JP7444322B1 - Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries - Google Patents

Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries Download PDF

Info

Publication number
JP7444322B1
JP7444322B1 JP2023114713A JP2023114713A JP7444322B1 JP 7444322 B1 JP7444322 B1 JP 7444322B1 JP 2023114713 A JP2023114713 A JP 2023114713A JP 2023114713 A JP2023114713 A JP 2023114713A JP 7444322 B1 JP7444322 B1 JP 7444322B1
Authority
JP
Japan
Prior art keywords
graphite particles
negative electrode
lithium ion
graphite
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023114713A
Other languages
Japanese (ja)
Inventor
陽 安田
義徹 徳田
崇 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2023114713A priority Critical patent/JP7444322B1/en
Application granted granted Critical
Publication of JP7444322B1 publication Critical patent/JP7444322B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】放電負荷特性、低温充電特性、高温保存特性およびパルス充電特性に優れるリチウムイオン二次電池用負極材並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供する。【解決手段】特定の見掛け密度及び亜麻仁油吸油量の条件を満たす第1黒鉛粒子と、特定のD0.1及び亜麻仁油吸油量の条件を満たす第2黒鉛粒子とを含み、第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~55質量%であり、第1黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、リチウムイオン二次電池用負極材。【選択図】なしThe present invention provides a negative electrode material for a lithium ion secondary battery having excellent discharge load characteristics, low temperature charging characteristics, high temperature storage characteristics and pulse charging characteristics, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same. [Solution] The second graphite particles include first graphite particles that meet specific conditions of apparent density and linseed oil absorption, and second graphite particles that meet specific conditions of D0.1 and linseed oil absorption. the first graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is more crystalline than the natural graphite particle. A negative electrode material for lithium ion secondary batteries that is coated with a carbon material with low properties. [Selection diagram] None

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は小型、軽量、かつ高エネルギー密度という特性を活かし、従来よりノート型PC、携帯電話、スマートフォン、タブレット型PC等の電子機器に広く使用されている。近年、CO排出による地球温暖化等の環境問題を背景に、電池のみで走行を行うクリーンな電気自動車(EV)、ガソリンエンジンと電池を組み合わせたハイブリッド電気自動車(HEV)等が普及している。また、最近では、電力貯蔵用にも用いられており、多岐の分野においてその用途は拡大している。 Lithium ion secondary batteries have been widely used in electronic devices such as notebook PCs, mobile phones, smartphones, and tablet PCs due to their characteristics of being small, lightweight, and high energy density. In recent years, against the backdrop of environmental issues such as global warming caused by CO2 emissions, clean electric vehicles (EVs) that run solely on batteries, and hybrid electric vehicles (HEVs) that combine a gasoline engine and batteries, etc., have become popular. . Recently, it has also been used for power storage, and its applications are expanding in a wide variety of fields.

リチウムイオン二次電池の負極材は、その性能が、リチウムイオン二次電池の特性に大きく影響する。リチウムイオン二次電池用負極材の材料としては、炭素材料が広く用いられている。負極材に使用される炭素材料は、黒鉛と、黒鉛より結晶性の低い炭素材料(非晶質炭素等)とに大別される。黒鉛は、炭素原子の六角網面が規則正しく積層した構造を有し、リチウムイオン二次電池の負極材としたときに六角網面の端部よりリチウムイオンの挿入及び脱離反応が進行し、充放電が行われる。 The performance of the negative electrode material for a lithium ion secondary battery greatly affects the characteristics of the lithium ion secondary battery. Carbon materials are widely used as negative electrode materials for lithium ion secondary batteries. Carbon materials used for negative electrode materials are broadly classified into graphite and carbon materials with lower crystallinity than graphite (amorphous carbon, etc.). Graphite has a structure in which hexagonal mesh surfaces of carbon atoms are stacked regularly, and when used as a negative electrode material for lithium ion secondary batteries, insertion and desorption reactions of lithium ions proceed from the edges of the hexagonal mesh surfaces, resulting in charging. A discharge occurs.

非晶質炭素は、六角網面の積層が不規則であるか、六角網面を有しない。このため、非晶質炭素を用いた負極材では、リチウムイオンの挿入及び脱離反応が負極材の全表面で進行する。そのため、負極材として黒鉛を用いる場合よりも入出力特性に優れるリチウムイオン電池が得られやすい(例えば、特許文献1及び特許文献2参照)。一方、非晶質炭素は黒鉛よりも結晶性が低いため、エネルギー密度が黒鉛よりも低い。
上記のような炭素材料の特性を考慮し、非晶質炭素と黒鉛とを複合化して高いエネルギー密度を維持しつつ入出力特性を高め、かつ黒鉛を非晶質炭素で被覆した状態とすることで表面の反応性を低減させ、初期の充放電効率を良好に維持しつつ入出力特性を高めた負極材も提案されている(例えば、特許文献3参照)。
Amorphous carbon has irregularly stacked hexagonal mesh surfaces or does not have hexagonal mesh surfaces. Therefore, in a negative electrode material using amorphous carbon, insertion and desorption reactions of lithium ions proceed on the entire surface of the negative electrode material. Therefore, it is easier to obtain a lithium ion battery with better input/output characteristics than when graphite is used as the negative electrode material (see, for example, Patent Document 1 and Patent Document 2). On the other hand, since amorphous carbon has lower crystallinity than graphite, its energy density is lower than that of graphite.
Considering the above characteristics of carbon materials, amorphous carbon and graphite are combined to maintain high energy density while improving input/output characteristics, and graphite is coated with amorphous carbon. A negative electrode material has also been proposed in which surface reactivity is reduced and input/output characteristics are improved while maintaining good initial charge/discharge efficiency (see, for example, Patent Document 3).

特開平4-370662号公報Japanese Unexamined Patent Publication No. 4-370662 特開平5-307956号公報Japanese Patent Application Publication No. 5-307956 国際公開第2012/015054号International Publication No. 2012/015054

EV、HEV等の自動車用途向けのリチウムイオン二次電池においては、回生エネルギーの電力の充電と、モーター駆動用に放電するため、高い入出力特性(すなわち、優れた放電負荷特性)が求められる。さらに、自動車は外気温の影響を受けやすく、リチウムイオン二次電池が夏場又は冬場などに過酷な状態に晒される。そのため、自動車用途向けのリチウムイオン二次電池は低温充電特性と高温保存特性との両立が求められる。さらに、近年の自動車用途向けのリチウムイオン二次電池は、充電時間の短縮化のためパルスでの充電特性も求められている。 Lithium ion secondary batteries for automotive applications such as EVs and HEVs are required to have high input/output characteristics (that is, excellent discharge load characteristics) in order to charge regenerated energy and discharge power for driving a motor. Furthermore, automobiles are easily affected by outside temperature, and lithium ion secondary batteries are exposed to harsh conditions in summer and winter. Therefore, lithium-ion secondary batteries for automotive applications are required to have both low-temperature charging characteristics and high-temperature storage characteristics. Furthermore, in recent years, lithium ion secondary batteries for automotive applications are required to have pulse charging characteristics in order to shorten charging time.

本開示の一態様では、放電負荷特性、低温充電特性、高温保存特性、およびパルス充電特性に優れるリチウムイオン二次電池用負極材並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。 One aspect of the present disclosure provides a negative electrode material for a lithium ion secondary battery that has excellent discharge load characteristics, low temperature charging characteristics, high temperature storage characteristics, and pulse charging characteristics, a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same. The purpose is to provide batteries.

前記課題を解決するための具体的手段は以下の通りである。
<1>下記条件1A及び条件1Bを満たす第1黒鉛粒子と、
下記条件2A及び条件2Bを満たす第2黒鉛粒子と、を含み、
第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~55質量%であり、
第1黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、リチウムイオン二次電池用負極材。
条件1A:静置法によるゆるみ見掛け密度T1が0.60g/cc以上であり、30回タップ法による見掛け密度T2が0.80g/cc以上であり、250回タップ法による見掛け密度T3が1.00g/cc以上であり、次式で示される圧縮度の値が19%以下である
圧縮度(%)=[(T2-T1)/T3]×100
条件1B:亜麻仁油吸油量が40mL/100g~55mL/100gである
条件2A:体積基準の粒度分布におけるD0.1が5μm以下である
条件2B:亜麻仁油吸油量が55mL/100g~75mL/100gである
<2>第1黒鉛粒子の体積基準の粒度分布におけるD10が7μm~13μmであり、D90が14μm~25μmである、<1>に記載のリチウムイオン二次電池用負極材。
<3>第1黒鉛粒子の体積基準の粒度分布におけるD0.1が5μm超である、<1>に記載のリチウムイオン二次電池用負極材。
<4>下記条件3A及び条件3Bを満たす第3黒鉛粒子をさらに含み、
第3黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、<1>に記載のリチウムイオン二次電池用負極材。
条件3A:体積基準の粒度分布において、第1黒鉛粒子のD50に対する第3黒鉛粒子のD50の比(第3黒鉛粒子のD50/第1黒鉛粒子のD50)が0.55~0.75の範囲である
条件3B:亜麻仁油吸油量が40mL/100g~55mL/100gである
<5>第3黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~25質量%である、<4>に記載のリチウムイオン二次電池用負極材。
<6><1>~<5>のいずれか1項に記載の負極材を含む負極材層と、集電体と、を含むリチウムイオン二次電池用負極。
<7><6>に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
Specific means for solving the above problem are as follows.
<1> First graphite particles that satisfy the following conditions 1A and 1B,
A second graphite particle that satisfies the following conditions 2A and 2B,
The amount of the second graphite particles is 10% by mass to 55% by mass with respect to the total mass of the graphite particles,
A negative electrode material for a lithium ion secondary battery, wherein the first graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle. .
Condition 1A: The loose apparent density T1 by the standing method is 0.60 g/cc or more, the apparent density T2 by the 30-tap method is 0.80 g/cc or more, and the apparent density T3 by the 250-tap method is 1. 00g/cc or more, and the compression degree value shown by the following formula is 19% or less. Compression degree (%) = [(T2-T1)/T3] x 100
Condition 1B: The linseed oil absorption amount is 40 mL/100 g to 55 mL/100 g. Condition 2A: D0.1 in the volume-based particle size distribution is 5 μm or less. Condition 2B: The linseed oil absorption amount is 55 mL/100 g to 75 mL/100 g. <2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein D10 in the volume-based particle size distribution of the first graphite particles is 7 μm to 13 μm, and D90 is 14 μm to 25 μm.
<3> The negative electrode material for a lithium ion secondary battery according to <1>, wherein D0.1 in the volume-based particle size distribution of the first graphite particles is more than 5 μm.
<4> Further comprising third graphite particles satisfying the following conditions 3A and 3B,
The lithium ion according to <1>, wherein the third graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle. Negative electrode material for secondary batteries.
Condition 3A: In the volume-based particle size distribution, the ratio of the D50 of the third graphite particles to the D50 of the first graphite particles (D50 of the third graphite particles/D50 of the first graphite particles) is in the range of 0.55 to 0.75. Condition 3B: Linseed oil absorption amount is 40 mL/100 g to 55 mL/100 g <5> The amount of the third graphite particles is 10 mass % to 25 mass % based on the total mass of graphite particles, <4> The negative electrode material for lithium ion secondary batteries described above.
<6> A negative electrode for a lithium ion secondary battery, comprising a negative electrode material layer containing the negative electrode material according to any one of <1> to <5>, and a current collector.
<7> A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to <6>, a positive electrode, and an electrolyte.

本開示の一態様では、放電負荷特性、低温充電特性、高温保存特性、およびパルス充電特性に優れるリチウムイオン二次電池用負極材並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することができる。 One aspect of the present disclosure provides a negative electrode material for a lithium ion secondary battery that has excellent discharge load characteristics, low temperature charging characteristics, high temperature storage characteristics, and pulse charging characteristics, a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same. Batteries can be provided.

試料電極をプレスした際の油圧(t)と電極密度(g/cm)の関係を示す図である。It is a figure showing the relationship between oil pressure (t) and electrode density (g/cm 3 ) when pressing a sample electrode. 試料電極をプレスした際の油圧(t)と電極密度(g/cm)の関係を示す図である。It is a figure showing the relationship between oil pressure (t) and electrode density (g/cm 3 ) when pressing a sample electrode.

以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、負極材中及び組成物中における各成分の含有率及び含有量は、負極材中及び組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の物質の合計の含有率及び含有量を意味する。
本開示において負極材中及び組成物中の各成分の粒子径は、負極材中及び組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部のみ形成されている場合も含まれる。
本開示において「積層」との語には、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
Hereinafter, embodiments for implementing the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present invention.
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. .
Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, unless otherwise specified, the content rate and content of each component in the negative electrode material and composition are as follows: It means the total content rate and amount of the plurality of substances present in the composition.
In the present disclosure, if there are multiple types of particles corresponding to each component in the negative electrode material and composition, unless otherwise specified, the particle size of each component in the negative electrode material and composition is It means the value for a mixture of the plurality of types of particles present in the particle.
In this disclosure, the term "layer" includes cases where the layer is formed in the entire area when observing the area where the layer exists, as well as cases where the layer is formed only in a part of the area. It will be done.
In this disclosure, the term "laminate" refers to stacking layers, and two or more layers may be bonded, or two or more layers may be removable.

<リチウムイオン二次電池用負極材>
本開示のリチウムイオン二次電池用負極材(以下、単に負極材ともいう)は、
下記条件1A及び条件1Bを満たす第1黒鉛粒子と、
下記条件2A及び条件2Bを満たす第2黒鉛粒子と、を含み、
第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~55質量%であり、
第1黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている。
条件1A:静置法によるゆるみ見掛け密度T1が0.60g/cc以上であり、30回タップ法による見掛け密度T2が0.80g/cc以上であり、250回タップ法による見掛け密度T3が1.00g/cc以上であり、次式で示される圧縮度の値が19%以下である
圧縮度(%)=[(T2-T1)/T3]×100
条件1B:亜麻仁油吸油量が40mL/100g~55mL/100gである
条件2A:体積基準の粒度分布におけるD0.1が5μm以下である
条件2B:亜麻仁油吸油量が55mL/100g~75mL/100gである
<Negative electrode material for lithium ion secondary batteries>
The negative electrode material for lithium ion secondary batteries (hereinafter also simply referred to as negative electrode material) of the present disclosure includes:
First graphite particles that satisfy the following conditions 1A and 1B,
A second graphite particle that satisfies the following conditions 2A and 2B,
The amount of the second graphite particles is 10% by mass to 55% by mass with respect to the total mass of the graphite particles,
The first graphite particle is a secondary particle composed of a plurality of natural graphite particles, and at least a portion of the surface thereof is coated with a carbon material having lower crystallinity than the natural graphite particle.
Condition 1A: The loose apparent density T1 by the standing method is 0.60 g/cc or more, the apparent density T2 by the 30-tap method is 0.80 g/cc or more, and the apparent density T3 by the 250-tap method is 1. 00g/cc or more, and the compression degree value shown by the following formula is 19% or less. Compression degree (%) = [(T2-T1)/T3] x 100
Condition 1B: The linseed oil absorption amount is 40 mL/100 g to 55 mL/100 g. Condition 2A: D0.1 in the volume-based particle size distribution is 5 μm or less. Condition 2B: The linseed oil absorption amount is 55 mL/100 g to 75 mL/100 g. be

後述する実施例に示すように、本開示の負極材を使用することで、入出力特性、低温充電特性、高温保存特性およびパルス充電特性に優れるリチウムイオン二次電池が得られる。 As shown in the Examples described below, by using the negative electrode material of the present disclosure, a lithium ion secondary battery with excellent input/output characteristics, low-temperature charging characteristics, high-temperature storage characteristics, and pulse charging characteristics can be obtained.

(第1黒鉛粒子)
第1黒鉛粒子の静置法によるゆるみ見掛け密度T1は0.60g/cc以上であり、30回タップ法による見掛け密度T2は0.80g/cc以上であり、250回タップ法による見掛け密度T3は1.00g/cc以上である。
(First graphite particles)
The loose apparent density T1 of the first graphite particles obtained by the standing method is 0.60 g/cc or more, the apparent density T2 obtained by the 30-tap method is 0.80 g/cc or more, and the apparent density T3 obtained by the 250-tap method is It is 1.00 g/cc or more.

リチウムイオン二次電池の負極は、銅箔等の集電体の上に負極材を含むスラリーを用いて形成した塗膜を乾燥して得られる。
リチウムイオン二次電池の高エネルギー密度化のためには、塗膜中の負極材の充填密度を高めること、言い換えれば塗膜の高密度化が必要である。
発明者による鋭意検討の結果、塗膜の形成に使用するスラリーの固形分含量が充分に大きいと良好な塗膜を形成し得ること、及び、第1黒鉛粒子の見掛け密度が上記条件を満たす場合に充分に大きいスラリーの固形分含量を達成できることがわかった。
第1黒鉛粒子の見掛け密度が上記条件を満たしていると、塗工時の膜厚の変動が小さく、十分な密着強度を得るために必要な結着剤の配合量を低減でき、実効容量の低下が抑制される傾向にある。
The negative electrode of a lithium ion secondary battery is obtained by drying a coating film formed using a slurry containing a negative electrode material on a current collector such as a copper foil.
In order to increase the energy density of lithium ion secondary batteries, it is necessary to increase the packing density of the negative electrode material in the coating film, in other words, it is necessary to increase the density of the coating film.
As a result of intensive studies by the inventor, it has been found that a good coating film can be formed when the solid content of the slurry used for forming the coating film is sufficiently large, and when the apparent density of the first graphite particles satisfies the above conditions. It has been found that slurry solids contents that are sufficiently high can be achieved.
If the apparent density of the first graphite particles satisfies the above conditions, the variation in film thickness during coating will be small, the amount of binder required to obtain sufficient adhesion strength can be reduced, and the effective capacity can be reduced. The decline tends to be suppressed.

