JP2013131366A - Anode active material for metal ion battery - Google Patents

Anode active material for metal ion battery Download PDF

Info

Publication number
JP2013131366A
JP2013131366A JP2011279517A JP2011279517A JP2013131366A JP 2013131366 A JP2013131366 A JP 2013131366A JP 2011279517 A JP2011279517 A JP 2011279517A JP 2011279517 A JP2011279517 A JP 2011279517A JP 2013131366 A JP2013131366 A JP 2013131366A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
mgh
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011279517A
Other languages
Japanese (ja)
Inventor
Yuichiro Takeda
雄一郎 武田
Hideki Nakayama
英樹 中山
Tomoya Matsunaga
朋也 松永
Aoi Takano
葵 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011279517A priority Critical patent/JP2013131366A/en
Publication of JP2013131366A publication Critical patent/JP2013131366A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an anode active material for a metal ion battery, which is capable of reducing overvoltage.SOLUTION: The anode active material for a metal ion battery comprises a powder mixture containing MgHand a carbon material. A ratio (O/Mg atomic ratio) of O to Mg on the surface of the powder mixture is 1.05 or less.

Description

本発明は、金属イオン電池用の負極活物質に関し、さらに詳しくはMgHと炭素材料とを含有する電池の過電圧を低減し得る金属イオン電池用の負極活物質に関する。 The present invention relates to a negative electrode active material for a metal ion battery, and more particularly to a negative electrode active material for a metal ion battery that can reduce overvoltage of a battery containing MgH 2 and a carbon material.

近年、高電圧および高エネルギー密度を有する電池としてリチウム二次電池が実用化されている。リチウム二次電池の用途が広い分野に拡大していることおよび高性能の要求から、電池の更なる性能向上のために種々の研究が行われている。
例えば、負極についても種々の材料が検討され、炭素材料やアルミニウム合金等が実用電池の負極活物質として実用化されている。しかし、炭素材料は高容量を与え得ることから広く用いられているが、比重が小さいため電池内部での占有体積の割合が大きくなる。また、炭素材料については既にこれ以上の改善が困難なレベルにまで性能の向上が図られていることが知られている。このため、電池の性能向上には炭素材料やアルミニウム合金等以外の負極活物質による高容量化が不可欠であり、炭素以外の負極活物質についての検討がなされている。
In recent years, lithium secondary batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium secondary batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve battery performance.
For example, various materials have been studied for the negative electrode, and carbon materials, aluminum alloys and the like have been put into practical use as negative electrode active materials for practical batteries. However, although carbon materials are widely used because they can provide high capacity, the ratio of occupied volume inside the battery increases because the specific gravity is small. Further, it is known that the performance of carbon materials has already been improved to a level where further improvement is difficult. For this reason, in order to improve the performance of the battery, it is indispensable to increase the capacity by using a negative electrode active material other than a carbon material or an aluminum alloy, and negative electrode active materials other than carbon have been studied.

リチウム電池に用いられる負極活物質として、金属水素化物(MH)であるコンバージョン系の負極活物質およびそれを用いた負極材料が知られている。
例えば、特許文献1には、リチウム以外の金属水素化物、例えばMgHと導電性炭素材料とを含むリチウムイオン電池用の負極活物質が記載されており、具体例としてボールミルされたMgHと導電性炭素材料であるバルカンとを混合して得た負極活物質が示されている。
As a negative electrode active material used for a lithium battery, a conversion-type negative electrode active material which is a metal hydride (MH X ) and a negative electrode material using the same are known.
For example, Patent Document 1 describes a negative electrode active material for a lithium ion battery including a metal hydride other than lithium, for example, MgH 2 and a conductive carbon material. As a specific example, a ball milled MgH 2 and a conductive material are disclosed. A negative electrode active material obtained by mixing a vulcanized carbon material is shown.

また、非特許文献1には、リチウム電池用の金属水素化物、例えばMgHおよびリチウムの以下に示すコンバージョン反応:
MgH+2Li+2e→Mg+2LiH
が記載されており、具体例としてボールミルされたMgと微細化したMCMBとの混合物を水素化した後、ボールミル化して得た負極活物質が示されている。
Non-Patent Document 1 discloses the following conversion reaction of metal hydrides for lithium batteries, such as MgH 2 and lithium:
MgH 2 + 2Li + + 2e → Mg + 2LiH
A negative electrode active material obtained by hydrogenating a mixture of ball milled Mg and refined MCMB and then ball milling is shown as a specific example.

米国特許公開2008/0286652号公報US Patent Publication No. 2008/0286652

Nature materials 7、916(2008)Nature materials 7, 916 (2008)

しかし、上記公知技術に基づいて得られる負極活物質は、リチウムイオン電池に適用した場合に過電圧(理論電位−電極電位)が高く、急速充放電時の電池特性であるレート特性に問題がある。
従って、本発明の目的は、金属イオン電池の過電圧を低減し得る金属イオン電池用の負極活物質を提供することである。
However, the negative electrode active material obtained based on the above known technique has a high overvoltage (theoretical potential-electrode potential) when applied to a lithium ion battery, and has a problem in rate characteristics which are battery characteristics at the time of rapid charge / discharge.
Therefore, the objective of this invention is providing the negative electrode active material for metal ion batteries which can reduce the overvoltage of a metal ion battery.

