JP5233314B2 - Carbon material for secondary battery, electrode for secondary battery, and secondary battery - Google Patents

Carbon material for secondary battery, electrode for secondary battery, and secondary battery Download PDF

Info

Publication number
JP5233314B2
JP5233314B2 JP2008043442A JP2008043442A JP5233314B2 JP 5233314 B2 JP5233314 B2 JP 5233314B2 JP 2008043442 A JP2008043442 A JP 2008043442A JP 2008043442 A JP2008043442 A JP 2008043442A JP 5233314 B2 JP5233314 B2 JP 5233314B2
Authority
JP
Japan
Prior art keywords
secondary battery
carbon material
carbon
electrode
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008043442A
Other languages
Japanese (ja)
Other versions
JP2009200014A (en
Inventor
哲志 小野
龍郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008043442A priority Critical patent/JP5233314B2/en
Publication of JP2009200014A publication Critical patent/JP2009200014A/en
Application granted granted Critical
Publication of JP5233314B2 publication Critical patent/JP5233314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池用炭素材、及び、これを用いた電極、二次電池に関するものである。   The present invention relates to a carbon material for a secondary battery, an electrode using the same, and a secondary battery.

近年、めざましい電子技術の発達に伴い、電子機器の小型化、軽量化が求められている。これに伴い、移動用電源又は固定型電源に対しても、更なる小型化、軽量化、且つ高エネルギー密度化が求められるようになっている。   In recent years, with the remarkable development of electronic technology, there has been a demand for downsizing and weight reduction of electronic devices. Along with this, further miniaturization, weight reduction, and higher energy density have been demanded for mobile power sources or fixed power sources.

このような背景から、リチウムイオン二次電池が提唱された。   Against this background, lithium ion secondary batteries have been proposed.

リチウムイオン二次電池は、鉛蓄電池、ニッカド−カドニウム電池とは異なり、リチウムイオンが正極/負極の電極間を移動することにより、電流を発生する。具体的にいえば、充電過程においては正極より、リチウムイオンが放出され、負極側ではリチウムイオンを吸蔵する。逆に、放電過程では負極よりリチウムイオンが放出され、正極側でリチウムイオンを吸蔵する。従って、リチウムイオン二次電池の高容量化には、負極側のリチウムイオン吸蔵量を増やすことが必須となっている。   Unlike a lead storage battery or a nickel-cadmium battery, a lithium ion secondary battery generates an electric current by moving lithium ions between the positive electrode and the negative electrode. Specifically, during the charging process, lithium ions are released from the positive electrode and occlude lithium ions on the negative electrode side. Conversely, in the discharge process, lithium ions are released from the negative electrode and occlude lithium ions on the positive electrode side. Therefore, to increase the capacity of the lithium ion secondary battery, it is essential to increase the amount of lithium ion occlusion on the negative electrode side.

現在、リチウムイオン二次電池の負極に使用されている材料としては、携帯機器向け電池負極材の主流となっているグラファイト系材料である。この材料の特徴は、充放電効率が90%以上と高いこと、真密度が高いことによる電極密度が高いことなどが挙げられる。しかし、理論充放電容量(372mAh/g)が存在するために、グラファイト系材料を用いてのリチウムイオン二次電池の容量を向上させることは困難となっている。 At present, the material used for the negative electrode of the lithium ion secondary battery is a graphite-based material which is the mainstream of the negative electrode material for portable devices. The characteristics of this material include a high charge / discharge efficiency of 90% or higher and a high electrode density due to a high true density. However, since the theoretical charge / discharge capacity (372 mAh / g) exists, it is difficult to improve the capacity of the lithium ion secondary battery using the graphite-based material.

上記のように、理論充放電容量が372mAh/gであるという問題点を解決するために、グラファイト系以外の材料の検討が実施されている。具体的には、非結晶性炭素質材料、合金炭素複合材料、金属元素が担持された炭素質材料、金属窒化物、合金系金属材料などが検討されている。これらの材料は放電容量が非常に高いことで知られている。しかしながら、初期充放電効率が低いこと、及び、サイクル性の劣化が大きいことなどが難点であり、更なる特性の向上が望まれている。   As described above, in order to solve the problem that the theoretical charge / discharge capacity is 372 mAh / g, materials other than graphite-based materials have been studied. Specifically, an amorphous carbonaceous material, an alloy carbon composite material, a carbonaceous material carrying a metal element, a metal nitride, an alloy-based metal material, and the like are being studied. These materials are known for their very high discharge capacity. However, the initial charge / discharge efficiency is low and the deterioration of the cycle characteristics is difficult, and further improvement of characteristics is desired.

上記で挙げた中で、非結晶性炭素質材料はサイクル特性が良く、又、非常に小さい細孔を数多くもつため、Liイオンを吸蔵しやすく、リチウムイオン二次電池の負極として用いた場合には充電容量が大きく、期待されている材料であり、従来より検討がなされてきている。例えば、Liイオンと同程度の分子径を有するHeや、分子径の多きいブタノールをプローブ分子として、He吸着量やブタノール浸漬法で測定される炭素材表面、および内部細孔や密度などを解析することで、負極容量と物性との相関関係を解析し、充放電特性を向上させようという取り組みもされている(例えば特許文献1、2参照。)。しかしながら、炭素材料の細孔の大きさ、形状、容積、分布、密度のみでは、負極容量と充放電効率を両方とも向上させることが現状できていない。   Among the above-mentioned materials, the amorphous carbonaceous material has good cycle characteristics and has many very small pores, so it is easy to occlude Li ions and is used as a negative electrode of a lithium ion secondary battery. Is a material that is expected to have a large charge capacity, and has been studied in the past. For example, analysis of He adsorption amount, carbon material surface measured by butanol immersion method, internal pores and density, etc., with He having a molecular diameter similar to Li ion and butanol having a large molecular diameter as a probe molecule Thus, efforts are being made to analyze the correlation between the negative electrode capacity and the physical properties and improve the charge / discharge characteristics (see, for example, Patent Documents 1 and 2). However, it is not possible to improve both the negative electrode capacity and the charge / discharge efficiency only by the size, shape, volume, distribution, and density of the pores of the carbon material.

特開2001−176512号公報JP 2001-176512 A 特開平08−115723号公報JP 08-115723 A

本発明は、リチウムイオン二次電池として、サイクル性および負荷特性に優れ、高充電容量および高充放電効率を発現する二次電池電極用炭素材、二次電池用電極、およびこれを用いたリチウムイオン二次電池を提供する。   The present invention relates to a carbon material for a secondary battery electrode that is excellent in cycleability and load characteristics as a lithium ion secondary battery, and exhibits a high charge capacity and high charge / discharge efficiency, an electrode for a secondary battery, and a lithium using the same An ion secondary battery is provided.

このような目的は、以下の本発明(1)〜(5)によって達成される。
(1) 細孔を有する炭素材であって、前記炭素材は、
イ)炭素を95〜99wt%含み、且つ炭素以外の元素として、O、N、S、P及びBの少なくとも1つ以上の元素を1〜5wt%含み、
ロ)0.25〜0.45nmの細孔径を有する細孔の容積が、全細孔容積の30容積%以上、
ハ)比表面積が15m2/g以下、
であることを特徴とする、二次電池用炭素材。
(2) 前記二次電池用炭素材は、ブタノール浸漬法により測定される密度(ρB)に対するヘリウムガス吸着法により測定される密度(ρH)の比(ρH/ρB)が0.9以上であり、且つX線回折スペクトル法からBragg式を用いて算出される炭素材の平均面間隔(d)が、0.34〜0.40nmである前記(1)に記載の二次電池用炭素材。
(3) 前記(1)又は(2)記載の二次電池用炭素材が、非結晶性である二次電池用炭素材。
(4) 前記(1)〜(3)のいずれか1項に記載の二次電池用炭素材を電極用活物質に用いることを特徴とする二次電池電極。
(5) 前記(4)に記載の二次電池電極を含んで構成される二次電池。
Such an object is achieved by the following present inventions (1) to (5).
(1) A carbon material having pores, wherein the carbon material is
A) 95 to 99 wt% of carbon and 1 to 5 wt% of at least one element of O, N, S, P and B as elements other than carbon,
B) The volume of the pores having a pore diameter of 0.25 to 0.45 nm is 30% by volume or more of the total pore volume,
C) The specific surface area is 15 m 2 / g or less,
A carbon material for a secondary battery, characterized in that
(2) The carbon material for the secondary battery has a ratio (ρ H / ρ B ) of the density (ρ H ) measured by the helium gas adsorption method to the density (ρ B ) measured by the butanol immersion method is 0. The secondary battery according to (1), which has an average interplanar spacing (d) of 0.34 to 0.40 nm, which is 9 or more and is calculated from the X-ray diffraction spectrum method using the Bragg equation. Carbon material.
(3) A carbon material for a secondary battery, wherein the carbon material for a secondary battery according to (1) or (2) is non-crystalline.
(4) A secondary battery electrode using the carbon material for a secondary battery according to any one of (1) to (3) as an active material for an electrode.
(5) A secondary battery comprising the secondary battery electrode according to (4).

本発明によれば、リチウムイオン二次電池として、サイクル性および負荷特性に優れ、高充電容量および高充放電効率を発現する二次電池電極用炭素材を得ることができる。また、本発明の二次電池電極用炭素材を電極用活物質に用いて得られた二次電池用電極を用いたリチウムイオン二次電池は、サイクル性および負荷特性に優れると共に、高充電容量および高充放電効率を有するものである。   ADVANTAGE OF THE INVENTION According to this invention, the carbon material for secondary battery electrodes which is excellent in cycling property and load characteristics as a lithium ion secondary battery, and expresses high charge capacity and high charge / discharge efficiency can be obtained. In addition, the lithium ion secondary battery using the secondary battery electrode obtained by using the carbon material for secondary battery electrode of the present invention as an electrode active material has excellent cycle characteristics and load characteristics, and has a high charge capacity. In addition, it has high charge / discharge efficiency.

以下に、本発明の二次電池用炭素材、二次電池用電極、及び、二次電池について詳細に説明する。   Hereinafter, the carbon material for a secondary battery, the electrode for a secondary battery, and the secondary battery of the present invention will be described in detail.

本発明の二次電池用炭素材は、細孔を有するものであって、炭素を95〜99wt%含み、且つ炭素以外の元素として、O、N、S、P及びBの少なくとも一つ以上の元素を1〜5wt%含むことを特徴とするものである。   The carbon material for a secondary battery of the present invention has pores, contains 95 to 99 wt% of carbon, and contains at least one of O, N, S, P and B as an element other than carbon. It contains 1 to 5 wt% of elements.