さらに、第1黒鉛粒子の見掛け密度が上記条件を満たしていると、塗膜の電極密度が高くなり、目的の電極密度を得るために必要なプレス圧を低くできる傾向にある。プレス圧を低くすることにより、負極の厚み方向に垂直な方向における黒鉛粒子の配向性が低くなり、充放電時のリチウムイオンの出し入れをしやすくなる。その結果、低温充電特性、放電負荷特性等の入出力特性がより優れるリチウムイオン二次電池が得られる傾向にある。 Furthermore, when the apparent density of the first graphite particles satisfies the above conditions, the electrode density of the coating film tends to be high, and the press pressure required to obtain the desired electrode density can be reduced. By lowering the press pressure, the orientation of graphite particles in the direction perpendicular to the thickness direction of the negative electrode is reduced, making it easier to take in and out lithium ions during charging and discharging. As a result, a lithium ion secondary battery with better input/output characteristics such as low temperature charging characteristics and discharge load characteristics tends to be obtained.

第1黒鉛粒子のT1は0.62g/cc以上であることが好ましく、0.65g/cc以上であることがより好ましい。T1の上限は特に限定されないが、例えば、0.80g/cc以下であってもよい。
第1黒鉛粒子のT2は0.81g/cc以上であることが好ましく、0.82g/cc以上であることがより好ましい。T2の上限は特に限定されないが、例えば、1.00g/cc以下であってもよい。
第1黒鉛粒子のT3は1.03g/cc以上であることが好ましく、1.05g/cc以上であることがより好ましい。T3の上限は特に限定されないが、例えば、1.20g/cc以下であってもよい。
The T1 of the first graphite particles is preferably 0.62 g/cc or more, more preferably 0.65 g/cc or more. The upper limit of T1 is not particularly limited, but may be, for example, 0.80 g/cc or less.
The T2 of the first graphite particles is preferably 0.81 g/cc or more, more preferably 0.82 g/cc or more. The upper limit of T2 is not particularly limited, but may be, for example, 1.00 g/cc or less.
The T3 of the first graphite particles is preferably 1.03 g/cc or more, more preferably 1.05 g/cc or more. The upper limit of T3 is not particularly limited, but may be, for example, 1.20 g/cc or less.

第1黒鉛粒子の見掛け密度から計算される圧縮度の値は、19%以下である。第1黒鉛粒子の見掛け密度が上述した範囲内であると、圧縮度の値が小さくなる傾向にある。
リチウムイオン二次電池では、充放電により負極材としての炭素材料が膨張収縮を繰り返す。このため、炭素材料と集電体との密着性が低いと炭素材料が集電体から剥離し、充放電容量が低下してサイクル特性が悪化するおそれがある。
負極材に含まれる第1黒鉛粒子の圧縮度が19%以下であると、負極材と集電体との密着性が向上する傾向にある。そのため、本実施形態の負極材を用いることにより、充放電により炭素材料が膨張収縮を繰り返した場合にあっても、炭素材料と集電体との密着性が良好に維持され、高温保存特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
The value of the degree of compression calculated from the apparent density of the first graphite particles is 19% or less. When the apparent density of the first graphite particles is within the above range, the value of the degree of compression tends to be small.
In a lithium ion secondary battery, a carbon material serving as a negative electrode material repeatedly expands and contracts during charging and discharging. Therefore, if the adhesion between the carbon material and the current collector is low, the carbon material may peel off from the current collector, resulting in a decrease in charge/discharge capacity and a risk of deterioration in cycle characteristics.
When the degree of compression of the first graphite particles contained in the negative electrode material is 19% or less, the adhesion between the negative electrode material and the current collector tends to improve. Therefore, by using the negative electrode material of this embodiment, even when the carbon material repeatedly expands and contracts due to charging and discharging, the adhesion between the carbon material and the current collector is maintained well, and the high-temperature storage properties and There is a tendency to obtain lithium ion secondary batteries with excellent life characteristics such as cycle characteristics.

第1黒鉛粒子の圧縮度は18%以下であることが好ましく、17%以下であることがより好ましい。圧縮度の下限は特に限定されないが、例えば、13%以上であってもよく、14%以上であってもよい。 The compression degree of the first graphite particles is preferably 18% or less, more preferably 17% or less. The lower limit of the degree of compression is not particularly limited, but may be, for example, 13% or more, or 14% or more.

第1黒鉛粒子の亜麻仁油吸油量は、40mL/100g~55mL/100gである。
黒鉛粒子の亜麻仁油吸油量は、粒子間の空隙を間接的に定量化する指標であり、亜麻仁油吸油量の値が大きいほど粒子間の空隙が多いと判断できる。
黒鉛粒子の亜麻仁油吸油量は、黒鉛粒子の粒度、粒度分布、粒子形状、タップ密度等の影響を受ける。
第1黒鉛粒子の亜麻仁油吸油量が40mL/100g以上であると、負極材の充填が進みすぎず、乾燥条件等により塗膜の厚さが変動しにくい、プレスによって塗膜密度が上昇する際の密度の変動が生じにくい等の利点がある。更に、プレスによる残留応力が小さいために、負極が集電体から剥離しにくく、入出力特性及びサイクル特性が劣化しにくい傾向にある。
第1黒鉛粒子の亜麻仁油吸油量は41mL/100g以上であることが好ましく、42mL/100g以上であることがより好ましい。
The linseed oil absorption amount of the first graphite particles is 40 mL/100 g to 55 mL/100 g.
The amount of linseed oil absorbed by graphite particles is an index that indirectly quantifies the voids between the particles, and it can be determined that the larger the value of the amount of linseed oil absorbed, the more voids between the particles.
The amount of linseed oil absorbed by graphite particles is affected by the particle size, particle size distribution, particle shape, tap density, etc. of the graphite particles.
When the linseed oil absorption amount of the first graphite particles is 40 mL/100 g or more, the filling of the negative electrode material does not progress too much, and the thickness of the coating film is less likely to fluctuate due to drying conditions, etc., and when the density of the coating film increases due to pressing. It has the advantage that fluctuations in density are less likely to occur. Furthermore, since the residual stress caused by pressing is small, the negative electrode is less likely to peel off from the current collector, and the input/output characteristics and cycle characteristics tend to be less likely to deteriorate.
The linseed oil absorption amount of the first graphite particles is preferably 41 mL/100 g or more, more preferably 42 mL/100 g or more.

第1黒鉛粒子の亜麻仁油吸油量が55mL/100g以下であると、大きい粒子間の空隙に対する微細粒子の量が多すぎず、電解液の浸透が円滑に行われやすい。さらに、リチウムイオンの拡散抵抗が小さくなり、電池性能全般、中でも連続での充電受入性(パルス充電特性)が劣化しにくい傾向にある。
第1黒鉛粒子の亜麻仁油吸油量は53mL/100g以下であることが好ましく、50mL/100g以下であることがより好ましい。
When the linseed oil absorption amount of the first graphite particles is 55 mL/100 g or less, the amount of fine particles relative to the voids between large particles is not too large, and the electrolyte tends to penetrate smoothly. Furthermore, the diffusion resistance of lithium ions is reduced, and overall battery performance, especially continuous charging acceptability (pulse charging characteristics), tends to be less likely to deteriorate.
The linseed oil absorption amount of the first graphite particles is preferably 53 mL/100 g or less, more preferably 50 mL/100 g or less.

第1黒鉛粒子は、体積基準の粒度分布におけるD10が7μm~13μmの範囲内であり、D90が14μm~25μmの範囲内であることが好ましい。 The first graphite particles preferably have a D10 in a volume-based particle size distribution of 7 μm to 13 μm, and a D90 of 14 μm to 25 μm.

第1黒鉛粒子のD10が7μm以上でありD90が14μm以上であると、粒子が小さすぎず比表面積が大きすぎない傾向にあり、良好な充放電効率及び高い放電容量が得られる傾向にある。
第1黒鉛粒子のD10が13μm以下でありD90が25μm以下であると、粒子が大きすぎず、低温充電受入、放電負荷特性等の入出力特性の劣化が抑制される傾向にある。加えて、高温保存特性、サイクル特性等の寿命特性の劣化が抑制される傾向にある。
第1黒鉛粒子のD10は7.1μm~12.5μmであることが好ましく、7.5μm~10.0μmであることがより好ましい。
第1黒鉛粒子のD90は14.5μm~24.5μmであることが好ましく、15.0μm~20.0μmであることがより好ましい。
When the D10 of the first graphite particles is 7 μm or more and the D90 is 14 μm or more, the particles tend to be neither too small nor have a specific surface area too large, and good charge/discharge efficiency and high discharge capacity tend to be obtained.
When the D10 of the first graphite particles is 13 μm or less and the D90 is 25 μm or less, the particles are not too large and deterioration of input/output characteristics such as low temperature charge acceptance and discharge load characteristics tends to be suppressed. In addition, deterioration of life characteristics such as high temperature storage characteristics and cycle characteristics tends to be suppressed.
D10 of the first graphite particles is preferably 7.1 μm to 12.5 μm, more preferably 7.5 μm to 10.0 μm.
D90 of the first graphite particles is preferably 14.5 μm to 24.5 μm, more preferably 15.0 μm to 20.0 μm.

第1黒鉛粒子は、体積基準の粒度分布におけるD0.1が5μmより大きいことが好ましく、5.2μm以上であることがより好ましく、5.5μm以上であることがさらに好ましい。
第1黒鉛粒子のD0.1が5μmより大きいと、粒子が小さすぎず比表面積が大きすぎない傾向にあり、良好な充放電効率及び高い放電容量が得られる傾向にある。
第1黒鉛粒子のD0.1の上限値は特に制限されないが、例えば、10μm以下、8μm以下、又は7μm以下であってもよい。
D0.1 in the volume-based particle size distribution of the first graphite particles is preferably larger than 5 μm, more preferably 5.2 μm or more, and even more preferably 5.5 μm or more.
When D0.1 of the first graphite particles is larger than 5 μm, the particles tend to be neither too small nor have a specific surface area too large, and good charge/discharge efficiency and high discharge capacity tend to be obtained.
The upper limit of D0.1 of the first graphite particles is not particularly limited, but may be, for example, 10 μm or less, 8 μm or less, or 7 μm or less.

第1黒鉛粒子は、体積基準の粒度分布におけるD50が8μm以上であることが好ましく、8.5μm以上であることがより好ましく、9μm以上であることがさらに好ましい。 The D50 of the first graphite particles in a volume-based particle size distribution is preferably 8 μm or more, more preferably 8.5 μm or more, and even more preferably 9 μm or more.

第1黒鉛粒子は、体積基準の粒度分布におけるD50が20μm以下であることが好ましく、19μm以下であることがより好ましく、18μm以下であることがさらに好ましい。 The first graphite particles preferably have a D50 of 20 μm or less in a volume-based particle size distribution, more preferably 19 μm or less, and even more preferably 18 μm or less.

本開示において、黒鉛粒子のD0.1、D10、D50及びD90は、体積基準の粒度分布において小粒子側からの分布の累積頻度がそれぞれ0.1%、10%、50%及び90%に達する点の粒子径を意味する。体積基準の粒度分布は、レーザー回折法によって測定する。 In the present disclosure, D0.1, D10, D50, and D90 of graphite particles have cumulative frequencies of distribution from the small particle side reaching 0.1%, 10%, 50%, and 90%, respectively, in the volume-based particle size distribution. Means the particle size at a point. Volume-based particle size distribution is determined by laser diffraction.

第1黒鉛粒子は、複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている。
第1黒鉛粒子の表面の少なくとも一部が天然黒鉛粒子よりも結晶性の低い炭素材(以下、低結晶炭素ともいう)で被覆されていることで、充放電反応に寄与する核材となる黒鉛粒子の表面露出が抑制される。その結果、リチウムイオン二次電池を作製した際、負極材の表面における電解液の分解反応が抑制されて初回効率、サイクル特性及びパルス充電特性の低下が抑制される傾向にある。
The first graphite particle is a secondary particle composed of a plurality of natural graphite particles, and at least a portion of the surface thereof is coated with a carbon material having lower crystallinity than the natural graphite particle.
At least a part of the surface of the first graphite particle is coated with a carbon material having lower crystallinity than natural graphite particles (hereinafter also referred to as low-crystalline carbon), so that graphite becomes a core material that contributes to charge/discharge reactions. Surface exposure of particles is suppressed. As a result, when a lithium ion secondary battery is produced, the decomposition reaction of the electrolytic solution on the surface of the negative electrode material is suppressed, and a decrease in initial efficiency, cycle characteristics, and pulse charging characteristics tends to be suppressed.

核材となる黒鉛粒子100質量部に対する低結晶炭素の量は、例えば、1質量部~20質量部の範囲内であってもよく、1質量部~10質量部の範囲内であってもよい。 The amount of low crystalline carbon per 100 parts by mass of graphite particles serving as a core material may be, for example, within the range of 1 part by mass to 20 parts by mass, or may be within the range of 1 part by mass to 10 parts by mass. .

第1黒鉛粒子は、天然黒鉛粒子に対して球状化、粉砕等の加工を施して得られる。第1黒鉛粒子の形状としては、球状、塊状等が挙げられる。
第1黒鉛粒子の製造に使用する天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等が挙げられる。
第1黒鉛粒子の製造に使用する天然黒鉛は、精製処理によって高純度化することが好ましい。精製処理の方法は特に制限されず、通常用いられる精製処理方法から適宜選択することができる。例えば、浮遊選鉱、電気化学処理、薬品処理等を挙げることができる。
The first graphite particles are obtained by subjecting natural graphite particles to processes such as spheroidization and pulverization. Examples of the shape of the first graphite particles include spherical shape and block shape.
Examples of the natural graphite used for producing the first graphite particles include scaly graphite, flaky graphite, and earthy graphite.
It is preferable that the natural graphite used for manufacturing the first graphite particles be highly purified by a purification treatment. The method of purification treatment is not particularly limited, and can be appropriately selected from commonly used purification treatment methods. Examples include flotation, electrochemical treatment, chemical treatment, and the like.

第1黒鉛粒子の製造に使用する天然黒鉛の純度は、質量基準で99.8%以上(灰分0.2%以下)であることが好ましく、99.9%以上(灰分0.1%以下)であることがより好ましい。純度が99.8%以上であることで電池の安全性がより向上し、電池性能がより向上する傾向にある。天然黒鉛の純度は、例えば、100gの黒鉛を空気雰囲気で800℃の炉に48時間以上静置したのち、灰分に由来する残量を測定することで算出することができる。 The purity of the natural graphite used for manufacturing the first graphite particles is preferably 99.8% or more (ash content 0.2% or less) on a mass basis, and preferably 99.9% or more (ash content 0.1% or less). It is more preferable that When the purity is 99.8% or more, the safety of the battery is further improved, and the battery performance tends to be further improved. The purity of natural graphite can be calculated, for example, by leaving 100 g of graphite in a furnace at 800° C. in an air atmosphere for 48 hours or more, and then measuring the remaining amount derived from ash.

核材となる黒鉛粒子の表面を低結晶炭素で被覆する方法は、特に限定されない。例えば、核材となる黒鉛粒子と、加熱により低結晶炭素に変化する物質(以下、低結晶炭素の前駆体ともいう)と、を含む混合物を熱処理する工程を含む方法であってもよい。
低結晶炭素の前駆体は特に制限されず、ピッチ、有機高分子化合物等が挙げられる。ピッチとしては、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して作製されるピッチ、及びナフタレン等を超強酸存在下で重合させて作製されるピッチが挙げられる。有機高分子化合物としては、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性樹脂、デンプン、セルロース等の天然物質などが挙げられる。
第1黒鉛粒子の製造に使用する核材となる黒鉛粒子及び低結晶炭素の前駆体は、それぞれ1種単独であっても2種以上であってもよい。
核材となる黒鉛粒子と、低結晶炭素の前駆体と、を含む混合物を熱処理する際の温度は、特に限定されないが、リチウムイオン二次電池におけるサイクル特性を向上させる点から、900℃~1500℃であることが好ましい。
上記方法において、熱処理前の混合物中の核材となる黒鉛粒子の含有率は、特に制限されない。リチウムイオン二次電池のサイクル特性を向上させる点から、核材となる黒鉛粒子の含有率は、混合物の総質量に対して、90質量%~99.9質量%であることが好ましい。
The method of coating the surface of graphite particles serving as a core material with low crystalline carbon is not particularly limited. For example, the method may include a step of heat-treating a mixture containing graphite particles serving as a core material and a substance that changes into low-crystalline carbon by heating (hereinafter also referred to as a precursor of low-crystalline carbon).
The precursor of low-crystalline carbon is not particularly limited, and examples thereof include pitch, organic polymer compounds, and the like. Examples of pitch include ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt decomposition pitch, pitch made by thermally decomposing polyvinyl chloride, etc., and pitch made by polymerizing naphthalene etc. in the presence of a super strong acid. An example of this is pitch. Examples of the organic polymer compound include thermoplastic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral, and natural substances such as starch and cellulose.
The graphite particles and the low-crystalline carbon precursors used as the core material for producing the first graphite particles may be used alone or in combination of two or more.
The temperature at which the mixture containing graphite particles as a core material and a low-crystalline carbon precursor is heat-treated is not particularly limited, but from the viewpoint of improving the cycle characteristics of a lithium ion secondary battery, the temperature is 900°C to 1500°C. Preferably it is ℃.
In the above method, the content of graphite particles serving as a core material in the mixture before heat treatment is not particularly limited. In order to improve the cycle characteristics of a lithium ion secondary battery, the content of graphite particles serving as a core material is preferably 90% by mass to 99.9% by mass based on the total mass of the mixture.

第1黒鉛粒子の77Kでの窒素吸着測定より求めた比表面積(N比表面積)は、特に制限されないが、例えば、2.5m/g~5m/gであることが好ましく、3m/g~5m/gであることがさらに好ましい。第1黒鉛粒子のN比表面積が上記範囲内であれば、リチウムイオン二次電池の初回充放電効率、入出力特性及びサイクル特性の良好なバランスが得られる傾向にある。
黒鉛粒子のN比表面積は、後述する実施例に記載の方法にて測定される。
The specific surface area (N 2 specific surface area) of the first graphite particles determined by nitrogen adsorption measurement at 77K is not particularly limited, but is preferably 2.5 m 2 /g to 5 m 2 /g, and 3 m 2 It is more preferably from /g to 5m 2 /g. If the N 2 specific surface area of the first graphite particles is within the above range, a good balance of initial charge/discharge efficiency, input/output characteristics, and cycle characteristics of the lithium ion secondary battery tends to be obtained.
The N 2 specific surface area of the graphite particles is measured by the method described in Examples below.