このため、本発明者等は、前記のMgHと導電性炭素とを含む金属イオン電池用の負極活物質を用いた金属イオン電池の過電圧を低減することを目的に検討を行った結果、金属イオン電池用の負極活物質による過電圧には負極活物質の粉末表面の特性が影響していることを見出しさらに検討を行った結果、本発明を完成した。
すなわち、本発明は、MgHと炭素材料とを含む粉末混合物からなる金属イオン電池用の負極活物質であって、前記粉末混合物の表面におけるOとMgとの比(O/Mg原子比)が1.05以下である、前記物質に関する。
本発明における粉末混合物の表面におけるOとMgとの比(O/Mg、原子比)は、通常粉末混合物に対して深さ方向にSiO基準で2nm/分の速度でアルゴンによりエッチング処理する間のOおよびMgの濃度をXPS(X-ray Photoelectron Spectroscopy、X線光電子分光法)により測定して求められる値の最初の5分間の平均値として求められる値である。
For this reason, the present inventors have conducted studies for the purpose of reducing the overvoltage of the metal ion battery using the negative electrode active material for metal ion batteries containing MgH 2 and conductive carbon, and as a result, As a result of further finding out that the characteristics of the powder surface of the negative electrode active material had an influence on the overvoltage due to the negative electrode active material for the ion battery, the present invention was completed.
That is, the present invention is a negative electrode active material for a metal ion battery comprising a powder mixture containing MgH 2 and a carbon material, wherein the ratio of O and Mg (O / Mg atomic ratio) on the surface of the powder mixture is It relates to said substance which is 1.05 or less.
The ratio of O to Mg (O / Mg, atomic ratio) on the surface of the powder mixture in the present invention is usually determined by etching with argon at a rate of 2 nm / min on the basis of SiO 2 in the depth direction with respect to the powder mixture. This is a value obtained as an average value for the first 5 minutes of a value obtained by measuring the O and Mg concentrations in XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).

本発明によれば、従来公知のMgHと炭素材料とからなる負極活物質に比べて金属イオン電池の過電圧を低減し得る金属イオン電池用の負極活物質を得ることができる。 According to the present invention, it is possible to obtain a negative electrode active material for a metal ion batteries capable of reducing the overvoltage of the metal ion battery than the negative electrode active material comprising a conventional MgH 2 and a carbon material.

図1は、実施例および比較例で得られた負極活物質である粉末混合物の表面におけるOとMgとの比(O/Mg、原子比)を横軸に、各負極活物質を用いて作製した電池について測定した過電圧を縦軸にプロットして示すグラフである。FIG. 1 is produced using each negative electrode active material with the horizontal axis representing the ratio of O and Mg (O / Mg, atomic ratio) on the surface of the powder mixture, which is the negative electrode active material obtained in Examples and Comparative Examples. It is the graph which plots and shows the overvoltage measured about the measured battery on the vertical axis | shaft. 図2は、実施例1で得られた負極活物質の粉末混合物についてXPS測定した深さ方向におけるOおよびMgの濃度測定結果を示すグラフである。FIG. 2 is a graph showing the results of measuring the concentration of O and Mg in the depth direction measured by XPS for the negative electrode active material powder mixture obtained in Example 1. 図3は、実施例2で得られた負極活物質である粉末混合物についてXPS測定した深さ方向におけるOおよびMgの濃度測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of O and Mg concentrations in the depth direction measured by XPS for the powder mixture that is the negative electrode active material obtained in Example 2. 図4は、比較例1で得られた負極活物質である粉末混合物についてXPS測定した深さ方向におけるOおよびMgの濃度測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of O and Mg concentrations in the depth direction measured by XPS for the powder mixture that is the negative electrode active material obtained in Comparative Example 1. 図5は、実施例および比較例で得られた負極活物質を用いて作製した電池を用いて測定した電池評価結果を示すグラフである。FIG. 5 is a graph showing battery evaluation results measured using batteries prepared using the negative electrode active materials obtained in Examples and Comparative Examples.

本発明においては、MgHと炭素材料とを含む粉末混合物からなり、粉末混合物に対して深さ方向にアルゴンでエッチング処理する5分間の平均値として求められる前記粉末混合物の表面におけるOとMgとの比(O/Mg原子比)が1.05以下である金属イオン電池用の負極活物質であることが必要であり、これによって電池の過電圧を低減化し得る。
本明細書において、過電圧とは、MgH負極活物質についての理論電圧と電極電位の差(過電圧=理論電圧−電極電位)として求められる(但し、理論電圧=0.54V:Nature materials 7、916(2008)より)。
In the present invention, it is composed of a powder mixture containing MgH 2 and a carbon material, and O and Mg on the surface of the powder mixture obtained as an average value for 5 minutes when the powder mixture is etched with argon in the depth direction. The ratio (O / Mg atomic ratio) must be a negative electrode active material for a metal ion battery having a ratio of 1.05 or less, which can reduce the overvoltage of the battery.
In this specification, the overvoltage is obtained as a difference between the theoretical voltage and the electrode potential (overvoltage = theoretical voltage−electrode potential) for the MgH 2 negative electrode active material (however, the theoretical voltage = 0.54 V: Nature materials 7, 916). (From 2008)).

本発明の負極活物質により、電池の過電圧が低減される理論的な解明は十分にはなされていないが、次のように推定される。すなわち、従来は水素がヒドリド(H)状態でMgH内に存在しているので、金属イオン電池における金属イオン(例えば、Li)と反応するためはMgHの結晶内から外に出る必要があるが、MgH表面に形成された層を通過する必要があり、O2−がHの移動を阻害すると考えられる。しかし、O/Mg原子比が1.05以下であることによってMgHと金属イオン、例えば、Liとの間で水素移動が容易になり、下記式
2Li++MgH+2e→2LiH+Mg
で示されるコンバージョン反応が促進され、その結果、過電圧を低くすることが可能となると推定される。
Although the theoretical elucidation that the overvoltage of the battery is reduced by the negative electrode active material of the present invention has not been sufficiently made, it is presumed as follows. That is, conventionally, hydrogen is present in MgH 2 in a hydride (H ) state, and therefore it is necessary to move out of the MgH 2 crystal in order to react with metal ions (for example, Li + ) in a metal ion battery. However, it is necessary to pass through a layer formed on the surface of MgH 2 , and it is considered that O 2− inhibits the movement of H . However, when the O / Mg atomic ratio is 1.05 or less, hydrogen transfer between MgH 2 and a metal ion, for example, Li + is facilitated, and the following formula 2Li ++ MgH 2 + 2e → 2LiH + Mg
It is presumed that the conversion reaction indicated by is promoted, and as a result, the overvoltage can be lowered.

本発明の負極活物質は、MgHと炭素材料とを含む粉末混合物からなり、粉末混合物に対して深さ方向にアルゴンでエッチング処理する5分間の平均値として求められる前記粉末混合物の表面におけるOとMgとの比(O/Mg原子比)が1.05以下、通常は0.75以上1.05以下である。 The negative electrode active material of the present invention is composed of a powder mixture containing MgH 2 and a carbon material, and O on the surface of the powder mixture obtained as an average value for 5 minutes by etching with argon in the depth direction of the powder mixture. The ratio of Mg to Mg (O / Mg atomic ratio) is 1.05 or less, usually 0.75 or more and 1.05 or less.