上記炭素以外の元素は、炭素材の製造過程において、部分的に、炭素前駆体における炭素と結合するために、得られた炭素材における炭素−炭素間の結合距離が変化する。例えば、炭素前駆体がベンゼン環を有するものである場合、ベンゼン環における炭素−炭素間の結合距離は、1.337Åであり、そこにB原子が結合することにより、該結合距離は1.59Åに増加する。このように、結合距離が増加することにより、炭素材の結晶子構造が崩れ、ランダム構造となり、新たな細孔が形成し、リチウムイオンのドープ源となる。また、前記炭素以外の元素は、リチウムイオンとの親和性が高いために、リチウムイオンのドープ量は、新たな細孔形成に伴う構造制御によるドープ量の他に、前記炭素以外の元素との親和性に伴うドープ量になり、炭素材のドープ量はさらに増加し、サイクル性及び負荷特性に優れると共に、充放電容量及び充放電効率を向上させることができる。前記元素の含有量が1wt%を下回ると、充放電容量の向上に寄与しない。又、5wt%を上回ると、充放電容量の向上には寄与するが、充放電効率の低下を招くものとなる。   Since the elements other than carbon are partially bonded to carbon in the carbon precursor in the production process of the carbon material, the carbon-carbon bond distance in the obtained carbon material changes. For example, in the case where the carbon precursor has a benzene ring, the carbon-carbon bond distance in the benzene ring is 1.337 mm, and the bond distance is 1.59 mm due to bonding of the B atom. To increase. Thus, when the bond distance is increased, the crystallite structure of the carbon material is broken, a random structure is formed, new pores are formed, and a lithium ion dope source is formed. In addition, since the elements other than carbon have high affinity with lithium ions, the doping amount of lithium ions is different from the doping amount based on the structure control accompanying the formation of new pores in addition to the elements other than carbon. The dope amount accompanying the affinity is increased, the dope amount of the carbon material is further increased, the cycle property and the load characteristic are excellent, and the charge / discharge capacity and the charge / discharge efficiency can be improved. When content of the said element is less than 1 wt%, it does not contribute to the improvement of charging / discharging capacity. On the other hand, if it exceeds 5 wt%, it contributes to the improvement of the charge / discharge capacity, but the charge / discharge efficiency is lowered.

本発明の二次電池用炭素材は、炭素前駆体を炭化して得ることができる。該炭素前駆体としては特に限定されないが、例えば、石油ピッチ及び石炭ピッチ等の天然由来のピッチ類、ポリエチレン、ポリプロピレン、アセチレン−ブタジエン−スチレン樹脂及びアクリル樹脂などの熱可塑姓樹脂などの易黒鉛化炭素前駆体;フェノール樹脂、メラミン樹脂、フラン樹脂、エポキシ樹脂及びポリアクリロニトリル等の難黒鉛化炭素前駆体;これらの易黒鉛化炭素前駆体と難黒鉛化炭素前駆体との混合物等が挙げられる。これらそれぞれの分類の前駆体において、1種又は2種以上を用いることができるが、特に限定されるものではない。   The carbon material for a secondary battery of the present invention can be obtained by carbonizing a carbon precursor. The carbon precursor is not particularly limited. For example, graphitization of natural pitches such as petroleum pitch and coal pitch, and thermoplastic resin such as polyethylene, polypropylene, acetylene-butadiene-styrene resin and acrylic resin, etc. Carbon precursors; non-graphitizable carbon precursors such as phenol resins, melamine resins, furan resins, epoxy resins and polyacrylonitrile; and mixtures of these graphitizable carbon precursors and non-graphitizable carbon precursors. One or more of these respective types of precursors can be used, but are not particularly limited.

本発明の二次電池用炭素材において、特に負極用活物質として用いる場合、サイクル性や充放電特性などの上で、非結晶性炭素材がより好ましい。非結晶炭素質材料としては、炭素前駆体として、前記石油ピッチ及び石炭ピッチなどの天然由来のピッチ類、ポリエチレン、ポリプロピレン、アセチレン−ブタジエン−スチレン樹脂及びアクリル樹脂などの熱可塑姓樹脂から得られる易黒鉛化炭素;前記フェノール樹脂、メラミン樹脂、フラン樹脂及びエポキシ樹脂などの熱硬化性樹脂より得られる難黒鉛化炭素;などが挙げられる。また、これらの非結晶質炭素に、アルミニウム、銀、錫及び銅などの金属材料を担持した炭素材料、非結晶質炭素材料に前記金属材料を物理的混合、化学的混合した合金系炭素材料などが挙げられる。これらを単独で用いても良いし、複数を組み合わせて用いてもよい。   In the secondary battery carbon material of the present invention, in particular, when used as an active material for a negative electrode, an amorphous carbon material is more preferable in terms of cycleability and charge / discharge characteristics. As an amorphous carbonaceous material, it is easy to obtain as a carbon precursor from the above-mentioned naturally derived pitches such as petroleum pitch and coal pitch, and thermoplastic surname resins such as polyethylene, polypropylene, acetylene-butadiene-styrene resin and acrylic resin. Graphitized carbon; non-graphitizable carbon obtained from thermosetting resins such as the phenol resin, melamine resin, furan resin, and epoxy resin. Also, a carbon material in which a metal material such as aluminum, silver, tin and copper is supported on these amorphous carbons, an alloy-based carbon material in which the metal material is physically mixed and chemically mixed with the amorphous carbon material, etc. Is mentioned. These may be used alone or in combination.

本発明の二次電池用炭素材において、前記炭素以外の元素は、後述する炭素前駆体における、樹脂(モノマー)中の元素、樹脂反応や不融化処理時の触媒、硬化処理時の硬化剤や硬化促進剤、炭化処理時の炭化促進剤に含まれる元素により調整することができる。   In the carbon material for a secondary battery according to the present invention, the elements other than carbon include an element in a resin (monomer), a catalyst during a resin reaction or an infusible treatment, a curing agent during a curing treatment, It can adjust with the element contained in a hardening accelerator and the carbonization accelerator at the time of a carbonization process.

前記炭素前駆体の具体例について説明すると、
前記炭素前駆体として用いられるフェノール樹脂は、例えば、フェノール類とアルデヒド類とを、公知の方法により反応させて得られるが、さらに具体的には、酸性触媒の存在下で反応させて得られるノボラック型フェノール樹脂、塩基性触媒の存在下で反応させて得られるレゾール型フェノール樹脂などが挙げられる。
また、メラミン樹脂は、メラミン類とアルデヒド類とを公知の方法により反応させて得られるものであり、これらを単独又は併せて用いることができるが、特に限定されるものではない。
A specific example of the carbon precursor will be described.
The phenol resin used as the carbon precursor is obtained, for example, by reacting phenols and aldehydes by a known method, more specifically, a novolak obtained by reacting in the presence of an acidic catalyst. And a resol type phenol resin obtained by reacting in the presence of a basic catalyst.
The melamine resin is obtained by reacting melamines and aldehydes by a known method, and these can be used alone or in combination, but are not particularly limited.

前記ノボラック型フェノール樹脂を用いる場合は、樹脂と共に、硬化剤を使用することができる。硬化剤としては、ノボラック型フェノール樹脂の硬化剤であれば、特に限定されないが、例えば、ヘキサメチレンテトラミン、トリオキサン及びパラホルムアルデヒド等のアルデヒド源;塩酸、硫酸、りん酸及び蓚酸等の酸触媒;アミン系硬化剤;イミダゾール、1−メチルイミダゾール、2−イミダゾール、1、2−ジメチルイミダゾール及び2−フェニルイミダゾール等のイミダゾール系硬化剤;レゾール樹脂;エポキシ樹脂等が挙げられる。ここで、ノボラック型フェノール樹脂における硬化剤の使用量は特に限定されないが、通常、フェノール樹脂100重量部に対して、0.1〜20重量部使用することができる。   When the novolac type phenol resin is used, a curing agent can be used together with the resin. The curing agent is not particularly limited as long as it is a curing agent for a novolak type phenol resin. For example, aldehyde sources such as hexamethylenetetramine, trioxane and paraformaldehyde; acid catalysts such as hydrochloric acid, sulfuric acid, phosphoric acid and succinic acid; amines Examples of the curing agent include imidazole curing agents such as imidazole, 1-methylimidazole, 2-imidazole, 1,2-dimethylimidazole, and 2-phenylimidazole; resol resin; epoxy resin and the like. Here, although the usage-amount of the hardening | curing agent in a novolak-type phenol resin is not specifically limited, Usually, 0.1-20 weight part can be used with respect to 100 weight part of phenol resins.

また、前記硬化剤の他に調整される硬化促進剤としては、例えば、りん酸などの無機酸;パラトルエンスルホン酸、ベンゼンスルホン酸及びキシレンスルホン酸などの有機酸;ベンジルジメチルアミン及び2,4,6−トリスジメチルアミノメチルフェノール等の3級アミン化合物;2−メチルイミダゾール及び2−エチル−4−メチルイミダゾールなどのイミダゾール化合物;BF3錯体等のルイス酸;トリフェニルホスフィン等の有機リン化合物;テトラフェニルホスホニウム・テトラフェニルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート;2−エチル−4−メチルイミダゾール・テトラフェニルボレートなどのテトラフェニルボロン塩;などが、適宜調整される。 In addition to the curing agent, examples of curing accelerators include inorganic acids such as phosphoric acid; organic acids such as paratoluenesulfonic acid, benzenesulfonic acid and xylenesulfonic acid; benzyldimethylamine and 2,4 Tertiary amine compounds such as 1,6-trisdimethylaminomethylphenol; imidazole compounds such as 2-methylimidazole and 2-ethyl-4-methylimidazole; Lewis acids such as BF 3 complex; organophosphorus compounds such as triphenylphosphine; Tetra-substituted phosphonium and tetra-substituted borates such as tetraphenyl phosphonium and tetraphenyl borate; Tetraphenyl boron salts such as 2-ethyl-4-methylimidazole and tetraphenyl borate; and the like are appropriately adjusted.