第1黒鉛粒子のラマン分光測定のR値は、特に制限されないが、例えば、0.2~1.0であることが好ましく、0.2~0.8であることがさらに好ましい。第1黒鉛粒子のR値が0.2以上であると、リチウムイオンの出し入れに用いられる黒鉛格子欠陥が充分存在し、入出力特性の低下が抑制される傾向にある。第1黒鉛粒子のR値が1.0未満であると、電解液の分解反応が充分に抑制され、初回効率の低下が抑制される傾向にある。
本開示において黒鉛粒子のR値は、ラマン分光測定において得られたラマン分光スペクトルにおいて、1580cm-1付近の最大ピークの強度Igと、1360cm-1付近の最大ピークの強度Idの強度比(Id/Ig)とする。
黒鉛粒子のR値は、後述の実施例に記載の方法にて測定される。
The R value of the first graphite particles measured by Raman spectroscopy is not particularly limited, but is preferably, for example, 0.2 to 1.0, more preferably 0.2 to 0.8. When the R value of the first graphite particles is 0.2 or more, there are sufficient graphite lattice defects used for taking in and taking out lithium ions, and a decrease in input/output characteristics tends to be suppressed. When the R value of the first graphite particles is less than 1.0, the decomposition reaction of the electrolytic solution is sufficiently suppressed, and a decrease in initial efficiency tends to be suppressed.
In the present disclosure , the R value of graphite particles is defined as the intensity ratio ( Id / Ig).
The R value of graphite particles is measured by the method described in Examples below.

第1黒鉛粒子のCO吸着量は、特に制限されないが、例えば、0.10cm/g~0.40cm/gであることが好ましく、0.10cm/g~0.30cm/gであることがより好ましく、0.10cm/g~0.20cm/gであることがさらに好ましい。COは飽和蒸気圧が高く、また、CO分子の運動エネルギーは極めて高いため、相互作用の弱い黒鉛骨格のベーサル面には吸着されにくい。しかし、格子欠陥等の部分に発生する凹凸、すなわちウルトラマイクロ孔には、極めて強い吸着相互作用によりCO分子が吸着されることが分かっている。一方で、格子欠陥は、格子の乱れがあり双極子モーメントが偏り極性を持ち、酸化還元反応の活性点となり電解液の分解反応活性であることが知られている。黒鉛粒子のCO吸着量が前述の範囲である場合、リチウムイオンが黒鉛層間の挿入脱離のサイトとなる個所は残しつつも、電解液等の過剰な分解反応を抑制することができると考えられる。電解液の分解物は活物質表面にSEI(Solid Electrolyte Interphase)膜を形成するため、入出力特性の抵抗成分となることも知られている。そのため、黒鉛粒子のCO吸着量を前述の範囲にし、電解液分解等の過剰な副反応を抑制することにより、優れた入出力特性及び高温保存特性が得られる。
黒鉛粒子のCO吸着量は、後述の実施例に記載の方法にて測定される。
The amount of CO 2 adsorbed by the first graphite particles is not particularly limited, but is preferably 0.10 cm 3 / g to 0.40 cm 3 /g, and preferably 0.10 cm 3 / g to 0.30 cm 3 /g. More preferably, it is 0.10 cm 3 /g to 0.20 cm 3 /g. Since CO 2 has a high saturated vapor pressure and the kinetic energy of CO 2 molecules is extremely high, it is difficult to be adsorbed on the basal surface of the graphite skeleton, which has weak interactions. However, it is known that CO 2 molecules are adsorbed by extremely strong adsorption interactions in the irregularities, ie, ultramicropores, that occur in areas such as lattice defects. On the other hand, it is known that lattice defects have disordered lattices, have polarized dipole moments, and become active sites for redox reactions, which are active in decomposition reactions of electrolyte solutions. If the CO 2 adsorption amount of the graphite particles is within the above range, it is thought that excessive decomposition reactions of the electrolyte etc. can be suppressed while leaving sites where lithium ions can be intercalated and desorbed between the graphite layers. It will be done. It is also known that the decomposition products of the electrolytic solution form a SEI (Solid Electrolyte Interphase) film on the surface of the active material and thus become a resistance component of the input/output characteristics. Therefore, excellent input/output characteristics and high-temperature storage characteristics can be obtained by controlling the CO 2 adsorption amount of graphite particles within the above-mentioned range and suppressing excessive side reactions such as electrolyte decomposition.
The amount of CO 2 adsorbed by graphite particles is measured by the method described in Examples below.

第1黒鉛粒子の平均面間隔d002は、特に制限されないが、例えば、0.335nm~0.339nmの範囲の黒鉛粒子であることが好ましい。特に、充放電容量増大の観点から、d002が0.335nm~0.338nmの範囲がより好ましく、0.335nm~0.337nmの範囲がさらに好ましい。平均面間隔d002が0.335nm~0.337nmの範囲の黒鉛粒子を用いた場合、充放電容量が330mAh/g~370mAh/gと大きく良好なリチウムイオン二次電池が得られる傾向にある。
黒鉛粒子の平均面間隔d002は、後述の実施例に記載の方法にて測定される。
Although the average interplanar spacing d 002 of the first graphite particles is not particularly limited, it is preferable that the graphite particles have a range of, for example, 0.335 nm to 0.339 nm. Particularly, from the viewpoint of increasing charge/discharge capacity, d 002 is more preferably in the range of 0.335 nm to 0.338 nm, and even more preferably in the range of 0.335 nm to 0.337 nm. When graphite particles having an average interplanar spacing d 002 in the range of 0.335 nm to 0.337 nm are used, a good lithium ion secondary battery tends to be obtained with a large charge/discharge capacity of 330 mAh/g to 370 mAh/g.
The average interplanar spacing d 002 of graphite particles is measured by the method described in Examples below.

第1黒鉛粒子の平均円形度の範囲は、特に制限されないが、例えば、0.74以上であることが好ましく、0.80以上であることがさらに好ましい。
第1黒鉛粒子の平均円形度が0.74以上であることで、仮に黒鉛粒子が分子間相互作用により凝集体を形成したとしても、その粒子間の空隙に吸収されたバインダー等の成分局在化を抑制することができ、密着性に優れた電極が得られる傾向にある。また、バインダーの局在化が抑制されるため、バインダーの必要量の増加が抑制される。その結果、容量の低下、抵抗成分増加による入出力特性の低下等も抑制できる傾向にある。さらに、核材となる黒鉛粒子の表面に均一な低結晶炭素層が形成され、粒子間での低結晶炭素による被覆量のばらつきが抑制される傾向にある。その結果、負極内部がより硬質な(すなわち、低結晶炭素の被覆量が多い)箇所及び粒子と、より軟質な(すなわち、低結晶炭素の被覆量が少ない)箇所及び粒子と、に分かれることが抑制される。その結果として、低結晶炭素の被覆量の少ない部分がプレス処理の負荷に耐えられず亀裂が発生することによる比表面積の増加、及び亀裂の発生による高活性化による高温保存特性の低下が抑制される傾向にある。
黒鉛粒子の平均円形度は、後述の実施例に記載の方法にて測定される。
The range of the average circularity of the first graphite particles is not particularly limited, but is preferably, for example, 0.74 or more, and more preferably 0.80 or more.
Since the average circularity of the first graphite particles is 0.74 or more, even if the graphite particles form aggregates due to intermolecular interaction, components such as binder absorbed in the voids between the particles will be localized. There is a tendency for electrodes with excellent adhesion to be obtained. Furthermore, since the localization of the binder is suppressed, an increase in the required amount of the binder is suppressed. As a result, it tends to be possible to suppress a decrease in capacitance and a decrease in input/output characteristics due to an increase in resistance components. Furthermore, a uniform low-crystalline carbon layer is formed on the surface of the graphite particles serving as the core material, and variations in the amount of low-crystalline carbon covering between particles tend to be suppressed. As a result, the inside of the negative electrode can be divided into harder parts and particles (i.e., a large amount of low-crystalline carbon coverage) and softer parts and particles (i.e., a small amount of low-crystalline carbon coverage). suppressed. As a result, the increase in specific surface area due to cracks occurring because the areas with a small amount of low-crystalline carbon coating cannot withstand the load of press treatment, and the decline in high-temperature storage properties due to high activation caused by cracks are suppressed. There is a tendency to
The average circularity of graphite particles is measured by the method described in Examples below.

(第2黒鉛粒子)
第2黒鉛粒子は、体積基準の粒度分布におけるD0.1が5μm以下である。
第2黒鉛粒子のD0.1が5μm以下であると、第1黒鉛粒子の空隙を埋める第2黒鉛由来の微細粒子が充分に存在する。このため、粒子間の接触点が充分に確保されて電子的な抵抗が小さく、電池性能全般の劣化が抑制される傾向にある。
第2黒鉛粒子のD0.1は4.5μm以下であることが好ましく、4μm以下であることがより好ましい。
第2黒鉛粒子のD0.1の下限は特に限定されないが、例えば、1μm以上であってもよく、1.5μm以上であってもよい。
(Second graphite particles)
The second graphite particles have a D0.1 of 5 μm or less in a volume-based particle size distribution.
When D0.1 of the second graphite particles is 5 μm or less, there are sufficient fine particles derived from the second graphite that fill the voids of the first graphite particles. Therefore, sufficient contact points between particles are ensured, electronic resistance is small, and overall deterioration of battery performance tends to be suppressed.
D0.1 of the second graphite particles is preferably 4.5 μm or less, more preferably 4 μm or less.
The lower limit of D0.1 of the second graphite particles is not particularly limited, but may be, for example, 1 μm or more, or 1.5 μm or more.

第2黒鉛粒子は、亜麻仁油吸油量が55mL/100g~75mL/100gである。
第2黒鉛粒子の亜麻仁油吸油量が55mL/100g以上であると、第1黒鉛粒子の空隙を埋める第2黒鉛粒子由来の微細粒子が充分に存在する。このため、粒子間の接触点が充分に確保されて電子的な抵抗が小さく、電池性能全般の劣化が抑制される傾向にある。
第2黒鉛粒子の亜麻仁油吸油量が75mL/100g以下であると、第1黒鉛粒子の空隙を埋める第2黒鉛粒子由来の微細粒子の量が多すぎず、電解液の浸透が円滑に行われる。また、リチウムイオンの拡散抵抗が小さく、電池性能全般、中でも連続での充電受入性(パルス充電特性)の劣化が抑制される傾向にある。
The second graphite particles have a linseed oil absorption amount of 55 mL/100 g to 75 mL/100 g.
When the linseed oil absorption amount of the second graphite particles is 55 mL/100 g or more, there are sufficient fine particles derived from the second graphite particles that fill the voids of the first graphite particles. Therefore, sufficient contact points between particles are ensured, electronic resistance is small, and overall deterioration of battery performance tends to be suppressed.
When the linseed oil absorption amount of the second graphite particles is 75 mL/100 g or less, the amount of fine particles derived from the second graphite particles that fill the voids of the first graphite particles is not too large, and the electrolyte can penetrate smoothly. . In addition, the diffusion resistance of lithium ions is small, which tends to suppress deterioration in battery performance in general, especially in continuous charging acceptability (pulse charging characteristics).

第2黒鉛粒子の材質は特に制限されず、天然黒鉛であっても人造黒鉛であってもよい。
天然黒鉛としては、第1黒鉛粒子として使用されうる天然黒鉛が挙げられる。
人造黒鉛としては、エポキシ樹脂、フェノール樹脂等の樹脂系材料、石油、石炭等から得られるピッチ系材料、コークスなどを焼成して得られる人造黒鉛が挙げられる。
第2黒鉛粒子は、複数の一次粒子から形成される二次粒子の状態であってもよい。
第2黒鉛粒子は、表面の少なくとも一部が低結晶炭素で被覆されていても、被覆されていなくてもよい。
The material of the second graphite particles is not particularly limited, and may be natural graphite or artificial graphite.
Examples of natural graphite include natural graphite that can be used as the first graphite particles.
Examples of the artificial graphite include resin materials such as epoxy resins and phenol resins, pitch materials obtained from petroleum, coal, etc., and artificial graphite obtained by firing coke and the like.
The second graphite particles may be in the form of secondary particles formed from a plurality of primary particles.
The second graphite particles may or may not have at least a portion of their surface coated with low-crystalline carbon.

天然黒鉛を用いた場合の第2黒鉛粒子の製造方法は、第1黒鉛粒子の製造方法と同様である。
人造黒鉛を得るための方法について、特に制限はない。例えば、樹脂、ナフタレン、アントラセン、フェナントロリン、コールタール、タールピッチ等の原料を800℃以上の不活性雰囲気中でか焼して、焼成物である人造黒鉛を得る方法が挙げられる。この場合、得られた焼成物をジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法により粉砕し、粒子径を調整することで人造黒鉛由来の第2黒鉛粒子を作製することができる。また、か焼する前に予め原料に熱処理を施してもよい。
The method for producing the second graphite particles using natural graphite is the same as the method for producing the first graphite particles.
There are no particular restrictions on the method for obtaining artificial graphite. For example, there is a method in which raw materials such as resin, naphthalene, anthracene, phenanthroline, coal tar, and tar pitch are calcined in an inert atmosphere at 800° C. or higher to obtain artificial graphite as a calcined product. In this case, second graphite particles derived from artificial graphite can be produced by pulverizing the obtained fired product using a known method such as a jet mill, vibration mill, pin mill, or hammer mill, and adjusting the particle size. Further, the raw material may be subjected to heat treatment before calcining.

第2黒鉛粒子の体積基準の粒度分布におけるD50は、特に制限されない。例えば、第2黒鉛粒子のD50は15μm~25μmであることが好ましく、17μm~25μmであることがより好ましい。第2黒鉛粒子のD50が25μm以下であると、放電容量、入出力特性及びサイクル特性が向上する傾向にある。第2黒鉛粒子のD50が15μm以上であると、初回充放電効率が向上する傾向にある。 D50 in the volume-based particle size distribution of the second graphite particles is not particularly limited. For example, the D50 of the second graphite particles is preferably 15 μm to 25 μm, more preferably 17 μm to 25 μm. When the D50 of the second graphite particles is 25 μm or less, the discharge capacity, input/output characteristics, and cycle characteristics tend to improve. When the D50 of the second graphite particles is 15 μm or more, the initial charge/discharge efficiency tends to improve.

第2黒鉛粒子の77Kでの窒素吸着測定より求めた比表面積(N比表面積)は、特に制限されないが、例えば、1.7m/g~5m/gであることが好ましく、2m/g~4.5m/gであることがさらに好ましい。第2黒鉛粒子のN比表面積が上記範囲内であると、初回充放電効率、入出力特性及びサイクル特性の良好なバランスが得られる傾向にある。 The specific surface area (N 2 specific surface area) of the second graphite particles determined by nitrogen adsorption measurement at 77K is not particularly limited, but is preferably 1.7 m 2 /g to 5 m 2 /g, for example, 2 m 2 It is more preferably from /g to 4.5m 2 /g. When the N 2 specific surface area of the second graphite particles is within the above range, a good balance of initial charge/discharge efficiency, input/output characteristics, and cycle characteristics tends to be obtained.

第2黒鉛粒子のCO吸着量は、特に制限されないが、例えば、0.10cm/g~0.40cm/gであることが好ましく、0.10cm/g~0.30cm/gであることがより好ましく、0.20cm/g~0.30cm/gであることがさらに好ましい。第2黒鉛粒子のCO吸着量が上記範囲内であると、電解液分解等の過剰な副反応が抑制され、優れた入出力特性及び高温保存特性が得られる傾向にある。 The CO 2 adsorption amount of the second graphite particles is not particularly limited, but is preferably 0.10 cm 3 /g to 0.40 cm 3 /g, and 0.10 cm 3 / g to 0.30 cm 3 /g, for example. More preferably, it is 0.20 cm 3 /g to 0.30 cm 3 /g. When the CO 2 adsorption amount of the second graphite particles is within the above range, excessive side reactions such as electrolyte decomposition are suppressed, and excellent input/output characteristics and high temperature storage characteristics tend to be obtained.

(第3黒鉛粒子)
本開示の負極材は、第1黒鉛粒子及び第2黒鉛粒子に加えて第3黒鉛粒子を含んでもよい。負極材が第3黒鉛粒子を含むことで、高密度実装時に高い容量及び効率に優れるリチウムイオン二次電池が得られる。
(Third graphite particles)
The negative electrode material of the present disclosure may include third graphite particles in addition to the first graphite particles and the second graphite particles. By including the third graphite particles in the negative electrode material, a lithium ion secondary battery having high capacity and excellent efficiency when mounted at high density can be obtained.

