amount of functional groups such as, for example, a hydroxyl group and a carboxyl as in the case of carbon black. The carbon material of the present invention is usually a powder composed of aggregates of primary particles of 1 to 100 nm.

本発明の炭素材料は有機溶媒に不溶のものである。有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、塩素化炭化水素などが挙げられる。工業的観点から、好適な有機溶媒としては、常温で液体であり、沸点が100〜300℃、中でも120〜250℃のものが挙げられる。具体的には、例えば、ベンゼン、トルエン、キシレン、メチシレン、1−メチルナフタレン、1,2,3,5−テトラメチルベンゼン、1,2,4−トリメチルベンゼン、テトラリン等の芳香族炭化水素が挙げられ、これらの中では、1,2,4−トリメチルベンゼン及びテトラリンが好ましい。また、有機溶媒に不溶な性質としては、室温にて、炭素材料に90重量倍の1,2,4−トリメチルベンゼンを加えて、十分に攪拌、濾過した後、150℃で10時間真空乾燥した後の炭素材料の重量差が通常5%以下、好ましくは3%以下、更に好ましくは1%以下である特性である。   The carbon material of the present invention is insoluble in an organic solvent. Examples of the organic solvent include aromatic hydrocarbons, aliphatic hydrocarbons, chlorinated hydrocarbons, and the like. From an industrial point of view, suitable organic solvents include those which are liquid at normal temperature and have a boiling point of 100 to 300 ° C., particularly 120 to 250 ° C. Specific examples include aromatic hydrocarbons such as benzene, toluene, xylene, methicylene, 1-methylnaphthalene, 1,2,3,5-tetramethylbenzene, 1,2,4-trimethylbenzene, and tetralin. Of these, 1,2,4-trimethylbenzene and tetralin are preferred. Further, as a property insoluble in an organic solvent, 90 weight times 1,2,4-trimethylbenzene was added to a carbon material at room temperature, sufficiently stirred and filtered, and then vacuum-dried at 150 ° C. for 10 hours. The characteristic is that the weight difference of the subsequent carbon material is usually 5% or less, preferably 3% or less, more preferably 1% or less.

本発明の炭素材料は、従来の炭素材料では知られていない、全く新規な内部構造を有する。この構造は、CuKα線(波長=1.54Å)を使用したX線回折測定結果及び励起波長5145Åでのラマンスペクトル測定結果により規定することが出来る。   The carbon material of the present invention has a completely new internal structure that is not known in conventional carbon materials. This structure can be defined by an X-ray diffraction measurement result using CuKα rays (wavelength = 1.54Å) and a Raman spectrum measurement result at an excitation wavelength of 5145Å.

本発明の炭素材料のX線回折測定結果は、ピークA(回折角2θ=12゜〜16°の範囲の極大点)及びピークB(回折角2θ=22°)を有する。一般のカーボンブラックの場合、ミクロなグラファイト構造の発達に伴い、回折角23〜27°に002反射(格子面間隔3.3〜3.9Å)による回折ピークが観察されるが、本発明の炭素材料には、これに相当するピークは存在しないか、または、存在してもその強度は回折角12〜16°の範囲に存在するピークより弱い。回折角2θ=12〜16°は、格子面間隔d値に換算すると、5.5〜7.4Åに相当する。本発明の炭素材料は、6〜7Å程度の一定間隔の緩やかな周期構造を持つが、ミクロなグラファイト構造は存在しない点において、カーボンブラックとは異なる構造である。それ故に、本発明の炭素材料は、体積電気抵抗が高いという特徴的な性質を有し、更に、熱伝導性も低いと予想される。   The X-ray diffraction measurement result of the carbon material of the present invention has a peak A (a maximum point in the range of diffraction angle 2θ = 12 ° to 16 °) and a peak B (diffraction angle 2θ = 22 °). In the case of general carbon black, a diffraction peak due to 002 reflection (lattice spacing: 3.3 to 3.9 mm) is observed at a diffraction angle of 23 to 27 ° with the development of a micrographite structure. There is no peak corresponding to this in the material, or even if it exists, its intensity is weaker than the peak existing in the diffraction angle range of 12 to 16 °. The diffraction angle 2θ = 12 to 16 ° corresponds to 5.5 to 7.4 mm when converted to the lattice spacing d value. The carbon material of the present invention has a gentle periodic structure with a constant interval of about 6 to 7 mm, but is different from carbon black in that there is no micrographite structure. Therefore, the carbon material of the present invention is expected to have a characteristic property of high volume electric resistance and low thermal conductivity.

本発明の炭素材料の図面代用透過型電子顕微鏡(TEM)写真を図2及び図3に示す。本発明の炭素材料は、6〜7Å程度の一定間隔の緩やかな周期性をもつアモルファス構造を主体として、少量のオニオン構造(バッキーオニオン又はカーボンオニオンとも称される)を含む混合相として観察される。通常のカーボンブラックで確認されるミクロなグラファイト構造は、実質的に観察されない。オニオン構造は、X線回折測定結果においては、回折角22°付近の幅広い回折線として観測され、ミクログラファイト構造ほど顕著ではないが、体積電気抵抗を低下させ、妨害成分としての効果をもつため、オニオン構造のアモルファス構造に対する混合比を示す指標として、X線回折測定結果におけるピーク高さ比H(B)/H(A)が好ましくは0.9以下、更に好ましくは0.5以下の範囲が良い。また、下限は0.2以上がよい。   FIGS. 2 and 3 show transmission-type electron microscope (TEM) photographs of the carbon material of the present invention in place of drawings. The carbon material of the present invention is observed as a mixed phase mainly composed of an amorphous structure having a moderate periodicity with a regular interval of about 6 to 7 mm and containing a small amount of onion structure (also referred to as bucky onion or carbon onion). . The micrographite structure confirmed with ordinary carbon black is not substantially observed. The onion structure is observed as a wide diffraction line near the diffraction angle of 22 ° in the X-ray diffraction measurement result, and is not as remarkable as the micrographite structure, but it reduces the volume electrical resistance and has an effect as a disturbing component. As an index indicating the mixing ratio of the onion structure to the amorphous structure, the peak height ratio H (B) / H (A) in the X-ray diffraction measurement result is preferably 0.9 or less, more preferably 0.5 or less. good. The lower limit is preferably 0.2 or more.