本発明の二次電池用炭素材の製造方法としては、前記炭素前駆体、場合によっては、これに硬化剤や硬化促進剤など加え(これを架橋処理しても良い。)、通常の黒鉛化処理温度(例えば、2800℃以上)よりも低い温度で焼成処理することにより製造できる。更に具体例として、フェノール樹脂を用いる例として、第一の熱処理として400〜800℃で行い、第一の熱処理がなされた炭素前駆体を所定の粒子径まで粉砕する。その後、第二の熱処理として、上記で粉砕した炭素前駆体を800℃〜1400℃で炭化処理することにより、炭素材を得ることができる。第一の熱処理及び第二の熱処理を行う時間としては特に限定されないが、通常、最終熱処理温度まで1〜50時間かけて昇温し、必要に応じて最終熱処理温度で1〜30時間保持する。
また、第一の熱処理及び第二の熱処理を行う雰囲気は、特に限定されず、大気中、不活性ガス雰囲気中、及び、真空中など、いずれの条件でも行うことができ、また、これらを2種以上組み合わせた熱処理条件でも良い。
As a method for producing a carbon material for a secondary battery of the present invention, the carbon precursor, and in some cases, a curing agent, a curing accelerator or the like may be added to the carbon precursor (this may be subjected to a crosslinking treatment), and ordinary graphitization. It can manufacture by baking at temperature lower than process temperature (for example, 2800 degreeC or more). As a specific example, as an example using a phenol resin, the first heat treatment is performed at 400 to 800 ° C., and the carbon precursor subjected to the first heat treatment is pulverized to a predetermined particle diameter. Then, a carbon material can be obtained by carbonizing the carbon precursor grind | pulverized above at 800 to 1400 degreeC as 2nd heat processing. Although it does not specifically limit as time to perform 1st heat processing and 2nd heat processing, Usually, it heats up to the final heat processing temperature over 1 to 50 hours, and hold | maintains at the final heat processing temperature for 1 to 30 hours as needed.
In addition, the atmosphere in which the first heat treatment and the second heat treatment are performed is not particularly limited, and can be performed under any conditions such as in the air, in an inert gas atmosphere, and in a vacuum. Heat treatment conditions combined with more than one species may be used.

上記で得られた本発明の二次電池用炭素材における細孔としては、0.25nm〜0.45nmの間の細孔径が、リチウムイオンを吸蔵/脱離する可逆細孔の範囲として好ましく、細孔径が0.25nmより小さいと、リチウムイオンを吸蔵/脱離することができる可逆細孔が減少するため、充放電容量が小さくなる傾向がある。また、0.45nmより大きいと、不可逆細孔が増加するために充放電効率が減少傾向となる。   As pores in the carbon material for a secondary battery of the present invention obtained above, a pore diameter between 0.25 nm and 0.45 nm is preferable as a range of reversible pores that occlude / desorb lithium ions, If the pore diameter is smaller than 0.25 nm, the reversible pores capable of inserting / extracting lithium ions are decreased, and the charge / discharge capacity tends to be reduced. On the other hand, if it is larger than 0.45 nm, the irreversible pores increase, and the charge / discharge efficiency tends to decrease.

本発明の二次電池炭素材における0.25nm〜0.45nmの細孔径を有する細孔容積としては、全細孔容積の30容積%以上であり、さらに好ましくは50%容積以上である。30容積%以下であると上述の不可逆容量の増加や容量低下となる。
上記細孔容積の測定法としては、窒素ガス吸着法を用い、マイクロポア法により算出することができる。
The pore volume having a pore diameter of 0.25 nm to 0.45 nm in the secondary battery carbon material of the present invention is 30% by volume or more of the total pore volume, and more preferably 50% or more. If it is 30% by volume or less, the above-described irreversible capacity increases or the capacity decreases.
As a method for measuring the pore volume, a nitrogen gas adsorption method can be used and the pore volume can be calculated by a micropore method.

また、本発明の二次電池用炭素材の比表面積は、15m2/g以下である。また、下限値としては1m2/gであることが好ましい。比表面積が15m2より大きいと、電解液との反応が大きくなり、不可逆な容量が多くなり充放電効率が低下する傾向となる。逆に比表面積が1m2/gより小さいと炭素材中の細孔容積が小さくなり、容量が低下する傾向となる。
上記比表面積の測定法としては、窒素ガス吸着法用い、BET3点法でもとめられる。
Moreover, the specific surface area of the carbon material for secondary batteries of this invention is 15 m < 2 > / g or less. Moreover, it is preferable that it is 1 m < 2 > / g as a lower limit. When the specific surface area is larger than 15 m 2 , the reaction with the electrolytic solution increases, the irreversible capacity increases, and the charge / discharge efficiency tends to decrease. On the other hand, if the specific surface area is less than 1 m 2 / g, the pore volume in the carbon material becomes small and the capacity tends to decrease.
As a method for measuring the specific surface area, a nitrogen gas adsorption method is used, and the BET three-point method is also used.

また、本発明の二次電池用炭素材は、ブタノール浸漬法により測定される密度(ρB)に対するヘリウムガス吸着法により測定される密度(ρH)の比(ρH/ρB)が0.9以上であることが好ましい。より好ましくは密度の比(ρH/ρB)が0.9〜1.5の範囲内であり、さらに好ましくは0.9〜1.375である。この範囲とすることにより、充電容量及び充放電効率に優れるものとなる。前記範囲外でも使用できるが、密度の比(ρH/ρB)が0.9より小さいと、ブタノールが浸漬できる大きな細孔が多くなり充電容量は向上するが、充放電効率低下を招く恐れがある。また、密度の比が大きすぎると、充放電効率は問題ないが、充電容量が小さい傾向となる。 Further, the carbon material for a secondary battery of the present invention has a ratio (ρ H / ρ B ) of the density (ρ H ) measured by the helium gas adsorption method to the density (ρ B ) measured by the butanol immersion method. .9 or more is preferable. More preferably, the density ratio (ρ H / ρ B ) is in the range of 0.9 to 1.5, and more preferably 0.9 to 1.375. By setting it as this range, it will be excellent in charge capacity and charging / discharging efficiency. Although it can be used outside the above range, if the density ratio (ρ H / ρ B ) is smaller than 0.9, the number of large pores into which butanol can be immersed increases and the charge capacity is improved, but the charge / discharge efficiency may be reduced. There is. On the other hand, if the density ratio is too large, there is no problem in charge / discharge efficiency, but the charge capacity tends to be small.

本発明の二次電池用炭素材は、X線回折スペクトル法からBragg式を用いて算出される炭素材の平均面間隔(d)が、0.34〜0.40nmであることが好ましい。この範囲とすることにより、充電容量及び充放電効率に優れるものとなる。前記範囲外でも使用できるが、平均面間隔(d)が0.34より小さいと、結晶構造に近くなり、充電容量が小さくなる恐れがあり、また、0.40より大きいと、電解液がしみ込む細孔が増え、充電容量は大きくなるが、半面、電解液との反応が大きくなり充放電効率が低くなる恐れがある。   The carbon material for a secondary battery of the present invention preferably has an average interplanar spacing (d) of 0.34 to 0.40 nm calculated from the X-ray diffraction spectrum method using the Bragg equation. By setting it as this range, it will be excellent in charge capacity and charging / discharging efficiency. It can also be used outside the above range, but if the average interplanar spacing (d) is less than 0.34, it may be close to a crystal structure and the charge capacity may be reduced, and if it is greater than 0.40, the electrolyte will permeate. Although the number of pores increases and the charge capacity increases, on the other hand, the reaction with the electrolyte increases and the charge / discharge efficiency may be lowered.

尚、本発明では、密度の比(ρH/ρB)が0.9以上、且つ、平均面間隔(d)が、0.34〜0.40nmであることにより、より充電容量及び充放電効率に優れるものとなる。密度比だけ0.9以上を満たしていても、上述同様、平均面間隔が0.34より小さいと結晶構造に近づくため充電容量が小さくなるおそれがあり、0.40より大きいと充電容量は大きくなるが充放電効率が低下するおそれがある。 In the present invention, since the density ratio (ρ H / ρ B ) is 0.9 or more and the average spacing (d) is 0.34 to 0.40 nm, the charge capacity and charge / discharge are further increased. It will be excellent in efficiency. Even if only the density ratio satisfies 0.9 or more, as described above, if the average interplanar spacing is smaller than 0.34, the charge capacity may be reduced because it approaches the crystal structure, and if larger than 0.40, the charging capacity becomes large. However, the charge / discharge efficiency may be reduced.

次に本発明の二次電池用電極について説明する。
本発明の二次電池用電極は、以上に説明した炭素材を電極用活物質として含有するものである。
Next, the secondary battery electrode of the present invention will be described.
The electrode for a secondary battery of the present invention contains the carbon material described above as an electrode active material.

本発明の二次電池用電極に用いる上記炭素材は、電極用活物質として、一般的に負極用活物質に用いられる。
前記負極用活物質としては、リチウムイオンを挿入、脱離させることのできる材料であれば限定されないが、本発明の炭素材の中でも、非結晶性炭素材がより好ましい。
The said carbon material used for the electrode for secondary batteries of this invention is generally used for the active material for negative electrodes as an active material for electrodes.
The negative electrode active material is not limited as long as it is a material capable of inserting and releasing lithium ions, but among the carbon materials of the present invention, an amorphous carbon material is more preferable.

また、上記炭素材を正極用活物質において用いる場合、正極用活物質に対しての導電剤として用いることもできる。
正極用活物質としては、エネルギー密度が高く、リチウムイオンの可逆的な脱挿入に優れたリチウムを含有する遷移金属酸化物が好ましく、例えば、LiCoO2などのコバルト複合酸化物、LiMn24などのマンガン複合酸化物、LiNiO2などのニッケル複合酸化物、これら酸化物の混合物およびLiNiO2のニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO4、LiFePO4などの鉄複合酸化物などが挙げられる。前記炭素材は前記正極用活物質に対して、導電剤として用いることで、具体的には、正極活物質に対して導電性をもたせるために、電極用活物質を加えることで、電極とした場合に電極の抵抗を下げることができる。
Moreover, when using the said carbon material in the active material for positive electrodes, it can also be used as a electrically conductive agent with respect to the active material for positive electrodes.
As the positive electrode active material, a transition metal oxide containing lithium having a high energy density and excellent in reversible desorption / insertion of lithium ions is preferable. For example, a cobalt composite oxide such as LiCoO 2 , LiMn 2 O 4, etc. Manganese composite oxides, nickel composite oxides such as LiNiO 2 , mixtures of these oxides, and LiNiO 2 in which part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4, etc. Can be mentioned. The carbon material is used as a conductive agent with respect to the positive electrode active material. Specifically, in order to provide conductivity to the positive electrode active material, an electrode active material is added to form an electrode. In some cases, the resistance of the electrode can be lowered.