本発明の負極活物質は、好適には前記粉末混合物中のMgHと炭素材料との割合(MgH:炭素材料)が、質量比で99:1〜80:20、特に95:5〜85:15の範囲であり得る。炭素材料の割合がMgHと炭素材料との合計量100質量部に対して1質量部を下回ると、十分な導電性を得ることが難しくなる場合があり、MgHと炭素材料との合計量100質量部に対して20質量部を越えると、電池性能の1つの放電容量が低下する等の問題が発生する場合がある。 In the negative electrode active material of the present invention, the ratio of MgH 2 to the carbon material (MgH 2 : carbon material) in the powder mixture is preferably 99: 1 to 80:20, particularly 95: 5 to 85 in mass ratio. : 15 range. When the proportion of the carbon material is less than 1 part by mass with respect to 100 parts by mass of the total amount of MgH 2 and the carbon material, it may be difficult to obtain sufficient conductivity, and the total amount of MgH 2 and the carbon material. When it exceeds 20 parts by mass with respect to 100 parts by mass, there may be a problem that one discharge capacity of the battery performance is lowered.

本発明の負極活物質は、好適にはMgHと導電助剤としての炭素材料とを混合および微粉化して得ることができる。
前記の混合および微細化は、例えばメカニカルミリングにより行い得る。前記のメカニカルミリングは、MgH粒子と炭素材料粉末との原料を機械的エネルギーを付与しながら粉砕する方法であり、メカニカルミリングで微細化することにより原料に含まれる両材料の粒子が激しく接触し、単なる微細化(例えば、乳鉢を用いた微細化)に比べて格段に微細化される。また、メカニカルミリングで微細化することにより、炭素材料がMgH粒子の表面に均一に分散され得る。
前記のメカニカルミリングとして、例えば、ボールミル、振動ミル、ターボミル、ディスクミル等を挙げることができ、特にボールミル、その中でも特に遊星型ボールミルが好適である。
The negative electrode active material of the present invention can be preferably obtained by mixing and pulverizing MgH 2 and a carbon material as a conductive additive.
Said mixing and refinement | miniaturization can be performed by mechanical milling, for example. The mechanical milling is a method in which the raw material of MgH 2 particles and carbon material powder is pulverized while applying mechanical energy, and the particles of both materials contained in the raw material are in intense contact with each other by refining by mechanical milling. , Compared to simple miniaturization (for example, miniaturization using a mortar). Moreover, the carbon material can be uniformly dispersed on the surface of the MgH 2 particles by miniaturization by mechanical milling.
Examples of the mechanical milling include a ball mill, a vibration mill, a turbo mill, and a disk mill. Particularly, a ball mill, among which a planetary ball mill is particularly preferable.

また、前記混合および微細化、特にメカニカルミリングの条件としては、例えば遊星型ボールミルにより負極活物質を製造する場合、ポット内に原料のMgHと炭素材料と粉砕用ボールを加え、所定の回転数および時間で処理を行い得る。遊星型ボールミルを行う際の回転数としては例えば100〜1000rpmの範囲内、例えば200〜600rpmの範囲内であって、処理時間としては例えば2〜10時間の範囲内であり得る。 In addition, as a condition of the mixing and refinement, particularly mechanical milling, for example, when producing a negative electrode active material by a planetary ball mill, raw material MgH 2 , a carbon material, and grinding balls are added to a pot, and a predetermined rotational speed is obtained. And processing can be done in time. The number of rotations when performing the planetary ball mill may be, for example, in the range of 100 to 1000 rpm, for example, in the range of 200 to 600 rpm, and the processing time may be in the range of, for example, 2 to 10 hours.

前記導電助剤としての炭素材料としては、水分を除く揮発分が0.7質量%以下であるものが好適である。前記の水分を除く揮発分は例えばJIS K6221により、るつぼの中に炭素材料を規定量入れ、950℃で7分間加熱した後の揮発減量を測定することによって求められる。
このような炭素材料として、アセチレンブラックあるいはケッチェンブラックが挙げられる。バルカンなどの炭素材料は、前記の水分を除く揮発分が0.7質量%より多いことが知られており好適ではない。
As the carbon material as the conductive assistant, those having a volatile content excluding moisture of 0.7% by mass or less are suitable. The volatile content excluding moisture is determined by, for example, measuring the loss of volatility after putting a specified amount of carbon material in a crucible and heating at 950 ° C. for 7 minutes according to JIS K6221.
Examples of such a carbon material include acetylene black and ketjen black. It is known that a carbon material such as Vulcan has a volatile content excluding the moisture described above of more than 0.7% by mass, and is not suitable.

前記のようにして得られる負極活物質は、好適には前記MgHの粒径が100〜500nmの範囲であって、前記炭素材料の粒径が20nm以下、例えば1〜10nmの範囲、例えば5〜10nmの範囲である。前記炭素材料の粒径が10nm以下であることによって、負極活物質中のMgHの割合が高くなり得て、このような負極活物質を用いた電池の特性が向上し得る。
前記のMgHの粒径および炭素材料の粒径は、SEM(走査型電子顕微鏡)によって求めることが出来る。
The negative electrode active material obtained as described above preferably has a MgH 2 particle size in the range of 100 to 500 nm, and the carbon material has a particle size of 20 nm or less, for example, 1 to 10 nm, for example, 5 It is in the range of -10 nm. When the particle size of the carbon material is 10 nm or less, the ratio of MgH 2 in the negative electrode active material can be increased, and the characteristics of a battery using such a negative electrode active material can be improved.
The particle diameter of the MgH 2 and the particle diameter of the carbon material can be obtained by SEM (scanning electron microscope).