本発明の炭素材料は、励起波長5145Åでのラマンスペクトル測定結果において、バンドG1590±20cm−1とバンドD1340±40cm−1にピークを有する。各バンドのピーク強度をI(G)及びI(D)とした際、ピーク強度比I(D)/I(G)の上限は、通常0.9、好ましくは0.7、下限は通常0.6である。 The carbon material of the present invention has peaks in band G1590 ± 20 cm −1 and band D1340 ± 40 cm −1 in the Raman spectrum measurement result at an excitation wavelength of 5145 Å. When the peak intensity of each band is I (G) and I (D), the upper limit of the peak intensity ratio I (D) / I (G) is usually 0.9, preferably 0.7, and the lower limit is usually 0. .6.

ところで、バンドG1590±20cm−1とバンドD1340±40cm−1にピークを有し、このピーク強度比I(D)/I(G)が1より小さいことは、通常の炭素材料においては、規則性の高いミクロなグラファイト構造(G)が比較的多く、エッジカーボン(D)が少ないと理解される。本発明の炭素材料の場合、前述の通り、X線回折測定結果における回折角23〜27°に002反射による回折ピークが存在しないか、または、存在しても僅かであることから、ラマンスペクトルのG及びDの両バンドで観測される構造は、周期性をもつアモルファス構造およびオニオン構造に由来する各構造由来の芳香族面(G)及びエッジカーボン(D)であると考えられる。オニオン構造あるいはエッジカーボンの様な異質な構造が混在すると、それらを基点として電気の導通を招き易いため、電気抵抗が低下する。そこで、これらに由来する導電性電子を電子スピン共鳴分光法(EPR:Electronic Paramagnetic Resonance)により観測すれば、本炭素材料と従来公知炭素材料との違いを容易に判別することが出来る。 By the way, there is a peak in the band G1590 ± 20 cm −1 and the band D1340 ± 40 cm −1 , and this peak intensity ratio I (D) / I (G) is smaller than 1. It is understood that the micrographite structure (G) having a high particle size is relatively large and the edge carbon (D) is small. In the case of the carbon material of the present invention, as described above, there is no diffraction peak due to the 002 reflection at the diffraction angle of 23 to 27 ° in the X-ray diffraction measurement result, or even if it exists, the Raman spectrum of The structures observed in both the G and D bands are considered to be the aromatic plane (G) and edge carbon (D) derived from each structure derived from the amorphous structure having periodicity and the onion structure. When heterogeneous structures such as an onion structure or edge carbon are mixed, electrical conduction is likely to be caused based on these structures, so that the electrical resistance decreases. Therefore, if the conductive electrons derived from these are observed by electron spin resonance spectroscopy (EPR: Electronic Paramagnetic Resonance), the difference between the present carbon material and a conventionally known carbon material can be easily discriminated.

更に、本発明の炭素材料では、前述のX線回折測定結果とラマン測定結果のバランスが体積電気抵抗に影響する。すなわち、X線回折測定結果の2つのピーク強度比H(B)/H(A)をX軸に、ラマン測定結果の2つのピーク強度比I(D)/I(G)をY軸とした場合において、座標(X、Y)が以下の4点で囲まれる範囲内に存在する。この4点は、通常、(0.86,0.71)、(0.65,0.86)、(0.28,0.59)及び(0.23,0.63)であり、好ましくは、(0.66,0.67)、(0.52,0.79)、(0.28,0.59)及び(0.23,0.63)、更に好ましくは(0.47,0.63)、(0.37,0.71)、(0.28,0.59)及び(0.23,0.63)である。これ以外の領域については、体積抵抗率(体積電気抵抗)が低いか、または、製造上炭素材料の取得が容易ではないために工業上の価値が低くなると推定される。X線回折測定結果によるピーク高さ比H(B)/H(A)及びラマンスペクトル測定結果によるピーク強度比I(D)/I(G)は、各々、炭素原子の配列による物理的な周期構造、及び一定の炭素配列に含まれる化学的な欠陥割合、という異なる観点の指標を示すものであり、同一種の炭素配列に含まれる欠陥量割合は必ずしも一定ではないために、XおよびYが必ずしも一定の線形関係にはならないと考えられる。   Furthermore, in the carbon material of the present invention, the balance between the X-ray diffraction measurement result and the Raman measurement result described above affects the volume electric resistance. That is, the two peak intensity ratios H (B) / H (A) of the X-ray diffraction measurement result are taken as the X axis, and the two peak intensity ratios I (D) / I (G) of the Raman measurement result are taken as the Y axis. In some cases, the coordinates (X, Y) are within a range surrounded by the following four points. These four points are usually (0.86, 0.71), (0.65, 0.86), (0.28, 0.59) and (0.23, 0.63), preferably Are (0.66, 0.67), (0.52, 0.79), (0.28, 0.59) and (0.23, 0.63), more preferably (0.47, 0.63), (0.37, 0.71), (0.28, 0.59) and (0.23, 0.63). For other regions, it is presumed that the volume resistivity (volume electrical resistance) is low or the industrial value is low because it is not easy to obtain a carbon material in production. The peak height ratio H (B) / H (A) based on the X-ray diffraction measurement result and the peak intensity ratio I (D) / I (G) based on the Raman spectrum measurement result are each a physical period depending on the arrangement of carbon atoms. It shows the index of different viewpoints of the structure and the chemical defect ratio contained in a certain carbon array, and since the defect amount ratio contained in the same kind of carbon array is not necessarily constant, X and Y are It is not necessarily a linear relationship.