本発明の二次電池用電極の製造方法としては、前記電極用活物質と結着剤と、更に適量の導電剤を用いて作製することができる。
前記結着剤としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリアクリロニトリル、芳香族ポリアミド、セルロース、カルボキシメチルセルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン−プロピレン−ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体、スチレン・イソプレン・スチレンブロック共重合体、ポリビニルアルコール、ポリビニルプロピナール、ポリビニルブチラール、ポリアクリルアミド、ポリエチレングリコール、ポリプロピレングリコール及びポリブチレングリコール;ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、エチレン−クロロトリフルオロエチレン共重合体及びポリフッ化ビニル等のフッ素樹脂;ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム及びビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム等のビニリデンフルオライド系フッ素ゴム等が挙げられる。
The method for producing an electrode for a secondary battery of the present invention can be produced using the electrode active material, a binder, and an appropriate amount of a conductive agent.
Examples of the binder include polyethylene, polypropylene, polyethylene terephthalate, polyacrylonitrile, aromatic polyamide, cellulose, carboxymethyl cellulose, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene rubber, isoprene rubber, butadiene rubber, and ethylene.・ Propylene rubber, ethylene-propylene-diene copolymer, styrene / butadiene / styrene block copolymer, styrene / isoprene / styrene block copolymer, polyvinyl alcohol, polyvinyl propynal, polyvinyl butyral, polyacrylamide, polyethylene glycol, polypropylene Glycol and polybutylene glycol; polyvinylidene fluoride resin, polytetrafluoroethylene, tetrafluoroethylene-he Fluorine such as safluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer and polyvinyl fluoride Resin: Vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber, vinylidene fluoride-pentafluoropropylene fluororubber, vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene Fluoro rubber, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber, and vinylidene fluoride - vinylidene fluoride-based fluororubber such as chlorotrifluoroethylene-based fluorine rubber.

前記結着剤の使用量としては特に限定されないが、通常、電極用活物質に対して1〜20wt%用いることができる。特に、負極用として好ましくは1〜15wt%が好ましく、さらに好ましくは3〜7wt%である。これらの範囲外でも用いることができるが、結着剤量が多すぎると電極中に存在する活物質量が相対的に減少するため、電極の容量が低下するおそれがある。結着剤量が少なすぎると活物質を、電極の集電体に結着させることが困難になるおそれがある。   Although the amount of the binder used is not particularly limited, it can be generally used in an amount of 1 to 20 wt% with respect to the electrode active material. In particular, it is preferably 1 to 15 wt%, more preferably 3 to 7 wt% for the negative electrode. Although it can be used even outside these ranges, if the amount of the binder is too large, the amount of the active material present in the electrode is relatively reduced, which may reduce the capacity of the electrode. If the amount of the binder is too small, it may be difficult to bind the active material to the current collector of the electrode.

前記導電剤としては、黒鉛やアセチレンブラック等の炭素繊維などが挙げられるが、導電剤の使用量としては特に限定されないが、通常、電極用活物質に対して1〜15wt%用いることができる。更に具体的には、負極において好ましくは2〜10wt%が好ましく、さらに好ましくは3〜7wt%である。正極においては5〜15wt%が好ましく、さらに好ましくは5〜10wt%である。これらの範囲外でも用いることができるが、導電剤量が多すぎると電極中に存在する活物質量が必要以上に減少するおそれがあり、電極の体積容量が低下するおそれがある。   Examples of the conductive agent include carbon fibers such as graphite and acetylene black, but the amount of the conductive agent used is not particularly limited, but it is usually 1 to 15 wt% with respect to the electrode active material. More specifically, it is preferably 2 to 10 wt%, more preferably 3 to 7 wt% in the negative electrode. In the positive electrode, 5 to 15 wt% is preferable, and 5 to 10 wt% is more preferable. Although it can be used outside these ranges, if the amount of the conductive agent is too large, the amount of the active material present in the electrode may be reduced more than necessary, and the volume capacity of the electrode may be reduced.

本発明の二次電池用電極の製造方法としては、例えば、正極用及び負極用のそれぞれに対し、前記結着剤、前記電極用活物質、更に導電剤を、適量秤量して混合し、極性溶媒(N−メチル−2−ピロリドン、アクリロニトリルなど)中で所定の粘度に調整されたのスラリーとした後、集電体用金属箔上に塗布して塗膜を形成する。次いで、塗膜における電極用活物質を集電体上に固定化するために、該極性溶媒を除去する工程として、50〜200℃程度で熱処理を行うことにより得られる。前記熱処理の温度、時間は特に限定されないが、電極用活物質が酸化されず、極性溶媒が除去できる温度、時間で行うことが好ましい。
前記集電体用金属箔としては、正極用として、アルミニウム箔などが挙げられ、負極用として、銅箔などが挙げられる。
As a method for producing an electrode for a secondary battery of the present invention, for example, an appropriate amount of the binder, the electrode active material, and a conductive agent are weighed and mixed for each of the positive electrode and the negative electrode. The slurry is adjusted to a predetermined viscosity in a solvent (N-methyl-2-pyrrolidone, acrylonitrile, etc.), and then applied onto the current collector metal foil to form a coating film. Subsequently, in order to fix the active material for electrodes in the coating film on the current collector, it is obtained by performing a heat treatment at about 50 to 200 ° C. as a step of removing the polar solvent. The temperature and time of the heat treatment are not particularly limited, but it is preferable to perform the heat treatment at a temperature and time at which the electrode active material is not oxidized and the polar solvent can be removed.
Examples of the current collector metal foil include an aluminum foil for the positive electrode and a copper foil for the negative electrode.

さらに、二次電池用電極の製造方法の具体例としては、正極の場合、前記二次電池電極用スラリーを、ドクターブレード又はアプリケーターなどを用いて、集電体用金属箔としてアルミニウム箔上の所定の位置に、均一に塗布して塗膜を形成し、次いで、前記塗膜を乾燥し、電極の平滑性を出すために、ロールプレス機で圧縮成形することにより得られる。
また、負極の場合、前記二次電池電極用スラリーを、ドクターブレード又はアプリケーターを用いて、集電体用金属箔として銅箔両面の所定の位置に、均一に塗布して塗膜を形成し、次いで、前記塗膜を乾燥し、ロールプレス機で電極面の平滑性を調整した後、プレス機にて電極として好ましい密度まで圧縮成形することにより得られる。
Further, as a specific example of the method for manufacturing the secondary battery electrode, in the case of the positive electrode, the slurry for the secondary battery electrode is used as a metal foil for a current collector using a doctor blade or an applicator. The film is uniformly coated at the position to form a coating film, and then the coating film is dried and compression-molded with a roll press to obtain the smoothness of the electrode.
In the case of a negative electrode, the slurry for the secondary battery electrode is uniformly applied to a predetermined position on both sides of the copper foil as a current collector metal foil using a doctor blade or an applicator to form a coating film, Subsequently, after drying the said coating film and adjusting the smoothness of an electrode surface with a roll press machine, it is obtained by compression-molding to a density preferable as an electrode with a press machine.

次に、本発明の二次電池について説明する。
本発明の二次電池は、上記本発明の二次電池用電極を用いることを特徴とする。より具体的には、正極および負極と、電解質とを含む。さらに、二次電池は、正極と負極をショートさせないためのセパレーターを含む。
Next, the secondary battery of the present invention will be described.
The secondary battery of the present invention is characterized by using the secondary battery electrode of the present invention. More specifically, it includes a positive electrode, a negative electrode, and an electrolyte. Further, the secondary battery includes a separator for preventing the positive electrode and the negative electrode from being short-circuited.

本発明の二次電池は、例えば、上記二次電池用炭素材を負極材として用いて得られた負極を、セパレーターを介して、上記正極と対向して配置され、前記電極間に電解質を用いることにより二次電池が得られる。   In the secondary battery of the present invention, for example, a negative electrode obtained by using the carbon material for a secondary battery as a negative electrode material is disposed to face the positive electrode with a separator interposed therebetween, and an electrolyte is used between the electrodes. Thus, a secondary battery is obtained.

セパレーターとしては特に限定されないが、ポリエチレン及びポリプロピレン等からなる微多孔質フィルム、不織布等を用いることができる。   Although it does not specifically limit as a separator, The microporous film, nonwoven fabric, etc. which consist of polyethylene, a polypropylene, etc. can be used.

電解質としては、公知の電解液、常温溶融塩(イオン液体)、及び有機系もしくは無機系の固体電解質などを用いることができる。公知の電解液としては、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステル、エチルメチルカーボネートおよびジエチルカーボネートなどの鎖状炭酸エステルなどが挙げられる。また、常温溶融塩(イオン液体)としては、例えば、イミダゾリウム系塩、ピロリジニウム系塩、ピリジニウム系塩、脂肪族系塩、アンモニウム系塩、ホスホニウム系塩、スルホニウム系塩などが挙げられる。前記固体電解質としては、例えば、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリイミン系ポリマー、ポリビニルアセタール系ポリマー、ポリアクリロニトリル系ポリマー、ポリフッ化アルケン系ポリマー、ポリ塩化ビニル系ポリマー、ポリ(塩化ビニル−フッ化ビニリデン)系ポリマー、ポリ(スチレン−アクリロニトリル)系ポリマー、及びニトリルゴムなどの直鎖型ポリマーなどに代表される有機系ポリマーゲル;ジルコニアなどの無機セラミックス;ヨウ化銀、ヨウ化銀硫黄化合物、ヨウ化銀ルビジウム化合物などの無機系電解質;などが挙げられる。また、イオン伝導度を低減するために、前記電解質にリチウム塩を溶解したものを二次電池用の電解質として用いることができる。   As the electrolyte, a known electrolytic solution, a room temperature molten salt (ionic liquid), an organic or inorganic solid electrolyte, and the like can be used. Examples of the known electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. Examples of the room temperature molten salt (ionic liquid) include imidazolium salts, pyrrolidinium salts, pyridinium salts, aliphatic salts, ammonium salts, phosphonium salts, sulfonium salts, and the like. Examples of the solid electrolyte include polyether polymers, polyester polymers, polyimine polymers, polyvinyl acetal polymers, polyacrylonitrile polymers, polyfluorinated alkene polymers, polyvinyl chloride polymers, poly (vinyl chloride-fluoride). Vinylidene) -based polymers, poly (styrene-acrylonitrile) -based polymers, and organic polymer gels represented by linear polymers such as nitrile rubber; inorganic ceramics such as zirconia; silver iodide, silver iodide sulfur compounds, iodine And inorganic electrolytes such as silver rubidium compounds. Moreover, in order to reduce ionic conductivity, what melt | dissolved lithium salt in the said electrolyte can be used as an electrolyte for secondary batteries.

電解質に溶解させるリチウム塩としては、例えば、LiPF6、LiClO4、LiCF3SO3、LiBF4、LiAsF6、LiN(CF3SO22、LiN(C25SO22およびLiC(CF3SO23などが挙げられる。これらを単独あるいは2種以上を併用して用いても良い。用いることができる。 Examples of the lithium salt dissolved in the electrolyte include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC ( CF 3 SO 2 ) 3 and the like. You may use these individually or in combination of 2 or more types. Can be used.