前記のようにして得られるMgHと炭素材料とを含む粉末混合物からなる金属イオン電池用の負極活物質から、一般的に用いられる導電助剤および/又はバインダーおよび必要であればさらに分散媒を組み合わせて、負極を作製し得る。
前記導電助剤としては、炭素材料、導電性高分子材料等が挙げられ、炭素材料が好適である。前記炭素材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上の組み合わせが挙げられ、好適には負極活物質の作製に用いられるもの、特にアセチレンブラックあるいはケッチェンブラックが挙げられる。
前記バインダーとしては、スチレンブタジエンゴム(SBR)、ポリアクリレート、ポリフッ化ビニリデン(PVdF)等が挙げられる。
From a negative electrode active material for a metal ion battery comprising a powder mixture containing MgH 2 and a carbon material obtained as described above, a commonly used conductive additive and / or binder and, if necessary, further a dispersion medium In combination, a negative electrode can be produced.
Examples of the conductive aid include carbon materials and conductive polymer materials, and carbon materials are preferred. Examples of the carbon material include graphite, carbon black, carbon nanotube, carbon nanofiber, fullerene, etc., alone or in combination of two or more, preferably those used for the production of a negative electrode active material, particularly acetylene black or Ketjen black is an example.
Examples of the binder include styrene butadiene rubber (SBR), polyacrylate, polyvinylidene fluoride (PVdF), and the like.

また、前記の分散媒としては、アルコール、グリコール、セロソルブ、アミノアルコール、アミン、ケトン、カルボン酸アミド、リン酸アミド、スルホキシド、カルボン酸エステル、リン酸エステル、エーテル、ニトリル等が挙げられる。具体例としては、メチルアルコール、エチルアルコール、2−プロパノール、1−ブタノール、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール、2−メトキシエタノール、2−エトキシエタノール、2−アミノエタノール、アセトン、メチルエチルケトン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、スルホラン、アセトニトリル、プロピオニトリルが挙げられる。   Examples of the dispersion medium include alcohol, glycol, cellosolve, amino alcohol, amine, ketone, carboxylic acid amide, phosphoric acid amide, sulfoxide, carboxylic acid ester, phosphoric acid ester, ether, and nitrile. Specific examples include methyl alcohol, ethyl alcohol, 2-propanol, 1-butanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 2 -Methoxyethanol, 2-ethoxyethanol, 2-aminoethanol, acetone, methyl ethyl ketone, formamide, N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylformamide, N-methylacetamide, N , N-dimethylacetamide, N-methylpropionamide, N-methylpyrrolidone, hexamethylphosphoric triamide, dimethyl sulfoxide, sulfolane, acetonitrile, propionitrile.

前記の負極中の総固形分に占めるバインダーの割合は、通常1質量%以上で20質量%以下であることが好適である。
前記バインダーの割合が1質量%を下回ると、結着性が低下するため集電体から負極活物質や炭素材料等が脱離しやすくなる場合があり、20質量%を越えると、MgHおよび導電助剤の割合が低下するため、電池性能の低下をもたらす可能性がある。
The proportion of the binder in the total solid content in the negative electrode is preferably 1% by mass or more and 20% by mass or less.
If the proportion of the binder is less than 1 mass%, there are cases where such a negative electrode active material and a carbon material from a current collector for binding property is lowered easily desorbed exceeds 20 wt%, MgH 2 and conductive Since the ratio of the auxiliary agent is lowered, there is a possibility that the battery performance is lowered.

本発明の前記負極活物質を用いて負極を得る方法として、負極活物質、導電助剤および/又はバインダーおよび必要であればさらに分散材を含むペースト又はこのペーストにさらに溶剤を加えたスラリーを負極集電体上に塗布した後、乾燥し、圧延(プレス)して、集電体上に負極活物質層を形成する塗布法が挙げられる。前記溶剤として、前記の分散媒として挙げたものが用いられ得る。   As a method for obtaining a negative electrode using the negative electrode active material of the present invention, a negative electrode active material, a conductive additive and / or a binder, and if necessary, a paste further containing a dispersing agent or a slurry obtained by further adding a solvent to this paste An application method may be mentioned in which a negative electrode active material layer is formed on a current collector by drying and rolling (pressing) after applying on the current collector. As the solvent, those mentioned as the dispersion medium can be used.

本発明の前記負極活物質を用いて得られた負極、他の構成材、例えば正極、セパレータおよび電解質を用いて金属イオン電池が構成され得る。
金属イオン電池としては、リチウム二次電池、ナトリウム二次電池、カリウム二次電池、マグネシウム二次電池、カルシウム二次電池など、好適にはリチウム二次電池、ナトリウム二次電池、カリウム二次電池、特にリチウム二次電池が挙げられる。
前記正極は、正極集電体およびその少なくとも一面に設けられた正極活物質層を有し得る。
前記正極集電体は、例えば、アルミニウム、ニッケル又はステンレスなどの金属材料によって構成されている。
A metal ion battery can be formed using a negative electrode obtained using the negative electrode active material of the present invention, other constituent materials such as a positive electrode, a separator and an electrolyte.
As the metal ion battery, lithium secondary battery, sodium secondary battery, potassium secondary battery, magnesium secondary battery, calcium secondary battery, etc., preferably lithium secondary battery, sodium secondary battery, potassium secondary battery, In particular, a lithium secondary battery can be mentioned.
The positive electrode may have a positive electrode current collector and a positive electrode active material layer provided on at least one surface thereof.
The positive electrode current collector is made of, for example, a metal material such as aluminum, nickel, or stainless steel.

前記正極活物質層としては、リチウム、リチウム酸化物、特にリチウムと遷移金属とを含む複合酸化物、リチウム硫化物、リチウムを含む層間化合物、リチウムリン酸化合物などの正極材料が含まれる。正極活物質層には高分子材料、例えば、ポリアニリン、ポリチオフェンや、導電剤、例えば、黒鉛、カーボンブラック、アセチレンブラック又はケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上を組み合わせた炭素材料が含まれていてもよい。   Examples of the positive electrode active material layer include positive electrode materials such as lithium, lithium oxide, in particular, a composite oxide containing lithium and a transition metal, lithium sulfide, an intercalation compound containing lithium, and a lithium phosphate compound. The positive electrode active material layer may be a polymer material such as polyaniline, polythiophene, or a conductive agent such as graphite, carbon black, acetylene black or ketjen black, carbon nanotube, carbon nanofiber, fullerene, etc. The carbon material which combined these may be contained.