第3黒鉛粒子は、体積基準の粒度分布において、第1黒鉛粒子のD50に対する第3黒鉛粒子のD50の比(第3黒鉛粒子のD50/第1黒鉛粒子のD50、以下、粒子径比ともいう)が0.55~0.75の範囲である。
粒子径比が上記の範囲内である第3黒鉛粒子は第1黒鉛粒子よりも細かい粒子である(粒子径比が1より小さい)ため、第1黒鉛粒子よりも硬質な黒鉛粒子となる傾向にある。このため、第3黒鉛粒子を含む負極材を用いて塗膜を形成することで、高密度化のためのプレス押圧力による粒子の変形がより抑制される。その結果、電解液の浸透経路が充分に確保され、電解液が円滑に浸透する傾向にある。
第3黒鉛粒子の粒子径比が0.55以上であることで、塗膜が硬くなりすぎず目的の電極密度を得るために必要なプレス圧が高くなる傾向が抑制され、電極密度を良好に制御できる。その結果として、電極の厚み方向と垂直な方向における黒鉛粒子の配向性が高くなりすぎず、入出力特性の低下及び高密度実装時の容量と効率の低下が抑制される傾向にある。
第3黒鉛粒子の粒子径比が0.75以下であることで、塗膜が軟らかくなりすぎずプレス後のスプリングバック(プレス前の状態に戻ろうとする現象)が抑制され、電極密度を良好に制御できる。
第3黒鉛粒子の粒子径比は0.60~0.75であることが好ましく、0.65~0.75であることがより好ましい。
The third graphite particles have a ratio of D50 of the third graphite particles to D50 of the first graphite particles (D50 of the third graphite particles/D50 of the first graphite particles, hereinafter also referred to as particle size ratio) in the volume-based particle size distribution. ) is in the range of 0.55 to 0.75.
Since the third graphite particles whose particle size ratio is within the above range are finer particles than the first graphite particles (particle size ratio is smaller than 1), they tend to be harder graphite particles than the first graphite particles. be. For this reason, by forming a coating film using a negative electrode material containing third graphite particles, deformation of particles due to press pressure for densification can be further suppressed. As a result, a sufficient permeation path for the electrolyte is ensured, and the electrolyte tends to permeate smoothly.
By setting the particle size ratio of the third graphite particles to 0.55 or more, the coating film does not become too hard, suppressing the tendency for the press pressure required to obtain the desired electrode density to increase, and improving the electrode density. Can be controlled. As a result, the orientation of the graphite particles in the direction perpendicular to the electrode thickness does not become too high, which tends to suppress deterioration in input/output characteristics and deterioration in capacity and efficiency during high-density packaging.
By setting the particle size ratio of the third graphite particles to 0.75 or less, the coating film does not become too soft and springback after pressing (a phenomenon in which it tries to return to the state before pressing) is suppressed, resulting in good electrode density. Can be controlled.
The particle diameter ratio of the third graphite particles is preferably 0.60 to 0.75, more preferably 0.65 to 0.75.

第3黒鉛粒子は、亜麻仁油吸油量が40mL/100g~55mL/100gである。
第3黒鉛粒子の亜麻仁油吸油量が40mL/100g以上であると、粒子間の空隙が小さすぎず、充填が進みすぎない。このため、乾燥条件等により塗膜厚さが変動しにくく、高圧でプレスしても電極密度の変動が生じにくい。更に、プレスによる残留応力が小さいために、負極が集電体から剥離しにくい。その結果、入出力特性及びサイクル特性が良好に維持される。
第3黒鉛粒子の亜麻仁油吸油量が55mL/100g以下であると、第1黒鉛粒子及び第2黒鉛粒子の粒子間の空隙に対する微細粒子の量が多すぎず、電解液が円滑に浸透する。また、リチウムイオンの拡散抵抗が小さく、電池性能全般、中でも連続での充電受入性(パルス充電特性)の劣化が抑制される。
リチウムイオン二次電池の性能をより向上させる点から、第3黒鉛粒子の亜麻仁油吸油量は41mL/100g~55mL/100gであることが好ましく、41mL/100g~50mL/100gであることがより好ましい。
The third graphite particles have a linseed oil absorption of 40 mL/100 g to 55 mL/100 g.
When the linseed oil absorption amount of the third graphite particles is 40 mL/100 g or more, the voids between the particles are not too small and filling does not proceed too much. Therefore, the coating thickness is less likely to change due to drying conditions, etc., and the electrode density is less likely to change even when pressed under high pressure. Furthermore, since the residual stress caused by pressing is small, the negative electrode is difficult to peel off from the current collector. As a result, input/output characteristics and cycle characteristics are maintained well.
When the linseed oil absorption amount of the third graphite particles is 55 mL/100 g or less, the amount of fine particles relative to the spaces between the first graphite particles and the second graphite particles is not too large, and the electrolyte solution penetrates smoothly. In addition, the diffusion resistance of lithium ions is small, and deterioration of battery performance in general, especially in continuous charging acceptability (pulse charging characteristics), is suppressed.
In order to further improve the performance of the lithium ion secondary battery, the linseed oil absorption amount of the third graphite particles is preferably 41 mL/100 g to 55 mL/100 g, more preferably 41 mL/100 g to 50 mL/100 g. .

第3黒鉛粒子は、複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている。
複数の天然黒鉛粒子からなる二次粒子及び低結晶炭素による被覆の詳細及び好ましい態様については、第1黒鉛粒子の記載を参照できる。
The third graphite particle is a secondary particle composed of a plurality of natural graphite particles, and at least a portion of the surface thereof is coated with a carbon material having lower crystallinity than the natural graphite particle.
For details and preferred embodiments of the secondary particles consisting of a plurality of natural graphite particles and the coating with low crystalline carbon, the description of the first graphite particles can be referred to.

第1黒鉛粒子の好ましい態様として上述した内容は、第3黒鉛粒子の好ましい態様として参照できる。 The contents described above as preferred embodiments of the first graphite particles can be referred to as preferred embodiments of the third graphite particles.

(黒鉛粒子の混合比)
本開示の負極材において、第2黒鉛粒子の量は、黒鉛粒子の全質量に対し10質量%~55質量%である。
第2黒鉛粒子は粒度分布が広く、第1黒鉛粒子よりも大きい粒子と、第1黒鉛粒子よりも細かい粒子とを含んでいる。粒度分布の異なる第1黒鉛粒子と第2黒鉛粒子とをブレンドすることで、粒子間の空隙を相互に埋める状態となり、得られる負極塗膜の充填状態を制御することができる。すなわち、負極製造におけるプレス工程において、プレス押圧力を塗膜内部に均一に掛けられるようになる。その結果、塗膜の厚さ方向における密度のバラツキが少なくなると共に、電解液の浸透が円滑に行われるようになる。また、第1黒鉛粒子は比較的細かい粒子であるとともに表面の少なくとも一部が低結晶炭素で被覆されているため、第2黒鉛粒子(特に、低結晶炭素で被覆されていない第2黒鉛粒子)よりも硬い傾向にある。硬さの異なる第1黒鉛粒子と第2黒鉛粒子のように硬さの異なる黒鉛粒子をブレンドすることで、高圧でプレスしたときの粒子の変形が抑制され、電解液の浸透経路が充分に確保され、電解液が円滑に浸透する。
(Mixing ratio of graphite particles)
In the negative electrode material of the present disclosure, the amount of the second graphite particles is 10% by mass to 55% by mass based on the total mass of graphite particles.
The second graphite particles have a wide particle size distribution and include particles larger than the first graphite particles and particles smaller than the first graphite particles. By blending the first graphite particles and the second graphite particles having different particle size distributions, the voids between the particles are mutually filled, and the filling state of the resulting negative electrode coating film can be controlled. That is, in the press step in manufacturing the negative electrode, press force can be applied uniformly to the inside of the coating film. As a result, variations in density in the thickness direction of the coating film are reduced, and the electrolytic solution permeates smoothly. In addition, since the first graphite particles are relatively fine particles and at least a part of the surface is coated with low-crystalline carbon, the second graphite particles (especially the second graphite particles not coated with low-crystalline carbon) It tends to be harder. By blending graphite particles with different hardness, such as the first graphite particle and the second graphite particle, deformation of the particle when pressed under high pressure is suppressed, and a sufficient penetration path for the electrolyte is ensured. This allows the electrolyte to penetrate smoothly.

本開示の負極材は、第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%以上であることで、第1黒鉛粒子の空隙を埋める第2黒鉛粒子由来の微細粒子が充分に存在する。このため、粒子間の接触点が充分に確保されて電子的な抵抗が小さく、電池性能全般の劣化が抑制される。
本開示の負極材は、第2黒鉛粒子の量が黒鉛粒子の全質量に対し55質量%以下であることで、比較的軟質な第2黒鉛粒子のプレス押圧力による粒子の変形が発生しにくい。このため、電解液の浸透が円滑に行われ、リチウムイオンの拡散抵抗が小さく、電池性能全般、中でも連続での充電受入性(パルス充電特性)の劣化が抑制される傾向にある。さらに、第2黒鉛粒子由来の粗大粒子の量が多すぎず、電極内での充放電による局所的な膨張収縮が抑制される。その結果、集電体からの電極の剥離が抑制されてサイクル特性が良好に維持される。
In the negative electrode material of the present disclosure, the amount of the second graphite particles is 10% by mass or more based on the total mass of the graphite particles, so that there are sufficient fine particles derived from the second graphite particles to fill the voids of the first graphite particles. do. Therefore, sufficient contact points between particles are ensured, electronic resistance is small, and overall deterioration of battery performance is suppressed.
In the negative electrode material of the present disclosure, since the amount of the second graphite particles is 55% by mass or less based on the total mass of the graphite particles, deformation of the particles due to the pressing force of the relatively soft second graphite particles is unlikely to occur. . For this reason, the electrolytic solution permeates smoothly, the diffusion resistance of lithium ions is small, and deterioration of battery performance in general, especially continuous charging acceptability (pulse charging characteristics), tends to be suppressed. Furthermore, the amount of coarse particles derived from the second graphite particles is not too large, and local expansion and contraction due to charging and discharging within the electrode is suppressed. As a result, peeling of the electrode from the current collector is suppressed, and cycle characteristics are maintained favorably.

第2黒鉛粒子の量は、黒鉛粒子の全質量に対し15質量%~55質量%であることが好ましく、20質量%~55質量%であることがより好ましく25質量%~55質量%であることがさらに好ましい。 The amount of the second graphite particles is preferably 15% to 55% by mass, more preferably 20% to 55% by mass, based on the total mass of the graphite particles. It is even more preferable.

本開示の負極材が第3黒鉛粒子を含む場合、第3黒鉛粒子の量は黒鉛粒子の全質量に対し10質量%~25質量%であることが好ましい。 When the negative electrode material of the present disclosure includes third graphite particles, the amount of the third graphite particles is preferably 10% by mass to 25% by mass based on the total mass of graphite particles.

負極材に含まれる第3黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%以上であると、第1黒鉛粒子の空隙を埋める第2黒鉛粒子由来の微細粒子及び第3黒鉛粒子由来の微細粒子が充分に存在する。このため、粒子間の接触点が充分に確保されて電子的な抵抗が小さく、電池性能全般の劣化が抑制される傾向にある。 When the amount of the third graphite particles contained in the negative electrode material is 10% by mass or more based on the total mass of the graphite particles, fine particles derived from the second graphite particles and fine particles derived from the third graphite particles fill the voids of the first graphite particles. There are sufficient fine particles. Therefore, sufficient contact points between particles are ensured, electronic resistance is small, and overall deterioration of battery performance tends to be suppressed.

負極材に含まれる第3黒鉛粒子の量が黒鉛粒子の全質量に対し25質量%以下であると、第2黒鉛粒子及び第3黒鉛粒子由来の微細粒子が多すぎず、電解液の浸透が円滑に行われる。このため、リチウムイオンの拡散抵抗が小さく、電池性能全般、中でも連続での充電受入性(パルス充電特性)の劣化が抑制される傾向にある。さらに、第2黒鉛粒子由来の粗大粒子の量が多すぎず、電極内での充放電による局所的な膨張収縮が抑制される。その結果、集電体からの電極の剥離が抑制されてサイクル特性が良好に維持される。
上述した効果の観点からは、本開示の負極材が第3黒鉛粒子を含む場合、第2黒鉛粒子の量は黒鉛粒子の全質量に対し25質量%~50質量%であることが好ましい。
When the amount of the tertiary graphite particles contained in the negative electrode material is 25% by mass or less based on the total mass of the graphite particles, the fine particles derived from the second graphite particles and the tertiary graphite particles are not too large, and the penetration of the electrolyte is prevented. It is done smoothly. For this reason, the diffusion resistance of lithium ions is small, and deterioration of battery performance in general, particularly continuous charging acceptability (pulse charging characteristics), tends to be suppressed. Furthermore, the amount of coarse particles derived from the second graphite particles is not too large, and local expansion and contraction due to charging and discharging within the electrode is suppressed. As a result, peeling of the electrode from the current collector is suppressed, and cycle characteristics are maintained favorably.
From the viewpoint of the above-mentioned effects, when the negative electrode material of the present disclosure includes the third graphite particles, the amount of the second graphite particles is preferably 25% by mass to 50% by mass based on the total mass of the graphite particles.

本開示において「黒鉛粒子の全質量」とは、負極材が黒鉛粒子として第1黒鉛粒子及び第2黒鉛粒子のみを含む場合は第1黒鉛粒子及び第2黒鉛粒子の合計質量を意味し、負極材が第1黒鉛粒子又は第2黒鉛粒子に該当しない黒鉛粒子(例えば、第3黒鉛粒子)をさらに含む場合は第1黒鉛粒子、第2黒鉛粒子及びこれらに該当しない黒鉛粒子の合計質量を意味する。 In the present disclosure, the "total mass of graphite particles" means the total mass of the first graphite particles and the second graphite particles when the negative electrode material includes only the first graphite particles and the second graphite particles as graphite particles, and If the material further contains graphite particles that do not fall under the first graphite particles or second graphite particles (for example, third graphite particles), it means the total mass of the first graphite particles, second graphite particles, and graphite particles that do not fall under these. do.

本開示の負極材において第1黒鉛粒子及び第2黒鉛粒子の合計質量、又は第1黒鉛粒子、第2黒鉛粒子及び第3黒鉛粒子の合計質量は、黒鉛粒子の全質量に対し80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 In the negative electrode material of the present disclosure, the total mass of the first graphite particles and the second graphite particles, or the total mass of the first graphite particles, the second graphite particles, and the third graphite particles is 80% by mass or more with respect to the total mass of the graphite particles. The content is preferably 90% by mass or more, and even more preferably 100% by mass.

本開示において、2種以上の黒鉛粒子を混合する方法は特に制限されない。例えば、V型混合機などの粉末混合機を用いて混合してもよい。あるいは、スラリーの調製時に2種以上の黒鉛粒子を他の材料とともに混合してもよい。 In the present disclosure, the method of mixing two or more types of graphite particles is not particularly limited. For example, they may be mixed using a powder mixer such as a V-type mixer. Alternatively, two or more types of graphite particles may be mixed together with other materials when preparing the slurry.

負極材(すなわち、黒鉛粒子の混合物)の粒子径、見掛け密度、圧縮度及び亜麻仁油吸油量は特に制限されない。
例えば、負極材の体積基準の粒度分布におけるD10は8μm~13μmの範囲から選択でき、D50は14μm~20μmの範囲から選択でき、D90は24μm~43μmの範囲から選択できる。
負極材のT1は0.55g/cc以上であってよく、T2は0.70g/cc以上であってよく、T3は1.00g/cc以上であってよく、圧縮度は21以下であってよい。
負極材の亜麻仁油吸油量は45mL/100g~56mL/100gの範囲から選択できる。
The particle size, apparent density, degree of compaction, and linseed oil absorption amount of the negative electrode material (ie, the mixture of graphite particles) are not particularly limited.
For example, D10 in the volume-based particle size distribution of the negative electrode material can be selected from the range of 8 μm to 13 μm, D50 can be selected from the range of 14 μm to 20 μm, and D90 can be selected from the range of 24 μm to 43 μm.
T1 of the negative electrode material may be 0.55 g/cc or more, T2 may be 0.70 g/cc or more, T3 may be 1.00 g/cc or more, and the degree of compression is 21 or less. good.
The linseed oil absorption amount of the negative electrode material can be selected from the range of 45 mL/100 g to 56 mL/100 g.

<リチウムイオン二次電池用負極>
本開示のリチウムイオン二次電池用負極(以下、負極ともいう)は、前述した負極材を含む負極材層と、集電体と、を含む。リチウムイオン二次電池用負極は、前述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。
<Negative electrode for lithium ion secondary batteries>
The negative electrode for a lithium ion secondary battery (hereinafter also referred to as negative electrode) of the present disclosure includes a negative electrode material layer containing the above-described negative electrode material, and a current collector. The negative electrode for a lithium ion secondary battery may include other components as necessary in addition to the negative electrode material layer and current collector containing the negative electrode material described above.

負極を作製する方法は、特に制限されない。例えば、負極材と結着剤を溶剤とともに混錬してスラリー状の負極材組成物を調製し、これを集電体上に塗布して作製する方法、負極材組成物をシート状、ペレット状等の形状に成形し、これを集電体と一体化する方法などが挙げられる。混錬は、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置を用いて行うことができる。 The method for producing the negative electrode is not particularly limited. For example, a method in which a negative electrode material composition and a binder are kneaded together with a solvent to prepare a slurry-like negative electrode material composition, and this is coated on a current collector; Examples include a method of molding it into a shape such as and integrating it with a current collector. Kneading can be performed using a dispersion device such as a stirrer, a ball mill, a super sand mill, a pressure kneader, or the like.

負極材組成物の調整に用いる結着剤は、特に限定されない。結着剤としては、スチレンーブタジエン共重合体、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、アクリロニトリル、メタクリロニトリル、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等のエチレン性不飽和カルボン酸エステルの重合体、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸の重合体、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。負極材組成物が結着剤を含む場合、その量は特に制限されない。結着剤の含有量は、例えば、負極材と結着剤の合計100質量部に対して0.5質量部~20質量部であってもよい。 The binder used for preparing the negative electrode material composition is not particularly limited. Ethylenically unsaturated binders include styrene-butadiene copolymer, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, acrylonitrile, methacrylonitrile, hydroxyethyl acrylate, hydroxyethyl methacrylate, etc. Polymers of carboxylic acid esters, polymers of ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, Examples include high polymer compounds with high ionic conductivity such as polyacrylonitrile. When the negative electrode material composition contains a binder, the amount thereof is not particularly limited. The content of the binder may be, for example, 0.5 parts by mass to 20 parts by mass based on a total of 100 parts by mass of the negative electrode material and the binder.

溶剤は、結着剤を溶解又は分散可能な溶剤であれば特に制限されない。具体的には、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤が挙げられる。溶剤の含有量は、例えば、負極材100質量部に対して60質量部~150質量部であってもよい。 The solvent is not particularly limited as long as it can dissolve or disperse the binder. Specific examples include organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, and γ-butyrolactone. The content of the solvent may be, for example, 60 parts by mass to 150 parts by mass with respect to 100 parts by mass of the negative electrode material.

負極材組成物は、増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース又はその塩、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸又はその塩、アルギン酸又はその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。負極材組成物が増粘剤を含む場合、その量は特に制限されない。増粘剤の含有量は、例えば、負極材100質量部に対して0.1質量部~5質量部であってもよい。 The negative electrode material composition may also include a thickener. Examples of the thickener include carboxymethylcellulose or a salt thereof, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid or a salt thereof, alginic acid or a salt thereof, oxidized starch, phosphorylated starch, casein, and the like. When the negative electrode material composition contains a thickener, the amount thereof is not particularly limited. The content of the thickener may be, for example, 0.1 parts by mass to 5 parts by mass based on 100 parts by mass of the negative electrode material.