(炭素材料の製造方法)
本発明の炭素材料は、反応炉に設けた吐出部から当該反応炉内に原料炭化水素含有化合物と酸素含有ガスとを吐出させて燃焼させ、次いで、生成した煤を回収した後、有機溶媒に接触させて当該煤から多環芳香族化合物などの不純物を除去する方法で容易に製造することが出来る。具体的には、本発明の炭素材料は、バーナー火炎中で炭化水素含有ガスを減圧下で燃焼させ、生成した煤を減圧ポンプに導く途中で冷却、高温耐熱フィルター等の集塵器で収集し、当該炭素材料中に含まれる有機溶媒可溶成分を抽出除去し、濾過、乾燥することにより得ることが出来る。
(Method for producing carbon material)
The carbon material of the present invention is produced by discharging a raw material hydrocarbon-containing compound and an oxygen-containing gas into a reaction furnace from a discharge portion provided in the reaction furnace, and then recovering the generated soot, and then using it as an organic solvent. It can be easily produced by a method in which impurities such as polycyclic aromatic compounds are removed from the soot by contact. Specifically, the carbon material of the present invention burns hydrocarbon-containing gas under reduced pressure in a burner flame, cools the generated soot to the vacuum pump, collects it with a dust collector such as a high-temperature heat-resistant filter, etc. The organic solvent-soluble component contained in the carbon material can be extracted and removed, filtered and dried.

上記の煤を生成するプロセスは、一般に燃焼法と呼ばれ、装置としては、例えば、減圧チャンバーに(水冷)バーナーが設置され、系内を真空ポンプにて排気しつつ、安定に燃焼を継続することが可能な装置などが使用される。そして、上記のバーナーとしては、ベンゼン等の原料炭化水素含有ガスと酸素含有ガスの予備混合層流炎および拡散炎を実現し得る構造のもの等が使用される。   The process for producing soot is generally called a combustion method, and as an apparatus, for example, a (water-cooled) burner is installed in a decompression chamber, and the system is evacuated with a vacuum pump and continues to burn stably. A device capable of being used is used. And as said burner, the thing etc. of the structure which can implement | achieve the premixed laminar flame and diffusion flame of raw material hydrocarbon containing gas, such as benzene, and oxygen containing gas are used.

本発明においては、上記の燃焼法において煤を生成するに際し、前記原料炭化水素含有ガスと前記酸素含有ガスの吐出部からの平均吐出速度を75cm/secを超え且つ1000cm/sec以下、前記反応炉内の圧力を20〜100Torr、前記原料炭化水素含有ガスが燃焼する際の前記酸素含有ガス中の酸素に対する当該原料炭化水素含有ガス中の炭素の元素組成比を0.89〜1.56の範囲に設定することが重要である。   In the present invention, when generating soot in the above combustion method, the average discharge rate from the discharge part of the raw material hydrocarbon-containing gas and the oxygen-containing gas is more than 75 cm / sec and 1000 cm / sec or less. The pressure is 20 to 100 Torr, and the elemental composition ratio of carbon in the raw material hydrocarbon-containing gas to oxygen in the oxygen-containing gas when the raw material hydrocarbon-containing gas burns is in the range of 0.89 to 1.56. It is important to set

前記炭化水素含有ガスと前記酸素含有ガスが前記反応炉内に吐出される際の前記吐出部からの平均吐出速度(ガス速度)の上限は好ましくは300cm/secである。前記原料炭化水素含有ガスが燃焼する際の前記酸素含有ガス中の酸素に対する当該原料炭化水素含有ガス中の炭素の元素組成比(C/O比)の上限は好ましくは1.05である。炭素材料の製造技術においては、当該C/O比を制御することは火炎の温度を制御することを意味する。不完全燃焼条件においては一般にC/O比が低いほど火炎内の最高温度は高くなる。温度が高すぎるとアモルファス構造がオニオン構造へと転化してしまうため、最適な温度範囲(すなわち最適なC/O比)が存在する。また、一般に、火炎には断面方向に温度分布が存在するが、平均吐出速度(ガス速度)は、ある程度以上大きいほうが火炎内の断面方向の温度分布が緩やかになる結果として炭素材料の構造を均一にする効果があると推測される。したがって、上述の火炎条件を同時に満足することにより、本発明に係る前記の新規な炭素材料の製造が可能となる。   The upper limit of the average discharge speed (gas speed) from the discharge section when the hydrocarbon-containing gas and the oxygen-containing gas are discharged into the reaction furnace is preferably 300 cm / sec. The upper limit of the elemental composition ratio (C / O ratio) of carbon in the raw material hydrocarbon-containing gas to oxygen in the oxygen-containing gas when the raw material hydrocarbon-containing gas burns is preferably 1.05. In the carbon material manufacturing technology, controlling the C / O ratio means controlling the flame temperature. Under incomplete combustion conditions, generally, the lower the C / O ratio, the higher the maximum temperature in the flame. If the temperature is too high, the amorphous structure is converted to an onion structure, and therefore there is an optimum temperature range (that is, an optimum C / O ratio). In general, the flame has a temperature distribution in the cross-sectional direction, but the average discharge rate (gas velocity) is more than a certain level, and as a result, the temperature distribution in the cross-sectional direction in the flame becomes gentler, resulting in a uniform carbon material structure. It is estimated that there is an effect. Therefore, by satisfying the above-described flame conditions at the same time, the novel carbon material according to the present invention can be manufactured.