本発明の二次電池の製造方法としては、公知な方法が適用できる。例えば、まず、上記で得た正極および負極を、所定の形、大きさに切断して用意し、次いで、前記正極と負極を直接接触しないように、前記セパレーターを介して貼りあわせ、それを単層セルとする。次いで、この単層セルの電極間に、注液などの方法により、前記電解質を注入する。このようにして得られたセルを、例えば、ポリエステルフィルム−アルミニウムフィルム−変性ポリオレフィンフィルムの三層構造のラミネートフィルムからなる外装体に挿入し封止して、二次電池が得られる。用途により、これらを単セルとして用いても、複数のセルを繋いだモジュールとして用いてもよい。   As a method for producing the secondary battery of the present invention, a known method can be applied. For example, first, the positive electrode and the negative electrode obtained above are prepared by cutting into a predetermined shape and size, and then bonded together via the separator so that the positive electrode and the negative electrode are not in direct contact with each other. A layer cell is used. Next, the electrolyte is injected between the electrodes of the single-layer cell by a method such as injection. Thus, the obtained cell is inserted and sealed in the exterior body which consists of a laminated film of the three-layer structure of a polyester film-aluminum film-modified polyolefin film, for example, and a secondary battery is obtained. Depending on the application, these may be used as a single cell or as a module connecting a plurality of cells.

以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。   Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “parts” indicates “parts by weight” and “%” indicates “% by weight”.

1.炭素材の製造
<実施例1>
フェノール100部と37%ホルムアルデヒド水溶液64.5部、しゅう酸3部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、フェノール樹脂90部を得た。上記操作を繰り返して得られたフェノール樹脂100部に対してヘキサメチレンテトラミンを10部の割合で添加したものを粉砕混合した後、200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後3時間の炭化処理後、平均粒子径が13μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は97.5%であり、炭素以外の元素として酸素を1.2%、窒素を1.1%含んでいた。また、X線回折スペクトルから測定された面間隔は0.38nmであり、ρH=1.426、ρB=1.517、ρH/ρB=0.94であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して55容積%であった。また、BET法における比表面積は8.0m2/gであった。
1. Production of carbon material <Example 1>
100 parts of phenol, 64.5 parts of 37% formaldehyde aqueous solution, and 3 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, dehydrated at elevated temperature, and 90 parts of phenolic resin were added. Obtained. After pulverizing and mixing 10 parts of hexamethylenetetramine added to 100 parts of the phenol resin obtained by repeating the above operation, curing treatment was performed at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after the carbonization treatment for 3 hours after reaching 450 ° C., the grinding treatment was performed until the average particle size became 13 μm. The carbon material obtained by the pulverization was further heated, and carbonized for 10 hours after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The carbon content of the obtained carbon material was 97.5%, and contained 1.2% oxygen and 1.1% nitrogen as elements other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.38 nm, ρ H = 1.426, ρ B = 1.517, ρ H / ρ B = 0.94, and 0.25- The pore volume of 0.45 nm was 55% by volume with respect to the total pore volume. Further, the specific surface area in the BET method was 8.0 m 2 / g.

<実施例2>
フェノール100部と37%ホルムアルデヒド水溶液60部、しゅう酸3部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、フェノール樹脂90部を得た。上記操作を繰り返して得られたフェノール樹脂100部に対してヘキサメチレンテトラミンを10部の割合で添加したものを粉砕混合した後、150℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化処理後、平均粒子径が14μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後4時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は96.8%であり、炭素以外の元素として酸素を1.2%、窒素を1.9%含んでいた。また、X線回折スペクトルから測定された面間隔は0.383nmであり、ρH=1.623、ρB=1.52、ρH/ρB=1.07であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して51容積%であった。また、BET法における比表面積は8.1m2/gであった。
<Example 2>
100 parts of phenol, 60 parts of a 37% aqueous formaldehyde solution, and 3 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a cooling tube, reacted at 100 ° C. for 3 hours, dehydrated by heating, and 90 parts of phenol resin were obtained. . After pulverizing and mixing 10 parts of hexamethylenetetramine with respect to 100 parts of the phenol resin obtained by repeating the above operation, a curing treatment was performed at 150 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after a carbonization treatment for 1 hour after reaching 500 ° C., a pulverization treatment was performed until the average particle size became 14 μm. The carbon material obtained by the pulverization was further heated, and carbonized for 4 hours after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 96.8% and contained 1.2% oxygen and 1.9% nitrogen as elements other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum was 0.383 nm, ρ H = 1.623, ρ B = 1.52, ρ H / ρ B = 1.07, and 0.25 to 0.25 The pore volume of 0.45 nm was 51% by volume with respect to the total pore volume. Moreover, the specific surface area in the BET method was 8.1 m 2 / g.

<実施例3>
実施例1と同様の操作により得られたフェノール樹脂100部に対してヘキサメチレンテトラミンを20部加え粉砕混合した後、200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後6時間の炭化処理後、平均粒子径が12μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後1時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は96.2%であり、炭素以外の元素として酸素を1.5%、窒素を2.1%含んでいた。また、X線回折スペクトルから測定された面間隔は0.373nmであり、ρH=1.547、ρB=1.498、ρH/ρB=1.03であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して45容積%であった。また、BET法における比表面積は9.4m2/gであった。
<Example 3>
20 parts of hexamethylenetetramine was added to 100 parts of the phenol resin obtained by the same operation as in Example 1 and pulverized and mixed, followed by curing at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after carbonization treatment for 6 hours after reaching 500 ° C., pulverization treatment was performed until the average particle size became 12 μm. The carbon material obtained by the pulverization treatment was further heated up and carbonized for 1 hour after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 96.2% and contained 1.5% oxygen and 2.1% nitrogen as elements other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.373 nm, ρ H = 1.547, ρ B = 1.498, ρ H / ρ B = 1.03, and 0.25 to 0.25 The pore volume at 0.45 nm was 45% by volume with respect to the total pore volume. The specific surface area in the BET method was 9.4 m 2 / g.

<実施例4>
実施例1と同様の操作により得られたフェノール樹脂100部に対してヘキサメチレンテトラミンを10部、パラトルエンスルホン酸を5部加え粉砕混合した後、200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化処理後、平均粒子径が12μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後12時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は97.9%であり、炭素以外の元素として酸素を0.5%、窒素を0.6%、硫黄を0.9%含んでいた。また、X線回折スペクトルから測定された面間隔は0.382nmであり、ρH=1.688、ρB=1.521、ρH/ρB=1.11であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して48容積%であった。また、BET法における比表面積は6.8m2/gであった。
<Example 4>
10 parts of hexamethylenetetramine and 5 parts of paratoluenesulfonic acid were added to 100 parts of phenol resin obtained by the same operation as in Example 1 and pulverized and mixed, followed by curing at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after carbonization treatment for 3 hours after reaching 500 ° C., pulverization treatment was performed until the average particle size became 12 μm. The carbon material obtained by the pulverization treatment was further heated up and carbonized for 12 hours after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 97.9%, and contained 0.5% oxygen, 0.6% nitrogen, and 0.9% sulfur as elements other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.382 nm, ρ H = 1.688, ρ B = 1.521, ρ H / ρ B = 1.11. The pore volume of 0.45 nm was 48% by volume with respect to the total pore volume. Moreover, the specific surface area in the BET method was 6.8 m 2 / g.

<実施例5>
実施例1と同様の操作により得られたフェノール樹脂100部に対してヘキサメチレンテトラミンを10部、りん酸を2部加え粉砕混合した後、150℃にて1時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後9時間の炭化処理後、平均粒子径が13μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後12時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は96.9%であり、炭素以外の元素として酸素を0.5%、窒素を0.9%、燐を1.4%含んでいた。また、X線回折スペクトルから測定された面間隔は0.381nmであり、ρH=1.711、ρB=1.601、ρH/ρB=1.069であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して43容積%であった。また、BET法における比表面積は5.2m2/gであった。
<Example 5>
10 parts of hexamethylenetetramine and 2 parts of phosphoric acid were added to 100 parts of the phenol resin obtained by the same operation as in Example 1 and pulverized and mixed, followed by curing at 150 ° C. for 1 hour. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after the carbonization treatment for 9 hours after reaching 450 ° C., the grinding treatment was performed until the average particle size became 13 μm. The carbon material obtained by the pulverization treatment was further heated up and carbonized for 12 hours after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The carbon content of the obtained carbon material was 96.9%, and contained 0.5% oxygen, 0.9% nitrogen, and 1.4% phosphorus as elements other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.381 nm, ρ H = 1.711, ρ B = 1.601, ρ H / ρ B = 1.069, and 0.25 to 0.25 The pore volume of 0.45 nm was 43% by volume with respect to the total pore volume. The specific surface area in the BET method was 5.2 m 2 / g.

<実施例6>
フェノール100部と37%ホルムアルデヒド水溶液146.6部、水酸化ナトリウム3部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、フェノール樹脂95部を得た。上記操作を繰り返して得られたフェノール樹脂100部を130℃で1時間硬化処理を施した後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化処理後、平均粒子径が11μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後12時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は97.9%であり、炭素以外の元素として酸素を1.7%含んでいた。また、X線回折スペクトルから測定された面間隔は0.373nmであり、ρH=1.482、ρB=1.501、ρH/ρB=0.99であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して53容積%であった。また、BET法における比表面積は6.2m2/gであった。
<Example 6>
100 parts of phenol, 146.6 parts of 37% formaldehyde aqueous solution and 3 parts of sodium hydroxide were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, dehydrated at elevated temperature, and 95 parts of phenol resin. Got. 100 parts of the phenol resin obtained by repeating the above operation was cured at 130 ° C. for 1 hour, then heated in a nitrogen atmosphere, and after carbonization for 3 hours after reaching 500 ° C., the average particle size was 11 μm. Grinding was performed until. The carbon material obtained by the pulverization treatment was further heated up and carbonized for 12 hours after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 97.9% and contained 1.7% of oxygen as an element other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.373 nm, ρ H = 1.482, ρ B = 1.501, ρ H / ρ B = 0.99, and 0.25 to 0.25 The pore volume of 0.45 nm was 53% by volume with respect to the total pore volume. Moreover, the specific surface area in the BET method was 6.2 m 2 / g.