負極材組成物は、導電補助材を含んでもよい。導電補助材としては、天然黒鉛、人造黒鉛、カーボンブラック(アセチレンブラック、サーマルブラック、ファーネスブラック等)等の炭素材料、導電性を示す酸化物、導電性を示す窒化物などが挙げられる。負極材組成物が導電補助材を含む場合、その量は特に制限されない。導電補助材の含有量は、例えば、負極材100質量部に対して0.5質量部~15質量部であってもよい。 The negative electrode material composition may also include a conductive auxiliary material. Examples of the conductive auxiliary material include carbon materials such as natural graphite, artificial graphite, carbon black (acetylene black, thermal black, furnace black, etc.), oxides exhibiting conductivity, nitrides exhibiting conductivity, and the like. When the negative electrode material composition contains a conductive auxiliary material, the amount thereof is not particularly limited. The content of the conductive auxiliary material may be, for example, 0.5 parts by mass to 15 parts by mass based on 100 parts by mass of the negative electrode material.

集電体の材質は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等から選択できる。集電体の状態は特に制限されず、箔、穴開け箔、メッシュ等から選択できる。また、ポーラスメタル(発砲メタル)、カーボンペーパー等の多孔性材料なども集電体として使用可能である。 The material of the current collector is not particularly limited, and can be selected from aluminum, copper, nickel, titanium, stainless steel, and the like. The state of the current collector is not particularly limited, and can be selected from foil, perforated foil, mesh, and the like. Further, porous materials such as porous metal (metal foam) and carbon paper can also be used as the current collector.

負極材組成物を集電体に塗布して負極材層を形成する場合、その方法は特に制限されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、コンマコート法、グラビアコート法、スクリーン印刷法等の公知の方法を採用できる。負極材組成物を集電体に塗布した後は、負極材組成物に含まれる溶剤を乾燥により除去する。乾燥は、例えば、熱風乾燥機、赤外線乾燥機又はこれらの装置の組み合わせを用いて行うことができる。必要に応じて圧延処理を行ってもよい。圧延処理は、平板プレス、カレンダーロール等の方法で行うことができる。 When forming a negative electrode material layer by applying a negative electrode material composition to a current collector, the method is not particularly limited, and metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, Known methods such as a doctor blade method, a comma coat method, a gravure coat method, and a screen printing method can be employed. After applying the negative electrode material composition to the current collector, the solvent contained in the negative electrode material composition is removed by drying. Drying can be carried out using, for example, a hot air dryer, an infrared dryer or a combination of these devices. Rolling treatment may be performed as necessary. The rolling treatment can be carried out using a flat plate press, a calendar roll, or the like.

シート、ペレット等の形状に成形された負極材組成物を集電体と一体化して負極材層を形成する場合、一体化の方法は特に制限されない。例えば、ロール、平板プレス又はこれらの手段の組み合わせにより行うことができる。一体化する際の圧力は、例えば、1MPa~200MPaであることが好ましい。 When forming a negative electrode material layer by integrating a negative electrode material composition formed into a shape of a sheet, pellet, etc. with a current collector, the method of integration is not particularly limited. For example, it can be carried out using a roll, a flat plate press, or a combination of these means. The pressure during integration is preferably, for example, 1 MPa to 200 MPa.

<リチウムイオン二次電池>
本開示のリチウムイオン二次電池は、前述した本開示のリチウムイオン二次電池用負極(以下、単に「負極」とも称する。)と、正極と、電解液とを含む。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present disclosure includes the above-described negative electrode for a lithium ion secondary battery of the present disclosure (hereinafter also simply referred to as "negative electrode"), a positive electrode, and an electrolyte.

正極は、前述した負極の作製方法と同様にして、集電体上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にしたものが使用可能である。 The positive electrode can be obtained by forming a positive electrode material layer on the current collector in the same manner as the method for manufacturing the negative electrode described above. As the current collector, metals such as aluminum, titanium, stainless steel, or alloys can be used in the form of foil, perforated foil, mesh, or the like.

正極材層の形成に用いる正極材は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物(金属酸化物、金属硫化物等)及び導電性高分子材料が挙げられる。より具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、これらの複酸化物(LiCoNiMn、x+y+z=1)、添加元素M‘を含む複酸化物(LiCoNiMnM’、a+b+c+d=1、M’:Al、Mg、Ti、Zr又はGe)、スピネル型リチウムマンガン酸化物(LiMn)、リチウムバナジウム化合物、V、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)等のリチウム含有化合物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などが挙げられる。正極材層の形成に用いる正極材は、1種単独であっても2種以上であってもよい。 The positive electrode material used to form the positive electrode material layer is not particularly limited. Examples include metal compounds (metal oxides, metal sulfides, etc.) and conductive polymer materials that can be doped with or intercalated with lithium ions. More specifically, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), double oxides thereof (LiCo x Ni y Mn z O 2 , x+y+z=1), Complex oxide containing additive element M' (LiCo a Ni b Mn c M' d O 2 , a+b+c+d=1, M': Al, Mg, Ti, Zr or Ge), spinel type lithium manganese oxide (LiMn 2 O 4 ), lithium vanadium compound, V2O5 , VO2 , MnO2 , TiO2 , MoV2O8 , TiS2 , V2S5 , VS2 , MoS2 , MoS3 , Cr3O8 , Cr2 Examples include lithium-containing compounds such as O 5 and olivine-type LiMPO 4 (M: Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyacene, and porous carbon. The number of positive electrode materials used to form the positive electrode material layer may be one type alone or two or more types.

電解液は特に制限されず、例えば、電解質としてのリチウム塩を非水系溶媒に溶解したもの(いわゆる有機電解液)が使用可能である。
リチウム塩としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等が挙げられる。電解液に含まれるリチウム塩は、1種単独であっても2種以上であってもよい。
非水系溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等が挙げられる。電解液に含まれる非水系溶媒は、1種単独であっても2種以上であってもよい。
The electrolytic solution is not particularly limited, and for example, one in which a lithium salt as an electrolyte is dissolved in a non-aqueous solvent (a so-called organic electrolytic solution) can be used.
Examples of the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 and the like. The number of lithium salts contained in the electrolytic solution may be one type alone or two or more types.
Examples of non-aqueous solvents include ethylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, cyclohexylbenzene, sulfolane, propane sultone, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-Methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1, Examples include 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, trimethyl phosphate, and triethyl phosphate. The number of non-aqueous solvents contained in the electrolytic solution may be one type alone or two or more types.

リチウムイオン二次電池における正極及び負極の状態は、特に制限されない。例えば、正極及び負極と、必要に応じて正極及び負極の間に配置されるセパレーターとからなる積層体の状態であってもよい。積層体は、渦巻状に巻回した状態であっても、複数の積層体をさらに積層した状態であってもよい。 The states of the positive electrode and negative electrode in the lithium ion secondary battery are not particularly limited. For example, it may be in the form of a laminate consisting of a positive electrode, a negative electrode, and a separator placed between the positive electrode and the negative electrode, if necessary. The laminate may be in a spirally wound state or in a state in which a plurality of laminates are further laminated.

セパレーターは特に制限されず、例えば、樹脂製の不織布、クロス、微孔フィルム又はそれらを組み合わせたものが使用可能である。樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とするものが挙げられる。リチウムイオン二次電池の構造上、正極と負極が直接接触しない場合は、セパレーターは使用しなくてもよい。 The separator is not particularly limited, and for example, resin nonwoven fabric, cloth, microporous film, or a combination thereof can be used. Examples of the resin include those whose main component is polyolefin such as polyethylene and polypropylene. Due to the structure of the lithium ion secondary battery, if the positive electrode and negative electrode do not come into direct contact, a separator may not be used.

リチウムイオン二次電池の形状は、特に制限されない。例えば、ラミネート型電池、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池及び角型電池が挙げられる。 The shape of the lithium ion secondary battery is not particularly limited. Examples include laminated batteries, paper batteries, button batteries, coin batteries, stacked batteries, cylindrical batteries, and square batteries.

本開示のリチウムイオン二次電池は、出力特性に優れるため、電気自動車、パワーツール、電力貯蔵装置等に使用される大容量のリチウムイオン二次電池として好適である。特に、加速性能及びブレーキ回生性能の向上のために大電流での充放電が求められている電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)等に使用されるリチウムイオン二次電池として好適である。 Since the lithium ion secondary battery of the present disclosure has excellent output characteristics, it is suitable as a large capacity lithium ion secondary battery used in electric vehicles, power tools, power storage devices, and the like. In particular, it is used in electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), etc., which require charging and discharging with large currents to improve acceleration performance and brake regeneration performance. Suitable as a lithium ion secondary battery.

以下、実施例に基づいて本開示を詳しく説明する。ただし、本開示は以下の実施例によって限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施できるものである。 Hereinafter, the present disclosure will be described in detail based on Examples. However, the present disclosure is not limited to the following examples, and can be implemented with appropriate modifications within the scope without changing the gist thereof.

<実施例1~実施例5、比較例1~比較例7>
[第1黒鉛粒子の作製]
平均粒子径16μmの球形天然黒鉛(複数の天然黒鉛粒子からなる二次粒子)100質量部と、コールタールピッチ(軟化点90℃、残炭率(炭化率)50%)6質量部とを混合して混合物を得た。次いで、混合物を窒素流通下、20℃/時間の昇温速度で950℃まで昇温し、950℃(焼成処理温度)にて1時間保持して、低結晶炭素で被覆された黒鉛粒子を得た。得られた黒鉛粒子をカッターミルで解砕した後、300メッシュ篩で篩分けを行い、その篩下分を黒鉛粒子(試料番号1)とした。
<Example 1 to Example 5, Comparative Example 1 to Comparative Example 7>
[Preparation of first graphite particles]
Mix 100 parts by mass of spherical natural graphite (secondary particles consisting of a plurality of natural graphite particles) with an average particle diameter of 16 μm and 6 parts by mass of coal tar pitch (softening point 90°C, residual carbon ratio (carbonization ratio) 50%). A mixture was obtained. Next, the mixture was heated to 950°C at a temperature increase rate of 20°C/hour under nitrogen flow and held at 950°C (calcination temperature) for 1 hour to obtain graphite particles coated with low crystalline carbon. Ta. After the obtained graphite particles were crushed with a cutter mill, they were sieved with a 300 mesh sieve, and the portion under the sieve was used as graphite particles (sample number 1).

黒鉛粒子(試料番号1)の作製において、炭素被覆量又は原料として用いる球形天然黒鉛の種類を変更することで、黒鉛粒子(試料番号2~11)を作製した。
得られた黒鉛粒子(試料番号1~11)については、下記方法により、粒子径(D0.1、D10、D50及びD90)の測定、N比表面積の測定、吸油量の測定、R値の測定、CO吸着量の測定、平均面間隔d002の測定、円形度の測定、見掛け密度の測定、及び圧縮度の算出を実施した。各物性値を表1に示す。なお、表1中の炭素被覆量(質量部)は、球形天然黒鉛100質量部に対するコールタールピッチの量(質量部)を意味する。
In the production of graphite particles (sample number 1), graphite particles (sample numbers 2 to 11) were produced by changing the amount of carbon coating or the type of spherical natural graphite used as a raw material.
Regarding the obtained graphite particles (sample numbers 1 to 11), the following methods were used to measure particle diameters (D0.1, D10, D50 and D90), measure N2 specific surface area, measure oil absorption, and measure R value. Measurement, measurement of CO 2 adsorption amount, measurement of average interplanar spacing d 002 , measurement of circularity, measurement of apparent density, and calculation of degree of compaction were carried out. Table 1 shows the physical property values. The amount of carbon coating (parts by mass) in Table 1 means the amount (parts by mass) of coal tar pitch relative to 100 parts by mass of spherical natural graphite.

[第2黒鉛粒子の作製]
平均粒子径が10μmのコークス粉末43質量部、コールタールピッチ18.5質量部、炭化ケイ素18.5質量部、及び平均粒子径が20μmの球形天然黒鉛20質量部を混合し、100℃で1時間撹拌して混合物を得た。次いで、この混合物を粒子径が25μmとなるように粉砕し、得られた粉砕粉を金型に入れて直方体に成形した。得られた直方体を窒素雰囲気中で1000℃で熱処理し、次いで2800℃で焼成して、黒鉛化可能な成分を黒鉛化して黒鉛成形体を得た。得られた黒鉛成形体をハンマーで粗砕した後、ピンミルで粉砕して黒鉛粒子粉末を得た。さらに、300メッシュ篩で篩分けを行い、その篩下分を黒鉛粒子(試料番号12)とした。
得られた黒鉛粒子(試料番号12)については、下記方法により、粒子径(D0.1、D10、D50及びD90)の測定、及びCO吸着量の測定を実施した。各物性値を表1に示す。
[Preparation of second graphite particles]
43 parts by mass of coke powder with an average particle diameter of 10 μm, 18.5 parts by mass of coal tar pitch, 18.5 parts by mass of silicon carbide, and 20 parts by mass of spherical natural graphite with an average particle diameter of 20 μm were mixed and heated at 100°C. A mixture was obtained by stirring for an hour. Next, this mixture was pulverized to a particle size of 25 μm, and the obtained pulverized powder was placed in a mold and formed into a rectangular parallelepiped. The obtained rectangular parallelepiped was heat-treated at 1000°C in a nitrogen atmosphere, and then fired at 2800°C to graphitize the graphitizable components to obtain a graphite molded body. The obtained graphite compact was roughly crushed with a hammer and then crushed with a pin mill to obtain graphite particle powder. Furthermore, sieving was performed using a 300 mesh sieve, and the portion under the sieve was used as graphite particles (sample number 12).
Regarding the obtained graphite particles (sample number 12), particle diameters (D0.1, D10, D50, and D90) and CO 2 adsorption amount were measured by the following method. Table 1 shows the physical property values.

[負極材の作製]
第1黒鉛粒子としての黒鉛粒子(試料番号2~11)と、第2黒鉛粒子としての黒鉛粒子(試料番号12)とをV型混合器で2時間混合して、実施例1~5及び比較例2~7の負極材を作製した。各負極材の作製において、第2黒鉛粒子の配合量は黒鉛粒子の全質量に対し35質量%とした。また、黒鉛粒子(試料番号12)と混合していない黒鉛粒子(試料番号1)を比較例1とした。
得られた負極材については、下記方法により、粒子径(D10、D50及びD90)の測定、見掛け密度の測定、圧縮度の算出、N比表面積の測定、吸油量の測定を実施した。各物性値を表1に示す。
[Preparation of negative electrode material]
Graphite particles (sample numbers 2 to 11) as the first graphite particles and graphite particles (sample number 12) as the second graphite particles were mixed for 2 hours in a V-type mixer, and Examples 1 to 5 and Comparative Negative electrode materials of Examples 2 to 7 were produced. In the production of each negative electrode material, the blending amount of the second graphite particles was 35% by mass based on the total mass of graphite particles. Further, Comparative Example 1 was a graphite particle (sample number 1) that was not mixed with graphite particles (sample number 12).
Regarding the obtained negative electrode material, measurement of particle diameter (D10, D50, and D90), measurement of apparent density, calculation of degree of compaction, measurement of N2 specific surface area, and measurement of oil absorption were performed using the following methods. Table 1 shows the physical property values.


[粒子径の測定]
試料を質量比0.2%の界面活性剤(商品名:リボノールT/15、ライオン株式会社)とともに精製水中に分散させて得た分散液を、レーザー回折式粒度分布測定装置(SALD-3000J、株式会社島津製作所)の試料水槽に入れた。次いで、溶液に超音波をかけながらポンプで循環させ(ポンプ流量は最大値から65%)、吸光度を0.10~0.15となるように水量を調整し、体積基準の粒度分布を測定した。
得られた体積基準の粒度分布から、試料のD0.1、D10、D50及びD90に相当する粒子径を取得した。
[Measurement of particle size]
A dispersion obtained by dispersing a sample in purified water with a surfactant (trade name: Ribonol T/15, Lion Corporation) at a mass ratio of 0.2% was analyzed using a laser diffraction particle size distribution analyzer (SALD-3000J, (Shimadzu Corporation) sample tank. Next, the solution was circulated with a pump while applying ultrasound (pump flow rate was 65% from the maximum value), the amount of water was adjusted so that the absorbance was 0.10 to 0.15, and the volume-based particle size distribution was measured. .
From the obtained volume-based particle size distribution, particle diameters corresponding to D0.1, D10, D50, and D90 of the sample were obtained.

[静置法によるゆるみ見掛け密度の測定]
容量30cmのメスシリンダー(筒井理化学機械株式会社、JIS K-5101準拠仕様)に、500μmのメッシュ付き漏斗を用いて試料を自由落下させた。メスシリンダーから試料を溢れさせ、メスシリンダーの口で試料をすり切り、試料の体積を30cmとした。試料の入ったメスシリンダーの質量を測り、測定値からメスシリンダーの質量を差し引いて試料の質量を求めた。下記式により、試料のゆるみ見掛け密度(T1)を算出した。
T1={(試料の質量)/(試料の体積:30cm)}
[Measurement of loose apparent density by standing method]
The sample was freely dropped into a graduated cylinder (Tsutsui Rikagaku Kikai Co., Ltd., JIS K-5101 compliant specifications) with a capacity of 30 cm 3 using a funnel with a 500 μm mesh. The sample was overflowed from the graduated cylinder, and the sample was ground with the opening of the graduated cylinder to make the volume of the sample 30 cm 3 . The mass of the graduated cylinder containing the sample was measured, and the mass of the graduated cylinder was subtracted from the measured value to determine the mass of the sample. The loose apparent density (T1) of the sample was calculated using the following formula.
T1={(mass of sample)/(volume of sample: 30cm 3 )}

[30回および250回タップ法による見掛け密度の測定]
容量150cmの目盛付き平底試験管(株式会社蔵持科学器械製作所、KRS-406)に試料100cmを投入し、試験管に栓をした。この試験管を5cmの高さから30回落下させた後の試料の質量及び体積を求めた。下記式により、試料の30回タップ法による見掛け密度(T2)を算出した。
T2={(試料の質量)/(30回タップした後の試料の体積)}
試料の250回タップ法による見掛け密度T3は、5cmの高さからの落下回数を250回にする以外は、T2と同様にして測定した。
[Measurement of apparent density by 30 and 250 tap methods]
100 cm 3 of the sample was placed in a graduated flat-bottomed test tube with a capacity of 150 cm 3 (Kuramochi Scientific Instruments Manufacturing Co., Ltd., KRS-406), and the test tube was capped. The test tube was dropped 30 times from a height of 5 cm, and the mass and volume of the sample were determined. The apparent density (T2) of the sample was calculated by the 30-tap method using the following formula.
T2={(mass of sample)/(volume of sample after 30 taps)}
The apparent density T3 of the sample was measured by the 250-tap method in the same manner as T2 except that the number of drops from a height of 5 cm was changed to 250 times.