本発明の製造方法において、希釈剤の使用は必須ではないが、通常、一般的な不活性ガス、特にアルゴンが好適に使用される。希釈剤濃度の上限は通常40モル%である。   In the production method of the present invention, the use of a diluent is not essential, but usually a general inert gas, particularly argon, is preferably used. The upper limit of the diluent concentration is usually 40 mol%.

燃焼で生成した煤には、本発明の新規な炭素材料と共に多環芳香族化合物などの不純物が含まれている。そのため、通常、有機溶媒による抽出や洗浄を行って不純物を除去する。不純物除去に使用する有機溶媒は特に限定されないが、本発明の炭素材料が不溶な前述の有機溶媒が好適である。   The soot produced by combustion contains impurities such as a polycyclic aromatic compound together with the novel carbon material of the present invention. Therefore, the impurities are usually removed by extraction or washing with an organic solvent. Although the organic solvent used for impurity removal is not particularly limited, the above-mentioned organic solvent insoluble in the carbon material of the present invention is preferable.

抽出は、煤と有機溶媒とを混合した後、有機溶媒から炭素材料を分離回収して行う。抽出装置としては、工業的には撹拌混合槽が好適に使用される。抽出の際、容器内の圧力は特に制限されないが、通常は常圧とされる。抽出温度は、通常10〜90℃、好ましくは15〜40℃、更に好ましくは25〜35℃の範囲である。抽出時間は、通常1〜60分、好ましくは20〜40分の範囲である。抽出時間の短縮化のため、必要に応じ、抽出液に超音波などを照射しながら抽出を行ってもよい。有機溶媒の量も適宜選択することが出来るが、有機溶媒に対する原料煤の重量の比は通常4〜200とされる。有機溶媒が多すぎるとコストが上がり、逆に有機溶媒が少なすぎると原料煤と有機溶媒との接触が充分ではなく、抽出が充分に行われない場合がある。有機溶媒からの炭素材料の分離は、通常、減圧濾過、加圧濾過、遠心分離および沈降分離の何れかの1又は2以上の方法により行う。安定な炭素材料を得るためには、炭素材料は乾燥後100℃以下になってから大気に曝すのが好ましい。具体的には、分離回収した前記炭素材料を更に不活性ガス中で乾燥させ、100℃以下になった後、大気に曝すのが更に好ましい。これは、例えば、炭素材料を大気(空気)中で110℃以上にすると空気酸化されることに起因する。工業的に好ましい乾燥としては、材料撹拌型乾燥装置が挙げられる。なお、上述の抽出操作は繰り返し行ってもよい。   The extraction is performed by mixing soot and an organic solvent, and then separating and recovering the carbon material from the organic solvent. As the extraction device, a stirring and mixing tank is preferably used industrially. During the extraction, the pressure in the container is not particularly limited, but is usually a normal pressure. The extraction temperature is usually in the range of 10 to 90 ° C, preferably 15 to 40 ° C, more preferably 25 to 35 ° C. The extraction time is usually in the range of 1 to 60 minutes, preferably 20 to 40 minutes. In order to shorten the extraction time, extraction may be performed while irradiating the extraction liquid with ultrasonic waves or the like as necessary. The amount of the organic solvent can be appropriately selected, but the ratio of the weight of the raw material to the organic solvent is usually 4 to 200. If there are too many organic solvents, cost will increase, and conversely, if there are too few organic solvents, the contact between the raw material and the organic solvent may not be sufficient, and extraction may not be performed sufficiently. Separation of the carbon material from the organic solvent is usually performed by one or two or more methods of vacuum filtration, pressure filtration, centrifugal separation, and sedimentation separation. In order to obtain a stable carbon material, it is preferable that the carbon material is exposed to the atmosphere after drying at 100 ° C. or lower. Specifically, it is more preferable that the separated and recovered carbon material is further dried in an inert gas and exposed to the atmosphere after the temperature becomes 100 ° C. or lower. This is because, for example, when the carbon material is heated to 110 ° C. or higher in the atmosphere (air), it is oxidized by air. Industrially preferable drying includes a material stirring type drying apparatus. Note that the above extraction operation may be repeated.

(炭素材料の機能)
本発明の炭素材料は高い体積電気抵抗値を示す。例えば、試料1gを、四探針電極を有する直径2cmの円筒型セルに充填し、圧力120kgf/cmを加えた状態での体積電気抵抗は、通常1Ω・cm以上、好ましくは10Ω・cm以上、更に好ましくは10Ω・cm以上である。
(Function of carbon material)
The carbon material of the present invention exhibits a high volume electric resistance value. For example, the volume electrical resistance in a state where 1 g of a sample is filled in a cylindrical cell having a diameter of 2 cm having four probe electrodes and a pressure of 120 kgf / cm 2 is applied is usually 1 Ω · cm or more, preferably 10 Ω · cm or more. More preferably, it is 10 5 Ω · cm or more.