<実施例7>
実施例6と同様の操作により得られたフェノール樹脂100部を150℃で1時間硬化処理を施した後、さらに酸素雰囲気下で300℃で1h保持し不融化処理を行いった。次に窒素雰囲気下にて昇温し、500℃到達後3時間の炭化処理後、平均粒子径が13μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1150℃到達後6時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は97.1%であり、炭素以外の元素として酸素を2.4%含んでいた。また、X線回折スペクトルから測定された面間隔は0.373nmであり、ρH=1.472、ρB=1.521、ρH/ρB=0.97であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して49容積%であった。また、BET法における比表面積は7.5m2/gであった。
<Example 7>
100 parts of phenol resin obtained by the same operation as in Example 6 was subjected to curing treatment at 150 ° C. for 1 hour, and then held at 300 ° C. for 1 h in an oxygen atmosphere to perform infusibilization treatment. Next, the temperature was raised in a nitrogen atmosphere, and after calcination for 3 hours after reaching 500 ° C., pulverization was performed until the average particle size became 13 μm. The carbon material obtained by the pulverization was further heated, and carbonized for 6 hours after reaching 1150 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 97.1% and contained 2.4% oxygen as an element other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.373 nm, ρ H = 1.472, ρ B = 1.521, ρ H / ρ B = 0.97, and 0.25- The pore volume of 0.45 nm was 49% by volume with respect to the total pore volume. The specific surface area in the BET method was 7.5 m 2 / g.

<比較例1>
尿素100部と37%ホルムアルデヒド水溶液135部、シュウ酸3部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で6時間反応後、昇温脱水し、ケトン樹脂95部を得た。得られたケトン樹脂を窒素雰囲気下にて昇温し、500℃到達後2時間の炭化処理後、平均粒子径が13μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1000℃到達後10時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は97.9%であり、炭素以外の元素として酸素を0.5%含んでいた。また、X線回折スペクトルから測定された面間隔は0.397nmであり、ρH=1.84、ρB=1.322、ρH/ρB=1.392であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して25容積%であった。また、BET法における比表面積は18.2m2/gであった。
<Comparative Example 1>
100 parts of urea, 135 parts of 37% formaldehyde aqueous solution, and 3 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a cooling tube, reacted at 100 ° C. for 6 hours, dehydrated at elevated temperature, and 95 parts of ketone resin was obtained. . The obtained ketone resin was heated in a nitrogen atmosphere, and after calcination treatment for 2 hours after reaching 500 ° C., pulverization treatment was performed until the average particle size became 13 μm. The carbon material obtained by the pulverization was further heated, and carbonized for 10 hours after reaching 1000 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 97.9% and contained 0.5% oxygen as an element other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.397 nm, ρ H = 1.84, ρ B = 1.322, ρ H / ρ B = 1.392, and 0.25- The pore volume of 0.45 nm was 25% by volume with respect to the total pore volume. Moreover, the specific surface area in the BET method was 18.2 m 2 / g.

<比較例2>
フェノール100部と43%ホルムアルデヒド水溶液115部、水酸化ナトリウム3部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、フェノール樹脂90部を得た。上記操作を繰り返して得られたフェノール樹脂100部に対し150℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化処理後、平均粒子径が11μmになるまで粉砕処理を行った。粉砕処理により得られた炭素材を、さらに昇温し、1100℃到達後1時間の炭化処理を行い、二次電池用炭素材を得た。得られた炭素材の炭素含有率は96.2%であり、炭素以外の元素として酸素を0.4%含んでいた。また、X線回折スペクトルから測定された面間隔は0.41nmであり、ρH=1.40、ρB=1.58、ρH/ρB=0.88であり、且つ0.25〜0.45nmの細孔容積は、全細孔容積に対して26容積%であった。また、BET法における比表面積は17.3m2/gであった。
<Comparative example 2>
100 parts of phenol, 115 parts of 43% formaldehyde aqueous solution and 3 parts of sodium hydroxide were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, dehydrated by heating, and 90 parts of phenol resin were obtained. It was. Curing treatment was performed at 150 ° C. for 3 hours on 100 parts of the phenol resin obtained by repeating the above operation. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and after carbonization treatment for 3 hours after reaching 500 ° C., pulverization treatment was performed until the average particle size became 11 μm. The carbon material obtained by the pulverization treatment was further heated up and carbonized for 1 hour after reaching 1100 ° C. to obtain a carbon material for a secondary battery. The obtained carbon material had a carbon content of 96.2% and contained 0.4% oxygen as an element other than carbon. The interplanar spacing measured from the X-ray diffraction spectrum is 0.41 nm, ρ H = 1.40, ρ B = 1.58, ρ H / ρ B = 0.88, and 0.25- The pore volume of 0.45 nm was 26% by volume with respect to the total pore volume. Further, the specific surface area in the BET method was 17.3 m 2 / g.

炭素材の評価
(1)炭素材組成の測定
ア)炭素含有量
得られた炭素材を、110℃/真空中、3時間乾燥処理後、パーキンエルナー社製元素分析測定装置(2400IICHNS/O)を用い、炭素の組成比を測定した。
イ)酸素、窒素、硫黄含有量
得られた炭素材を、110℃/真空中、3時間乾燥処理後、パーキンエルナー社製元素分析測定装置(2400IICHNS/O)を用いて各元素の組成を測定した。
ウ)ホウ素含有量
得られた炭素材を、110℃/真空中、3時間乾燥処理後、1g秤量し日本電子製蛍光X線分析装置(JSX−3201M)を用いてホウ素を定性した。定量については酸化ホウ素(B2O3)で検量線を引き、炭素材中に含まれるホウ素含有量を求めた。
Evaluation of carbon material (1) Measurement of carbon material composition a) Carbon content The obtained carbon material was dried at 110 ° C./vacuum for 3 hours, and then an elemental analysis measuring device (2400IICHNS / O) manufactured by Perkin Elner Co., Ltd. was used. The carbon composition ratio was measured.
B) Oxygen, nitrogen, and sulfur content The obtained carbon material was dried at 110 ° C./vacuum for 3 hours, and then the composition of each element was measured using an elemental analyzer (2400IICHNS / O) manufactured by Perkin Elner. did.
C) Boron content The obtained carbon material was dried at 110 ° C./vacuum for 3 hours, then weighed 1 g, and qualitatively determined boron using a JEOL fluorescent X-ray analyzer (JSX-3201M). For quantitative determination, a calibration curve was drawn with boron oxide (B2O3) to determine the boron content contained in the carbon material.

(2)細孔容積と細孔分布の測定
測定試料を島津製作所製・細孔分布測定装置装置「ASAP2010」を用いて、623Kで真空加熱前処理することで吸着ガスを脱着、プローブガスとしてN2を用い、絶対圧760mmHg、相対圧0.005〜0.86の範囲で77.3Kでの吸着等温線を測定し、得られた吸着媒質の比表面積・吸着量から吸着層の厚さtを介し、HalseyおよびHalsey and Juraの厚み式をもとに平均細孔水理半径を算出し、細孔容積を次式に基づいて計算した。
HalseyおよびHalsey and Juraの厚み式については、以下に説明した通りである。
t=(M×Vsp/22414)×(Va/S)
[式中、t:吸着層の統計的厚さ、M:吸着質の分子量、Va:吸着媒単位重量当りの吸着量、Vsp:吸着質ガスの比容積、S:吸着媒の比表面積]
I=HP1×[HP2/ln(PrelI)]HP3
[式中、tI:Ithポイントの厚み、HP1:Halseyパラメーター#1、HP2:Halseyパラメーター#2、HP3:Halseyパラメーター#3、PrelI:Ithポイントの相対圧力(mmHg)]
平均水理半径(nm):RI=(tI+tI-1)/20
Ithポイント目に遮断した細孔表面積の増分ΔS:ΔS=SI-1−SI
Ithポイント目に遮断した積算細孔表面積(m2/g)S:S=S1+S2+S3+・・・・・Sn
Ithポイント目に遮断した細孔容積の増分ΔV:
ΔV=(S×104cm2/m2)×(RI×10-8cm/Å)
Ithポイント目の細孔容積ΔV/ΔRI(cm3/g):ΔV/ΔRI=ΔV/tI−tI-1
なお、上記Ithポイント目というのは、各相対圧による個々の測定ポイントのことをいう。
Ithポイント目に遮断した細孔容積(cm3/g):V=V1+V2+V3+・・・・・Vn。
(2) Measurement of pore volume and pore distribution Using a Shimadzu Corporation pore distribution measuring device “ASAP2010”, the sample was vacuum-heated and pretreated at 623 K, and the adsorbed gas was desorbed. 2 is used to measure the adsorption isotherm at 77.3 K in the range of an absolute pressure of 760 mmHg and a relative pressure of 0.005 to 0.86, and the thickness t of the adsorption layer is determined from the specific surface area and adsorption amount of the obtained adsorption medium. The mean pore hydraulic radius was calculated based on the thickness formula of Halsey and Halsey and Jura, and the pore volume was calculated based on the following formula.
The thickness formulas of Halsey and Halsey and Jura are as described below.
t = (M × Vsp / 22414) × (Va / S)
[Wherein, t: statistical thickness of the adsorption layer, M: molecular weight of the adsorbate, Va: adsorption amount per unit weight of the adsorbent, Vsp: specific volume of the adsorbate gas, S: specific surface area of the adsorbent]
t I = HP1 × [HP2 / ln (Prel I )] HP3
[Where, t I : thickness of I th point, HP1: Halsey parameter # 1, HP2: Halsey parameter # 2, HP3: Halsey parameter # 3, Prel I : relative pressure (mmHg) of I th point]
Average hydraulic radius (nm): R I = (t I + t I-1 ) / 20
Increment of pore surface area blocked at the Ith point ΔS: ΔS = S I-1 −S I
Integrated pore surface area (m 2 / g) blocked at the Ith point S: S = S 1 + S 2 + S 3 +... Sn
Pore volume increment ΔV blocked at the Ith point:
ΔV = (S × 10 4 cm 2 / m 2 ) × (R I × 10 −8 cm / Å)
Ith point pore volume ΔV / ΔR I (cm 3 / g): ΔV / ΔR I = ΔV / t I −t I−1
The Ith point refers to an individual measurement point by each relative pressure.
Pore volume blocked at the Ith point (cm 3 / g): V = V 1 + V 2 + V 3 +... Vn.