前記セパレータとしては、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、セラミック製の多孔質膜が挙げられる。特に、多層構造、例えばPE/PP/PEの3層構造のポリオレフィン製の多孔質膜が好適に用いられる。   Examples of the separator include a porous film made of polyolefin such as polypropylene (PP) and polyethylene (PE), and a porous film made of ceramic. In particular, a porous film made of polyolefin having a multilayer structure, for example, a three-layer structure of PE / PP / PE is preferably used.

前記電解質としては電解液、ゲル状あるいは固体の電解質、好適には電解液が挙げられる。電解液は溶剤と電解質塩とを含んでいて、溶剤としては、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネートおよびエチルメチルカーボネート(EMC)が好適に挙げられる。その中でも、エチレンカーボネートあるいはプロピレンカーボネートなどの高粘度溶剤とジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの低粘度溶剤の少なくとも1種又は2種以上とを混合した混合溶剤が好適である。この溶剤にはビニレンカーボネートやビニルエチレンカーボネートなどの不飽和結合を有する環状カーボネートや、ビス(フルオロメチル)カーボネートなどのハロゲンを有する環状カーボネートを含有させてもよい。   Examples of the electrolyte include an electrolytic solution, a gel-like or solid electrolyte, and preferably an electrolytic solution. The electrolytic solution contains a solvent and an electrolyte salt, and preferred examples of the solvent include ethylene carbonate (EC), propylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, and ethyl methyl carbonate (EMC). Among them, a mixed solvent obtained by mixing a high-viscosity solvent such as ethylene carbonate or propylene carbonate and at least one or two or more low-viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable. . This solvent may contain a cyclic carbonate having an unsaturated bond such as vinylene carbonate or vinylethylene carbonate, or a cyclic carbonate having a halogen such as bis (fluoromethyl) carbonate.

前記電解液には、一般的に電解質塩が支持塩として含有されている。この電解質塩としては、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、過塩素酸リチウム(LiClO4 )、六フッ化ヒ酸リチウム(LiAsF6 )、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C25 SO22 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO22 )、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO23 )、塩化リチウム(LiCl)あるいは臭化リチウム(LiBr)など、好適には六フッ化リン酸リチウム(LiPF6 )が挙げられる。 The electrolytic solution generally contains an electrolyte salt as a supporting salt. Examples of the electrolyte salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), Bis (pentafluoroethanesulfonyl) imidolithium (LiN (C 2 F 5 SO 2 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ), lithium chloride (LiCl) or lithium bromide (LiBr), preferably lithium hexafluorophosphate (LiPF 6 ) Can be mentioned.

前記ゲル状の電解質は、例えば正極および負極を作製し、これらに溶剤と電解質塩とを含む電解液を塗布した後に溶剤を揮発させて形成し得る。   The gel electrolyte can be formed, for example, by preparing a positive electrode and a negative electrode, applying an electrolytic solution containing a solvent and an electrolyte salt thereto, and then volatilizing the solvent.

前記正極活物質を用いて正極を得る方法としてはそれ自体公知の方法、例えば蒸着又はスパッタもしくはCVDにより正極集電体、例えば銅箔上に正極活物質層を形成する方法が挙げられる。
または、前記正極活物質を用いて正極を得る方法として、前記正極活物質を含むペースト又はスラリーを正極集電体上に塗布した後、乾燥させて正極集電体上に正極活物質層を形成する塗布法が挙げられる。前記正極活物質を含むペースト又はこのペーストにさらに溶剤、例えば前記の負極作製用の溶剤を加えたスラリーを正極集電体上に塗布した後、乾燥し、プレスすることによって得ることができる。
また、本発明の負極活物質を用いて得られる負極、正極、セパレータおよび電解質を用いることによって、過電圧が低減された金属イオン電池を得ることが可能となる。
前記金属イオン電池としては任意の形状を有するものが挙げられる。
Examples of a method for obtaining a positive electrode using the positive electrode active material include a method known per se, for example, a method of forming a positive electrode active material layer on a positive electrode current collector, for example, a copper foil, by vapor deposition, sputtering, or CVD.
Alternatively, as a method of obtaining a positive electrode using the positive electrode active material, a paste or slurry containing the positive electrode active material is applied on a positive electrode current collector and then dried to form a positive electrode active material layer on the positive electrode current collector The coating method to do is mentioned. The paste containing the positive electrode active material or a slurry obtained by adding a solvent, for example, the above-mentioned negative electrode preparation solvent, to the paste is applied onto the positive electrode current collector, and then dried and pressed.
Further, by using a negative electrode, a positive electrode, a separator and an electrolyte obtained by using the negative electrode active material of the present invention, a metal ion battery with reduced overvoltage can be obtained.
Examples of the metal ion battery include those having an arbitrary shape.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、粉末混合物の表面におけるOとMgとの比(O/Mg、原子比)を、粉末混合物に対して深さ方向にSiO基準で2nm/分の速度でアルゴンによりエッチング処理する間のOおよびMgの濃度をXPS(X-ray Photoelectron Spectroscopy、X線光電子分光法)により測定した。なお、アルゴンによりエッチング処理する際の条件は下記の通りである。
アルゴンガスによるエッチングの条件:試料をステンレス台座の上に置き、常温で、試料の上方から試料にアルゴンガスに吹き付けてエッチィングを行った。
測定試料の量:0.01〜0.1g
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the O / Mg ratio (O / Mg, atomic ratio) on the surface of the powder mixture is etched with argon at a rate of 2 nm / min on the basis of SiO 2 in the depth direction with respect to the powder mixture. During this time, the concentrations of O and Mg were measured by XPS (X-ray Photoelectron Spectroscopy). The conditions for etching with argon are as follows.
Etching conditions with argon gas: A sample was placed on a stainless steel pedestal, and etching was performed by spraying argon gas onto the sample from above the sample at room temperature.
Amount of measurement sample: 0.01 to 0.1 g

実施例1
[負極活物質の調製]
MgH(活物質)とアセチレンブラック(電気化学工業社、水分を除く揮発分0.4質量%)とを質量比90:10の割合で、遊星ボールミル(Fritsch製、PremiumLine P−7)による混合および微細化処理を、アルゴン雰囲気、400rpm、5時間の処理条件で行って負極活物質を得た。
Example 1
[Preparation of negative electrode active material]
Mixing MgH 2 (active material) and acetylene black (Electrochemical Co., Ltd., 0.4% by mass of volatile matter excluding moisture) at a mass ratio of 90:10 using a planetary ball mill (made by Fritsch, PremiumLine P-7) And the refinement | miniaturization process was performed on argon atmosphere and the process conditions of 400 rpm and 5 hours, and the negative electrode active material was obtained.