本発明の炭素材料は、例えば、液晶ディスプレイの新規技術であるカラーフィルター・オン・アレイ等の高抵抗炭素材料が求められている用途に適している。また、本発明の炭素材料は、帯電性に優れるため、例えば、コピー用トナー、e−ペーパー等に使用されているカーボンブラックの代替品として利用することが出来る。更に、本発明の炭素材料は、通常、熱伝導性が低いので、熱遮断が求められる部材用のコーティング組成物中のフィラーとして利用することが出来る。   The carbon material of the present invention is suitable for applications requiring a high-resistance carbon material such as a color filter on array, which is a new technology for liquid crystal displays. In addition, since the carbon material of the present invention is excellent in chargeability, it can be used as an alternative to carbon black used in, for example, copying toner and e-paper. Furthermore, since the carbon material of the present invention usually has low thermal conductivity, it can be used as a filler in a coating composition for a member that requires thermal insulation.

以下、本発明を実施例に更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。得られた炭素材料の評価および物性の測定は以下の通り行った。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail in an Example, this invention is not limited to a following example, unless the summary is exceeded. Evaluation of the obtained carbon material and measurement of physical properties were performed as follows.

(1)X線回折測定:
装置としてPhilips社製「PW1700」を使用し、線源:CuKα、出力:40kV30mA、走査軸:θ/2θ、測定モード:Continuous、測定範囲:2θ=3〜90°、スペック幅:0.05°、走査速度:3.0°/minの条件で測定した。
(1) X-ray diffraction measurement:
Using “PW1700” manufactured by Philips as a device, radiation source: CuKα, output: 40 kV, 30 mA, scanning axis: θ / 2θ, measurement mode: Continuous, measurement range: 2θ = 3 to 90 °, spec width: 0.05 ° The measurement was performed under the condition of scanning speed: 3.0 ° / min.

(2)ラマンスペクトル測定:
装置として日本分光社製「NR1800」を使用し、励起波長:5145Å、励起出力:5mW以下、露光時間:50秒、積算回数:2回の条件を採用し、試料を後方散乱配置として測定した。そして、1740〜1165cm−1の範囲で直線ベースラインを引き、ピークトップまでの高さを求めてピーク強度とした。
(2) Raman spectrum measurement:
“NR1800” manufactured by JASCO Corporation was used as an apparatus, and the conditions of excitation wavelength: 5145 mm, excitation output: 5 mW or less, exposure time: 50 seconds, number of integrations: 2 times were measured as a backscattering arrangement. Then, a straight baseline was drawn in the range of 1740 to 1165 cm −1 , and the height to the peak top was determined to obtain the peak intensity.

(3)体積電気抵抗測定:
ダイアインスツルメンツ社製の粉体抵抗測定システム「MCP−PD51」を使用して測定した。試料をボールミルで粉砕して測定に供した。上記の粉砕試料1gを、四探針電極を有する直径2cmの円筒型セルにセットし、試料に120kgf/cmの圧力を加えた状態で試料の厚さと抵抗値を測定し、その値から体積電気抵抗(Ω・cm)を算出した。
(3) Volumetric electrical resistance measurement:
Measurement was performed using a powder resistance measurement system “MCP-PD51” manufactured by Dia Instruments. The sample was crushed with a ball mill and subjected to measurement. 1 g of the above ground sample is set in a cylindrical cell having a diameter of 2 cm having four probe electrodes, and the thickness and resistance value of the sample are measured with a pressure of 120 kgf / cm 2 applied to the sample. The electric resistance (Ω · cm) was calculated.

(実施例1)
予備混合型水冷バーナーが減圧チャンバーに設置された装置を使用した。系内を真空ポンプで排気しつつ、原料(トルエン)と酸素とを予備混合してバーナーへ供給し、安定な層流火炎を生成した。そして、C/O比:1.01、燃焼室圧力:40torr、ガス流速:76cm/sec、アルゴン希釈なしの条件で燃焼を行った。生成煤が真空ポンプへ導かれる配管で400〜500℃に冷却した。生成煤の採取は、真空ポンプの前に設置されたバグフィルターによって行った。
(Example 1)
A device in which a premixed water-cooled burner was installed in a vacuum chamber was used. While the system was evacuated with a vacuum pump, the raw material (toluene) and oxygen were premixed and supplied to the burner to generate a stable laminar flame. Combustion was performed under the conditions of C / O ratio: 1.01, combustion chamber pressure: 40 torr, gas flow rate: 76 cm / sec, and no argon dilution. The generated soot was cooled to 400 to 500 ° C. by piping led to a vacuum pump. The generated soot was collected by a bag filter installed in front of the vacuum pump.

1Lメス型フラスコに採取した煤10.30gを秤量し、これにテトラリン286.2g添加し、常温で30分間超音波をかけながら攪拌した後、孔径0.45μmのフィルターで減圧濾過を行い、可溶分を除去した。テトラリンによる可溶分除去を更に3回繰り返した後、150℃で1昼夜減圧乾燥を行い、冷却して100℃以下になった後大気に曝し、黒色粉末9.27gを得た(この方法により得た炭素材料を「本炭素材料」とする)。溶媒抽出後の炭素収率は90%であった。   Weigh 10.30 g of sputum collected in a 1 L volumetric flask, add 286.2 g of tetralin to this, stir while applying ultrasonic waves at room temperature for 30 minutes, and then vacuum filter with a 0.45 μm pore size filter. Solute was removed. After removing the soluble content by tetralin three more times, it was dried under reduced pressure at 150 ° C. for one day, and after cooling to 100 ° C. or lower, it was exposed to the atmosphere to obtain 9.27 g of black powder (by this method) The obtained carbon material is referred to as “the present carbon material”). The carbon yield after solvent extraction was 90%.