(3)比表面積測定
炭素材の比表面積測定は、ユアサ社製Nova−1200を用いてBET3点法(0.05<P/Po<0.30)により測定した。具体的な測定方法は以下に示す。
下記式(1)より、単分子吸着量Wm、下記式(2)より総表面積Stotalを算出し、下記式(3)より比表面積Sを求めた。
1/[W(Po/P−1)=(C−1)/WmC(P/Po)/WmC・・・・・(1)
[式(1)中、P:吸着平衡にある吸着質の気体の圧力、Po:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、Wm:単分子層吸着量、
C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E1−E2)RT})[Cにおける式中、E1:第一層の吸着熱(kJ/mol)、E2:吸着質の測定温度における液化熱(kJ/mol)]]
total=(WmNAcs)M・・・・・・・・・(2)
[式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積]
S=Stotal/w・・・・・・(3)
[式(3)中、w:サンプル重量(g)]
(3) Specific surface area measurement The specific surface area measurement of the carbon material was measured by the BET 3 point method (0.05 <P / Po <0.30) using Nova-1200 made from Yuasa. A specific measuring method is shown below.
From the following formula (1), the total surface area S total was calculated from the monomolecular adsorption amount W m and the following formula (2), and the specific surface area S was calculated from the following formula (3).
1 / [W (P o / P-1) = (C-1) / W m C (P / P o) / W m C ····· (1)
Wherein (1), P: gas pressure of adsorbate in the adsorption equilibrium, P o: saturated vapor pressure of the adsorbate in the adsorption temperature, W: adsorption amount in the adsorption equilibrium pressure P, W m: monolayer adsorption amount,
C: constant related to the magnitude of the interaction between the solid surface and the adsorbate (C = exp {(E1-E2) RT}) [wherein E1: heat of adsorption of the first layer (kJ / mol), E2 : Heat of liquefaction at measurement temperature of adsorbate (kJ / mol)]]
S total = (W m NA cs ) M (2)
[In formula (2), N: Avogadro number, M: molecular weight, A cs : adsorption cross section]
S = S total / w (3)
[In formula (3), w: sample weight (g)]

(4)平均面間隔測定
炭素材における、上記平均面間隔の測定方法は以下の通りである。ここで、X線回折スペクトル法により得られるX線回折像は、炭素材の結晶構造をある程度把握することができるものである。本発明の炭素材におけるX線回折スペクトルは、島津製作所製・X線回折装置「XRD−7000」により測定したものであり本発明の炭素材のX線回折測定から求められるスペクトルより、平均面間隔d(nm)を以下のBragg式より算出した。
λ=2dhklsinθ Bragg式 (dhkl=d002
[式中、λ:陰極から出力される特性X線Kα1の波長、θ:スペクトルの反射角度]
(4) Measurement of average spacing The measurement method of the average spacing in the carbon material is as follows. Here, the X-ray diffraction image obtained by the X-ray diffraction spectrum method can grasp the crystal structure of the carbon material to some extent. The X-ray diffraction spectrum of the carbon material of the present invention was measured by an X-ray diffraction apparatus “XRD-7000” manufactured by Shimadzu Corporation. From the spectrum obtained from the X-ray diffraction measurement of the carbon material of the present invention, the average interplanar spacing d (nm) was calculated from the following Bragg equation.
λ = 2d hkl sin θ Bragg equation (d hkl = d 002 )
[Where: λ: wavelength of characteristic X-ray Kα 1 output from the cathode, θ: reflection angle of spectrum]

(5)ブタノール浸漬法による密度ρBの測定
ブタノール浸漬法については下記に従い、測定を行った。
ブタノール浸漬法に用いる比重びんを用意し、比重びんの質量、および体積を正確に測定した。次に、比重びんに対して測定する炭素材を40体積%入れ、その重量を測定した。その後、比重びんをブタノールで満たした後、25℃の恒温層に入れ30分静置する。ブタノールが炭素材内部細孔に入ると、見かけ上ブタノールの占有体積が減少するので、減少したブタノール分を比重びんに追加する。そして、ブタノールが減少しないようになるまで(飽和するまで)上記を繰り返し、総重量を測定した。
ブタノール浸漬法によるρBは次の式により計算した。
ρB=炭素材重量/[比重びん体積−(飽和した比重びん重量)/ブタノール比重]
ここでブタノール比重は0.810g/mLである。
(5) Measurement of density ρ B by butanol immersion method The butanol immersion method was measured according to the following.
A specific gravity bottle used for the butanol immersion method was prepared, and the mass and volume of the specific gravity bottle were accurately measured. Next, 40% by volume of a carbon material to be measured with respect to the specific gravity bottle was added, and the weight was measured. Then, after filling the specific gravity bottle with butanol, it is placed in a thermostatic layer at 25 ° C. and left to stand for 30 minutes. When butanol enters the pores inside the carbon material, the volume of butanol apparently decreases, so the reduced butanol content is added to the specific gravity bottle. Then, the above was repeated until the butanol did not decrease (until saturation), and the total weight was measured.
Ρ B by the butanol immersion method was calculated by the following formula.
ρ B = carbon material weight / [specific gravity bottle volume− (saturated specific gravity bottle weight) / butanol specific gravity]
Here, the butanol specific gravity is 0.810 g / mL.

(6)ヘリウムガス吸着法による密度ρHの測定
ヘリウムガス吸着法による密度「ρH」測定については、JIS−Z−8901に基づき高精度自動体積計(エステック VM−100)を用いて測定を行った。前処理として、炭素材は真空中、150℃で2時間乾燥してから測定を行った。測定時の周囲温度は25℃とし測定を行った。
測定装置は試料室および膨張室を有し、試料室、膨張室は室内の圧力を測定するための圧力計を有し、試料室と膨張室は連結管により接続されており、それぞれの測定室にはそれぞれガス排出弁、導入弁が設置されているものを用いた。
測定は、試料室に炭素材を入れ、試料室のヘリウムガス導入弁、連結管、膨張室のヘリウムガス排出弁を通して、ヘリウムガスを流し、装置内を完全にヘリウムガスで置換した。次に試料室と膨張室の間のバルブ及び膨張室からのヘリウムガス排出管のバルブを閉じ、試料室のヘリウムガス導入管からヘリウムガスを134kPaになるまで導入した後、ヘリウムガス導入管のストップバルブを閉じた。次いで、ストップバルブを閉じてから5分後の試料室の圧力を測定した。次に試料室と膨張室の間のバルブを開いて、ヘリウムガスを膨張室に移送し、そのときの圧力を測定した。
密度ρHは下記式により算出した。
試料の体積=試料室の容積−膨張室の容積/[(試料室圧力/膨張室圧力)−1]
試料の重量は試料室に導入した試料重量であるので、ρH=試料室に導入した試料重量/試料の体積となる。
(6) Measurement of density ρ H by helium gas adsorption method The density “ρ H ” measurement by helium gas adsorption method is measured using a high-precision automatic volume meter (Estech VM-100) based on JIS-Z-8901. went. As a pretreatment, the carbon material was measured after being dried at 150 ° C. for 2 hours in a vacuum. Measurement was performed at an ambient temperature of 25 ° C.
The measuring device has a sample chamber and an expansion chamber, the sample chamber and the expansion chamber have pressure gauges for measuring the pressure in the chamber, and the sample chamber and the expansion chamber are connected by a connecting pipe. Each was equipped with a gas discharge valve and an introduction valve.
For the measurement, carbon material was put in the sample chamber, helium gas was passed through the helium gas introduction valve, the connecting pipe in the sample chamber, and the helium gas discharge valve in the expansion chamber, and the inside of the apparatus was completely replaced with helium gas. Next, the valve between the sample chamber and the expansion chamber and the valve of the helium gas discharge pipe from the expansion chamber are closed and helium gas is introduced from the helium gas introduction pipe in the sample chamber to 134 kPa, and then the helium gas introduction pipe is stopped. The valve was closed. Subsequently, the pressure in the sample chamber 5 minutes after the stop valve was closed was measured. Next, the valve between the sample chamber and the expansion chamber was opened, helium gas was transferred to the expansion chamber, and the pressure at that time was measured.
The density ρ H was calculated by the following formula.
Sample volume = volume of sample chamber−volume of expansion chamber / [(sample chamber pressure / expansion chamber pressure) −1]
Since the weight of the sample is the weight of the sample introduced into the sample chamber, ρ H = the weight of the sample introduced into the sample chamber / the volume of the sample.

電池特性の評価
(1)負極の作製
上記で得られた炭素材を用い、これに対して結着剤としてポリフッ化ビニリデン10%、アセチレンブラック3%の割合で、それぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極用混合物を調製した。
この負極スラリー状混合物を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を100μmに加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極を用いて、リチウムイオン二次電池用電極としてφ13mmの径で打ち抜き負極とした。
Evaluation of battery characteristics (1) Production of negative electrode Using the carbon material obtained above, the binder was blended in a ratio of 10% polyvinylidene fluoride and 3% acetylene black, respectively, and further diluted solvent A suitable amount of N-methyl-2-pyrrolidone was added and mixed to prepare a slurry-like negative electrode mixture.
This negative electrode slurry mixture was applied to both sides of a 10 μm copper foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed to 100 μm by a roll press. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Using this negative electrode, a negative electrode was punched out with a diameter of 13 mm as an electrode for a lithium ion secondary battery.

(2)リチウムイオン二次電池の作製
上記負極、セパレーター(ポリプロピレン製多孔質フィルム:幅45mm、厚さ25μm)、作用極としてリチウム金属(厚さ1mm)の順で、宝泉製二極セル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウムイオン二次電池を作製した。
(2) Production of lithium ion secondary battery In the order of the negative electrode, separator (polypropylene porous film: width 45 mm, thickness 25 μm), and lithium metal (thickness 1 mm) as the working electrode, in the Bipolar cell made by Hosen. Arranged in a predetermined position. Further, an electrolytic solution in which lithium perchlorate is dissolved at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio is 1: 1) is injected into a lithium ion secondary solution. A battery was produced.