[負極活物質の分析]
調製した負極活物質について、粉末混合物に対して深さ方向にアルゴンによりエッチング処理する間のOおよびMgの濃度をXPS分析装置により測定した。
得られた結果を図2に示す。また、エッチング処理した最初の5分間の平均値のO/Mg(原子比)は0.89であった。他の結果と比較して図1に示す。
得られた結果を図2に示す。
また、粉末混合物についてSEMによりMgH粒子および炭素材料の粒径の測定を行ったところ、MgH粒子の粒径は300〜400nm、炭素材料の粒径は5〜10nmであった。
[試験用負極作製]
調製した負極活物質、導電助剤としてのアセチレンブラックおよびバインダーとしてのPVdFパウダーを質量比で45:40:15の割合で加え、分散材としてN−メチルピロリドンを用いて混練してスラリーを作製し、負極集電体として銅箔上に塗布し、乾燥、そして圧延して、膜厚10μmの電極を作製した。
[Analysis of negative electrode active material]
About the prepared negative electrode active material, the density | concentration of O and Mg was measured with the XPS analyzer during the etching process with argon in the depth direction with respect to the powder mixture.
The obtained results are shown in FIG. The average value of O / Mg (atomic ratio) for the first 5 minutes after the etching treatment was 0.89. It shows in FIG. 1 compared with another result.
The obtained results are shown in FIG.
Also was measured for the particle size of MgH 2 particles and the carbon material by SEM for powder mixtures, the particle size of MgH 2 particles 300 to 400 nm, the particle size of the carbon material was 5 to 10 nm.
[Preparation of test anode]
The prepared negative electrode active material, acetylene black as a conductive additive, and PVdF powder as a binder are added at a mass ratio of 45:40:15, and kneaded using N-methylpyrrolidone as a dispersing agent to prepare a slurry. Then, it was applied on a copper foil as a negative electrode current collector, dried and rolled to prepare an electrode having a thickness of 10 μm.

[電池の作製]
使用セル:CR2032型コインセル、試験極:塗工電極、対極:Li金属箔、セパレータ:多孔質ポリオレフィン製セパレータ(PE/PP/PE)、電解液:EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とEMC(エチルメチルカーボネート)とを体積比3:3:4で混合した混合溶剤に、支持塩としてLiPFを濃度1mol/Lで溶解した電解液で、電池を作製した。
[Production of battery]
Use cell: CR2032-type coin cell, test electrode: coated electrode, counter electrode: Li metal foil, separator: separator made of porous polyolefin (PE / PP / PE), electrolyte: EC (ethylene carbonate) and DMC (dimethyl carbonate) A battery was fabricated using an electrolytic solution obtained by dissolving LiPF 6 as a supporting salt in a concentration of 1 mol / L in a mixed solvent in which EMC (ethyl methyl carbonate) was mixed at a volume ratio of 3: 3: 4.

[電気化学特性評価]
電池評価環境温度25℃、電流レート1/10C、上下限電圧3.0V〜0.01Vにて評価を行った。それぞれの充電量に対して規格化し、SOCとして横軸に表示した。得られた結果を他の結果とまとめて図5に示す。
また、電池評価によって得られた結果より、図5において今回の反応と考えられる部位(落ち込んだ後のふくらみ部分)での電極電位(測定された電位)と理論電位(0.54V)との差から過電圧を算出したところ、過電圧は0.23Vであった。他の結果と比較して図1に示す。
[Electrochemical characteristics evaluation]
Battery evaluation was evaluated at an environmental temperature of 25 ° C., a current rate of 1/10 C, and an upper and lower limit voltage of 3.0 V to 0.01 V. It normalized with respect to each charge amount, and displayed on the horizontal axis as SOC. The obtained results are shown together with other results in FIG.
Further, from the results obtained by the battery evaluation, the difference between the electrode potential (measured potential) and the theoretical potential (0.54 V) at the site considered to be the current reaction in FIG. From the above, the overvoltage was calculated to be 0.23V. It shows in FIG. 1 compared with another result.

実施例2
アセチレンブラックに代えてケッチェンブラック(ライオン社、水分を除く揮発分0.7質量%)を用いた他は実施例1と同様にして、負極活物質および試験用負極を得た。
負極活物質について、粉末混合物に対して深さ方向にSiO基準で2nm/分の速度でアルゴンによりエッチング処理する間のOおよびMgの濃度をXPS分析装置により測定した。結果を図3に示す。また、エッチング処理した最初の5分間の平均値のO/Mg(原子比)は1.02であった。他の結果と比較して図1に示す。
また、粉末混合物についてSEMによりMgH粒子および炭素材料の粒径の測定を行ったところ、MgH粒子の粒径は300〜400nm、炭素材料の粒径は5〜10nmであった。
また、電気化学特性評価を行った結果を他の結果とまとめて図5に示す。
また、上記電池評価によって得られた結果より算出した過電圧は0.36Vであった。他の結果と比較して図1に示す。
Example 2
A negative electrode active material and a test negative electrode were obtained in the same manner as in Example 1 except that ketjen black (Lion Corporation, volatile content excluding moisture 0.7 mass%) was used instead of acetylene black.
Regarding the negative electrode active material, the concentration of O and Mg was measured with an XPS analyzer during etching with argon at a rate of 2 nm / min on the basis of SiO 2 in the depth direction with respect to the powder mixture. The results are shown in FIG. The average value of O / Mg (atomic ratio) for the first 5 minutes after the etching treatment was 1.02. It shows in FIG. 1 compared with another result.
Also was measured for the particle size of MgH 2 particle and a carbon material by SEM for powder mixtures, the particle size of MgH 2 particle 300 to 400 nm, the particle size of the carbon material was 5 to 10 nm.
In addition, the results of electrochemical property evaluation are shown in FIG. 5 together with other results.
The overvoltage calculated from the results obtained by the battery evaluation was 0.36V. It shows in FIG. 1 compared with another result.