[圧縮度の算出]
試料の静置法によるゆるみ見掛け密度(T1)、30回タップ法による見掛け密度(T2)及び250回タップ法による見掛け密度(T3)の測定値から、下記式により試料の圧縮度を算出した。
圧縮度(%)=[(T2-T1)/T3]×100
[Calculation of compression degree]
The degree of compression of the sample was calculated using the following formula from the measured values of the loose apparent density (T1) of the sample by the standing method, the apparent density (T2) of the 30-tap method, and the apparent density (T3) of the 250-tap method.
Compression degree (%) = [(T2-T1)/T3] x 100

[N比表面積の測定]
試料のN比表面積は、高速比表面積/細孔分布測定装置(FlowSorbIII、株式会社島津製作所)を用いて、前処理乾燥(200℃で2時間以上)し、次いで液体窒素温度(77K)での窒素吸着を一点法で測定してBET法により算出した。
[Measurement of N2 specific surface area]
The N2 specific surface area of the sample was determined using a high-speed specific surface area/pore distribution measuring device (FlowSorb III, Shimadzu Corporation), after pretreatment drying (at 200°C for 2 hours or more), and then at liquid nitrogen temperature (77K). Nitrogen adsorption was measured using a single point method and calculated using the BET method.

[亜麻仁油吸油量の測定]
試料の亜麻仁油吸油量は、JIS K6217-4:2008「ゴム用カーボンブラック-基本特性-第4部:オイル吸収量の求め方」に記載の方法において、試薬液体としてフタル酸ジブチル(DBP)の代わりに亜麻仁油(関東化学株式会社)を使用して測定した。
具体的には、試料に定速度ビュレットで亜麻仁油を滴定し、粘度特性の変化をトルク検出器から測定した。発生した最大トルクの70%のトルクに対応する、試料の単位質量当りの亜麻仁油の添加量を亜麻仁油吸油量(mL/100g)とした。測定器としては、株式会社あさひ総研の吸収量測定装置を用いた。
[Measurement of linseed oil absorption]
The linseed oil absorption of the sample was determined by using dibutyl phthalate (DBP) as a reagent liquid in the method described in JIS K6217-4:2008 "Carbon black for rubber - Basic properties - Part 4: How to determine oil absorption". Instead, linseed oil (Kanto Kagaku Co., Ltd.) was used for measurement.
Specifically, linseed oil was titrated onto the sample using a constant speed buret, and changes in viscosity characteristics were measured using a torque detector. The amount of linseed oil added per unit mass of the sample corresponding to 70% of the maximum torque generated was defined as the linseed oil absorption amount (mL/100g). As a measuring device, an absorption measuring device manufactured by Asahi Research Institute Co., Ltd. was used.

[R値の測定]
試料のR値は、下記の条件でラマン分光測定を行い、得られたラマン分光スペクトルにおいて、1580cm-1付近の最大ピークの強度Igと、1360cm-1付近の最大ピークの強度Idの強度比(Id/Ig)とした。
ラマン分光測定は、レーザーラマン分光光度計(型番:NRS-1000、日本分光株式会社)を用い、試料が平らになるようにセットした試料板にレーザー光を照射して行った。測定条件は以下の通りである。
レーザー光の波長:532nm
波数分解能:2.56cm-1
測定範囲:1180cm-1~1730cm-1
ピークリサーチ:0.5°/分
[Measurement of R value]
The R value of a sample is determined by performing Raman spectroscopy under the following conditions, and in the obtained Raman spectra, the intensity ratio of the maximum peak intensity Ig near 1580 cm -1 and the maximum peak intensity Id near 1360 cm -1 ( Id/Ig).
Raman spectrometry was performed using a laser Raman spectrophotometer (model number: NRS-1000, JASCO Corporation) by irradiating a sample plate with a laser beam, which was set so that the sample was flat. The measurement conditions are as follows.
Laser light wavelength: 532nm
Wavenumber resolution: 2.56cm -1
Measurement range: 1180cm -1 ~ 1730cm -1
Peak research: 0.5°/min

[CO吸着量の測定]
試料のCO吸着量は、マイクロトラック・ベル株式会社のBelsorpIIを使用して測定した。また、前処理装置として、マイクロトラック・ベル株式会社のBelsorpIIを用いた。なお、CO吸着量は、測定温度273K、相対圧P/P=0.98~0.99(P=平衡圧、P=飽和蒸気圧)での値を用いた。前処理は真空度1Pa以下で、250℃まで5℃/分で昇温し、10分間保持し、その後、350℃まで3℃/分で昇温し、210分間保持した。その後、加熱を中止し、室温になるまで冷却した。吸着量測定の測定相対圧は以下の表2の通り実施した。
上記方法で標準物質のアルミナ粉(BCR-171、No0446、Institute for Reference Materials and Measurements)のCO吸着量を測定すると、0.40cm/gであった。
[Measurement of CO2 adsorption amount]
The CO 2 adsorption amount of the sample was measured using Belsorp II manufactured by Microtrac Bell Co., Ltd. Further, Belsorp II manufactured by Microtrac Bell Co., Ltd. was used as a pretreatment device. Note that the amount of CO 2 adsorption was measured at a measurement temperature of 273 K and a relative pressure P/P 0 =0.98 to 0.99 (P = equilibrium pressure, P 0 = saturated vapor pressure). The pretreatment was carried out under a vacuum degree of 1 Pa or less, and the temperature was raised to 250°C at a rate of 5°C/min and held for 10 minutes, and then the temperature was raised to 350°C at a rate of 3°C/min and held for 210 minutes. Thereafter, heating was stopped and the mixture was cooled to room temperature. The measured relative pressure for adsorption amount measurement was carried out as shown in Table 2 below.
When the CO 2 adsorption amount of the standard substance alumina powder (BCR-171, No. 0446, Institute for Reference Materials and Measurements) was measured using the above method, it was 0.40 cm 3 /g.

Figure 0007444322000002
Figure 0007444322000002

[平均面間隔d002の測定]
試料の平均面間隔d002は、X線回折法により測定した。具体的には試料を石英製の試料ホルダーの凹部分に充填して測定ステージにセットし、広角X線回折装置(株式会社リガク)を用いて以下の条件で測定を行った。
線源:CuKα線(波長=0.15418nm)
出力:40kV、20mA
サンプリング幅:0.010°
走査範囲:10°~35°
スキャンスピード:0.5°/分
[Measurement of average spacing d 002 ]
The average interplanar spacing d 002 of the sample was measured by X-ray diffraction method. Specifically, a sample was filled into a concave portion of a quartz sample holder, set on a measurement stage, and measured using a wide-angle X-ray diffraction device (Rigaku Co., Ltd.) under the following conditions.
Radiation source: CuKα radiation (wavelength = 0.15418 nm)
Output: 40kV, 20mA
Sampling width: 0.010°
Scanning range: 10°~35°
Scan speed: 0.5°/min

[平均円形度の測定]
試料の円形度は、湿式フロー式粒子径・形状分析装置(マルバーン・パナリティカルFPIA-3000)を用いて測定した。測定温度は25℃とし、試料の濃度は10質量%とし、カウントする粒子の数は10000個とした。また、分散用の溶媒として水を使用した。
なお、試料の円形度を測定する前に、試料粉末を予め、分散させておくことが好ましい。例えば、超音波分散、ボルテックスミキサー等を使用して試料を分散させることが可能である。処理の条件は、試料の粒子崩壊又は粒子破壊の影響を抑制するため、測定する試料の強度を鑑みて調整する。
[Measurement of average circularity]
The circularity of the sample was measured using a wet flow particle size/shape analyzer (Malvern Panalytical FPIA-3000). The measurement temperature was 25° C., the sample concentration was 10% by mass, and the number of particles counted was 10,000. Additionally, water was used as a dispersion solvent.
Note that before measuring the circularity of the sample, it is preferable to disperse the sample powder in advance. For example, it is possible to disperse the sample using ultrasonic dispersion, a vortex mixer, or the like. The processing conditions are adjusted in consideration of the strength of the sample to be measured in order to suppress the influence of particle disintegration or particle destruction of the sample.

[負極の作製]
実施例及び比較例にて作製した負極材を用いて以下の手順で試料電極(負極)を作製した。
まず、負極材に増粘剤としてカルボキシメチルセルロース(CMC)と結着剤としてスチレンブタジエンゴム(SBR)を添加した。これらの質量比は、負極材:CMC:SBR=98:1:1とした。これに分散溶液である精製水を添加し、混錬することによりスラリーを得た。このスラリーを負極用の集電体である平均厚みが10μmの圧延銅箔に実質的に均等かつ均質に所定量塗布した(塗布量:10.0mg/cm)。その後、ロールプレスで1.6g/cmに電極密度を調整して、片面に負極材層が形成された圧延銅箔を得た。この圧延銅箔を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。作製した試料電極を用いて、下記の方法により電解液の電極浸透速度及び電極膨潤率を測定した。結果を表3に示す。
[Preparation of negative electrode]
A sample electrode (negative electrode) was produced using the negative electrode materials produced in Examples and Comparative Examples according to the following procedure.
First, carboxymethyl cellulose (CMC) as a thickener and styrene-butadiene rubber (SBR) as a binder were added to the negative electrode material. The mass ratio of these was negative electrode material:CMC:SBR=98:1:1. Purified water as a dispersion solution was added to this and kneaded to obtain a slurry. A predetermined amount of this slurry was applied substantially evenly and homogeneously onto a rolled copper foil having an average thickness of 10 μm, which is a current collector for the negative electrode (coating amount: 10.0 mg/cm 2 ). Thereafter, the electrode density was adjusted to 1.6 g/cm 3 using a roll press to obtain a rolled copper foil with a negative electrode material layer formed on one side. This rolled copper foil was punched out into a disk shape with a diameter of 14 mm to produce a sample electrode (negative electrode). Using the prepared sample electrode, the electrode permeation rate and electrode swelling rate of the electrolyte solution were measured by the following method. The results are shown in Table 3.

[電解液の電極浸透速度]
試料電極の負極塗膜上に 常温(25℃)下で電解液(LiPF/EC+DMC、キシダ化学株式会社)をマイクロシリンジで0.02ml滴下し、電解液が負極塗膜上から消えるまでの時間を測定した。
[Electrode penetration rate of electrolyte]
Drop 0.02 ml of electrolyte solution (LiPF 6 /EC+DMC, Kishida Chemical Co., Ltd.) onto the negative electrode coating film of the sample electrode using a microsyringe at room temperature (25°C), and measure the time it takes for the electrolyte solution to disappear from the negative electrode coating film. was measured.

[電極膨潤率]
試料電極の負極材層を70℃の電解液(LiPF/EC+DMC、キシダ化学株式会社)中に48時間浸漬し、浸漬前後の層の厚みの変化をマイクロメーターで測定し、下記式により膨潤率を求めた。
膨潤率(%)={(浸漬後の厚み-浸漬前の厚み)/浸漬前の厚み}×100
[Electrode swelling rate]
The negative electrode material layer of the sample electrode was immersed in an electrolytic solution (LiPF 6 /EC+DMC, Kishida Chemical Co., Ltd.) at 70°C for 48 hours, and the change in layer thickness before and after immersion was measured with a micrometer, and the swelling rate was calculated using the following formula. I asked for
Swelling rate (%) = {(Thickness after immersion - Thickness before immersion)/Thickness before immersion} x 100

[リチウムイオン二次電池の作製]
作製した試料電極(負極)、セパレーター、対極(正極)の順にコイン型電池容器に入れ、電解液を注入して、コイン型のリチウムイオン二次電池を作製した。電解液としては、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合溶媒(EC:EMCの体積比は3:7)に、混合溶媒全量に対してビニレンカーボネート(VC)を0.5質量%添加し、LiPFを1mol/Lの濃度になるように溶解したものを使用した。対極(正極)としては、金属リチウムを使用した。セパレーターとしては、厚み20μmのポリエチレン製微孔膜を使用した。作製したリチウムイオン二次電池を用いて、下記の方法により初回充放電特性、低温充電特性、高温保存特性、並びに放電負荷特性の評価を行った。結果を表3に示す。
[Fabrication of lithium ion secondary battery]
The prepared sample electrode (negative electrode), separator, and counter electrode (positive electrode) were placed in a coin-shaped battery container in this order, and an electrolyte was injected to produce a coin-shaped lithium ion secondary battery. As an electrolytic solution, a mixed solvent of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) (the volume ratio of EC:EMC is 3:7) is mixed with 0.5 mass of vinylene carbonate (VC) based on the total amount of the mixed solvent. % and LiPF 6 was dissolved to a concentration of 1 mol/L. Metallic lithium was used as the counter electrode (positive electrode). As a separator, a microporous polyethylene membrane having a thickness of 20 μm was used. Using the produced lithium ion secondary battery, initial charge/discharge characteristics, low temperature charging characteristics, high temperature storage characteristics, and discharge load characteristics were evaluated by the following methods. The results are shown in Table 3.

(初回充放電特性の評価)
作製したリチウムイオン二次電池を、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電(CC充電)し、次いで電流値が0.02Cとなるまで0Vで定電圧充電(CV充電)を行った。このときの容量を初回充電容量(CC/CV充電)とした。次いで、30分間休止後、電流値0.2Cで1.5V(V vs. Li/Li)まで定電流放電(CC放電)を行った。このときの容量を初回放電容量とした。
初回充電容量の値から初回放電容量の値を差し引いた値を不可逆容量とし、初回充電容量の値に対する初回放電容量の値の比を初回効率として算出した。なお、電流値の単位として求めた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。
不可逆容量[mAh/g]=(初回充電容量)-(初回放電容量)
初回効率[%]=(初回放電容量)/(初回充電容量)×100
(Evaluation of initial charge/discharge characteristics)
The prepared lithium ion secondary battery was charged at a constant current (CC charge) at a current value of 0.2C to a voltage of 0V (V vs. Li/Li + ), and then at a constant voltage of 0V until the current value reached 0.02C. Charging (CV charging) was performed. The capacity at this time was defined as the initial charge capacity (CC/CV charge). Next, after a 30-minute rest, constant current discharge (CC discharge) was performed at a current value of 0.2C to 1.5V (V vs. Li/Li + ). The capacity at this time was defined as the initial discharge capacity.
The value obtained by subtracting the value of the initial discharge capacity from the value of the initial charge capacity was defined as the irreversible capacity, and the ratio of the value of the initial discharge capacity to the value of the initial charge capacity was calculated as the initial efficiency. Note that "C" obtained as a unit of current value means "current value (A)/battery capacity (Ah)".
Irreversible capacity [mAh/g] = (Initial charge capacity) - (Initial discharge capacity)
Initial efficiency [%] = (initial discharge capacity) / (initial charge capacity) x 100

(低温充電特性の評価)
作製したリチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電(CC充電)し、次いで電流値が0.02Cとなるまで0Vで定電圧充電(CV充電)を行った。次いで、30分間休止後、電流値0.2Cで1.5V(V vs. Li/Li)まで定電流放電(CC放電)を行った。この充放電を1サイクルとし、2サイクル目の充放電を行った。
その後、上記リチウムイオン二次電池を-30℃に設定した恒温槽に入れ、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電(CC充電)し、次いで電流値が0.02Cとなるまで0Vで定電圧充電(CV充電)を行った。
低温充電受入は、前述した-30℃下で充電を行った際のCC/CV充電容量に対する-30℃下で充電を行った際のCC充電容量の比から求めた。
低温充電受入[%]=(-30℃でのCC充電容量)/(-30℃でのCC/CV充電容量)×100
(Evaluation of low temperature charging characteristics)
The prepared lithium ion secondary battery was placed in a constant temperature bath set at 25°C, and constant current charging (CC charging) was performed at a current value of 0.2C to a voltage of 0V (V vs. Li/Li + ), and then the current value was Constant voltage charging (CV charging) was performed at 0 V until the voltage reached 0.02C. Next, after a 30-minute rest, constant current discharge (CC discharge) was performed at a current value of 0.2C to 1.5V (V vs. Li/Li + ). This charging and discharging was defined as one cycle, and a second charging and discharging cycle was performed.
Thereafter, the above-mentioned lithium ion secondary battery was placed in a constant temperature bath set at -30°C, and constant current charging (CC charging) was performed at a current value of 0.2C to a voltage of 0V (V vs. Li/Li + ), and then the current value was Constant voltage charging (CV charging) was performed at 0 V until the voltage reached 0.02C.
Low-temperature charging acceptance was determined from the ratio of the CC charging capacity when charging was performed at -30°C to the CC/CV charging capacity when charging was performed at -30°C.
Low temperature charging acceptance [%] = (CC charging capacity at -30°C) / (CC/CV charging capacity at -30°C) x 100