室温にて本炭素材料9.60gに1,2,4−トリメチルベンゼン889gを加え、十分に撹拌、濾過した後、150℃で10時間真空乾燥した後の重量が9.60gであったことから、本炭素材料は実質的に有機溶媒に不溶であることが確認された。本炭素材料の元素分析値は、炭素含有量:97重量%、酸素含有量:2.4重量%であった。本炭素材料は数nm〜100nmの一次粒子の凝集体であった。   Since 889 g of 1,2,4-trimethylbenzene was added to 9.60 g of the present carbon material at room temperature, and after sufficiently stirring and filtering, the weight after vacuum drying at 150 ° C. for 10 hours was 9.60 g. The carbon material was confirmed to be substantially insoluble in organic solvents. The elemental analysis values of the carbon material were a carbon content of 97% by weight and an oxygen content of 2.4% by weight. This carbon material was an aggregate of primary particles of several nm to 100 nm.

本炭素材料は、X線回折では回折角14°付近に強いピーク(A)があり、このピークと回折角22°のピーク(B)の高さ比H(B)/H(A)を算出すると0.38であった。23〜27°付近のグラファイトピークは非常に弱く、実質的に非晶質であることが分かった(図4参照)。ラマンスペクトル(図5参照)では、1580cm−1と1330cm−1にピークが存在し、ピーク強度比I(D)/I(G)を算出すると、0.63であり、座標(X、Y)=(0.38、0.63)であった。また、本炭素材料の体積電気抵抗は8.9×10Ω・cm(圧力120kgf/cmでの値)であった。 This carbon material has a strong peak (A) in the vicinity of a diffraction angle of 14 ° in X-ray diffraction, and the height ratio H (B) / H (A) between this peak and a peak (B) at a diffraction angle of 22 ° is calculated. It was 0.38. The graphite peak around 23-27 ° was found to be very weak and substantially amorphous (see FIG. 4). In the Raman spectrum (see FIG. 5), there are peaks at 1580 cm −1 and 1330 cm −1 , and when the peak intensity ratio I (D) / I (G) is calculated, it is 0.63 and coordinates (X, Y) = (0.38, 0.63). Moreover, the volume electrical resistance of this carbon material was 8.9 × 10 5 Ω · cm (value at a pressure of 120 kgf / cm 2 ).

(実施例2〜5)
表1に示す条件を採用し、実施例1と同様にして炭素材料を得た。得られた炭素材料の物性値を表1に示す。また、得られた炭素材料の体積電気抵抗(圧力120kgf/cmでの値)は表1の通りであった。但し、実施例3では直前の実験である実施例5の条件から大幅な運転条件の変更を行った。すなわち、流速を305から76cm/secに低下させ、C/O比を1.15から1.01に低下させた。実施例1〜5は何れも各実験開始から6時間後にサンプルを採取した。
(Examples 2 to 5)
A carbon material was obtained in the same manner as in Example 1 using the conditions shown in Table 1. Table 1 shows the physical property values of the obtained carbon material. Further, the volume electric resistance (value at a pressure of 120 kgf / cm 2 ) of the obtained carbon material was as shown in Table 1. However, in Example 3, the operating conditions were significantly changed from those in Example 5 which was the previous experiment. That is, the flow rate was decreased from 305 to 76 cm / sec, and the C / O ratio was decreased from 1.15 to 1.01. In Examples 1 to 5, samples were taken 6 hours after the start of each experiment.

Figure 2005225751
Figure 2005225751

(参考例1)
市販のカーボンブラック(三菱化学(株)製、商品名:CF9)について、X線回折、ラマンスペクトル及び体積電気抵抗を測定した。X線回折では回折角23〜27°付近に強いピークが存在した(図6参照)。ラマンスペクトルでは1590cm−1と1360cm−1にピークが存在し(図7参照)、I(D)/I(G)は0.78であった。また、体積電気抵抗は1Ω・cm(圧力120kgf/cmでの値)であった。
(Reference Example 1)
X-ray diffraction, Raman spectrum, and volume electric resistance were measured for commercially available carbon black (trade name: CF9, manufactured by Mitsubishi Chemical Corporation). In X-ray diffraction, there was a strong peak near a diffraction angle of 23 to 27 ° (see FIG. 6). The Raman spectra peak exists in 1590 cm -1 and 1360 cm -1 (see FIG. 7), I (D) / I (G) was 0.78. The volume electrical resistance was 1 Ω · cm (value at a pressure of 120 kgf / cm 2 ).