比較例1
アセチレンブラックに代えてMCMB(大阪ガスケミカル社、水分を除く揮発分8.5質量%)を用いた他は実施例1と同様にして、負極活物質および試験用負極を得た。
負極活物質について、粉末混合物に対して深さ方向にSiO基準で2nm/分の速度でアルゴンによりエッチング処理する間のOおよびMgの濃度をXPS分析装置により測定した。結果を図4に示す。また、エッチング処理した最初の5分間の平均値のO/Mg(原子比)は1.16であった。他の結果と比較して図1に示す。
また、粉末混合物についてSEMによりMgH粒子および炭素材料の粒径の測定を行ったところ、MgH粒子の粒径は300〜400nm、炭素材料の粒径は5〜10nmであった。
また、電気化学特性評価を行った結果を他の結果とまとめて図5に示す。
また、上記電池評価によって得られた結果より算出した過電圧は0.37Vであった。他の結果と比較して図1に示す。
Comparative Example 1
A negative electrode active material and a test negative electrode were obtained in the same manner as in Example 1 except that MCMB (Osaka Gas Chemical Co., Ltd., volatile content excluding moisture 8.5% by mass) was used instead of acetylene black.
Regarding the negative electrode active material, the concentration of O and Mg was measured with an XPS analyzer during etching with argon at a rate of 2 nm / min on the basis of SiO 2 in the depth direction with respect to the powder mixture. The results are shown in FIG. The average O / Mg (atomic ratio) for the first 5 minutes after the etching treatment was 1.16. It shows in FIG. 1 compared with another result.
Also was measured for the particle size of MgH 2 particles and the carbon material by SEM for powder mixtures, the particle size of MgH 2 particles 300 to 400 nm, the particle size of the carbon material was 5 to 10 nm.
In addition, the results of electrochemical property evaluation are shown in FIG. 5 together with other results.
The overvoltage calculated from the results obtained by the battery evaluation was 0.37V. It shows in FIG. 1 compared with another result.

図1から、実施例1、実施例2、比較例1の順に過電圧が低い(過電圧:実施例1<実施例2<比較例1)ことが示され、O/Mgが小さいほど電池の過電圧が減少していることが理解される。
また、図2〜4から、実施例1の負極活物質は表面でわずかに酸素が増えた後に深さ方向で一定化しておること、実施例2の負極活物質は表面でわずかに酸素が増えた後に深さ方向で一定化していて少し酸素量が多いこと、比較例1の負極活物質は一定化した状態と比較して表面での酸素量が多いことが示されている。
FIG. 1 shows that the overvoltage is low in the order of Example 1, Example 2, and Comparative Example 1 (overvoltage: Example 1 <Example 2 <Comparative Example 1). The smaller the O / Mg, the more the overvoltage of the battery. It is understood that it is decreasing.
2 to 4, the negative electrode active material of Example 1 is constant in the depth direction after a slight increase in oxygen on the surface, and the negative electrode active material of Example 2 has a slight increase in oxygen on the surface. After that, it is shown that the amount of oxygen is slightly increased after being constant in the depth direction, and that the amount of oxygen on the surface of the negative electrode active material of Comparative Example 1 is large compared to the state of being constant.

本発明によれば、従来公知のMgHである負極活物質に比べて電池の過電圧を低減し得る金属イオン電池用の負極活物質を得ることができる。 According to the present invention, it is possible to obtain a negative electrode active material for a metal ion batteries capable of reducing the overvoltage of the battery than the negative electrode active material are known MgH 2.

Claims (7)

MgHと炭素材料とを含む粉末混合物からなる金属イオン電池用の負極活物質であって、前記粉末混合物の表面におけるOとMgとの比(O/Mg原子比)が1.05以下である、前記物質。 A negative electrode active material for a metal ion battery comprising a powder mixture containing MgH 2 and a carbon material, wherein a ratio of O to Mg (O / Mg atomic ratio) on the surface of the powder mixture is 1.05 or less. The substance. 前記粉末混合物中のMgHの粒径が100〜500nmの範囲であって、前記炭素材料の粒径が20nm以下である請求項1に記載の負極活物質。 2. The negative electrode active material according to claim 1, wherein a particle diameter of MgH 2 in the powder mixture is in a range of 100 to 500 nm, and a particle diameter of the carbon material is 20 nm or less. 前記粉末混合物が、MgHと炭素材料とを混合および微粉化してなる請求項1又は2に記載の負極活物質。 The negative electrode active material according to claim 1, wherein the powder mixture is obtained by mixing and pulverizing MgH 2 and a carbon material. 前記炭素材料の水分を除く揮発分が0.7質量%以下である請求項1〜3のいずれか1項に記載の負極活物質。   The negative electrode active material according to claim 1, wherein a volatile content excluding moisture of the carbon material is 0.7 mass% or less. 前記炭素材料が、アセチレンブラックあるいはケッチェンブラックである請求項1〜4のいずれか1項に記載の負極活物質。   The negative electrode active material according to claim 1, wherein the carbon material is acetylene black or ketjen black. 前記MgとOとの比率(Mg/O)が、0.75以上1.05以下である請求項1〜5のいずれか1項に記載の負極活物質。   The negative electrode active material according to claim 1, wherein a ratio of Mg to O (Mg / O) is 0.75 or more and 1.05 or less. 前記MgHと炭素材料との割合が、質量比で99:1〜80:20の範囲である請求項1〜6のいずれか1項に記載の負極活物質。 The negative electrode active material according to claim 1, wherein a ratio of the MgH 2 and the carbon material is in a range of 99: 1 to 80:20 by mass ratio.
JP2011279517A 2011-12-21 2011-12-21 Anode active material for metal ion battery Pending JP2013131366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279517A JP2013131366A (en) 2011-12-21 2011-12-21 Anode active material for metal ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279517A JP2013131366A (en) 2011-12-21 2011-12-21 Anode active material for metal ion battery

Publications (1)

Publication Number Publication Date
JP2013131366A true JP2013131366A (en) 2013-07-04

Family

ID=48908767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279517A Pending JP2013131366A (en) 2011-12-21 2011-12-21 Anode active material for metal ion battery

Country Status (1)

Country Link
JP (1) JP2013131366A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212218A (en) * 2014-05-05 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Reagent complexes and method for synthesis of reagent complexes
US9643254B2 (en) 2013-10-04 2017-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. Anionic reagent element complexes, their variations, and their uses
US9650248B2 (en) 2013-10-04 2017-05-16 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-element anionic reagent complexes
US9738536B2 (en) 2013-10-04 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Allotrope-specific anionic element reagent complexes
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
US10023595B2 (en) 2015-01-09 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements
US10125429B2 (en) 2013-10-04 2018-11-13 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
US10680280B2 (en) 2017-09-26 2020-06-09 Toyota Jidosha Kabushiki Kaisha 3D magnesium battery and method of making the same
US10774196B2 (en) 2016-09-22 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US10814397B2 (en) 2016-03-21 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Textured-crystal nanoparticles from ligated anionic element reagent complex
US10910672B2 (en) 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
US11447607B2 (en) 2019-03-21 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Woven carbon fiber reinforced steel matrix composite with fully penetrated reinforcement
US11788175B2 (en) 2019-03-21 2023-10-17 Toyota Motor Engineering & Manufacturing North America, Inc. Chemically bonded amorphous interface between phases in carbon fiber and steel composite
US11888156B2 (en) 2018-05-15 2024-01-30 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including negative electrode active material, and lithium secondary battery including negative electrode
US11911995B2 (en) 2016-09-22 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and aramid with fully penetrated reinforcement

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643254B2 (en) 2013-10-04 2017-05-09 Toyota Motor Engineering & Manufacturing North America, Inc. Anionic reagent element complexes, their variations, and their uses
US9650248B2 (en) 2013-10-04 2017-05-16 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-element anionic reagent complexes
US9738536B2 (en) 2013-10-04 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Allotrope-specific anionic element reagent complexes
US10125429B2 (en) 2013-10-04 2018-11-13 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
JP2015212218A (en) * 2014-05-05 2015-11-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Reagent complexes and method for synthesis of reagent complexes
US10023595B2 (en) 2015-01-09 2018-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Ligated anionic-element reagent complexes as novel reagents formed with metal, metalloid, and non-metal elements
US10814397B2 (en) 2016-03-21 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Textured-crystal nanoparticles from ligated anionic element reagent complex
US11608424B2 (en) 2016-09-22 2023-03-21 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11603449B2 (en) 2016-09-22 2023-03-14 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11911995B2 (en) 2016-09-22 2024-02-27 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and aramid with fully penetrated reinforcement
US10774196B2 (en) 2016-09-22 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Light weight composite of steel and polymer
US11597811B2 (en) 2016-09-22 2023-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for making polymer-reinforced steel matrix composites
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
US10910672B2 (en) 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
US11777135B2 (en) 2017-09-26 2023-10-03 Toyota Motor Engineering & Manufacturing North America, Inc. 3D magnesium battery and method of making the same
US10680280B2 (en) 2017-09-26 2020-06-09 Toyota Jidosha Kabushiki Kaisha 3D magnesium battery and method of making the same
US11888156B2 (en) 2018-05-15 2024-01-30 Lg Energy Solution, Ltd. Negative electrode active material, negative electrode including negative electrode active material, and lithium secondary battery including negative electrode
US11447608B2 (en) 2019-03-21 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Woven carbon fiber reinforced steel matrix composite with unreinforced regions
US11713499B2 (en) 2019-03-21 2023-08-01 Toyota Motor Engineering & Manufacturing North America, Inc. Woven carbon fiber reinforced steel matrix composite
US11447607B2 (en) 2019-03-21 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Woven carbon fiber reinforced steel matrix composite with fully penetrated reinforcement
US11788175B2 (en) 2019-03-21 2023-10-17 Toyota Motor Engineering & Manufacturing North America, Inc. Chemically bonded amorphous interface between phases in carbon fiber and steel composite

Similar Documents

Publication Publication Date Title
JP2013131366A (en) Anode active material for metal ion battery
JP6538835B2 (en) Electrolyte for calcium-based secondary battery, and calcium-based secondary battery including the same
EP3043412B1 (en) Solid-state battery and method for manufacturing electrode active material
Lee et al. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors
Fan et al. Amorphous carbon-encapsulated Si nanoparticles loading on MCMB with sandwich structure for lithium ion batteries
Zhu et al. Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries
JP6577578B2 (en) Calcium-based secondary battery and battery including the same
JP2014503972A (en) Silicon / carbon composite materials, methods for their synthesis and use of such materials
JP2010529593A (en) Lithium iron phosphate positive electrode active material for lithium ion battery and preparation method thereof
KR101919524B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same
JP5400451B2 (en) Negative electrode for lithium primary battery and lithium primary battery
Zuo et al. Effects of carbon on the structure and electrochemical performance of Li 2 FeSiO 4 cathode materials for lithium-ion batteries
KR102241403B1 (en) Electrode for an electric energy storage battery comprising a graphite/silicon/carbon fibre composite material
Chen et al. Fluorine-functionalized core-shell Si@ C anode for a high-energy lithium-ion full battery
JP2006294326A (en) Negative electrode material for polymer electrolyte lithium secondary battery and its manufacturing method
Kiai et al. Enhanced performance of Li-S battery with polymer doped potassium functionalized graphene interlayers as effective polysulfide barrier
Kaushik et al. Stable cycle performance of a phosphorus negative electrode in lithium-ion batteries derived from ionic liquid electrolytes
Zhang et al. Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery
JP2020187825A (en) Dual ion power storage device
Lin et al. Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery
EP4207343A1 (en) Nonaqueous electrolyte secondary battery
Gobena et al. Cycling performance of silicon‐carbon composite anodes enhanced through phosphate surface treatment
Wang et al. CFx addition improves performance of batteries with Li4Ti5O12 electrodes
JP6026359B2 (en) Lithium titanate negative electrode active material
JP5809200B2 (en) Silicon-based negative electrode active material