(高温保存特性の評価)
作製したリチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。次いで、30分間休止後、電流値0.2Cで1.5V(V vs. Li/Li)まで定電流放電を行った。この充放電を1サイクルとし、2サイクル目の充放電を行った後、
電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行い、この電池を60℃に設定した恒温槽に入れ、5日間保存した。
その後、25℃に設定した恒温槽内に入れ、60分間放置し、電流値0.2Cで1.5V(V vs. Li/Li)まで定電流放電を行った。次いで、1サイクル目と同様な条件で充放電を行った。
高温貯蔵維持率及び高温貯蔵回復率を次式から算出した。
高温貯蔵維持率[%]=(60℃、5日間保存後、25℃にて1回目の放電容量)/(25℃にて2サイクル目の放電容量)×100
高温貯蔵回復率[%]=(60℃、5日間保存後、25℃にて2回目の放電容量)/(25℃にて2サイクル目の放電容量)×100
(Evaluation of high temperature storage characteristics)
The prepared lithium ion secondary battery was placed in a constant temperature bath set at 25°C, and charged at a constant current of 0.2C to a voltage of 0V (V vs. Li/Li + ), and then the current value was 0.02C. Constant voltage charging was performed at 0V until . Next, after a 30-minute rest, constant current discharge was performed at a current value of 0.2C to 1.5V (V vs. Li/Li + ). This charging and discharging is considered as one cycle, and after performing the second charging and discharging cycle,
Constant current charging was performed at a current value of 0.2C to a voltage of 0V (V vs. Li/Li + ), then constant voltage charging was performed at 0V until the current value reached 0.02C, and the battery was kept at a constant temperature set at 60°C. It was placed in a tank and stored for 5 days.
Thereafter, it was placed in a constant temperature bath set at 25°C, left for 60 minutes, and constant current discharged to 1.5V (V vs. Li/Li + ) at a current value of 0.2C. Next, charging and discharging were performed under the same conditions as in the first cycle.
The high temperature storage retention rate and high temperature storage recovery rate were calculated from the following equations.
High temperature storage retention rate [%] = (1st cycle discharge capacity at 25 °C after storage at 60 °C for 5 days) / (2nd cycle discharge capacity at 25 °C) × 100
High temperature storage recovery rate [%] = (2nd cycle discharge capacity at 25 °C after storage at 60 °C for 5 days) / (2nd cycle discharge capacity at 25 °C) × 100

(放電負荷特性の評価)
作製したリチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。次いで、30分間休止後、電流値0.2Cで1.5V(V vs. Li/Li)まで定電流放電を行った。この充放電を1サイクルとし、2サイクル目の充放電を行った。
次に、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行い、この電池を電流値4Cで1.5V(V vs. Li/Li)まで定電流放電を行った。
放電負荷を次式から算出した。
放電負荷[%]=(電流値4Cにて得られた放電容量)/(電流値0.2Cにて得られた2サイクル目の放電容量)×100
(Evaluation of discharge load characteristics)
The prepared lithium ion secondary battery was placed in a constant temperature bath set at 25°C, and charged at a constant current of 0.2C to a voltage of 0V (V vs. Li/Li + ), and then the current value was 0.02C. Constant voltage charging was performed at 0V until . Next, after a 30-minute rest, constant current discharge was performed at a current value of 0.2C to 1.5V (V vs. Li/Li + ). This charging and discharging was defined as one cycle, and a second charging and discharging cycle was performed.
Next, constant current charging is performed at a current value of 0.2C to a voltage of 0V (V vs. Li/Li + ), then constant voltage charging is performed at 0V until the current value reaches 0.02C, and this battery is charged at a current value of 4C. Constant current discharge was performed to 1.5V (V vs. Li/Li + ).
The discharge load was calculated from the following formula.
Discharge load [%] = (Discharge capacity obtained at a current value of 4C) / (Discharge capacity in the second cycle obtained at a current value of 0.2C) x 100

[サイクル特性、パルス充電特性評価用の負極の作製]
実施例及び比較例にて作製した負極材を用いて以下の手順で試料電極(負極)を作製した。
まず、負極材に増粘剤としてカルボキシメチルセルロース(CMC)と結着剤としてスチレンブタジエンゴム(SBR)を添加した。これらの質量比は、負極材/CMC/SBR=98/1/1とした。これに分散溶液である精製水を添加し、混錬することによりスラリーを形成した。このスラリーを負極用の集電体である平均厚みが10μmの圧延銅箔に実質的に均等かつ均質に所定量塗布した(塗布量:10.0mg/cm)。その後、ロールプレスで1.6g/cmに電極密度を調整して、片面に負極材層が形成された圧延銅箔を得た。この圧延銅箔を2.5cm×12cmとなるように打ち抜き、試料電極(負極)を作製した。
[Preparation of negative electrode for evaluating cycle characteristics and pulse charging characteristics]
A sample electrode (negative electrode) was produced using the negative electrode materials produced in Examples and Comparative Examples according to the following procedure.
First, carboxymethyl cellulose (CMC) as a thickener and styrene-butadiene rubber (SBR) as a binder were added to the negative electrode material. The mass ratio of these was negative electrode material/CMC/SBR=98/1/1. Purified water as a dispersion solution was added to this and kneaded to form a slurry. A predetermined amount of this slurry was applied substantially evenly and homogeneously onto a rolled copper foil having an average thickness of 10 μm, which is a current collector for the negative electrode (coating amount: 10.0 mg/cm 2 ). Thereafter, the electrode density was adjusted to 1.6 g/cm 3 using a roll press to obtain a rolled copper foil with a negative electrode material layer formed on one side. This rolled copper foil was punched out to a size of 2.5 cm x 12 cm to produce a sample electrode (negative electrode).

[サイクル特性、パルス充電特性評価用のリチウムイオン二次電池の作製]
作製した試料電極(負極)を折り曲げ、その中に、折り曲げたセパレーター、対極(正極)の順に配置し、電解液を注入して、リチウムイオン二次電池を作製した。電解液としては、EC(エチレンカーボネート)、EMC(エチルメチルカーボネート)(ECとEMCとの体積比は3:7)の混合溶媒に、混合溶液全量に対してビニレンカーボネート(VC)を0.5質量%添加し、LiPFを1mol/Lの濃度になるように溶解したものを使用した。対極(正極)としては、三元系(Ni、Co、Mn)リチウム酸化物/導電材/PVDF(ポリフッ化ビニリデン)の質量比が90/5/5の電極(1.5cm×4cm)を使用した。セパレーターとしては、厚み20μmのポリエチレン製微孔膜を使用した。作製したリチウムイオン二次電池を用いて、下記の方法によりサイクル特性、パルス充電特性の評価を行った。結果を表3に示す。
[Fabrication of lithium ion secondary battery for evaluating cycle characteristics and pulse charging characteristics]
The fabricated sample electrode (negative electrode) was bent, a bent separator and a counter electrode (positive electrode) were placed in this order, and an electrolyte was injected to fabricate a lithium ion secondary battery. As an electrolytic solution, a mixed solvent of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) (the volume ratio of EC and EMC is 3:7) is mixed with 0.5 of vinylene carbonate (VC) based on the total amount of the mixed solution. % by mass was added and LiPF 6 was dissolved to a concentration of 1 mol/L. As the counter electrode (positive electrode), an electrode (1.5 cm x 4 cm) with a mass ratio of ternary (Ni, Co, Mn) lithium oxide/conductive material/PVDF (polyvinylidene fluoride) of 90/5/5 is used. did. As a separator, a microporous polyethylene membrane having a thickness of 20 μm was used. Using the produced lithium ion secondary battery, cycle characteristics and pulse charging characteristics were evaluated by the following method. The results are shown in Table 3.

[サイクル特性の評価]
作製したリチウムイオン二次電池を用いて、以下のようにしてサイクル特性を評価した。
まず、45℃において電流値2C、充電終止電圧4.2Vで定電流充電し、4.2Vに到達した時からその電圧で電流値が0.02Cになるまで定電圧充電した。30分間休止後、25℃で電流値2C、終止電圧2.7Vの定電流放電を行い、放電容量を測定した(1サイクル目の放電容量)。上記充放電を1サイクルとし、500サイクル行い、300サイクル後、及び500サイクル後のそれぞれにおいて放電容量を測定した。そして、以下の式から放電容量維持率(%)を算出した。
放電容量維持率[%]=(300サイクル後又は500サイクル後の放電容量)/(1サイクル目の放電容量)×100
[Evaluation of cycle characteristics]
Using the produced lithium ion secondary battery, cycle characteristics were evaluated as follows.
First, constant current charging was performed at 45° C. with a current value of 2 C and a charge end voltage of 4.2 V, and from when 4.2 V was reached, constant voltage charging was performed at that voltage until the current value reached 0.02 C. After resting for 30 minutes, constant current discharge was performed at 25° C. with a current value of 2 C and a final voltage of 2.7 V, and the discharge capacity was measured (first cycle discharge capacity). The above charging and discharging was defined as one cycle, and 500 cycles were performed, and the discharge capacity was measured after 300 cycles and after 500 cycles. Then, the discharge capacity retention rate (%) was calculated from the following formula.
Discharge capacity maintenance rate [%] = (Discharge capacity after 300 cycles or 500 cycles) / (Discharge capacity at 1st cycle) x 100

[パルス充電特性の評価]
パルス充電特性は、Liの析出状態から判断した。作製したリチウムイオン二次電池を25℃において電流値1C、充電終止電圧4.2Vで定電流充電し、4.2Vに到達した時からその電圧で電流値が0.02Cになるまで定電圧充電した。30分間休止後、25℃で電流値1C、終止電圧2.7Vの定電流放電を行った。この充放電を1サイクルとし、3サイクルの充放電を行った。
次に、上記電池を-30℃に設定した恒温槽に入れ、60分間放置した後、20C相当の電流値で5秒間充電したのちに、電池を解体して、Liの析出状態をSEM(株式会社キーエンス、SU3500)にて確認した。Liの析出が無い場合に、パルス充電特性に優れると判断した。
[Evaluation of pulse charging characteristics]
The pulse charging characteristics were determined from the Li precipitation state. The prepared lithium ion secondary battery was charged at a constant current of 1 C and a charge end voltage of 4.2 V at 25°C, and from when 4.2 V was reached, constant voltage charging was carried out at that voltage until the current value reached 0.02 C. did. After resting for 30 minutes, constant current discharge was performed at 25° C. with a current value of 1 C and a final voltage of 2.7 V. This charging and discharging was defined as one cycle, and three cycles of charging and discharging were performed.
Next, the above battery was placed in a constant temperature bath set at -30°C, left for 60 minutes, and then charged for 5 seconds at a current value equivalent to 20C. Confirmed by Keyence Corporation (SU3500). It was determined that the pulse charging characteristics were excellent when there was no Li precipitation.


表3に示す結果から明らかなように、負極材に含まれる黒鉛粒子が所定の条件を満たす実施例1~5では、負極材に含まれる黒鉛粒子が所定の条件を満たさない比較例1~7に比べて高い充放電効率を維持しながら、低温充電特性、高温保存特性、放電負荷特性およびパルス充電特性にも優れていた。
性能向上の推定メカニズムについて、以下に説明する。
負極材に含まれる第1黒鉛粒子が比較的細かい粒子であり、第2黒鉛粒子は比較的大きい(粗大)粒子、かつ第1黒鉛粒子よりも細かい粒子(より微細)を保有している。このため、これらの黒鉛粒子をブレンドすると粒子間の空隙を相互に埋める状態となり、得られる負極塗膜の充填状態を良好に制御することができる。前記充填状態は、第1黒鉛粒子と第2黒鉛粒子の物性によって制御することができる。第1黒鉛粒子と第2黒鉛粒子の物性が所定の条件を満たすことで、負極の製造の際のプレス工程において、プレス押圧力を塗膜内部に均一に掛けられるようになる。このため、塗膜の厚さ方向に対して密度のバラツキが少なくなると共に、電解液の浸透が円滑に行われるようになる。その結果として、電池性能の向上が達成される。加えて、以下に説明する黒鉛粒子の硬さも電池性能の向上に寄与する一因である。
As is clear from the results shown in Table 3, in Examples 1 to 5, in which the graphite particles contained in the negative electrode material satisfy the predetermined conditions, in Comparative Examples 1 to 7, in which the graphite particles contained in the negative electrode material do not satisfy the predetermined conditions. While maintaining high charge/discharge efficiency compared to , it also had excellent low-temperature charging characteristics, high-temperature storage characteristics, discharge load characteristics, and pulse charging characteristics.
The estimated mechanism of performance improvement will be explained below.
The first graphite particles contained in the negative electrode material are relatively fine particles, and the second graphite particles have relatively large (coarse) particles and finer particles (more fine) than the first graphite particles. Therefore, when these graphite particles are blended, the voids between the particles are filled with each other, and the filling state of the resulting negative electrode coating film can be well controlled. The filling state can be controlled by the physical properties of the first graphite particles and the second graphite particles. When the physical properties of the first graphite particles and the second graphite particles satisfy predetermined conditions, press pressure force can be uniformly applied to the inside of the coating film in the press step during production of the negative electrode. Therefore, variations in density are reduced in the thickness direction of the coating film, and the electrolytic solution permeates smoothly. As a result, improved battery performance is achieved. In addition, the hardness of graphite particles, which will be explained below, is also a factor contributing to the improvement of battery performance.

[電極プレス性の評価]
実施例1、実施例2、実施例3及び比較例2で構成させた試料番号1、試料番号2、試料番号3、試料番号6及び試料番号12の黒鉛粒子を単独で用い、前述した同様な方法にて試料電極を作製した。前記試料電極を用いて、ロールプレスのロールギャップを固定し、可変させた任意の油圧(t)にてそれぞれプレス処理を実施した。各油圧にてプレス処理した各電極厚みを測定することで電極密度(g/cm)を算出し、電極プレス性を評価した。結果を図1及び図2に示す。
[Evaluation of electrode pressability]
The graphite particles of Sample No. 1, Sample No. 2, Sample No. 3, Sample No. 6, and Sample No. 12 configured in Example 1, Example 2, Example 3, and Comparative Example 2 were used alone, and the same as described above was used. A sample electrode was prepared using the method. Using the sample electrodes, press treatments were carried out at an arbitrary oil pressure (t) with the roll gap of the roll press fixed and varied. Electrode density (g/cm 3 ) was calculated by measuring the thickness of each electrode pressed at each hydraulic pressure, and electrode pressability was evaluated. The results are shown in FIGS. 1 and 2.

図1及び図2に示すように、低結晶炭素で被覆された黒鉛粒子である試料番号1の電極プレス性は、低結晶炭素で被覆されていない黒鉛粒子である試料番号6と比較して、ロールプレス油圧の上昇に伴う電極密度の上昇度合いが小さい。また、粒子径が異なる試料番号2と試料番号3とを比較すると、粒子径が小さい試料番号3の方が試料番号2よりも電極密度の上昇度合いが小さく粒子がより硬い。さらに、第1黒鉛粒子に相当する試料番号1、2、3と第2黒鉛粒子に相当する試料番号12とを比較すると、試料番号1、2、3の方が試料番号12よりも電極密度の上昇度合いが小さく粒子がより硬い。
以上の結果から、黒鉛粒子の被覆処理、もしくは黒鉛粒子の粒子径を変化させることによって黒鉛粒子の硬さを制御できることがわかる。すなわち、所望の硬さの第1黒鉛粒子を選択し、さらに硬さの異なる第2黒鉛粒子と組み合わせることで、負極材としての硬さを制御することができ、電極を高圧でプレスする際の押圧力による粒子変形を抑えることができ、電解液の浸透経路が確保され、電解液の浸透が円滑に行われるようになる。その結果として、高い充放電効率を維持しながら、低温充電特性、高温保存特性、放電負荷特性およびパルス充電特性の向上に寄与できる。
As shown in FIGS. 1 and 2, the electrode pressability of Sample No. 1, which is a graphite particle coated with low-crystalline carbon, is higher than that of Sample No. 6, which is a graphite particle that is not coated with low-crystalline carbon. The degree of increase in electrode density with increase in roll press oil pressure is small. Further, when comparing Sample No. 2 and Sample No. 3, which have different particle sizes, Sample No. 3, which has a smaller particle size, has a smaller increase in electrode density than Sample No. 2, and the particles are harder. Furthermore, when comparing sample numbers 1, 2, and 3, which correspond to the first graphite particles, and sample number 12, which corresponds to the second graphite particles, sample numbers 1, 2, and 3 have a higher electrode density than sample number 12. The degree of rise is small and the particles are harder.
The above results show that the hardness of graphite particles can be controlled by coating the graphite particles or by changing the particle diameter of the graphite particles. In other words, by selecting a first graphite particle with a desired hardness and further combining it with a second graphite particle having a different hardness, it is possible to control the hardness of the negative electrode material, and it is possible to control the hardness when pressing the electrode at high pressure. Particle deformation due to pressing force can be suppressed, a permeation path for the electrolyte is secured, and the electrolyte can penetrate smoothly. As a result, it is possible to contribute to improvements in low-temperature charging characteristics, high-temperature storage characteristics, discharge load characteristics, and pulse charging characteristics while maintaining high charge-discharge efficiency.

<実施例6~実施例9、比較例8>
第1黒鉛粒子として試料番号1を、第2黒鉛粒子として試料番号12をそれぞれ使用し、第2黒鉛粒子の配合量を変化させて負極材を作製した。得られた負極材を使用して実施例1と同様の手法で電極特性及び電池特性の評価を行った。結果を表4に示す。
<Example 6 to Example 9, Comparative Example 8>
Negative electrode materials were produced by using sample number 1 as the first graphite particles and sample number 12 as the second graphite particles, and varying the blending amount of the second graphite particles. Using the obtained negative electrode material, electrode characteristics and battery characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 4.

表4に示すように、第2黒鉛粒子の配合量が55質量%以下である実施例1、6~9は、第2黒鉛粒子の配合量が55質量%を超える比較例8よりも電池の充放電特性に優れる傾向にある。明確な理由は不明であるが、第1黒鉛粒子の空隙を埋める第2黒鉛粒子由来の微細粒子の量が多すぎず、電解液の浸透が円滑に行われることが考えられる。さらに、電解液による電極の膨潤率が抑制されてインピーダンスが低く抑えられることが挙げられる。 As shown in Table 4, Examples 1 and 6 to 9, in which the amount of the second graphite particles is 55% by mass or less, have better battery performance than Comparative Example 8, in which the amount of the second graphite particles is more than 55% by mass. They tend to have excellent charge/discharge characteristics. Although the exact reason is unknown, it is thought that the amount of fine particles derived from the second graphite particles filling the voids of the first graphite particles is not too large, allowing smooth penetration of the electrolytic solution. Furthermore, the swelling rate of the electrode due to the electrolytic solution is suppressed, so that the impedance can be kept low.

<実施例10~実施例12、比較例9~比較例11>
黒鉛粒子(試料番号12)の作製において、黒鉛粒子のD50を20μmに調整したこと以外は同様にして黒鉛粒子(試料番号13)を作製した。
<Example 10 to Example 12, Comparative Example 9 to Comparative Example 11>
Graphite particles (sample number 13) were produced in the same manner as in the production of graphite particles (sample number 12) except that the D50 of the graphite particles was adjusted to 20 μm.

黒鉛粒子(試料番号12)100質量部とコールタールピッチ(軟化点90℃、残炭率(炭化率)50%)6質量部とを混合した。次いで、混合物を窒素流通下、20℃/時間の昇温速度で950℃まで昇温し、950℃(焼成処理温度)にて1時間保持して炭素層被覆黒鉛粒子とした。得られた炭素層被覆黒鉛粒子をカッターミルで解砕した後、300メッシュ篩で篩分けを行い、その篩下分を黒鉛粒子(試料番号14)とした。 100 parts by mass of graphite particles (sample number 12) and 6 parts by mass of coal tar pitch (softening point: 90° C., residual carbon ratio (carbonization ratio): 50%) were mixed. Next, the mixture was heated to 950° C. at a rate of 20° C./hour under nitrogen flow and held at 950° C. (calcination temperature) for 1 hour to obtain carbon layer-coated graphite particles. The obtained carbon layer-coated graphite particles were crushed with a cutter mill, and then sieved with a 300 mesh sieve, and the portion under the sieve was used as graphite particles (sample number 14).

黒鉛粒子(試料番号12)の作製において、成形ブロックの状態にせずに粉砕粉の状態で黒鉛化を実施したこと以外は同様にして黒鉛粒子(試料番号15)を作製した。 Graphite particles (sample number 15) were produced in the same manner as in the production of graphite particles (sample number 12), except that graphitization was carried out in the form of pulverized powder rather than in the form of a molded block.

黒鉛粒子(試料番号12)の作製において、黒鉛粒子のD50を27μmに調整したこと以外は同様にして黒鉛粒子(試料番号16)を作製した。 Graphite particles (sample number 16) were produced in the same manner as in the production of graphite particles (sample number 12) except that the D50 of the graphite particles was adjusted to 27 μm.

黒鉛粒子(試料番号14)の作製において、炭素層被覆前の核材となる黒鉛粒子として黒鉛粒子(試料番号13)を用いたこと以外は同様にして黒鉛粒子(試料番号17)を作製した。 In the production of graphite particles (sample number 14), graphite particles (sample number 17) were produced in the same manner except that graphite particles (sample number 13) were used as the graphite particles serving as the core material before carbon layer coating.

黒鉛粒子(試料番号16)の作製において、成形ブロックの状態にせずに粉砕粉の状態で黒鉛化を実施したこと以外は同様にして黒鉛粒子(試料番号18)を作製した。 Graphite particles (sample number 18) were produced in the same manner as in the production of graphite particles (sample number 16), except that graphitization was carried out in the form of pulverized powder rather than in the form of a molded block.

第1黒鉛粒子として試料番号1を、第2黒鉛粒子として試料番号12~18をそれぞれ使用して負極材を作製し、物性を測定した。さらに、得られた負極材を使用して実施例1と同様の手法で電極特性及び電池特性の評価を行った。結果を表5に示す。
Negative electrode materials were prepared using Sample No. 1 as the first graphite particles and Samples Nos. 12 to 18 as the second graphite particles, and their physical properties were measured. Furthermore, electrode characteristics and battery characteristics were evaluated in the same manner as in Example 1 using the obtained negative electrode material. The results are shown in Table 5.


表5に示すように、負極材が所定の条件を満たす第2黒鉛粒子を含む実施例1及び実施例10~12は、負極材が所定の条件を満たす第2黒鉛粒子を含まない比較例9~11に比べて高い充放電効率を維持しながら、低温充電特性、高温保存特性、放電負荷特性およびパルス充電特性にも優れていた。 As shown in Table 5, Examples 1 and 10 to 12 in which the negative electrode material contains second graphite particles that meet the predetermined conditions are comparative example 9 in which the negative electrode material does not contain the second graphite particles that meet the predetermined conditions. While maintaining high charge/discharge efficiency compared to No. 11, it also had excellent low-temperature charging characteristics, high-temperature storage characteristics, discharge load characteristics, and pulse charging characteristics.

以下の実施例では、第1黒鉛粒子及び第2黒鉛粒子に加えて第3黒鉛粒子を含む負極材について検討を行った。 In the following examples, a negative electrode material containing third graphite particles in addition to first graphite particles and second graphite particles was investigated.

<実施例13~19>
表6に示す試料番号及び配合量の黒鉛粒子をそれぞれ第1黒鉛粒子、第2黒鉛粒子及び第3黒鉛粒子とし、これらを混合して負極材を作製した。さらに、得られた負極材を使用して実施例1と同様の手法で電極特性及び電池特性の評価を行った。
実施例13~19では、電極浸透速度の測定、初回充放電特性及びサイクル特性の評価において、電極密度を1.75g/cmとした場合の追加評価を実施した。電極密度が1.75g/cmの負極は、前述したロールプレスの油圧を調整することにより作製した。結果を表6に示す。
<Examples 13 to 19>
Graphite particles having the sample numbers and blending amounts shown in Table 6 were used as first graphite particles, second graphite particles, and third graphite particles, respectively, and these were mixed to produce a negative electrode material. Furthermore, electrode characteristics and battery characteristics were evaluated in the same manner as in Example 1 using the obtained negative electrode material.
In Examples 13 to 19, additional evaluation was carried out when the electrode density was 1.75 g/cm 3 in measuring the electrode penetration rate and evaluating the initial charge/discharge characteristics and cycle characteristics. A negative electrode having an electrode density of 1.75 g/cm 3 was produced by adjusting the oil pressure of the roll press described above. The results are shown in Table 6.

表6に示すように、第1黒鉛粒子及び第2黒鉛粒子に加えて第3黒鉛粒子を含む実施例13~19は、第3黒鉛粒子を含まない実施例1、8に比べて高い充放電効率を維持しながら、低温充電特性、高温保存特性及び放電負荷特性にも優れていた。
第1黒鉛粒子及び第2黒鉛粒子に加えて第3黒鉛粒子を含む実施例13~19は、高密度実装時(電極密度1.75g/cm)にも高い容量及び効率を維持しつつ、サイクル特性にも優れていた。
As shown in Table 6, Examples 13 to 19 containing third graphite particles in addition to first graphite particles and second graphite particles had higher charge/discharge rates than Examples 1 and 8 which did not contain third graphite particles. While maintaining efficiency, it also had excellent low-temperature charging characteristics, high-temperature storage characteristics, and discharge load characteristics.
Examples 13 to 19, which include third graphite particles in addition to first graphite particles and second graphite particles, maintain high capacity and efficiency even during high-density mounting (electrode density 1.75 g/cm 3 ), It also had excellent cycle characteristics.

[電極抵抗の測定]
実施例14、実施例17、実施例19、実施例1及び実施例8で作製した負極(電極密度:1.6g/cm及び1.75g/cm)を用いて電極抵抗を測定した。測定には、日置電機株式会社の電極抵抗測定システム(RM2610)を使用した。本測定システムを使用することにより、負極における負極材層抵抗と界面抵抗(集電体と負極材層との接触抵抗)とを分離して測定することができる。負極の電極抵抗が小さいほど、高い充放電効率を維持しながら、低温充電特性、高温保存特性及び放電負荷特性に優れることを示している。結果を表7に示す。
[Measurement of electrode resistance]
Electrode resistance was measured using the negative electrodes (electrode densities: 1.6 g/cm 3 and 1.75 g/cm 3 ) prepared in Example 14, Example 17, Example 19, Example 1, and Example 8. For the measurement, an electrode resistance measurement system (RM2610) manufactured by Hioki Electric Co., Ltd. was used. By using this measurement system, it is possible to separately measure the negative electrode material layer resistance and the interfacial resistance (contact resistance between the current collector and the negative electrode material layer) in the negative electrode. This indicates that the smaller the electrode resistance of the negative electrode, the better the low-temperature charging characteristics, high-temperature storage characteristics, and discharge load characteristics while maintaining high charging and discharging efficiency. The results are shown in Table 7.

表7に示すように、第3黒鉛粒子を含む実施例14、実施例17及び実施例19の電極抵抗(負極材層抵抗及び界面抵抗)は、第3黒鉛粒子を含まない実施例1、8と比較して低いことが示された。以上の結果は、負極材に第3黒鉛粒子を添加することにより電極抵抗を小さくできることを示している。 As shown in Table 7, the electrode resistances (negative electrode material layer resistance and interfacial resistance) of Examples 14, 17, and 19 containing third graphite particles are the same as those of Examples 1 and 8 containing no third graphite particles. was shown to be lower compared to The above results indicate that electrode resistance can be reduced by adding third graphite particles to the negative electrode material.

Claims (7)

下記条件1A及び条件1Bを満たす第1黒鉛粒子と、
下記条件2A及び条件2Bを満たす第2黒鉛粒子と、を含み、
第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~55質量%であり、
第1黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されており、体積基準の粒度分布におけるD10が7μm~13μmであり、D90が14μm~25μmである、リチウムイオン二次電池用負極材。
条件1A:静置法によるゆるみ見掛け密度T1が0.60g/cc以上であり、30回タップ法による見掛け密度T2が0.80g/cc以上であり、250回タップ法による見掛け密度T3が1.00g/cc以上であり、次式で示される圧縮度の値が19%以下である
圧縮度(%)=[(T2-T1)/T3]×100
条件1B:亜麻仁油吸油量が40mL/100g~55mL/100gである
条件2A:体積基準の粒度分布におけるD0.1が5μm以下である
条件2B:亜麻仁油吸油量が55mL/100g~75mL/100gである
First graphite particles that satisfy the following conditions 1A and 1B,
A second graphite particle that satisfies the following conditions 2A and 2B,
The amount of the second graphite particles is 10% by mass to 55% by mass with respect to the total mass of the graphite particles,
The first graphite particle is a secondary particle consisting of a plurality of natural graphite particles, at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle, and D10 in the volume-based particle size distribution is A negative electrode material for a lithium ion secondary battery , which has a D90 of 7 μm to 13 μm and a D90 of 14 μm to 25 μm .
Condition 1A: The loose apparent density T1 by the standing method is 0.60 g/cc or more, the apparent density T2 by the 30-tap method is 0.80 g/cc or more, and the apparent density T3 by the 250-tap method is 1. 00g/cc or more, and the compression degree value shown by the following formula is 19% or less. Compression degree (%) = [(T2-T1)/T3] x 100
Condition 1B: The linseed oil absorption amount is 40 mL/100 g to 55 mL/100 g. Condition 2A: D0.1 in the volume-based particle size distribution is 5 μm or less. Condition 2B: The linseed oil absorption amount is 55 mL/100 g to 75 mL/100 g. be
第1黒鉛粒子の体積基準の粒度分布におけるD0.1が5μm超である、請求項1に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein D0.1 in the volume-based particle size distribution of the first graphite particles is more than 5 μm. 下記条件3A及び条件3Bを満たす第3黒鉛粒子をさらに含み、
第3黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、請求項1に記載のリチウムイオン二次電池用負極材。
条件3A:体積基準の粒度分布において、第1黒鉛粒子のD50に対する第3黒鉛粒子のD50の比(第3黒鉛粒子のD50/第1黒鉛粒子のD50)が0.55~0.75の範囲である
条件3B:亜麻仁油吸油量が40mL/100g~55mL/100gである
further comprising third graphite particles satisfying the following conditions 3A and 3B,
The lithium ion according to claim 1, wherein the third graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle. Negative electrode material for secondary batteries.
Condition 3A: In the volume-based particle size distribution, the ratio of the D50 of the third graphite particles to the D50 of the first graphite particles (D50 of the third graphite particles/D50 of the first graphite particles) is in the range of 0.55 to 0.75. Condition 3B: Linseed oil absorption amount is 40 mL/100 g to 55 mL/100 g.
第3黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~25質量%である、請求項に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 3 , wherein the amount of the third graphite particles is 10% by mass to 25% by mass based on the total mass of the graphite particles. 下記条件1A及び条件1Bを満たす第1黒鉛粒子と、First graphite particles that satisfy the following conditions 1A and 1B,
下記条件2A及び条件2Bを満たす第2黒鉛粒子と、Second graphite particles that satisfy the following conditions 2A and 2B,
下記条件3A及び条件3Bを満たす第3黒鉛粒子と、を含み、Third graphite particles satisfying the following conditions 3A and 3B,
第2黒鉛粒子の量が黒鉛粒子の全質量に対し10質量%~55質量%であり、The amount of the second graphite particles is 10% by mass to 55% by mass with respect to the total mass of the graphite particles,
第1黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、リチウムイオン二次電池用負極材。A negative electrode material for a lithium ion secondary battery, wherein the first graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle. .
条件1A:静置法によるゆるみ見掛け密度T1が0.60g/cc以上であり、30回タップ法による見掛け密度T2が0.80g/cc以上であり、250回タップ法による見掛け密度T3が1.00g/cc以上であり、次式で示される圧縮度の値が19%以下であるCondition 1A: The loose apparent density T1 by the standing method is 0.60 g/cc or more, the apparent density T2 by the 30-tap method is 0.80 g/cc or more, and the apparent density T3 by the 250-tap method is 1. 00g/cc or more, and the value of the degree of compression shown by the following formula is 19% or less
圧縮度(%)=[(T2-T1)/T3]×100Compression degree (%) = [(T2-T1)/T3] x 100
条件1B:亜麻仁油吸油量が40mL/100g~55mL/100gであるCondition 1B: Linseed oil absorption is 40 mL/100 g to 55 mL/100 g.
条件2A:体積基準の粒度分布におけるD0.1が5μm以下であるCondition 2A: D0.1 in volume-based particle size distribution is 5 μm or less
条件2B:亜麻仁油吸油量が55mL/100g~75mL/100gであるCondition 2B: Linseed oil absorption is 55 mL/100 g to 75 mL/100 g.
第3黒鉛粒子が複数の天然黒鉛粒子からなる二次粒子であり、表面の少なくとも一部が前記天然黒鉛粒子よりも結晶性の低い炭素材で被覆されている、請求項1に記載のリチウムイオン二次電池用負極材。The lithium ion according to claim 1, wherein the third graphite particle is a secondary particle consisting of a plurality of natural graphite particles, and at least a part of the surface is coated with a carbon material having lower crystallinity than the natural graphite particle. Negative electrode material for secondary batteries.
条件3A:体積基準の粒度分布において、第1黒鉛粒子のD50に対する第3黒鉛粒子のD50の比(第3黒鉛粒子のD50/第1黒鉛粒子のD50)が0.55~0.75の範囲であるCondition 3A: In the volume-based particle size distribution, the ratio of the D50 of the third graphite particles to the D50 of the first graphite particles (D50 of the third graphite particles/D50 of the first graphite particles) is in the range of 0.55 to 0.75. is
条件3B:亜麻仁油吸油量が40mL/100g~55mL/100gであるCondition 3B: Linseed oil absorption is 40 mL/100 g to 55 mL/100 g.
請求項1~請求項5のいずれか1項に記載の負極材を含む負極材層と、集電体と、を含むリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, comprising a negative electrode material layer containing the negative electrode material according to any one of claims 1 to 5, and a current collector. 請求項6に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 6, a positive electrode, and an electrolyte.
JP2023114713A 2023-07-12 2023-07-12 Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries Active JP7444322B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023114713A JP7444322B1 (en) 2023-07-12 2023-07-12 Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023114713A JP7444322B1 (en) 2023-07-12 2023-07-12 Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries

Publications (1)

Publication Number Publication Date
JP7444322B1 true JP7444322B1 (en) 2024-03-06

Family

ID=90096972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023114713A Active JP7444322B1 (en) 2023-07-12 2023-07-12 Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP7444322B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324067A (en) 2006-06-02 2007-12-13 Nippon Carbon Co Ltd Negative electrode for lithium secondary battery, and negative electrode active material
JP2009245613A (en) 2008-03-28 2009-10-22 Hitachi Chem Co Ltd Carbon material for negative electrode of lithium-ion secondary battery, negative electrode mixture for lithium-ion secondary battery using the same, and lithium-ion secondary battery
JP2010092649A (en) 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
WO2012015054A1 (en) 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP2020177932A (en) 2017-05-11 2020-10-29 日立化成株式会社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2023073103A (en) 2021-11-15 2023-05-25 株式会社レゾナック Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023139662A1 (en) 2022-01-18 2023-07-27 株式会社レゾナック Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324067A (en) 2006-06-02 2007-12-13 Nippon Carbon Co Ltd Negative electrode for lithium secondary battery, and negative electrode active material
JP2009245613A (en) 2008-03-28 2009-10-22 Hitachi Chem Co Ltd Carbon material for negative electrode of lithium-ion secondary battery, negative electrode mixture for lithium-ion secondary battery using the same, and lithium-ion secondary battery
JP2010092649A (en) 2008-10-06 2010-04-22 Nippon Carbon Co Ltd Anode active material for lithium-ion secondary battery and anode
WO2012015054A1 (en) 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP2020177932A (en) 2017-05-11 2020-10-29 日立化成株式会社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2023073103A (en) 2021-11-15 2023-05-25 株式会社レゾナック Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023139662A1 (en) 2022-01-18 2023-07-27 株式会社レゾナック Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6888722B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP7371735B2 (en) Method for producing negative electrode material for lithium ion secondary batteries, and negative electrode material for lithium ion secondary batteries
JP7196938B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20240120482A1 (en) Negative electrode material for lithium-ion secondary battery, method of evaluating same, and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US20230084916A1 (en) Negative electrode material for lithium-ion secondary battery and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
TWI752112B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023139662A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2011173770A (en) Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7444322B1 (en) Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP2023073103A (en) Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102608550B1 (en) Carbonaceous particles, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2022168692A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material composition for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2022215126A1 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7444322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151