X線回折測定結果:H(B)/H(A)及びラマンスペクトル測定結果:I(D)/I(G)から規定される本発明の新規炭素材料の構造範囲を示す図The figure which shows the structure range of the novel carbon material of this invention prescribed | regulated from X-ray-diffraction measurement result: H (B) / H (A) and Raman spectrum measurement result: I (D) / I (G) 本発明の新規炭素系材料のアモルファス構造の図面代用透過型電子顕微鏡写真(写真中に5.0nmのスケールを示した)Transmission-type electron micrograph of the amorphous structure of the novel carbon-based material of the present invention instead of a drawing (5.0 nm scale is shown in the photograph) 本発明の新規炭素系材料のアモルファス構造の図面代用透過型電子顕微鏡写真(写真中に2.0nmのスケールを示した)Transmission-type electron micrograph of the amorphous structure of the novel carbon-based material of the present invention in place of a drawing (2.0 nm scale is shown in the photograph) 本発明の新規炭素系材料のX線回折チャートX-ray diffraction chart of the novel carbon-based material of the present invention 本発明の新規炭素系材料のラマンスペクトルRaman spectrum of the novel carbon-based material of the present invention 市販カーボンブラックのX線回折チャートX-ray diffraction chart of commercially available carbon black 市販カーボンブラックのラマンスペクトルRaman spectrum of commercial carbon black

Claims (8)

有機溶媒に不溶であり、かつ、CuKα線を使用したX線回折測定結果における回折角2θが12〜16゜の間の最も強いピークの高さをH(A)、回折角2θが22°のピークの高さをH(B)としたときのピーク高さ比H(B)/H(A)が0.2以上0.9以下にあることを特徴とする炭素材料。   The height of the strongest peak between the diffraction angle 2θ of 12 to 16 ° in the X-ray diffraction measurement result using CuKα ray is H (A) and the diffraction angle 2θ is 22 °. A carbon material, wherein the peak height ratio H (B) / H (A) is 0.2 or more and 0.9 or less when the peak height is H (B). 有機溶媒に不溶であり、かつ、CuKα線を使用したX線回折測定結果における回折角2θが12〜16゜の間の最も強いピークの高さをH(A)、回折角2θが22°のピークの高さをH(B)とし、励起波長5145Åでのラマンスペクトル測定結果において、バンドG1590±20cm−1のピーク強度をI(G)、バンドD1340±40cm−1のピーク強度をI(D)とした際、ピーク高さ比H(B)/H(A)をX軸に、ピーク強度比I(D)/I(G)をY軸とした場合における両者の数値が、図1に示す座標において、(X,Y)=(0.86,0.71)、(0.65,0.86)、(0.28,0.59)及び(0.23,0.63)の4点で囲まれる範囲内にあることを特徴とする炭素材料。 The height of the strongest peak between the diffraction angle 2θ of 12 to 16 ° in the X-ray diffraction measurement result using CuKα ray is H (A) and the diffraction angle 2θ is 22 °. In the Raman spectrum measurement result at an excitation wavelength of 5145 Å with the peak height being H (B), the peak intensity of the band G1590 ± 20 cm −1 is I (G), and the peak intensity of the band D1340 ± 40 cm −1 is I (D ), The peak height ratio H (B) / H (A) is on the X axis and the peak intensity ratio I (D) / I (G) is on the Y axis. In the coordinates shown, (X, Y) = (0.86, 0.71), (0.65, 0.86), (0.28, 0.59) and (0.23, 0.63) A carbon material characterized by being in a range surrounded by four points. 図1に示す座標において、(X,Y)=(0.47,0.63)、(0.37,0.71)、(0.28,0.59)及び(0.23,0.63)の4点で囲まれる範囲内にある請求項2に記載の炭素材料。   In the coordinates shown in FIG. 1, (X, Y) = (0.47, 0.63), (0.37, 0.71), (0.28, 0.59) and (0.23, 0. 63) The carbon material according to claim 2, which is within a range surrounded by four points. 炭素材料1gを、四探針電極を有する直径2cmの円筒型セルに充填し、圧力120kgf/cmを加えた状態での体積電気抵抗が1Ω・cm以上である請求項1〜3の何れかに記載の炭素材料。 The volumetric electric resistance in a state where 1 g of carbon material is filled in a cylindrical cell having a diameter of 2 cm having four probe electrodes and a pressure of 120 kgf / cm 2 is applied is 1 Ω · cm or more. The carbon material as described in 1. 有機溶媒に不溶な性質として、室温にて、炭素材料に90重量倍の1,2,4−トリメチルベンゼンを加えて、攪拌、濾過した後、150℃で10時間真空乾燥した後の炭素材料の重量差が5%以下である特性を備えている請求項1〜4の何れかに記載の炭素材料。   As a property insoluble in an organic solvent, after adding 90 weight times 1,2,4-trimethylbenzene to a carbon material at room temperature, stirring, filtering, and then vacuum drying at 150 ° C. for 10 hours, The carbon material according to any one of claims 1 to 4, which has a characteristic that a weight difference is 5% or less. 反応炉に設けた吐出部から当該反応炉内に原料炭化水素含有化合物と酸素含有ガスとを吐出させて燃焼させ、次いで、生成した煤を回収した後、有機溶媒に接触させる炭素材料の製造方法において、上記の煤を生成するに際し、前記原料炭化水素含有ガスと前記酸素含有ガスの吐出部からの平均吐出速度を75cm/secを超え且つ1000cm/sec以下、前記反応炉内の圧力を20〜100Torr、前記原料炭化水素含有ガスが燃焼する際の前記酸素含有ガス中の酸素に対する当該原料炭化水素含有ガス中の炭素の元素組成比を0.89〜1.56の範囲に設定することを特徴とする請求項1〜5の何れかに記載の炭素材料の製造方法。   A method for producing a carbon material in which a raw material hydrocarbon-containing compound and an oxygen-containing gas are discharged into a reaction furnace from a discharge portion provided in the reaction furnace and burned, and then the generated soot is recovered and then contacted with an organic solvent. In producing the soot, the average discharge rate from the discharge part of the raw material hydrocarbon-containing gas and the oxygen-containing gas is more than 75 cm / sec and 1000 cm / sec or less, and the pressure in the reactor is 20 to 100 Torr, the elemental composition ratio of carbon in the raw material hydrocarbon-containing gas to oxygen in the oxygen-containing gas when the raw material hydrocarbon-containing gas burns is set in the range of 0.89 to 1.56. The manufacturing method of the carbon material in any one of Claims 1-5. 平均吐出速度が75cm/secを超え且つ300cm/sec以下、前記原料炭化水素含有ガスが燃焼する際の前記酸素含有ガス中の酸素に対する当該原料炭化水素含有ガス中の炭素の元素組成比が0.89〜1.05の範囲である、請求項6に記載の炭素材料の製造方法。   The average discharge speed exceeds 75 cm / sec and is 300 cm / sec or less, and the elemental composition ratio of carbon in the raw material hydrocarbon-containing gas to oxygen in the oxygen-containing gas when the raw material hydrocarbon-containing gas burns is 0. The manufacturing method of the carbon material of Claim 6 which is the range of 89-1.05. 請求項5に記載の炭素材料の製造方法であって、有機溶媒に接触後で炭素材料が100℃以下になった後に大気に曝す、請求項6又は7に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 5, wherein the carbon material is exposed to the atmosphere after being brought to 100 ° C. or less after being contacted with an organic solvent.
JP2005004048A 2004-01-14 2005-01-11 Carbon material and method of producing the same Pending JP2005225751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004048A JP2005225751A (en) 2004-01-14 2005-01-11 Carbon material and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004006935 2004-01-14
JP2005004048A JP2005225751A (en) 2004-01-14 2005-01-11 Carbon material and method of producing the same

Publications (1)

Publication Number Publication Date
JP2005225751A true JP2005225751A (en) 2005-08-25

Family

ID=35000754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004048A Pending JP2005225751A (en) 2004-01-14 2005-01-11 Carbon material and method of producing the same

Country Status (1)

Country Link
JP (1) JP2005225751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098353A (en) * 2014-11-26 2016-05-30 京セラ株式会社 Black pigment, coloring composition and coloring member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275190A (en) * 1985-10-04 1987-11-30 Osaka Gas Co Ltd Fluorinated pitch and production of the same
JP2000012034A (en) * 1998-06-17 2000-01-14 Petoca Ltd Graphite material for lithium secondary battery and its manufacture
JP2004091312A (en) * 2002-07-08 2004-03-25 Mitsubishi Chemicals Corp Carbon material
JP2005023239A (en) * 2003-07-04 2005-01-27 Bridgestone Corp Rubber composition and tire using the same
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275190A (en) * 1985-10-04 1987-11-30 Osaka Gas Co Ltd Fluorinated pitch and production of the same
JP2000012034A (en) * 1998-06-17 2000-01-14 Petoca Ltd Graphite material for lithium secondary battery and its manufacture
JP2004091312A (en) * 2002-07-08 2004-03-25 Mitsubishi Chemicals Corp Carbon material
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2005023239A (en) * 2003-07-04 2005-01-27 Bridgestone Corp Rubber composition and tire using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098353A (en) * 2014-11-26 2016-05-30 京セラ株式会社 Black pigment, coloring composition and coloring member

Similar Documents

Publication Publication Date Title
Zou et al. A facile and rapid route for synthesis of gC 3 N 4 nanosheets with high adsorption capacity and photocatalytic activity
US7884300B2 (en) Method of carbon nanotube separation, dispersion liquid and carbon nanotube obtained by the separation method
KR102054651B1 (en) Group iva functionalized particles and methods of use thereof
JP5871395B2 (en) Solvent-based carbon nanotube inks and water-based carbon nanotube inks containing removable additives
JP5429942B2 (en) Manufacturing method of high purity carbon black
CN102791628B (en) Material with carbon element and manufacture method thereof
Susarla et al. Thermally induced 2D alloy‐heterostructure transformation in quaternary alloys
US20060078488A1 (en) Carbon material and process for producing the same
CN1543399A (en) Coatings containing carbon nanotubes
US11773269B2 (en) Composite particles having coated aggregates with low structure carbon black cores, coatings and inks with high resistivity and optical density, devices made therewith, and methods for making same
JP2006193403A (en) Pyrogenically produced silicon dioxide powder
JP2014522375A (en) Thermodynamic solutions of metal oxides, metal chalcogenides, mixed metal oxides, and chalcogenides
JP2014024710A (en) Carbon nanotube assembly
JP2005225751A (en) Carbon material and method of producing the same
CN104955904B (en) Solvent base and water base carbon nanotube ink with removable property additive
JP4370833B2 (en) Carbon material
JP2012131655A (en) Composition and film containing carbon nanotube
JP6758685B2 (en) Manufacturing method of nickel oxide nanoparticles
JP2017119621A (en) Hydrophilic dry silica powder
JP2006257110A (en) Carbon microsphere for black matrix and method for producing the same
Kulikova et al. Structural heterogeneities and electronic effects in self-organized core-shell type structures of Sb
Kaynak et al. Photoactive multi-walled carbon nanotubes: synthesis and utilization of benzoin functional MWCNTs
Panchariya et al. Synthesis and characterization of MIL-101 incorporated with Darco type Activated Charcoal
Park et al. Quantification and removal of carbonaceous impurities in a surfactant-assisted carbon nanotube dispersion and its implication on electronic properties
JP2005289779A (en) Method for recovering carbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025