(3)電池特性の評価
〈初期充放電特性評価〉
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。
なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR−1010mSM8)を用いて行った。
また、以下の式により初回の充放電効率を定義した。
初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
(3) Evaluation of battery characteristics <Evaluation of initial charge / discharge characteristics>
Regarding the charging capacity, constant current charging is performed with the current density at the time of charging being 25 mA / g, and from the time when the potential reaches 0 V, constant voltage charging is performed at 0 V until the current density reaches 1.25 mA / g. The amount of electricity charged was taken as the charge capacity.
On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity.
In addition, evaluation of the charging / discharging characteristic was performed using the charging / discharging characteristic evaluation apparatus (Hokuto Denko Co., Ltd. product: HJR-1010mSM8).
The initial charge / discharge efficiency was defined by the following equation.
Initial charge / discharge efficiency (%) = initial discharge capacity (mAh / g) / initial charge capacity (mAh / g) × 100

〈サイクル性評価〉
初期充放電特性評価条件を200回繰り返し測定した後に得られた放電容量を200サイクル目の放電容量とした。また、以下の式によりサイクル性(200サイクル容量維持率)を定義した。
サイクル性(%、200サイクル容量維持率)=200サイクル目の放電容量(mAh/g)/初回放電容量(mAh/g)×100
<Cycle evaluation>
The discharge capacity obtained after the initial charge / discharge characteristic evaluation conditions were repeatedly measured 200 times was defined as the discharge capacity at the 200th cycle. Moreover, the cycle property (200 cycle capacity maintenance rate) was defined by the following formula.
Cycle performance (%, 200 cycle capacity retention rate) = 200th cycle discharge capacity (mAh / g) / initial discharge capacity (mAh / g) × 100

〈負荷特性評価〉
初期充放電特性評価により得られた放電容量を基準容量(C0)とし、基準容量を充電した後に、充電量を1時間で放電させる電流密度にて放電を行い、得られた放電容量を1C容量とした。同様に基準容量を充電した後に、充電量を2分で放電させる電流密度で放電を行い、得られた放電容量を30C容量とした。また、以下の式により負荷特性(30Cでの容量維持率 対 1C)を定義した。
負荷特性(%、30Cでの容量維持率 対 1C)=30C容量(mAh/g)/1C容量(mAh/g)×100
<Evaluation of load characteristics>
The discharge capacity obtained by the initial charge / discharge characteristic evaluation is defined as the reference capacity (C 0 ), and after charging the reference capacity, discharging is performed at a current density that discharges the charged amount in 1 hour. The capacity. Similarly, after charging the reference capacity, discharging was performed at a current density that discharges the charged amount in 2 minutes, and the obtained discharge capacity was set to 30 C capacity. Moreover, the load characteristic (capacity maintenance rate at 30 C vs. 1 C) was defined by the following equation.
Load characteristics (%, capacity retention rate at 30 C vs. 1 C) = 30 C capacity (mAh / g) / 1 C capacity (mAh / g) × 100

以上の評価結果について、炭素材の評価結果を表1に、電池特性の評価結果を表2に示す。   Regarding the above evaluation results, the evaluation results of carbon materials are shown in Table 1, and the evaluation results of battery characteristics are shown in Table 2.

Figure 0005233314
Figure 0005233314

Figure 0005233314
Figure 0005233314

表1、表2の結果より、実施例1〜7は炭素含有量、炭素以外の元素含有量を制御し、且つ細孔容積、平均面間隔、ρH、ρB、ρH/ρBを制御した二次電池用炭素材を備えるリチウムイオン二次電池であり、上記パラメーターを制御しなかった比較例1〜2と比べて、充放電特性、サイクル性、負荷特性が優れたものであった。   From the results of Tables 1 and 2, Examples 1 to 7 were secondary in which the carbon content, the content of elements other than carbon were controlled, and the pore volume, average interplanar spacing, ρH, ρB, ρH / ρB were controlled. It was a lithium ion secondary battery provided with a carbon material for batteries, and was superior in charge / discharge characteristics, cycle performance, and load characteristics as compared with Comparative Examples 1 and 2 in which the above parameters were not controlled.

Claims (5)

細孔を有する炭素材であって、前記炭素材は、
イ)炭素を95〜99wt%含み、且つ炭素以外の元素として、O、N、S、P及びBの少なくとも1つ以上の元素を1〜5wt%含み、
ロ)0.25〜0.45nmの細孔径を有する細孔の容積が、全細孔容積の30容積%以上、
ハ)比表面積が15m2/g以下、
であることを特徴とする、二次電池用炭素材。
(ただし、β−ナフトール樹脂からなる二次電池用炭素材を除く。)
A carbon material having pores, the carbon material,
A) 95 to 99 wt% of carbon and 1 to 5 wt% of at least one element of O, N, S, P and B as elements other than carbon,
B) The volume of the pores having a pore diameter of 0.25 to 0.45 nm is 30% by volume or more of the total pore volume,
C) The specific surface area is 15 m 2 / g or less,
A carbon material for a secondary battery, characterized in that
(However, carbon materials for secondary batteries made of β-naphthol resin are excluded.)
前記二次電池用炭素材は、ブタノール浸漬法により測定される密度(ρB)に対するヘリウムガス吸着法により測定される密度(ρH)の比(ρH/ρB)が0.9以上であり、且つX線回折スペクトル法からBragg式を用いて算出される炭素材の平均面間隔(d)が、0.34〜0.40nmである請求項1に記載の二次電池用炭素材。 The carbon material for a secondary battery has a ratio (ρ H / ρ B ) of a density (ρ H ) measured by a helium gas adsorption method to a density (ρ B ) measured by a butanol immersion method of 0.9 or more. 2. The carbon material for a secondary battery according to claim 1, wherein an average interplanar spacing (d) of the carbon material calculated from the X-ray diffraction spectrum method using the Bragg equation is 0.34 to 0.40 nm. 前記請求項1又は2記載の二次電池用炭素材が、非結晶性である二次電池用炭素材。   A carbon material for a secondary battery, wherein the carbon material for a secondary battery according to claim 1 or 2 is non-crystalline. 前記請求項1〜3のいずれか1項に記載の二次電池用炭素材を電極用活物質に用いることを特徴とする二次電池用電極。   The carbon material for secondary batteries of any one of the said Claims 1-3 is used for the active material for electrodes, The electrode for secondary batteries characterized by the above-mentioned. 前記請求項4に記載の二次電池用電極を含んで構成される二次電池。   A secondary battery comprising the secondary battery electrode according to claim 4.
JP2008043442A 2008-02-25 2008-02-25 Carbon material for secondary battery, electrode for secondary battery, and secondary battery Expired - Fee Related JP5233314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043442A JP5233314B2 (en) 2008-02-25 2008-02-25 Carbon material for secondary battery, electrode for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043442A JP5233314B2 (en) 2008-02-25 2008-02-25 Carbon material for secondary battery, electrode for secondary battery, and secondary battery

Publications (2)

Publication Number Publication Date
JP2009200014A JP2009200014A (en) 2009-09-03
JP5233314B2 true JP5233314B2 (en) 2013-07-10

Family

ID=41143286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043442A Expired - Fee Related JP5233314B2 (en) 2008-02-25 2008-02-25 Carbon material for secondary battery, electrode for secondary battery, and secondary battery

Country Status (1)

Country Link
JP (1) JP5233314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734158A (en) * 2018-12-27 2019-05-10 金川集团股份有限公司 A kind of nitrogen, sulphur codope porous carbon sheet capacitive desalination electrode material and its preparation and application
US11492260B2 (en) 2017-07-06 2022-11-08 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
US11637286B2 (en) 2017-07-06 2023-04-25 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064936A1 (en) * 2009-11-25 2011-06-03 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5573559B2 (en) * 2010-09-30 2014-08-20 三菱化学株式会社 Carbon material for lithium ion secondary battery
JP5561188B2 (en) * 2011-01-27 2014-07-30 住友ベークライト株式会社 Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
CN103518279B (en) * 2011-05-13 2016-02-17 三菱化学株式会社 Non-aqueous secondary battery material with carbon element, the negative pole using this material with carbon element and non-aqueous secondary battery
WO2013042223A1 (en) * 2011-09-21 2013-03-28 住友ベークライト株式会社 Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013218856A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
EP3128582B1 (en) * 2014-03-31 2019-01-09 Kureha Corporation Negative electrode for all-solid battery and all-solid battery including same
EP3128583B1 (en) 2014-03-31 2019-03-13 Kureha Corporation Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery
CN106257719B (en) * 2015-06-18 2021-06-29 松下知识产权经营株式会社 Electrode material and battery
JP7408410B2 (en) 2020-01-23 2024-01-05 株式会社クラレ Carbonaceous material and its manufacturing method, and battery using carbonaceous material
JP7340188B2 (en) 2020-01-23 2023-09-07 国立大学法人広島大学 Spherical carbon particles containing nitrogen element, manufacturing method thereof, electrodes and batteries
CN115244737A (en) * 2020-03-27 2022-10-25 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using same
CN115279690A (en) * 2020-04-10 2022-11-01 株式会社吴羽 Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery, method for producing electrode of nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
WO2023058499A1 (en) 2021-10-05 2023-04-13 株式会社クラレ Carbonaceous material, negative electrode for power storage device, power storage device, and method for producing carbonaceous material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496901B2 (en) * 1994-08-23 2004-02-16 呉羽化学工業株式会社 Carbonaceous materials for secondary battery electrodes
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
JPH09293507A (en) * 1996-04-26 1997-11-11 Kanebo Ltd Lithium ion secondary battery
JP3325021B2 (en) * 1996-08-08 2002-09-17 日立化成工業株式会社 Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JPH1083807A (en) * 1996-09-05 1998-03-31 Unitika Ltd Nonaqueous lithium secondary battery
JP2001287904A (en) * 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd Carbon material and method for producing the same
JP4170006B2 (en) * 2002-03-29 2008-10-22 住友ベークライト株式会社 Carbon material and negative electrode material for secondary battery using the same
JP4838991B2 (en) * 2004-09-16 2011-12-14 日本電気株式会社 Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
JP4802595B2 (en) * 2005-08-04 2011-10-26 中央電気工業株式会社 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492260B2 (en) 2017-07-06 2022-11-08 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
US11637286B2 (en) 2017-07-06 2023-04-25 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
CN109734158A (en) * 2018-12-27 2019-05-10 金川集团股份有限公司 A kind of nitrogen, sulphur codope porous carbon sheet capacitive desalination electrode material and its preparation and application
CN109734158B (en) * 2018-12-27 2021-10-15 金川集团股份有限公司 Nitrogen and sulfur co-doped porous carbon sheet capacitive desalting electrode material and preparation and application thereof

Also Published As

Publication number Publication date
JP2009200014A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5233314B2 (en) Carbon material for secondary battery, electrode for secondary battery, and secondary battery
Yi et al. High‐performance hybrid supercapacitor enabled by a high‐rate Si‐based anode
JP5065901B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery
JP5217433B2 (en) Nonaqueous electrolyte secondary battery, negative electrode thereof, and material thereof
Raja et al. Sisal-derived activated carbons for cost-effective lithium–sulfur batteries
CN101481109B (en) Anode active material, anode, battery, and method of manufacturing anode
WO2017120391A1 (en) Large energy density batteries and methods of manufacture
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
TW201542451A (en) Carbonaceous product and method for manufacturing the same
JP2010267878A (en) Nonaqueous lithium type electric storage element
JP2007141677A (en) Compound graphite and lithium secondary cell using same
KR20200099872A (en) Lithium secondary battery
JP2014132592A (en) Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4968766B2 (en) Carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP5681753B2 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
US20230207884A1 (en) Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP4170006B2 (en) Carbon material and negative electrode material for secondary battery using the same
JP3579340B2 (en) Non-aqueous electrolyte secondary battery
JP4838991B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
US10497967B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP6963927B2 (en) Manufacturing method of sealed power storage element
WO2017119428A1 (en) Carbon member for secondary cell negative electrode, active substance for secondary cell negative electrode, secondary cell negative electrode, and secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees