WO2013141041A1 - Composite graphitic particles and method for manufacturing same - Google Patents

Composite graphitic particles and method for manufacturing same Download PDF

Info

Publication number
WO2013141041A1
WO2013141041A1 PCT/JP2013/056414 JP2013056414W WO2013141041A1 WO 2013141041 A1 WO2013141041 A1 WO 2013141041A1 JP 2013056414 W JP2013056414 W JP 2013056414W WO 2013141041 A1 WO2013141041 A1 WO 2013141041A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
composite
particles
powder
see table
Prior art date
Application number
PCT/JP2013/056414
Other languages
French (fr)
Japanese (ja)
Inventor
山戸 公史
昭博 八内
藤原 徹
山本 浩司
禰宜 教之
永田 辰夫
克浩 西原
Original Assignee
中央電気工業株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49222501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013141041(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中央電気工業株式会社, 新日鐵住金株式会社 filed Critical 中央電気工業株式会社
Priority to JP2014506133A priority Critical patent/JP5859114B2/en
Priority to KR1020147017856A priority patent/KR101607794B1/en
Priority to CN201380012420.5A priority patent/CN104169215B/en
Publication of WO2013141041A1 publication Critical patent/WO2013141041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite graphite particles and a method for producing the same.
  • composite particles containing the following graphite and conductive carbonaceous fine particles have been proposed as electrode active material materials for lithium ion secondary batteries.
  • a carbonaceous layer having a lower crystallinity than the graphite granule is filled and / or coated on the internal voids and / or the outer surface of the graphite granule formed by aggregating a plurality of scaly graphites, Composite graphite particles in which carbonaceous fine particles are added to a carbonaceous layer (for example, see JP-A-2004-066331).
  • the average particle diameter is 0.05 to 2 ⁇ m and the average lattice spacing d (002) is 0.3360 nm.
  • the above amorphous carbon powder is bound and coated with carbide of binder pitch, the nitrogen adsorption specific surface area is 3 to 7 m 2 / g, the average particle diameter is 7 to 40 ⁇ m, and the Raman spectral intensity ratio 11360/11580.
  • An object of the present invention is to provide composite graphite particles capable of forming a dense conductive network in an electrode when forming an electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a method for producing the same. is there.
  • the composite graphite particles according to one aspect of the present invention include graphite, conductive carbonaceous fine particles, and non-graphitic carbon.
  • the graphite is preferably natural graphite.
  • the natural graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly natural graphites.
  • the graphite is preferably smoothed.
  • the circularity is 0.92 or more and 1.00 or less
  • the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.00 . It is preferable that it is 7 or less.
  • the conductive carbonaceous fine particles are directly attached to the graphite.
  • Non-graphitic carbon is at least partially attached to the conductive carbonaceous fine particles and graphite.
  • the composite graphite particles are configured as described above, a part or all of the conductive carbonaceous fine particles can be detached from the graphite by applying a predetermined external force. For this reason, if composite graphite particles are formed so that part or all of the conductive carbonaceous fine particles are desorbed from graphite with a force applied when preparing an electrode mixture slurry, Conductive carbonaceous fine particles can be uniformly dispersed. That is, if this composite graphite particle is used, a dense conductive network mainly composed of graphite and conductive carbonaceous fine particles can be formed in the electrode when forming the electrode of the nonaqueous electrolyte secondary battery.
  • the ratio of "predetermined specific surface area after an external force is applied (m 2 / g)" "The specific surface area value before the predetermined force is applied (m 2 / g)" for the composite graphite particles described above It is preferably in the range of 1.10 or more and 2.00 or less. This is because such composite graphite particles can release a sufficient amount of conductive carbonaceous fine particles into the slurry during slurry preparation.
  • the mass ratio of the conductive carbonaceous fine particles to graphite is preferably in the range of 0.3% to 2.0%.
  • the mass ratio of non-graphitic carbon to the sum of graphite and conductive carbonaceous fine particles is preferably in the range of 0.8% to 15.0%.
  • the method for producing composite graphite particles according to another aspect of the present invention includes a primary composite particle preparation step and a composite graphite particle preparation step.
  • the conductive composite particles are prepared by directly attaching the conductive carbonaceous fine particles to the graphite.
  • the graphite is preferably natural graphite.
  • the natural graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly natural graphites.
  • the graphite is preferably smoothed.
  • the circularity is 0.92 or more and 1.00 or less, and the incident angle dependence of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.7 or less. It is preferable.
  • a mechanochemical treatment is performed on the conductive carbonaceous fine particles and graphite.
  • non-graphitic carbon is partially or wholly attached to the primary composite particles to prepare composite graphite particles.
  • composite graphite particles in which part or all of the conductive carbonaceous fine particles are detached from the graphite by applying a predetermined external force can be constituted. For this reason, if the composite graphite particles are formed so that part or all of the conductive carbonaceous fine particles are detached from the graphite with a force applied when preparing the electrode mixture slurry, Conductive carbonaceous fine particles can be uniformly dispersed. That is, if this composite graphite particle is used, a dense conductive network can be formed in the electrode when forming the electrode of the nonaqueous electrolyte secondary battery.
  • the composite graphite particle preparation step primary composite particles and non-graphitic carbon raw material powder are mixed and then heated. As a result, the non-graphitic carbon raw material powder is converted into non-graphitic carbon, and the non-graphitic carbon is partially or entirely attached to the primary composite particles.
  • Nonaqueous electrolyte secondary batteries are represented by lithium ion secondary batteries.
  • FIG. 2 is a scanning electron micrograph of composite graphite particles according to an embodiment of the present invention.
  • 2 is a scanning electron micrograph of composite graphite particles after ultrasonic treatment of the composite graphite particles shown in FIG.
  • It is a figure which shows the measurement principle of X-ray absorption spectroscopy by contrast with X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 6 is a diagram illustrating a CK end NEXAFS spectrum when radiant light is incident on the line. It is a figure explaining the case where HOPG is made into the sample for the quantitative evaluation method of the orientation of surface graphite crystal.
  • the composite graphitic particles according to the embodiment of the present invention are mainly composed of graphite, conductive carbonaceous fine particles, and non-graphitic carbon.
  • the graphite may be natural graphite or artificial graphite, but is preferably natural graphite.
  • As the graphite a mixture of natural graphite and artificial graphite may be used.
  • the graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly graphites.
  • scale-like graphite natural graphite, artificial graphite, mesophase calcined carbon (bulk mesophase) made from tar pitch, coke (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.), etc.
  • Graphitized, etc., and those granulated using a plurality of natural graphites having high crystallinity are particularly preferable.
  • One graphite granule is usually formed by collecting 2 to 100, preferably 3 to 20, scaly graphite, but can be made spherical by folding one graphite. .
  • the graphite is preferably smoothed.
  • the circularity is 0.92 or more and 1.00 or less
  • the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.00 . It is preferable that it is 7 or less.
  • the lower limit of the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is preferably 0.5, that is, 0.5 or more.
  • the circularity of the graphite granule is 0.92 or more, since the graphite granule is relatively spherical, the graphite granule is not oriented when the electrode mixture slurry is applied. Is less likely to cause problems such as a decrease in capacity of the nonaqueous electrolyte secondary battery. Further, when the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.7 or less, the surface of the graphite granule becomes sufficiently smooth and an external force is applied. In addition, the conductive carbonaceous fine particles are easily detached from the graphite.
  • the incident angle dependence of the peak intensity ratio in the CK edge X-ray absorption spectrum used as an index of the surface smoothness of the graphite granulated product is S 60/0 (hereinafter, simply referred to as “S 60/0 ”). Exist).
  • the CK-edge X-ray absorption spectrum is also called a CK-edge NEXAFS (Near Edge X-ray Absorption Fine Structure) spectrum, which is an electron existing in the core level (1s orbital) of an occupied carbon atom (1s orbital).
  • K-shell inner-shell electrons are absorption spectra that are observed when the irradiated X-ray energy is absorbed and excited to various vacant levels in an unoccupied state.
  • the measurement principle of this X-ray absorption spectroscopy is shown in FIG. 3 in comparison with X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • an energy variable light source in the soft X-ray region (280 eV to 320 eV) is necessary. Since the quantitative property of S 60/0 is based on the premise that the linear polarization property of the excitation light source is high, synchrotron radiation is used as the excitation light source in the CK edge NEXAFS spectrum.
  • the vacant levels at which electrons in the inner core level are excited include ⁇ * levels attributed to antibonding orbitals of sp2 bonds that reflect the crystallinity (basal plane, orientation, etc.) in natural graphite, crystals ⁇ * level attributed to anti-bonding orbitals of sp3 bonds that reflect disorder of properties (edge surface, non-orientation, etc.), or anti-bonding orbitals such as CH bonds and CO bonds There are empty levels.
  • the surface is a plane of a hexagonal network surface (AB surface described later) is a basal surface, and a surface on which an end of the hexagonal network appears. Is the edge surface. On the edge surface, carbon often has an sp3 bond (because there is a possibility that —C ⁇ O or the like is present at the terminal).
  • the CK edge NEXAFS spectrum reflects the local structure in the vicinity of the carbon atom including the excited inner electrons, and in addition, the escape depth of electrons emitted from the solid into the vacuum by the irradiated light. Since the thickness is about 10 nm, only the measured surface structure of the graphite particles is reflected. Therefore, by using the CK edge NEXAFS spectrum, it is possible to measure the crystalline state (orientation) of graphite on the surface of the graphite granulated product, thereby evaluating the roughness of the surface of the graphite granulated product. it can.
  • the method for fixing the graphite granule to be measured to the sample stage is not particularly limited. It is preferable to employ a method of supporting the graphite particles on the copper substrate with In foil or supporting it on the copper substrate with carbon tape so that an excessive load is not applied to the graphite particles.
  • surface graphite crystal As described below, by measuring S 60/0 , the orientation of the graphite crystals in the vicinity of the surface of the measured graphite granulated product (hereinafter referred to as “surface graphite crystal”) can be quantitatively evaluated. it can.
  • the incident angle of the radiated light to the sample is If the sample is a sample with a low orientation of a carbon material that forms sp2 bonds in the vicinity of the surface, such as a carbon vapor deposition film (non-graphite), the incident angle of the emitted light to the sample changes. Even if is changed, the spectrum shape hardly changes.
  • HOPG highly oriented pyrolytic graphite
  • FIG. 5 shows CK-edge NEXAFS spectra when radiated light is incident on carbon at different incident angles (0 °, 30 °, and 60 °).
  • the graph on the left side shows a case where HOPG (highly oriented pyrolytic graphite) in which carbon is a single crystal
  • the graph on the right side shows a carbon deposited film in which carbon is non-graphitic ( The case of film thickness: 10 nm) is shown.
  • HOPG highly oriented pyrolytic graphite
  • FIG. 5 shows CK-edge NEXAFS spectra when radiated light is incident on carbon at different incident angles (0 °, 30 °, and 60 °).
  • the graph on the left side shows a case where HOPG (highly oriented pyrolytic graphite) in which carbon is a single crystal
  • the graph on the right side shows a carbon deposited film in which carbon is non-graphitic ( The case of film thickness: 10 nm) is shown.
  • the absorption peak intensity A is increased, and the absorption peak intensity B attributed to the transition from the C-1s level to the ⁇ * level is decreased. Therefore, the profile of the HOPG CK edge NEXAFS spectrum varies greatly depending on the incident angle.
  • the profile of the CK edge NEXAFS spectrum of the non-graphitic carbon deposited film shown in the graph on the right side of FIG. 5 hardly depends on the incident angle, and the incident angle changes. But the profile hardly changes.
  • FIG. 6 is a diagram for explaining the quantitative evaluation method for the orientation of the surface graphite crystal, taking HOPG as a sample as an example.
  • Examples of the method of forming a graphite granulated product by aggregating a plurality of graphites include, for example, a method of mixing a plurality of scaly graphites in the presence of a binder of a graphite raw material, and a method of applying mechanical external force to a plurality of scaly graphites And a method using the above-mentioned two methods in combination.
  • a method of granulating by applying a mechanical external force without using a binder component is particularly preferable.
  • a counter jet mill AFG manufactured by Hosokawa Micron Corporation, registered trademark
  • a current jet manufactured by Nissin Engineering Co., Ltd., registered trademark
  • an ACM pulverizer Hosokawa Micron Corporation
  • a pulverizer such as “manufactured registered trademark”, a hybridization system (manufactured by Nara Machinery Co., Ltd., registered trademark), mechano hybrid (manufactured by Nippon Coke Industries, Ltd., registered trademark), and the like can be used.
  • a method of smoothing graphite for example, a method of applying mechanical external force to graphite can be mentioned.
  • a shear compression processing machine such as a mechanofusion system (manufactured by Hosokawa Micron Corporation, “Mechanofusion” is a registered trademark) can be used.
  • the conductive carbonaceous fine particles are directly attached to the graphite.
  • the conductive carbonaceous fine particles are, for example, carbon black such as Ketjen Black (registered trademark), furnace black, acetylene black, carbon nanotube, carbon nanofiber, carbon nanocoil and the like.
  • carbon black such as Ketjen Black (registered trademark)
  • furnace black acetylene black
  • carbon nanotube carbon nanofiber
  • carbon nanocoil and the like acetylene black
  • acetylene black is particularly preferable.
  • the conductive carbonaceous fine particles may be a mixture of different types of carbon black or the like.
  • the mass ratio of the conductive carbonaceous fine particles to graphite is preferably in the range of 0.3% to 2.0%, more preferably in the range of 0.5% to 2.0%, More preferably, it is in the range of 0.7% or more and 2.0% or less, and particularly preferably in the range of 1.0% or more and 2.0% or less.
  • Non-graphitic carbon is at least partially adhered to the conductive carbonaceous fine particles and graphite.
  • Non-graphitic carbon is at least one of amorphous carbon and turbostratic carbon.
  • amorphous carbon refers to carbon that has short-range order (on the order of several to tens of atoms) but does not have long-range order (on the order of hundreds to thousands of atoms).
  • turbostratic structure carbon refers to carbon composed of carbon atoms having a turbulent structure parallel to the hexagonal plane direction, but having no crystallographic regularity in the three-dimensional direction.
  • hkl diffraction lines corresponding to the 101 plane and the 103 plane do not appear.
  • the composite graphite particles according to the embodiment of the present invention have strong diffraction lines of graphite as a base material, it is difficult to confirm the existence of the turbostratic carbon by X-ray diffraction. For this reason, it is preferable that the turbostratic structure carbon is confirmed with a transmission electron microscope (TEM) or the like.
  • TEM transmission electron microscope
  • This turbostratic carbon is obtained by firing a raw material of non-graphitic carbon.
  • the raw material of non-graphitic carbon is an organic compound such as tar, petroleum-based pitch powder, coal-based pitch powder, and resin powder.
  • the non-graphitic carbon raw material may be a mixture of different types of pitches. Among these, coal-based pitch powder is particularly preferable.
  • the heat treatment temperature may be in the range of 800 ° C to 1200 ° C.
  • This heat treatment time is appropriately determined in consideration of the heat treatment temperature and the characteristics of the organic compound, and is typically about 1 hour.
  • the atmosphere during the heat treatment is preferably a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere), and a nitrogen atmosphere is preferred from an economic viewpoint.
  • Amorphous carbon can be formed, for example, by a vapor phase method such as a vacuum deposition method or a plasma CVD method.
  • the mass ratio of non-graphitic carbon to the sum of graphite and conductive carbonaceous fine particles is preferably in the range of 0.8% to 15.0%, and in the range of 2.0% to 14.0%. More preferably, it is more preferably within the range of 4.0% or more and 12.0% or less, and particularly preferably within the range of 6.0% or more and 10.0% or less.
  • the composite graphite particles according to the embodiment of the present invention When an external force such as ultrasonic waves is applied to the composite graphite particles according to the embodiment of the present invention, some or all of the conductive carbonaceous fine particles are detached from the graphite (see FIGS. 1 and 2).
  • the force required for this desorption is the various settings of the mechanochemical (registered trademark) processing device and mechanofusion (registered trademark) processing device, the type of non-graphitic carbon raw material powder, and the composition , And can be adjusted depending on the amount added.
  • Such composite graphite particles can be used as an active material constituting an electrode, particularly a negative electrode of a nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery is represented by a lithium ion secondary battery.
  • the composite graphite particles according to the embodiment of the present invention are manufactured through a primary composite particle preparation step and a composite graphite particle preparation step.
  • the conductive composite particles are directly attached to the graphite by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process to produce primary composite particles.
  • the composite graphite particle preparation step the primary composite particles and the non-graphitic carbon raw material powder are mixed and then heated. As a result, the non-graphitic carbon raw material powder is converted into non-graphitic carbon, and the non-graphitic carbon is partially or entirely attached to the primary composite particles.
  • this spherical natural graphite powder is referred to as “smoothed spherical natural graphite powder”.
  • the average particle diameter means a particle diameter (D50) at a volume fraction of 50% in the cumulative particle size distribution unless otherwise specified.
  • the smoothed spherical natural graphite powder has a circularity of 0.92 or more and 1.00 or less, and the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.67. Was confirmed.
  • the circularity was measured using a flow type particle image analyzer FPIA-2100 ("FPIA” is a registered trademark) manufactured by Sysmex Corporation.
  • FPIA flow type particle image analyzer
  • (Circularity) is a value obtained by dividing (perimeter of a circle having the same area as the projection shape) by (perimeter of the projection shape).
  • the “projection shape” is a shape obtained by projecting the particles to be measured onto a two-dimensional plane, and the circumference length of a circle having the same area as the projection shape and the circumference length of the projection shape are It is obtained by image processing of an image.
  • the CK edge X-ray absorption spectrum was measured using synchrotron radiation facility NEWVAL beam lines BL7B and BL9. During this measurement, emitted light is emitted when electrons accumulated in the storage ring with an acceleration voltage of 1.0 GeV to 1.5 GeV and an accumulation current of 80 to 350 mA meander through an insertion light source called an undulator. Was used as an excitation light source.
  • the C-K edge X-ray absorption spectrum of the smooth spherical natural graphite powder was measured using a CK edge NEXAFS (Near Edge X-ray Absorbance Fine Structure) installed in the beam lines BL7B and BL9.
  • a 60 is the C-1s level to ⁇ * level (ie, anti-bonding property of sp2 bond) in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 60 °.
  • Absorption peak intensity attributed to the transition to orbit: -C C-).
  • B 60 is the C-1s level to ⁇ * level (that is, the antibonding orbital of sp3 bond in the CK edge X-ray absorption spectrum of the particle measured with the incident angle of the emitted light being 60 °: It is the absorption peak intensity attributed to the transition to -CC-).
  • a 0 is the absorption peak intensity attributed to the transition from the C-1s level to the ⁇ * level in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 0 °. is there.
  • B 0 is the absorption peak intensity attributed to the transition from the C-1s level to the ⁇ * level in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 0 °. is there.
  • this mixed powder 600 g was put into a mechano-fusion system (AMS-Lab made by Hosokawa Micron) with a gap of 5 mm between the rotor and the inner piece, and then the mixed powder was processed at a rotational speed of 2600 rpm for 5 minutes to make it smooth Spherical natural graphite powder and acetylene black were combined.
  • this composite is referred to as “primary composite powder”.
  • the contents of the beaker were filtered. And after fully drying the filtrate, the specific surface area was calculated
  • the BET specific surface area of the composite graphite particles after the ultrasonic treatment was 3.81 m 2 / g (see Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.14 (see Table 2).
  • the coating film was punched into a disk shape having a diameter of 13 mm. Thereafter, the disk was pressed with a press molding machine so that the density of the disk was 1.60 g / cm 3 , thereby producing an electrode.
  • (3-2) Battery Preparation An electrode assembly was prepared by disposing the above electrode and a counter Li metal foil on both sides of a polyolefin separator. And the electrolyte solution was inject
  • dedoping (corresponding to detachment of lithium ions from the electrode and discharging of the lithium ion secondary battery) was performed at a constant current of 0.325 mA until the potential difference became 1.5 V, and the dedoping capacity was measured.
  • the doping capacity and the dedoping capacity at this time correspond to the charging capacity and discharging capacity when this electrode is used as the negative electrode of the lithium ion secondary battery, and these were used as the charging capacity and discharging capacity.
  • the discharge capacity of the non-aqueous test cell according to this example was 367 mAh / g (see Table 2).
  • the ratio of dedoping capacity / doping capacity corresponds to the ratio of discharge capacity / charge capacity of the lithium ion secondary battery, this ratio was defined as charge / discharge efficiency.
  • the charge / discharge efficiency of the non-aqueous test cell according to this example was 93.3% (see Table 2).
  • Cycle characteristics were measured using a coin-type non-aqueous test cell configured in the same manner as described above.
  • this test cell the above-described charging / discharging was performed, and from this, a “discharge capacity at the first dedoping” was obtained.
  • doping was continued at a constant voltage until 50 ⁇ A was maintained while maintaining 5 mV.
  • undoping was performed at a constant current of 1.56 mA until the potential difference became 1.5 V (corresponding to discharge), and the dedoping capacity was measured.
  • the dedope capacity at this time was defined as the discharge capacity.
  • the average particle size of the composite graphite particles was 19.5 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.54 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.73 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.22 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 55.1% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 365 mAh / g (see Table 2), the charge / discharge efficiency was 92.8% (see Table 2), and the capacity retention rate was 98.6% (see Table 2). ).
  • the average particle size of the composite graphite particles was 19.5 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.67 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.34 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 53.9% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 364 mAh / g (see Table 2), the charge / discharge efficiency was 92.5% (see Table 2), and the capacity retention rate was 99.3% (see Table 2). ).
  • the average particle size of the composite graphite particles was 19.6 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.94 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.40 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.45 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 53.0% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 362 mAh / g (see Table 2), the charge / discharge efficiency was 91.9% (see Table 2), and the capacity retention rate was 99.5% (see Table 2). ).
  • the average particle size of the composite graphite particles was 19.7 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 1.60 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 1.40 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.14 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 54.9% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 355 mAh / g (see Table 2), the discharge efficiency was 92.3% (see Table 2), and the capacity retention rate was 97.4% (see Table 2). .
  • the average particle size of the composite graphite particles was 19.9 ⁇ m (see Table 1).
  • the BET specific surface area of the composite graphite particles before ultrasonication was 1.00 m 2 / g (see Table 2), and the BET specific surface area of the particles after ultrasonic treatment was 0.90 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.11 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 55.3 mass% (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 340 mAh / g (see Table 2), the discharge efficiency was 91.9% (see Table 2), and the capacity retention rate was 94.2% (see Table 2). .
  • the average particle size of the composite graphite particles was 19.6 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 3.98 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.66 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.09 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 56.6% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 367 mAh / g (see Table 2), the discharge efficiency was 93.5% (see Table 2), and the capacity retention rate was 84.6% (see Table 2). .
  • the average particle size of the composite graphite particles was 19.6 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 5.44 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.56 (see Table 2).
  • the solid concentration of the electrode mixture slurry was 51.4% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 359 mAh / g (see Table 2), the discharge efficiency was 91.2% (see Table 2), and the capacity retention rate was 99.7% (see Table 2). .
  • the target composite graphite particles were obtained, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the spherical natural graphite powder, acetylene black, and non-graphitic carbon in the composite graphite particles was 98.0: 1.0: 1.0 (see Table 1).
  • the average particle size of the composite graphite particles was 19.5 ⁇ m (see Table 1).
  • BET specific surface area before sonication composite graphite particles is 4.50 m 2 / g (see Table 2), the BET specific surface area after sonication of the same particles was 4.15m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.08 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 55.3 mass% (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 365 mAh / g (see Table 2), the discharge efficiency was 98.5% (see Table 2), and the capacity retention rate was 86.3% (see Table 2). .
  • Example 1 “(2) Smoothing spherical natural graphite powder and acetylene black are not composited”, and “(3) Primary composite powder and non-graphitic carbon are composited”.
  • the control was carried out in the same manner as in Example 1 except that the smoothed spherical natural graphite powder and the coal-based pitch powder were mixed so that the mass ratio with the powder (average particle size 20 ⁇ m) was 100.0: 2.0.
  • a powder was obtained, and the control powder was evaluated in the same manner as in Example 1.
  • the mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon was 99.0: 0.0: 1.0 (see Table 1).
  • the average particle size of the composite graphite particles was 19.6 ⁇ m (see Table 1).
  • the BET specific surface area before ultrasonic treatment of the composite graphite particles was 3.83 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.60 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.06 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 57.2% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 367 mAh / g (see Table 2), the discharge efficiency was 93.9% (see Table 2), and the capacity retention rate was 78.8% (see Table 2). .
  • the average particle size of the composite graphite particles was 19.5 ⁇ m (see Table 1).
  • the BET specific surface area of the composite graphite particles before ultrasonic treatment was 6.80 m 2 / g (see Table 2), and the BET specific surface area of the particles after ultrasonic treatment was 5.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.24 (see Table 2).
  • the solid content concentration of the electrode mixture slurry was 57.2% by mass (see Table 2).
  • the discharge capacity of the non-aqueous test cell was 364 mAh / g (see Table 2), the discharge efficiency was 89.8% (see Table 2), and the capacity retention rate was 98.3% (see Table 2). .
  • the capacity retention rate is at a high level. It was found to be maintained. It was also found that the larger the mass ratio of acetylene black to non-graphitic carbon, the greater the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment.
  • the ratio of the discharge capacity of the 10th cycle to the discharge capacity of the 1st cycle is expressed as a percentage as an evaluation index of charge / discharge cycle characteristics. As the performance of secondary batteries increases, evaluation of discharge capacity of about 10 cycles is not sufficient for practical use.
  • non-aqueous test cell of the present application has a non-aqueous test cell (hereinafter referred to as “conventional non-aqueous test cell”) disclosed in Japanese Patent Application Laid-Open No. 2004-066331. It is difficult to simply compare the two non-aqueous test cells, but the non-aqueous test cell of the present application is more severe than the conventional non-aqueous test cell. Since the charge / discharge cycle characteristics are evaluated, it is considered that the non-aqueous test cell of the present application is superior in charge / discharge cycle characteristics than the conventional non-aqueous test cell.

Abstract

The purpose of the present invention is to provide composite graphitic particles that can form a dense conductive network in an electrode when forming an electrode of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery or the like, and to provide a method for manufacturing the same. These composite graphitic particles can include graphite, conductive carbonaceous fine particles, and non-graphitic carbon. The graphite is preferably natural graphite, and more preferably is a spherical graphite granule formed by aggregating a plurality of natural graphite flakes. Furthermore, the graphite is preferably smoothed. The conductive carbonaceous fine particles are directly adhered to the graphite. The non-graphitic carbon is at least partially adhered to the conductive carbonaceous fine particles and the graphite. Furthermore, when a predetermined external force is applied to the composite graphitic particles, the conductive carbonaceous fine particles detach from the graphite.

Description

複合黒鉛質粒子およびその製造方法Composite graphite particles and method for producing the same
 本発明は、複合黒鉛質粒子およびその製造方法に関する。 The present invention relates to composite graphite particles and a method for producing the same.
 過去に、リチウムイオン二次電池の電極活物質材料として、以下の黒鉛および導電性炭素質微粒子を含む複合粒子の提案がなされている。 In the past, composite particles containing the following graphite and conductive carbonaceous fine particles have been proposed as electrode active material materials for lithium ion secondary batteries.
 複数の鱗片状の黒鉛が集合して形成された黒鉛造粒物の内部空隙および/または外表面に、黒鉛造粒物よりも結晶性の低い炭素質層が充填および/または被覆されてなり、炭素質層に炭素質微粒子が添加された複合黒鉛質粒子(例えば、特開2004-063321号公報等参照)。 A carbonaceous layer having a lower crystallinity than the graphite granule is filled and / or coated on the internal voids and / or the outer surface of the graphite granule formed by aggregating a plurality of scaly graphites, Composite graphite particles in which carbonaceous fine particles are added to a carbonaceous layer (for example, see JP-A-2004-066331).
 平均粒子径が5~30μm、平均格子面間隔d(002)が0.3360nm未満の黒鉛粉末の表面に、平均粒子径が0.05~2μm、平均格子面間隔d(002)が0.3360nm以上のアモルファスカーボン粉末をバインダーピッチの炭化物で結着、被覆しており、窒素吸着比表面積が3~7m/gであり、平均粒子径が7~40μmであり、ラマンスペクトル強度比l1360/l1580が0.6以上であるコア・シェル構造の複合粒子(例えば、国際公開第2008/56820号パンフレット等参照)。 On the surface of the graphite powder having an average particle diameter of 5 to 30 μm and an average lattice spacing d (002) of less than 0.3360 nm, the average particle diameter is 0.05 to 2 μm and the average lattice spacing d (002) is 0.3360 nm. The above amorphous carbon powder is bound and coated with carbide of binder pitch, the nitrogen adsorption specific surface area is 3 to 7 m 2 / g, the average particle diameter is 7 to 40 μm, and the Raman spectral intensity ratio 11360/11580. A composite particle having a core-shell structure having a particle diameter of 0.6 or more (see, for example, pamphlet of International Publication No. 2008/56820).
 黒鉛系炭素材の表面に非晶質炭素材がメカノケミカル処理されたもの(特開2009-238657号公報等参照)。 A graphite carbon material with a mechanochemical treatment of an amorphous carbon material (see JP 2009-238657 A).
特開2004-063321号公報JP 2004-066331 A 国際公開第2008/56820号パンフレットInternational Publication No. 2008/56820 Pamphlet 特開2009-238657号公報JP 2009-238657 A
 ところで、上述のような複合黒鉛質粒子のみをバインダー(結着剤)で結着させて電極を形成する際、その電極内では、複合黒鉛質粒子同士が点接触することにより導電ネットワークが形成されることになる。このように複合黒鉛質粒子同士の点接触で形成される導電ネットワークは、充放電に伴う複合黒鉛質粒子の膨張・収縮により崩壊しやすい。このため、上述のような複合黒鉛質粒子は、リチウムイオン二次電池の充放電サイクル特性の向上に寄与することができないと思われる。したがって、今後、充放電に伴う膨張・収縮によっても崩壊しにくい緻密な導電ネットワークを形成することができる複合黒鉛質粒子の出現が期待されている。 By the way, when forming an electrode by binding only the composite graphite particles as described above with a binder (binder), a conductive network is formed by the point contact of the composite graphite particles within the electrode. Will be. Thus, the conductive network formed by the point contact between the composite graphite particles is likely to collapse due to the expansion / contraction of the composite graphite particles accompanying charge / discharge. For this reason, it is considered that the composite graphite particles as described above cannot contribute to the improvement of the charge / discharge cycle characteristics of the lithium ion secondary battery. Therefore, it is expected in the future that composite graphite particles capable of forming a dense conductive network that does not easily collapse due to expansion / contraction associated with charge / discharge are expected.
 本発明の課題は、リチウムイオン二次電池等の非水電解質二次電池の電極形成時において電極内に緻密な導電ネットワークを形成することができる複合黒鉛質粒子およびその製造方法を提供することにある。 An object of the present invention is to provide composite graphite particles capable of forming a dense conductive network in an electrode when forming an electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a method for producing the same. is there.
 本発明の一局面に係る複合黒鉛質粒子は、黒鉛、導電性炭素質微粒子および非黒鉛質炭素を備える。黒鉛は、天然黒鉛であることが好ましい。黒鉛が天然黒鉛である場合、その天然黒鉛は、複数の鱗片状の天然黒鉛が集合して形成された球状の黒鉛造粒物であることが好ましい。黒鉛は平滑化されていることが好ましい。黒鉛が球状の黒鉛造粒物である場合、円形度が0.92以上1.00以下であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0が0.7以下であることが好ましい。導電性炭素質微粒子は、黒鉛に直接的に付着している。非黒鉛質炭素は、導電性炭素質微粒子および黒鉛に少なくとも部分的に付着している。 The composite graphite particles according to one aspect of the present invention include graphite, conductive carbonaceous fine particles, and non-graphitic carbon. The graphite is preferably natural graphite. When the graphite is natural graphite, the natural graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly natural graphites. The graphite is preferably smoothed. When the graphite is a spherical graphite granule, the circularity is 0.92 or more and 1.00 or less, and the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.00 . It is preferable that it is 7 or less. The conductive carbonaceous fine particles are directly attached to the graphite. Non-graphitic carbon is at least partially attached to the conductive carbonaceous fine particles and graphite.
 複合黒鉛質粒子を上述の通りに構成すれば、所定の外力を加えることにより導電性炭素質微粒子の一部または全部を黒鉛から脱離させることができる。このため、電極合剤スラリーを調製するときに加わる程度の力で導電性炭素質微粒子の一部または全部を黒鉛から脱離させるように複合黒鉛質粒子を形成すれば、電極合剤スラリー中に導電性炭素質微粒子を均一に分散させることができる。つまり、この複合黒鉛質粒子を用いれば、非水電解質二次電池の電極形成時において電極内に、主として黒鉛および導電性炭素質微粒子から成る緻密な導電ネットワークを形成することができる。 If the composite graphite particles are configured as described above, a part or all of the conductive carbonaceous fine particles can be detached from the graphite by applying a predetermined external force. For this reason, if composite graphite particles are formed so that part or all of the conductive carbonaceous fine particles are desorbed from graphite with a force applied when preparing an electrode mixture slurry, Conductive carbonaceous fine particles can be uniformly dispersed. That is, if this composite graphite particle is used, a dense conductive network mainly composed of graphite and conductive carbonaceous fine particles can be formed in the electrode when forming the electrode of the nonaqueous electrolyte secondary battery.
 上述の複合黒鉛質粒子において「所定の外力が加えられた後の比表面積値(m/g)」に対する「所定の外力が加えられる前の比表面積値(m/g)」の比が1.10以上2.00以下の範囲内であることが好ましい。このような複合黒鉛質粒子は、スラリー調製時において十分な量の導電性炭素質微粒子をスラリー中に放出することができるからである。 The ratio of "predetermined specific surface area after an external force is applied (m 2 / g)" "The specific surface area value before the predetermined force is applied (m 2 / g)" for the composite graphite particles described above It is preferably in the range of 1.10 or more and 2.00 or less. This is because such composite graphite particles can release a sufficient amount of conductive carbonaceous fine particles into the slurry during slurry preparation.
 上述の複合黒鉛質粒子において、黒鉛に対する導電性炭素質微粒子の質量割合は0.3%以上2.0%以下の範囲内であることが好ましい。黒鉛と導電性炭素質微粒子との和に対する非黒鉛質炭素の質量割合は0.8%以上15.0%以下の範囲内であることが好ましい。複合黒鉛質粒子の組成をこのようにすることにより、電極合剤スラリー調製前においては良好に導電性炭素質微粒子を黒鉛に付着させることができ、電極合剤スラリー調製中において導電性炭素質微粒子を黒鉛から脱離させることができるからである。 In the above composite graphite particles, the mass ratio of the conductive carbonaceous fine particles to graphite is preferably in the range of 0.3% to 2.0%. The mass ratio of non-graphitic carbon to the sum of graphite and conductive carbonaceous fine particles is preferably in the range of 0.8% to 15.0%. By making the composition of the composite graphite particles in this way, the conductive carbonaceous fine particles can be satisfactorily adhered to the graphite before the preparation of the electrode mixture slurry, and the conductive carbonaceous fine particles are prepared during the preparation of the electrode mixture slurry. This is because can be released from graphite.
 本発明の他の局面に係る複合黒鉛質粒子の製造方法は、一次複合粒子調製工程および複合黒鉛質粒子調製工程を備える。一次複合粒子調製工程では、導電性炭素質微粒子が直接的に黒鉛に付着されて一次複合粒子が調製される。黒鉛は、天然黒鉛であることが好ましい。黒鉛が天然黒鉛である場合、その天然黒鉛は、複数の鱗片状の天然黒鉛が集合して形成された球状の黒鉛造粒物であることが好ましい。黒鉛は平滑化されていることが好ましい。黒鉛が球状の黒鉛造粒物である場合、円形度が0.92以上1.00以下であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性が0.7以下であることが好ましい。この一次複合粒子調製工程では、導電性炭素質微粒子および黒鉛に対してメカノケミカル処理が行われることが好ましい。複合黒鉛質粒子調製工程では、一次複合粒子に非黒鉛質炭素が部分的に又は全体的に付着されて複合黒鉛質粒子が調製される。 The method for producing composite graphite particles according to another aspect of the present invention includes a primary composite particle preparation step and a composite graphite particle preparation step. In the primary composite particle preparation step, the conductive composite particles are prepared by directly attaching the conductive carbonaceous fine particles to the graphite. The graphite is preferably natural graphite. When the graphite is natural graphite, the natural graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly natural graphites. The graphite is preferably smoothed. When the graphite is a spherical graphite granule, the circularity is 0.92 or more and 1.00 or less, and the incident angle dependence of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.7 or less. It is preferable. In the primary composite particle preparation step, it is preferable that a mechanochemical treatment is performed on the conductive carbonaceous fine particles and graphite. In the composite graphite particle preparation step, non-graphitic carbon is partially or wholly attached to the primary composite particles to prepare composite graphite particles.
 この複合黒鉛質粒子の製造方法により、所定の外力が加えられることにより導電性炭素質微粒子の一部または全部が黒鉛から脱離する複合黒鉛質粒子を構成することができる。このため、電極合剤スラリーを調製するときに加わる程度の力で導電性炭素質微粒子の一部または全部が黒鉛から脱離するように複合黒鉛質粒子を形成すれば、電極合剤スラリー中に導電性炭素質微粒子を均一に分散させることができる。つまり、この複合黒鉛質粒子を用いれば、非水電解質二次電池の電極形成時において電極内に緻密な導電ネットワークを形成することができる。 By this composite graphite particle production method, composite graphite particles in which part or all of the conductive carbonaceous fine particles are detached from the graphite by applying a predetermined external force can be constituted. For this reason, if the composite graphite particles are formed so that part or all of the conductive carbonaceous fine particles are detached from the graphite with a force applied when preparing the electrode mixture slurry, Conductive carbonaceous fine particles can be uniformly dispersed. That is, if this composite graphite particle is used, a dense conductive network can be formed in the electrode when forming the electrode of the nonaqueous electrolyte secondary battery.
 なお、上述の複合黒鉛質粒子の製造方法において、複合黒鉛質粒子調製工程では、一次複合粒子と非黒鉛質炭素の原料粉末とが混合された後に加熱される。その結果、非黒鉛質炭素の原料粉末が非黒鉛質炭素に変換されると共に、一次複合粒子に非黒鉛質炭素が部分的に又は全体的に付着される。 In the above-described method for producing composite graphite particles, in the composite graphite particle preparation step, primary composite particles and non-graphitic carbon raw material powder are mixed and then heated. As a result, the non-graphitic carbon raw material powder is converted into non-graphitic carbon, and the non-graphitic carbon is partially or entirely attached to the primary composite particles.
 上述の複合黒鉛質粒子は、電極、特に非水電解質二次電池の電極を構成する活物質として使用することができる。非水電解質二次電池は、リチウムイオン二次電池に代表される。 The above-described composite graphite particles can be used as an active material constituting an electrode, particularly an electrode of a nonaqueous electrolyte secondary battery. Nonaqueous electrolyte secondary batteries are represented by lithium ion secondary batteries.
本発明の実施の形態に係る複合黒鉛質粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of composite graphite particles according to an embodiment of the present invention. 図1に示される複合黒鉛質粒子を超音波処理した後の複合黒鉛質粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of composite graphite particles after ultrasonic treatment of the composite graphite particles shown in FIG. X線吸収分光の測定原理をX線光電子分光(XPS)との対比で示す図である。It is a figure which shows the measurement principle of X-ray absorption spectroscopy by contrast with X-ray photoelectron spectroscopy (XPS). 放射光によるX線吸収分光の測定方法の基本構成を示す図である。It is a figure which shows the basic composition of the measuring method of the X-ray absorption spectroscopy by synchrotron radiation. 単結晶であるHOPG(高配向性熱分解黒鉛)(左)および非晶質である炭素蒸着膜(膜厚:10nm)(右)に対して異なる入射角(0°、30°および60°)で放射光を入射させた場合のC-K端NEXAFSスペクトルを示す図である。Different incident angles (0 °, 30 ° and 60 °) for single crystal HOPG (highly oriented pyrolytic graphite) (left) and amorphous carbon deposited film (film thickness: 10 nm) (right) FIG. 6 is a diagram illustrating a CK end NEXAFS spectrum when radiant light is incident on the line. 表面黒鉛結晶の配向性の定量評価方法を、HOPGを試料とした場合を例として説明する図である。It is a figure explaining the case where HOPG is made into the sample for the quantitative evaluation method of the orientation of surface graphite crystal.
 本発明の実施の形態に係る複合黒鉛質粒子は、主に、黒鉛、導電性炭素質微粒子および非黒鉛質炭素から構成される。 The composite graphitic particles according to the embodiment of the present invention are mainly composed of graphite, conductive carbonaceous fine particles, and non-graphitic carbon.
 黒鉛は、天然黒鉛、人造黒鉛のいずれでもよいが、天然黒鉛であることが好ましい。黒鉛として、天然黒鉛と人造黒鉛との混合物が用いられてもかまわない。黒鉛は、複数の鱗片状の黒鉛が集合して形成された球状の黒鉛造粒物であることが好ましい。鱗片状の黒鉛としては、天然黒鉛、人造黒鉛の他、タール・ピッチを原料としたメソフェーズ焼成炭素(バルクメソフェーズ)、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)等を黒鉛化したもの等が挙げられ、特に、結晶性の高い天然黒鉛を複数用いて造粒されたものが好ましい。なお、1個の黒鉛造粒物は、通常、鱗片状の黒鉛が2~100個、好ましくは3~20個集合して形成されるが、1個の黒鉛を折りたたんで球状化することもできる。黒鉛は平滑化されていることが好ましい。黒鉛が球状の黒鉛造粒物である場合、円形度が0.92以上1.00以下であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0が0.7以下であることが好ましい。C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0は、下限が0.5である、すなわち0.5以上であることが好ましい。黒鉛造粒物の円形度が0.92以上であれば、黒鉛造粒物が比較的球形に近いため、電極合剤スラリーの塗布時に黒鉛造粒物が配向するようなことがなく、延いては非水電解質二次電池の容量低下等の不具合が生じにくくなる。また、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0が0.7以下であれば、黒鉛造粒物の表面が十分に平滑となり、外力が加えられたときに導電性炭素質微粒子が黒鉛から脱離しやすくなる。 The graphite may be natural graphite or artificial graphite, but is preferably natural graphite. As the graphite, a mixture of natural graphite and artificial graphite may be used. The graphite is preferably a spherical graphite granule formed by aggregating a plurality of scaly graphites. As scale-like graphite, natural graphite, artificial graphite, mesophase calcined carbon (bulk mesophase) made from tar pitch, coke (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.), etc. Graphitized, etc., and those granulated using a plurality of natural graphites having high crystallinity are particularly preferable. One graphite granule is usually formed by collecting 2 to 100, preferably 3 to 20, scaly graphite, but can be made spherical by folding one graphite. . The graphite is preferably smoothed. When the graphite is a spherical graphite granule, the circularity is 0.92 or more and 1.00 or less, and the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.00 . It is preferable that it is 7 or less. The lower limit of the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is preferably 0.5, that is, 0.5 or more. If the circularity of the graphite granule is 0.92 or more, since the graphite granule is relatively spherical, the graphite granule is not oriented when the electrode mixture slurry is applied. Is less likely to cause problems such as a decrease in capacity of the nonaqueous electrolyte secondary battery. Further, when the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.7 or less, the surface of the graphite granule becomes sufficiently smooth and an external force is applied. In addition, the conductive carbonaceous fine particles are easily detached from the graphite.
 以下、黒鉛造粒物の表面平滑度の指標として用いるC-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0(以下、単に「S60/0」と略することもある)について説明する。 Hereinafter, the incident angle dependence of the peak intensity ratio in the CK edge X-ray absorption spectrum used as an index of the surface smoothness of the graphite granulated product is S 60/0 (hereinafter, simply referred to as “S 60/0 ”). Exist).
 C-K端X線吸収スペクトルは、C-K端NEXAFS(Near Edge X-ray Absorbance Fine Structure)スペクトルとも称され、占有状態である炭素原子の内殻準位(1s軌道)に存在する電子(K殻内殻電子)が、照射されたX線のエネルギーを吸収して、非占有状態である種々の空準位に励起されることにより観測される吸収スペクトルである。 The CK-edge X-ray absorption spectrum is also called a CK-edge NEXAFS (Near Edge X-ray Absorption Fine Structure) spectrum, which is an electron existing in the core level (1s orbital) of an occupied carbon atom (1s orbital). K-shell inner-shell electrons) are absorption spectra that are observed when the irradiated X-ray energy is absorbed and excited to various vacant levels in an unoccupied state.
 このX線吸収分光の測定原理を、X線光電子分光(XPS)との対比で図3に示す。
 結合エネルギーが283.8eVである炭素の内殻準位から種々の空準位への電子遷移を観測するためには、軟X線領域(280eV~320eV)におけるエネルギー可変光源が必要であること、およびS60/0の定量性は励起光源の直線偏光性が高いことを前提としていることから、C-K端NEXAFSスペクトルでは励起光源として放射光を用いる。
The measurement principle of this X-ray absorption spectroscopy is shown in FIG. 3 in comparison with X-ray photoelectron spectroscopy (XPS).
In order to observe electronic transitions from the core level of carbon having a binding energy of 283.8 eV to various vacant levels, an energy variable light source in the soft X-ray region (280 eV to 320 eV) is necessary. Since the quantitative property of S 60/0 is based on the premise that the linear polarization property of the excitation light source is high, synchrotron radiation is used as the excitation light source in the CK edge NEXAFS spectrum.
 内殻準位にある電子が励起される空準位としては、天然黒鉛における結晶性(ベーサル面や配向性など)を反映するsp2結合の反結合性軌道に帰属されるπ準位、結晶性の乱れ(エッジ面や無配向性など)を反映するsp3結合の反結合性軌道に帰属されるσ準位、あるいはC-H結合やC-O結合などの反結合性軌道に帰属される空準位などがある。sp2結合による六角網構造が積層した結晶構造をもつ黒鉛において、表面が六角網面の平面(後述のAB面)になっているのがベーサル面であり、六角網の端部が現れている面がエッジ面である。エッジ面では炭素はsp3結合をとることが多い(末端に-C=O等が存在している可能性もあるため)。 The vacant levels at which electrons in the inner core level are excited include π * levels attributed to antibonding orbitals of sp2 bonds that reflect the crystallinity (basal plane, orientation, etc.) in natural graphite, crystals Σ * level attributed to anti-bonding orbitals of sp3 bonds that reflect disorder of properties (edge surface, non-orientation, etc.), or anti-bonding orbitals such as CH bonds and CO bonds There are empty levels. In graphite having a crystal structure in which hexagonal network structures by sp2 bonds are laminated, the surface is a plane of a hexagonal network surface (AB surface described later) is a basal surface, and a surface on which an end of the hexagonal network appears. Is the edge surface. On the edge surface, carbon often has an sp3 bond (because there is a possibility that —C═O or the like is present at the terminal).
 また、C-K端NEXAFSスペクトルは、励起された内殻電子を含む炭素原子近傍の局所構造を反映することに加えて、照射された光によって固体中から真空中に放出される電子の脱出深さが10nm程度であることから、測定された黒鉛粒子の表面構造のみを反映する。したがって、C-K端NEXAFSスペクトルを用いることにより、黒鉛造粒物の表面の黒鉛の結晶状態(配向性)を測定することができ、それにより黒鉛造粒物表面の粗さを評価することができる。 The CK edge NEXAFS spectrum reflects the local structure in the vicinity of the carbon atom including the excited inner electrons, and in addition, the escape depth of electrons emitted from the solid into the vacuum by the irradiated light. Since the thickness is about 10 nm, only the measured surface structure of the graphite particles is reflected. Therefore, by using the CK edge NEXAFS spectrum, it is possible to measure the crystalline state (orientation) of graphite on the surface of the graphite granulated product, thereby evaluating the roughness of the surface of the graphite granulated product. it can.
 測定される黒鉛造粒物の試料台への固定方法は特に限定されない。黒鉛粒子に過度の荷重が加わってその表面性状が変化しないように、In箔で銅基板上に担持する、あるいはカーボンテープで銅基板上に担持するなどの方法を採用することが好ましい。 The method for fixing the graphite granule to be measured to the sample stage is not particularly limited. It is preferable to employ a method of supporting the graphite particles on the copper substrate with In foil or supporting it on the copper substrate with carbon tape so that an excessive load is not applied to the graphite particles.
 C-K端NEXAFSスペクトルの測定は、試料に対して入射角が固定された放射光を試料に照射する。そして、照射する放射光のエネルギーを280eV~320eVまで走査しながら、試料から放出された光電子を補完するために試料に流れこむ試料電流を計測する全電子収量法により行う。この測定方法の基本構成を図4に示す。 Measure the CK edge NEXAFS spectrum by irradiating the sample with radiated light having a fixed incident angle with respect to the sample. Then, while scanning the energy of radiated light from 280 eV to 320 eV, the total electron yield method is used to measure the sample current flowing into the sample in order to complement the photoelectrons emitted from the sample. The basic configuration of this measurement method is shown in FIG.
 次に説明するように、S60/0を測定することにより、測定された黒鉛造粒物の表面近傍の黒鉛結晶(以下「表面黒鉛結晶」という)の配向性を定量的に評価することができる。 As described below, by measuring S 60/0 , the orientation of the graphite crystals in the vicinity of the surface of the measured graphite granulated product (hereinafter referred to as “surface graphite crystal”) can be quantitatively evaluated. it can.
 放射光は直線偏光性が高いため、放射光の入射方向が表面黒鉛結晶のsp2結合(-C=C-)の結合軸方向に平行である場合に、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度が大きくなり、逆に両者が直交する場合に吸光ピーク強度が小さくなる。 Since synchrotron radiation is highly linearly polarized, when the incident direction of synchrotron radiation is parallel to the bond axis direction of the sp2 bond (-C = C-) of the surface graphite crystal, the C-1s level to the π * level The absorption peak intensity attributed to the transition to becomes larger, and conversely when the two are orthogonal, the absorption peak intensity decreases.
 そのため、高配向性熱分解黒鉛(HOPG,単結晶黒鉛)のように表面近傍においてsp2結合を形成する黒鉛結晶が高度に配向している試料である場合には、試料に対する放射光の入射角を変えるとスペクトル形状が大きく変化するが、炭素蒸着膜(非黒鉛質)のように表面近傍においてsp2結合を形成する炭素材料の配向性が低い試料である場合には、試料に対する放射光の入射角を変えてもスペクトル形状はほとんど変化しない。 Therefore, when the graphite crystal forming sp2 bonds in the vicinity of the surface is highly oriented, such as highly oriented pyrolytic graphite (HOPG, single crystal graphite), the incident angle of the radiated light to the sample is If the sample is a sample with a low orientation of a carbon material that forms sp2 bonds in the vicinity of the surface, such as a carbon vapor deposition film (non-graphite), the incident angle of the emitted light to the sample changes. Even if is changed, the spectrum shape hardly changes.
 図5には、炭素に対して異なる入射角(0°、30°および60°)で放射光を入射させた場合のC-K端NEXAFSスペクトルを示す。向かって左側のグラフ図は、炭素が単結晶であるHOPG(高配向性熱分解黒鉛)である場合を示しており、向かって右側のグラフ図は、炭素が非黒鉛質である炭素蒸着膜(膜厚:10nm)である場合を示している。図5の向かって左側のグラフ図に示されるように、単結晶であるHOPGでは、入射角を0°から60°へと増加させるとC-1s準位からπ準位への遷移に帰属される吸収ピーク強度Aは増加し、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度Bは減少する。このため、HOPGのC-K端NEXAFSスペクトルは入射角度によってそのプロファイルが大きく変化する。これに対して、図5の向かって右側のグラフ図に示される非黒鉛質である炭素蒸着膜のC-K端NEXAFSスペクトルのプロファイルは入射角にほとんど依存しておらず、入射角が変化してもプロファイルはほとんど変化しない。 FIG. 5 shows CK-edge NEXAFS spectra when radiated light is incident on carbon at different incident angles (0 °, 30 °, and 60 °). The graph on the left side shows a case where HOPG (highly oriented pyrolytic graphite) in which carbon is a single crystal, and the graph on the right side shows a carbon deposited film in which carbon is non-graphitic ( The case of film thickness: 10 nm) is shown. As shown in the graph on the left side of FIG. 5, in HOPG which is a single crystal, when the incident angle is increased from 0 ° to 60 °, it belongs to the transition from the C-1s level to the π * level. The absorption peak intensity A is increased, and the absorption peak intensity B attributed to the transition from the C-1s level to the σ * level is decreased. Therefore, the profile of the HOPG CK edge NEXAFS spectrum varies greatly depending on the incident angle. On the other hand, the profile of the CK edge NEXAFS spectrum of the non-graphitic carbon deposited film shown in the graph on the right side of FIG. 5 hardly depends on the incident angle, and the incident angle changes. But the profile hardly changes.
[規則91に基づく訂正 21.05.2013] 
 したがって、ある黒鉛系材料に対して異なる入射角でC-K端NEXAFSスペクトルを測定した結果、吸収ピーク強度Aに対する吸収ピーク強度Bの比I(=B/A)が入射角に応じて変化する場合には、その材料の表面近傍に存在する黒鉛結晶は規則正しく並んで配置されており、つまり、配向性が高く、その比Iに入射角依存性が見られない場合には、その材料の表面近傍に存在する黒鉛結晶は不規則に並んでいて配向性が低いということになる。そうすると、吸収ピーク強度Aに対する吸収ピーク強度Bの比Iの入射角依存性を定量化することにより、黒鉛系材料の表面近傍に存在する黒鉛結晶の配向性を定量的に評価することができることになる。
[Correction 21.05.2013 based on Rule 91]
Therefore, as a result of measuring the CK edge NEXAFS spectrum at a different incident angle for a certain graphite-based material, the ratio I (= B / A) of the absorption peak intensity B to the absorption peak intensity A varies depending on the incident angle. In this case, the graphite crystals existing in the vicinity of the surface of the material are regularly arranged, that is, when the orientation is high and the incidence angle dependence is not seen in the ratio I, the surface of the material The graphite crystals present in the vicinity are irregularly arranged and have low orientation. Then, by quantifying the incident angle dependence of the ratio I of the absorption peak intensity B to the absorption peak intensity A, the orientation of the graphite crystals existing in the vicinity of the surface of the graphite-based material can be quantitatively evaluated. Become.
[規則91に基づく訂正 21.05.2013] 
 そこで、ここでは、二つの入射角60°および0°の場合における吸収ピーク強度Aに対する吸収ピーク強度Bの比I60およびIを用いて導かれるピーク強度比の入射角依存性S60/0(=I60/I)を用いて、表面黒鉛結晶の配向性を定量評価する。図6は、表面黒鉛結晶の配向性の定量評価方法を、HOPGを試料とした場合を例として説明する図である。
[Correction 21.05.2013 based on Rule 91]
Therefore, here, the incident angle dependence S 60/0 of the peak intensity ratio derived using the ratios I 60 and I 0 of the absorption peak intensity B to the absorption peak intensity A in the case of two incident angles 60 ° and 0 °. (= I 60 / I 0 ) is used to quantitatively evaluate the orientation of the surface graphite crystals. FIG. 6 is a diagram for explaining the quantitative evaluation method for the orientation of the surface graphite crystal, taking HOPG as a sample as an example.
 S60/0が1近傍である場合には表面黒鉛結晶の配向性が低く、S60/0が1から0に近づくほど(図6)表面黒鉛結晶の配向性が高い。 When S 60/0 is in the vicinity of 1, the orientation of the surface graphite crystal is low, and as S 60/0 approaches 1 to 0 (FIG. 6), the orientation of the surface graphite crystal is high.
 S60/0を求めるにあたり、In箔やカーボンテープを用いて試料粒子を担持する場合には、これらの担体のC-K端NEXAFSスペクトルをブランクスペクトルとして測定しておき、試料粒子を測定して得られたC-K端NEXAFSスペクトルの強度をこのブランクスペクトルを用いて補正して各遷移の吸収ピーク強度を算出する。 In obtaining S 60/0 , when sample particles are supported using In foil or carbon tape, the CK edge NEXAFS spectra of these carriers are measured as blank spectra, and the sample particles are measured. The intensity of the obtained CK edge NEXAFS spectrum is corrected using this blank spectrum, and the absorption peak intensity of each transition is calculated.
 黒鉛を複数集合させて黒鉛造粒物を形成する方法としては、例えば、黒鉛原料のバインダー共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に機械的外力を付与する方法、前述の2つの方法を併用する方法等が挙げられる。これらの方法の中でもバインダー成分を用いずに機械的外力を付与して造粒する方法が特に好ましい。機械的外力を付与するための装置としては、例えば、カウンタジェットミルAFG(ホソカワミクロン株式会社製。登録商標。)、カレントジェット(日清エンジニアリング株式会社製。登録商標。)、ACMパルベライザ(ホソカワミクロン株式会社製。登録商標。)などの粉砕機、ハイブリダイゼーションシステム(株式会社奈良機械製作所製。登録商標。)、メカノハイブリッド(日本コークス工業株式会社製。登録商標。)等を使用することができる。 Examples of the method of forming a graphite granulated product by aggregating a plurality of graphites include, for example, a method of mixing a plurality of scaly graphites in the presence of a binder of a graphite raw material, and a method of applying mechanical external force to a plurality of scaly graphites And a method using the above-mentioned two methods in combination. Among these methods, a method of granulating by applying a mechanical external force without using a binder component is particularly preferable. As an apparatus for applying a mechanical external force, for example, a counter jet mill AFG (manufactured by Hosokawa Micron Corporation, registered trademark), a current jet (manufactured by Nissin Engineering Co., Ltd., registered trademark), and an ACM pulverizer (Hosokawa Micron Corporation). A pulverizer such as “manufactured registered trademark”, a hybridization system (manufactured by Nara Machinery Co., Ltd., registered trademark), mechano hybrid (manufactured by Nippon Coke Industries, Ltd., registered trademark), and the like can be used.
 黒鉛を平滑化する方法としては、例えば、黒鉛に機械的外力を付与する方法が挙げられる。機械的外力を付与するための装置としては、例えば、メカノフュージョンシステム(ホソカワミクロン株式会社製。「メカノフュージョン」は登録商標。)などの剪断圧縮加工機を使用することができる。 As a method of smoothing graphite, for example, a method of applying mechanical external force to graphite can be mentioned. As a device for applying a mechanical external force, for example, a shear compression processing machine such as a mechanofusion system (manufactured by Hosokawa Micron Corporation, “Mechanofusion” is a registered trademark) can be used.
 導電性炭素質微粒子は、黒鉛に直接的に付着している。導電性炭素質微粒子とは、例えば、ケッチェンブラック(登録商標)、ファーネスブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル等である。これらの導電性炭素質微粒子の中でもアセチレンブラックが特に好ましい。導電性炭素質微粒子は、異なる種類のカーボンブラック等の混合物であってもよい。黒鉛に対する導電性炭素質微粒子の質量割合は0.3%以上2.0%以下の範囲内であることが好ましく、0.5%以上2.0%以下の範囲内であることがより好ましく、0.7%以上2.0%以下の範囲内であることがさらに好ましく、1.0%以上2.0%以下の範囲内であることが特に好ましい。 The conductive carbonaceous fine particles are directly attached to the graphite. The conductive carbonaceous fine particles are, for example, carbon black such as Ketjen Black (registered trademark), furnace black, acetylene black, carbon nanotube, carbon nanofiber, carbon nanocoil and the like. Among these conductive carbonaceous fine particles, acetylene black is particularly preferable. The conductive carbonaceous fine particles may be a mixture of different types of carbon black or the like. The mass ratio of the conductive carbonaceous fine particles to graphite is preferably in the range of 0.3% to 2.0%, more preferably in the range of 0.5% to 2.0%, More preferably, it is in the range of 0.7% or more and 2.0% or less, and particularly preferably in the range of 1.0% or more and 2.0% or less.
 非黒鉛質炭素は、導電性炭素質微粒子および黒鉛に少なくとも部分的に付着している。非黒鉛質炭素は、非晶質炭素および乱層構造炭素の少なくともいずれかである。 Non-graphitic carbon is at least partially adhered to the conductive carbonaceous fine particles and graphite. Non-graphitic carbon is at least one of amorphous carbon and turbostratic carbon.
 ここで「非晶質炭素」とは、短距離秩序(数原子~十数個原子オーダー)を有しても、長距離秩序(数百~数千個の原子オーダー)を有さない炭素をいう。 As used herein, “amorphous carbon” refers to carbon that has short-range order (on the order of several to tens of atoms) but does not have long-range order (on the order of hundreds to thousands of atoms). Say.
 ここで「乱層構造炭素」とは、六角網平面方向に平行な乱層構造を有するが、三次元方向には結晶学的規則性が見られない炭素原子からなる炭素をいう。X線回折図形では101面、103面に対応するhkl回折線は現れない。ただし、本発明の実施の形態に係る複合黒鉛質粒子は、基材である黒鉛の回折線が強いため、X線回折によって乱層構造炭素の存在を確認することが難しい。このため、乱層構造炭素は、透過型電子顕微鏡(TEM)等で確認されることが好ましい。 Here, “turbulent structure carbon” refers to carbon composed of carbon atoms having a turbulent structure parallel to the hexagonal plane direction, but having no crystallographic regularity in the three-dimensional direction. In the X-ray diffraction pattern, hkl diffraction lines corresponding to the 101 plane and the 103 plane do not appear. However, since the composite graphite particles according to the embodiment of the present invention have strong diffraction lines of graphite as a base material, it is difficult to confirm the existence of the turbostratic carbon by X-ray diffraction. For this reason, it is preferable that the turbostratic structure carbon is confirmed with a transmission electron microscope (TEM) or the like.
 この乱層構造炭素は、非黒鉛質炭素の原料を焼成することによって得られる。非黒鉛質炭素の原料とは、例えば、タール、石油系ピッチ粉末、石炭系ピッチ粉末、樹脂粉末等の有機化合物である。非黒鉛質炭素の原料は、異なる種類のピッチ等の混合物であってもよい。これらの中でも、石炭系ピッチ粉末が特に好ましい。焼成における熱処理条件の一例として、熱処理温度を800℃から1200℃の範囲内とすることが挙げられる。この熱処理時間は、熱処理温度および有機化合物の特性等を加味して適宜決定され、典型的には1時間程度である。熱処理時の雰囲気は非酸化雰囲気(不活性ガス雰囲気、真空雰囲気)であることが好ましく、経済的観点から窒素雰囲気が好ましい。 This turbostratic carbon is obtained by firing a raw material of non-graphitic carbon. The raw material of non-graphitic carbon is an organic compound such as tar, petroleum-based pitch powder, coal-based pitch powder, and resin powder. The non-graphitic carbon raw material may be a mixture of different types of pitches. Among these, coal-based pitch powder is particularly preferable. As an example of the heat treatment conditions in the firing, the heat treatment temperature may be in the range of 800 ° C to 1200 ° C. This heat treatment time is appropriately determined in consideration of the heat treatment temperature and the characteristics of the organic compound, and is typically about 1 hour. The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere), and a nitrogen atmosphere is preferred from an economic viewpoint.
 非晶質炭素は、例えば、真空蒸着法やプラズマCVD法等の気相法により形成することができる。 Amorphous carbon can be formed, for example, by a vapor phase method such as a vacuum deposition method or a plasma CVD method.
 黒鉛と導電性炭素質微粒子との和に対する非黒鉛質炭素の質量割合は0.8%以上15.0%以下の範囲内であることが好ましく、2.0%以上14.0%以下の範囲内であることがより好ましく、4.0%以上12.0%以下の範囲内であることがさらに好ましく、6.0%以上10.0%以下の範囲内であることが特に好ましい。 The mass ratio of non-graphitic carbon to the sum of graphite and conductive carbonaceous fine particles is preferably in the range of 0.8% to 15.0%, and in the range of 2.0% to 14.0%. More preferably, it is more preferably within the range of 4.0% or more and 12.0% or less, and particularly preferably within the range of 6.0% or more and 10.0% or less.
 本発明の実施の形態に係る複合黒鉛質粒子に超音波等の外力が加えられると、一部または全部の導電性炭素質微粒子が黒鉛から脱離する(図1および図2参照)。この脱離に要する力は、後述の複合黒鉛質粒子の製造においてメカノケミカル(登録商標)処理装置、メカノフュージョン(登録商標)処理装置の諸設定、非黒鉛質炭素の原料粉末の種類、配合組成、添加量等により調整することができる。 When an external force such as ultrasonic waves is applied to the composite graphite particles according to the embodiment of the present invention, some or all of the conductive carbonaceous fine particles are detached from the graphite (see FIGS. 1 and 2). The force required for this desorption is the various settings of the mechanochemical (registered trademark) processing device and mechanofusion (registered trademark) processing device, the type of non-graphitic carbon raw material powder, and the composition , And can be adjusted depending on the amount added.
 「所定の外力が加えられた後の比表面積値(m/g)」に対する「所定の外力が加えられる前の比表面積値(m/g)」の比は、1.10以上2.00以下の範囲内であることが好ましく、1.20以上2.00以下の範囲内であることがより好ましく、1.30以上2.00以下の範囲内であることがさらに好ましく、1.40以上2.00以下の範囲内であることがさらに好ましく、1.50以上2.00以下の範囲内であることが特に好ましい。 The ratio of the "predetermined specific surface area after an external force is applied (m 2 / g)" "The specific surface area value before the predetermined force is applied (m 2 / g)" for 1.10 or 2. It is preferably in the range of 00 or less, more preferably in the range of 1.20 or more and 2.00 or less, further preferably in the range of 1.30 or more and 2.00 or less, and 1.40. More preferably, it is in the range of 2.00 or less and particularly preferably in the range of 1.50 or more and 2.00 or less.
 このような複合黒鉛質粒子は、電極、特に非水電解質二次電池の負極を構成する活物質として使用することができる。なお、非水電解質二次電池は、リチウムイオン二次電池に代表される。 Such composite graphite particles can be used as an active material constituting an electrode, particularly a negative electrode of a nonaqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery is represented by a lithium ion secondary battery.
 <複合黒鉛質粒子の製造>
 本発明の実施の形態に係る複合黒鉛質粒子は、一次複合粒子調製工程および複合黒鉛質粒子調製工程を経て製造される。一次複合粒子調製工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理により、導電性炭素質微粒子が直接的に黒鉛に付着されて一次複合粒子が作製される。複合黒鉛質粒子調製工程では、一次複合粒子と非黒鉛質炭素の原料粉末とが混合された後に加熱される。その結果、非黒鉛質炭素の原料粉末が非黒鉛質炭素に変換されると共に、一次複合粒子に非黒鉛質炭素が部分的に又は全体的に付着される。
<Manufacture of composite graphite particles>
The composite graphite particles according to the embodiment of the present invention are manufactured through a primary composite particle preparation step and a composite graphite particle preparation step. In the primary composite particle preparation step, the conductive composite particles are directly attached to the graphite by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process to produce primary composite particles. In the composite graphite particle preparation step, the primary composite particles and the non-graphitic carbon raw material powder are mixed and then heated. As a result, the non-graphitic carbon raw material powder is converted into non-graphitic carbon, and the non-graphitic carbon is partially or entirely attached to the primary composite particles.
 <複合黒鉛質粒子の特徴>
 本発明の実施の形態に係る複合黒鉛質粒子に所定の外力が加えられると、導電性炭素質微粒子の一部または全部が黒鉛から脱離する。このため、この複合黒鉛質粒子を利用すれば、電極合剤スラリー調製時に電極合剤スラリー中に導電性炭素質微粒子を均一に分散させることができる。つまり、この複合黒鉛質粒子を用いれば、非水電解質二次電池の電極形成時において電極内に緻密な導電ネットワークを形成することができる。
<Characteristics of composite graphite particles>
When a predetermined external force is applied to the composite graphite particles according to the embodiment of the present invention, some or all of the conductive carbonaceous fine particles are detached from the graphite. For this reason, if this composite graphite particle | grain is utilized, electroconductive carbonaceous microparticles | fine-particles can be disperse | distributed uniformly in an electrode mixture slurry at the time of electrode mixture slurry preparation. That is, if this composite graphite particle is used, a dense conductive network can be formed in the electrode when forming the electrode of the nonaqueous electrolyte secondary battery.
 <実施例および比較例>
 以下、実施例および比較例を示して、本発明について詳述する。
<Examples and Comparative Examples>
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
 <複合黒鉛質粒子の製造>
 (1)球状天然黒鉛粉末の平滑化処理
 球状天然黒鉛粉末(平均粒径19.5μm,比表面積5.0m/g,タップ密度1.02g/cm,吸油量50.8mL/100g)を600g秤量し、ローターとインナーピースとの隙間を5mmとしたメカノフュージョン(ホソカワミクロン製AMS-Lab)内に投入した後、その球状天然黒鉛粉末を回転数2600rpmで20分間、平滑化処理した。以下、この球状天然黒鉛粉末を「平滑化球状天然黒鉛粉末」と称する。本明細書中において、平均粒径は、特に断りのない限り、累積粒径分布において体積分率50%時の粒子径(D50)を意味する。
<Manufacture of composite graphite particles>
(1) Smoothing treatment of spherical natural graphite powder Spherical natural graphite powder (average particle diameter 19.5 μm, specific surface area 5.0 m 2 / g, tap density 1.02 g / cm 3 , oil absorption 50.8 mL / 100 g) 600 g was weighed and put into a mechanofusion (AMS-Lab manufactured by Hosokawa Micron Co., Ltd.) in which the gap between the rotor and the inner piece was 5 mm, and the spherical natural graphite powder was smoothed at a rotational speed of 2600 rpm for 20 minutes. Hereinafter, this spherical natural graphite powder is referred to as “smoothed spherical natural graphite powder”. In the present specification, the average particle diameter means a particle diameter (D50) at a volume fraction of 50% in the cumulative particle size distribution unless otherwise specified.
 平滑化球状天然黒鉛粉末は、円形度が0.92以上1.00以下であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0が0.67であることが確認された。 The smoothed spherical natural graphite powder has a circularity of 0.92 or more and 1.00 or less, and the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum is 0.67. Was confirmed.
 円形度は、シスメックス株式会社製フロー式粒子画像分析装置FPIA-2100(「FPIA」は登録商標。)を用いて測定された。(円形度)は(投影形状と同一の面積を有する円の周囲長)を(投影形状の周囲長)で除した値である。ここで「投影形状」とは、測定に係る粒子を二次元平面に投影して得られる形状であり、投影形状と同一の面積を有する円の周囲長および投影形状の周囲長は、投影形状の画像を画像処理することにより得られる。 The circularity was measured using a flow type particle image analyzer FPIA-2100 ("FPIA" is a registered trademark) manufactured by Sysmex Corporation. (Circularity) is a value obtained by dividing (perimeter of a circle having the same area as the projection shape) by (perimeter of the projection shape). Here, the “projection shape” is a shape obtained by projecting the particles to be measured onto a two-dimensional plane, and the circumference length of a circle having the same area as the projection shape and the circumference length of the projection shape are It is obtained by image processing of an image.
 C-K端X線吸収スペクトルは、放射光施設ニュースバルのビームラインBL7B及びBL9を用いて測定された。この測定時、加速電圧1.0GeV~1.5GeV、蓄積電流80~350mAで蓄積リングに蓄積された電子が、アンジュレーターと称される挿入光源を蛇行して通過する際に放出される放射光を励起光源とした。また、ビームラインBL7B及びBL9に設置されているC-K端NEXAFS(Near Edge X-ray Absorbance Fine Structure)スペクトル測定装置を用いて、平滑化球状天然黒鉛粉末のC-K端X線吸収スペクトルを測定し、得られた入射角0°及び60°におけるスペクトルプロファイルからピーク強度比S60/0を算出した。なお、S60/0=I60/Iである。ここで、I60=B60/A60であり、I=B/Aである。そして、A60は、放射光の入射角を60°として測定される、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位(すなわち、sp2結合の反結合性軌道:-C=C-)への遷移に帰属される吸収ピーク強度である。B60は、放射光の入射角を60°として測定される、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位(すなわち、sp3結合の反結合性軌道:-C-C-)への遷移に帰属される吸収ピーク強度である。Aは、放射光の入射角を0°として測定される、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度である。Bは、放射光の入射角を0°として測定される、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度である。 The CK edge X-ray absorption spectrum was measured using synchrotron radiation facility NEWVAL beam lines BL7B and BL9. During this measurement, emitted light is emitted when electrons accumulated in the storage ring with an acceleration voltage of 1.0 GeV to 1.5 GeV and an accumulation current of 80 to 350 mA meander through an insertion light source called an undulator. Was used as an excitation light source. In addition, the C-K edge X-ray absorption spectrum of the smooth spherical natural graphite powder was measured using a CK edge NEXAFS (Near Edge X-ray Absorbance Fine Structure) installed in the beam lines BL7B and BL9. The peak intensity ratio S 60/0 was calculated from the measured spectrum profiles at incident angles of 0 ° and 60 °. Note that S 60/0 = I 60 / I 0 . Here, I 60 = B 60 / A 60 and I 0 = B 0 / A 0 . A 60 is the C-1s level to π * level (ie, anti-bonding property of sp2 bond) in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 60 °. Absorption peak intensity attributed to the transition to orbit: -C = C-). B 60 is the C-1s level to σ * level (that is, the antibonding orbital of sp3 bond in the CK edge X-ray absorption spectrum of the particle measured with the incident angle of the emitted light being 60 °: It is the absorption peak intensity attributed to the transition to -CC-). A 0 is the absorption peak intensity attributed to the transition from the C-1s level to the π * level in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 0 °. is there. B 0 is the absorption peak intensity attributed to the transition from the C-1s level to the σ * level in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 0 °. is there.
 (2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化
 平滑化球状天然黒鉛粉末(平均粒径19.4μm,比表面積5.0m/g,タップ密度1.06g/cm,吸油量41.6mL/100g)とアセチレンブラック(電気化学工業株式会社製デンカブラック(登録商標),粉状品)との質量比が100.0:0.5となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせて600gの混合粉末を調製した。この600gの混合粉体を、ローターとインナーピースとの隙間を5mmとしたメカノフュージョンシステム(ホソカワミクロン製AMS-Lab)内に投入した後、その混合粉末を回転数2600rpmで5分間処理して、平滑化球状天然黒鉛粉末とアセチレンブラックとを複合化させた。以下、この複合化物を「一次複合粉末」と称する。
(2) Compounding of smoothed spherical natural graphite powder and acetylene black Smoothed spherical natural graphite powder (average particle size 19.4 μm, specific surface area 5.0 m 2 / g, tap density 1.06 g / cm 3 , oil absorption 41.6 mL / 100 g) and acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., powdered product) and a smooth spherical natural graphite powder so that the mass ratio is 100.0: 0.5 600 g of mixed powder was prepared by mixing with acetylene black. 600 g of this mixed powder was put into a mechano-fusion system (AMS-Lab made by Hosokawa Micron) with a gap of 5 mm between the rotor and the inner piece, and then the mixed powder was processed at a rotational speed of 2600 rpm for 5 minutes to make it smooth Spherical natural graphite powder and acetylene black were combined. Hereinafter, this composite is referred to as “primary composite powder”.
 (3)一次複合粉末と非黒鉛質炭素との複合化
 一次複合粉末と石炭系ピッチ粉末(平均粒径20μm)との質量比が100.5:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた後、その混合粉末を窒素気流下、1000℃で1時間、加熱処理して目的の複合黒鉛質粒子を得た。なお、この加熱処理中、石炭系ピッチ粉末は非黒鉛質炭素に変化した。また、加熱処理前後の質量変化からピッチ残炭率は50%であることを確認した。また、この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、98.5:0.5:1.0であった(表1参照)。
(3) Composite of primary composite powder and non-graphitic carbon Primary composite powder and coal so that the mass ratio of primary composite powder and coal-based pitch powder (average particle size 20 μm) is 100.5: 2.0. After mixing with the system pitch powder, the mixed powder was heat-treated at 1000 ° C. for 1 hour under a nitrogen stream to obtain the desired composite graphite particles. During this heat treatment, the coal-based pitch powder changed to non-graphitic carbon. Moreover, it confirmed that the pitch residual carbon rate was 50% from the mass change before and behind heat processing. Further, the mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 98.5: 0.5: 1.0 (see Table 1).
 <複合黒鉛質粒子の特性評価>
 (1)平均粒径(D50)の測定
 レーザー回折/散乱式粒度分布計(株式会社堀場製作所製LA-910)を用いて光散乱回折法により複合黒鉛質粒子の体積基準の粒度分布を測定した。その後、得られた粒度分布を用いて体積分率50%時の粒子径(メジアン径)を求め、これを平均粒径とした。その結果、同平均粒径は、19.5μmであった(表1参照)。
<Characteristic evaluation of composite graphite particles>
(1) Measurement of average particle size (D50) The volume-based particle size distribution of the composite graphite particles was measured by a light scattering diffraction method using a laser diffraction / scattering particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.). . Then, using the obtained particle size distribution, the particle diameter (median diameter) at a volume fraction of 50% was determined, and this was used as the average particle diameter. As a result, the average particle diameter was 19.5 μm (see Table 1).
 (2)アセチレンブラックの離脱特性評価
 ユアサアイオニクス株式会社製カンタソープを用いて、上述の複合黒鉛質粒子の比表面積をBET1点法により求めた。その結果、上述の複合黒鉛質粒子のBET比表面積は、4.34m/gであった(表2参照)。
(2) Evaluation of separation characteristics of acetylene black Using a canter soap manufactured by Yuasa Ionics Co., Ltd., the specific surface area of the composite graphite particles was determined by the BET one-point method. As a result, the BET specific surface area of the composite graphite particles was 4.34 m 2 / g (see Table 2).
 次に、上述の複合黒鉛質粒子1.2gを20mLビーカーに入れた後、そのビーカーに10mLのエタノールを注いだ。そして、ビーカーの内容物を薬さじで軽く攪拌してから、複合黒鉛質粒子を沈降させた。そして、そのビーカーを、水を張った超音波洗浄機(株式会社カイジョー製ソノクリーナー100a(CA-3481),AC100V,0.8A)に入れた後、超音波洗浄機を20分間稼働させた。その後、ビーカーを2分間静置させてからデカンテーションを行った。次いで、再度、ビーカーに20mLのエタノールを注ぎ、ビーカーの内容物を薬さじで軽く攪拌した。超音波洗浄からデカンテーションまでの作業をこの後2回繰り返した。 Next, after 1.2 g of the composite graphite particles described above were put into a 20 mL beaker, 10 mL of ethanol was poured into the beaker. Then, the contents of the beaker were lightly stirred with a spoon, and the composite graphite particles were allowed to settle. Then, the beaker was placed in an ultrasonic cleaner equipped with water (Sono Cleaner 100a (CA-3481), AC100V, 0.8A manufactured by Kaijo Corporation), and then the ultrasonic cleaner was operated for 20 minutes. Thereafter, the beaker was allowed to stand for 2 minutes and then decanted. Next, 20 mL of ethanol was again poured into the beaker, and the contents of the beaker were gently stirred with a spoon. The operation from ultrasonic cleaning to decantation was repeated twice thereafter.
 上述の繰り返し作業後、ビーカーの内容物をろ過した。そして、そのろ物を十分に乾燥させた後、ユアサアイオニクス株式会社製カンタソープを用いてその比表面積をBET1点法により求めた。その結果、超音波処理後の複合黒鉛質粒子のBET比表面積は、3.81m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.14であった(表2参照)。 After the above-described repeated operation, the contents of the beaker were filtered. And after fully drying the filtrate, the specific surface area was calculated | required by the BET 1-point method using the canta soap by Yuasa Ionics. As a result, the BET specific surface area of the composite graphite particles after the ultrasonic treatment was 3.81 m 2 / g (see Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.14 (see Table 2).
 (3)電池特性評価
 (3-1)電極作製
 上述の複合黒鉛質粒子にCMC(カルボキシメチルセルロースナトリウム)粉末を混合し、その混合粉末にSBR(スチレン-ブタジエンゴム)の水性分散液を加えた後、その混合物を攪拌して電極合剤スラリーを得た。ここで、CMC及びSBRは結着剤である。複合黒鉛質粒子、CMC及びSBRの配合比は、質量比で98.0:1.0:1.0であった。この電極合剤スラリーの固形分濃度は、55.7質量%であった。そして、この電極合剤スラリーを、厚み17μmの銅箔(集電体)上にドクターブレード法により塗布した(塗布量は10~11mg/cm2であった)。塗布液を乾燥させて塗膜を得た後、その塗膜を直径13mmのディスク状に打ち抜いた。その後、ディスクの密度が1.60g/cm3となるように、ディスクをプレス成形機により加圧して電極を作製した。
(3) Battery characteristics evaluation (3-1) Electrode preparation After mixing CMC (carboxymethylcellulose sodium) powder with the composite graphite particles described above, and adding an aqueous dispersion of SBR (styrene-butadiene rubber) to the mixed powder The mixture was stirred to obtain an electrode mixture slurry. Here, CMC and SBR are binders. The compounding ratio of the composite graphite particles, CMC and SBR was 98.0: 1.0: 1.0 by mass ratio. The solid content concentration of this electrode mixture slurry was 55.7% by mass. Then, this electrode mixture slurry was applied onto a copper foil (current collector) having a thickness of 17 μm by a doctor blade method (the coating amount was 10 to 11 mg / cm 2 ). After drying the coating solution to obtain a coating film, the coating film was punched into a disk shape having a diameter of 13 mm. Thereafter, the disk was pressed with a press molding machine so that the density of the disk was 1.60 g / cm 3 , thereby producing an electrode.
 (3-2)電池作製
 ポリオレフィン製セパレーターの両側に上述の電極と対極のLi金属箔とを配置して電極組立体を作製した。そして、その電極組立体の内部に電解液を注入してコイン型の非水試験セルを作製した。電解液の組成は、エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC):ビニレンカーボネート(VC):フルオロエチレンカーボネート(FEC):LiPF6=23:4:48:1:8:16(質量比)とした。
(3-2) Battery Preparation An electrode assembly was prepared by disposing the above electrode and a counter Li metal foil on both sides of a polyolefin separator. And the electrolyte solution was inject | poured in the inside of the electrode assembly, and the coin type non-aqueous test cell was produced. The composition of the electrolytic solution was ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC): vinylene carbonate (VC): fluoroethylene carbonate (FEC): LiPF 6 = 23: 4: 48: 1: 8 : 16 (mass ratio).
[規則91に基づく訂正 21.05.2013] 
 (3-3)放電容量、充放電効率および充放電サイクルの評価
 23℃の環境温度下、この非水試験セルにおいて、先ず、0.325mAの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流ドープ(電極へのリチウムイオンの挿入、リチウムイオン二次電池の充電に相当)を行った後、さらに0Vを保持したまま、5μAになるまで定電圧で対極に対してドープを続け、ドープ容量を測定した。次に、0.325mAの定電流で、電位差1.5Vになるまで脱ドープ(電極からのリチウムイオンの離脱、リチウムイオン二次電池の放電に相当)を行い、脱ドープ容量を測定した。このときのドープ容量、脱ドープ容量は、この電極をリチウムイオン二次電池の負極として用いた時の充電容量、放電容量に相当するので、これらを充電容量、放電容量とした。本実施例に係る非水試験セルの放電容量は、367mAh/gであった(表2参照)。脱ドープ容量/ドープ容量の比は、リチウムイオン二次電池の放電容量/充電容量の比に相当するので、この比を充放電効率とした。本実施例に係る非水試験セルの充放電効率は、93.3%であった(表2参照)。
[Correction 21.05.2013 based on Rule 91]
(3-3) Evaluation of discharge capacity, charge / discharge efficiency and charge / discharge cycle In this non-aqueous test cell at an environmental temperature of 23 ° C., first, a potential difference of 0 (zero) with respect to the counter electrode at a current value of 0.325 mA After constant current doping until V is reached (equivalent to insertion of lithium ions into the electrode and charging of the lithium ion secondary battery), while maintaining 0 V, the constant electrode is doped with constant voltage until 5 μA Then, the doping capacity was measured. Next, dedoping (corresponding to detachment of lithium ions from the electrode and discharging of the lithium ion secondary battery) was performed at a constant current of 0.325 mA until the potential difference became 1.5 V, and the dedoping capacity was measured. The doping capacity and the dedoping capacity at this time correspond to the charging capacity and discharging capacity when this electrode is used as the negative electrode of the lithium ion secondary battery, and these were used as the charging capacity and discharging capacity. The discharge capacity of the non-aqueous test cell according to this example was 367 mAh / g (see Table 2). Since the ratio of dedoping capacity / doping capacity corresponds to the ratio of discharge capacity / charge capacity of the lithium ion secondary battery, this ratio was defined as charge / discharge efficiency. The charge / discharge efficiency of the non-aqueous test cell according to this example was 93.3% (see Table 2).
 サイクル特性の測定は、上記と同様に構成されたコイン型の非水試験セルを用いて行った。この試験セルにおいて、上述の充放電を行い、これから「1回目の脱ドープ時の放電容量」を得た。続いて、1.56mAの定電流で、対極に対して電位差5mVになるまでドープした後(充電に相当)、さらに5mVを保持したまま、50μAになるまで定電圧でドープを続けた。次に、1.56mAの定電流で、電位差1.5Vになるまで脱ドープを行って(放電に相当)、脱ドープ容量を測定した。このときの脱ドープ容量を放電容量とした。 Cycle characteristics were measured using a coin-type non-aqueous test cell configured in the same manner as described above. In this test cell, the above-described charging / discharging was performed, and from this, a “discharge capacity at the first dedoping” was obtained. Subsequently, after doping with a constant current of 1.56 mA until the potential difference became 5 mV with respect to the counter electrode (corresponding to charging), doping was continued at a constant voltage until 50 μA was maintained while maintaining 5 mV. Next, undoping was performed at a constant current of 1.56 mA until the potential difference became 1.5 V (corresponding to discharge), and the dedoping capacity was measured. The dedope capacity at this time was defined as the discharge capacity.
 上述と同一条件でドープと脱ドープとを49回繰り返し、「1サイクル目の脱ドープ時の放電容量」に対する「49サイクル目の脱ドープ時の放電容量」の比率(容量維持率)によりサイクル特性を評価した。この容量維持率が90%以上であれば、実用電池として良好であると見なすことができる。本実施例に係る非水試験セルの容量維持率は、94.6%であった(表2参照)。 Doping and dedoping are repeated 49 times under the same conditions as described above, and the cycle characteristics are determined by the ratio (capacity maintenance ratio) of "discharge capacity at undoping in the 49th cycle" to "discharge capacity at undoping at the first cycle". Evaluated. If this capacity maintenance rate is 90% or more, it can be regarded as a good practical battery. The capacity maintenance rate of the non-aqueous test cell according to this example was 94.6% (see Table 2).
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が101.0:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、98.0:1.0:1.0であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 1.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder to coal-based pitch powder is 101.0: 2.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 98.0: 1.0: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.5μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は4.54m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.73m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.22であった(表2参照)。電極合剤スラリーの固形分濃度は55.1質量%であった(表2参照)。非水試験セルの放電容量は365mAh/gであり(表2参照)、充放電効率は92.8%であり(表2参照)、容量維持率は98.6%であった(表2参照)。 The average particle size of the composite graphite particles was 19.5 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.54 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.73 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.22 (see Table 2). The solid content concentration of the electrode mixture slurry was 55.1% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 365 mAh / g (see Table 2), the charge / discharge efficiency was 92.8% (see Table 2), and the capacity retention rate was 98.6% (see Table 2). ).
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.5となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が101.5:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、97.5:1.5:1.0であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 1.5 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder and coal-based pitch powder is 101.5: 2.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 97.5: 1.5: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.5μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は4.67m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.48m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.34であった(表2参照)。電極合剤スラリーの固形分濃度は53.9質量%であった(表2参照)。非水試験セルの放電容量は364mAh/gであり(表2参照)、充放電効率は92.5%であり(表2参照)、容量維持率は99.3%であった(表2参照)。 The average particle size of the composite graphite particles was 19.5 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.67 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.34 (see Table 2). The solid content concentration of the electrode mixture slurry was 53.9% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 364 mAh / g (see Table 2), the charge / discharge efficiency was 92.5% (see Table 2), and the capacity retention rate was 99.3% (see Table 2). ).
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:2.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合化粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が102.0:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、97.1:1.9:1.0であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 2.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder to coal-based pitch powder is 102.0: 2.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. The target composite graphite particles were obtained in the same manner as in Example 1 except that the primary composite powder and the coal-based pitch powder were mixed together, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. . The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 97.1: 1.9: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.6μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は4.94m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.40m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.45であった(表2参照)。電極合剤スラリーの固形分濃度は53.0質量%であった(表2参照)。非水試験セルの放電容量は362mAh/gであり(表2参照)、充放電効率は91.9%であり(表2参照)、容量維持率は99.5%であった(表2参照)。 The average particle size of the composite graphite particles was 19.6 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 4.94 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.40 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.45 (see Table 2). The solid content concentration of the electrode mixture slurry was 53.0% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 362 mAh / g (see Table 2), the charge / discharge efficiency was 91.9% (see Table 2), and the capacity retention rate was 99.5% (see Table 2). ).
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が101.0:10.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、94.3:0.9:4.8であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 1.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of the primary composite powder to the coal-based pitch powder is 101.0: 10.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 94.3: 0.9: 4.8 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.7μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は1.60m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は1.40m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.14であった(表2参照)。電極合剤スラリーの固形分濃度は54.9質量%であった(表2参照)。非水試験セルの放電容量は355mAh/gであり(表2参照)、放電効率は92.3%であり(表2参照)、容量維持率は97.4%であった(表2参照)。 The average particle size of the composite graphite particles was 19.7 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 1.60 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 1.40 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.14 (see Table 2). The solid content concentration of the electrode mixture slurry was 54.9% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 355 mAh / g (see Table 2), the discharge efficiency was 92.3% (see Table 2), and the capacity retention rate was 97.4% (see Table 2). .
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が101.0:20.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、90.0:0.9:9.1であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 1.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder and coal-based pitch powder is 101.0: 20.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 90.0: 0.9: 9.1 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.9μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は1.00m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は0.90m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.11であった(表2参照)。電極合剤スラリーの固形分濃度は55.3質量%であった(表2参照)。非水試験セルの放電容量は340mAh/gであり(表2参照)、放電効率は91.9%であり(表2参照)、容量維持率は94.2%であった(表2参照)。 The average particle size of the composite graphite particles was 19.9 μm (see Table 1). The BET specific surface area of the composite graphite particles before ultrasonication was 1.00 m 2 / g (see Table 2), and the BET specific surface area of the particles after ultrasonic treatment was 0.90 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.11 (see Table 2). The solid content concentration of the electrode mixture slurry was 55.3 mass% (see Table 2). The discharge capacity of the non-aqueous test cell was 340 mAh / g (see Table 2), the discharge efficiency was 91.9% (see Table 2), and the capacity retention rate was 94.2% (see Table 2). .
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:0.2となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が100.2:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、98.8:0.2:1.0であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 0.2 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder to coal-based pitch powder is 100.2: 2.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 98.8: 0.2: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.6μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は3.98m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.66m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.09であった(表2参照)。電極合剤スラリーの固形分濃度は56.6質量%であった(表2参照)。非水試験セルの放電容量は367mAh/gであり(表2参照)、放電効率は93.5%であり(表2参照)、容量維持率は84.6%であった(表2参照)。 The average particle size of the composite graphite particles was 19.6 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 3.98 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.66 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before the ultrasonic treatment to the BET specific surface area after the ultrasonic treatment was 1.09 (see Table 2). The solid content concentration of the electrode mixture slurry was 56.6% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 367 mAh / g (see Table 2), the discharge efficiency was 93.5% (see Table 2), and the capacity retention rate was 84.6% (see Table 2). .
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:3.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が103.0:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、96.1:2.9:1.0であった(表1参照)。 Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 3.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black are mixed so that the mass ratio of primary composite powder to coal-based pitch powder is 103.0: 2.0 in “(3) Composite of primary composite powder and non-graphitic carbon”. Except for mixing the primary composite powder and the coal-based pitch powder, the target composite graphite particles were obtained in the same manner as in Example 1, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in the composite graphite particles was 96.1: 2.9: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.6μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は5.44m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.48m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.56であった(表2参照)。電極合剤スラリーの固形分濃度は51.4質量%であった(表2参照)。非水試験セルの放電容量は359mAh/gであり(表2参照)、放電効率は91.2%であり(表2参照)、容量維持率は99.7%であった(表2参照)。 The average particle size of the composite graphite particles was 19.6 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 5.44 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.56 (see Table 2). The solid concentration of the electrode mixture slurry was 51.4% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 359 mAh / g (see Table 2), the discharge efficiency was 91.2% (see Table 2), and the capacity retention rate was 99.7% (see Table 2). .
 「(1)球状天然黒鉛粉末の平滑化処理」を行わず、「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末を球状天然黒鉛粉末に置き換え、球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」において一次複合粉末と石炭系ピッチ粉末との質量比が101.0:2.0となるように一次複合粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の特性評価を行った。この複合黒鉛質粒子における球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、98.0:1.0:1.0であった(表1参照)。 “(1) Smoothing of spherical natural graphite powder” is not performed, and the smoothed spherical natural graphite powder is replaced with spherical natural graphite powder in “(2) Compounding of smoothed spherical natural graphite powder and acetylene black”. The smoothed spherical natural graphite powder and acetylene black were mixed so that the mass ratio of the spherical natural graphite powder and acetylene black was 100.0: 1.0, and “(3) primary composite powder and non-graphitic carbon were mixed. Except that the primary composite powder and the coal-based pitch powder were mixed so that the mass ratio of the primary composite powder and the coal-based pitch powder was 101.0: 2.0 Thus, the target composite graphite particles were obtained, and the characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. The mass ratio of the spherical natural graphite powder, acetylene black, and non-graphitic carbon in the composite graphite particles was 98.0: 1.0: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.5μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は4.50m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は4.15m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.08であった(表2参照)。電極合剤スラリーの固形分濃度は55.3質量%であった(表2参照)。非水試験セルの放電容量は365mAh/gであり(表2参照)、放電効率は98.5%であり(表2参照)、容量維持率は86.3%であった(表2参照)。 The average particle size of the composite graphite particles was 19.5 μm (see Table 1). BET specific surface area before sonication composite graphite particles is 4.50 m 2 / g (see Table 2), the BET specific surface area after sonication of the same particles was 4.15m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.08 (see Table 2). The solid content concentration of the electrode mixture slurry was 55.3 mass% (see Table 2). The discharge capacity of the non-aqueous test cell was 365 mAh / g (see Table 2), the discharge efficiency was 98.5% (see Table 2), and the capacity retention rate was 86.3% (see Table 2). .
(比較例1)
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」を行わず、「(3)一次複合粉末と非黒鉛質炭素との複合化」において平滑化球状天然黒鉛粉末と石炭系ピッチ粉末(平均粒径20μm)との質量比が100.0:2.0となるように平滑化球状天然黒鉛粉末と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして対照粉末を得、実施例1と同様にして対照粉末の特性評価を行った。この対照粉末において、平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、99.0:0.0:1.0であった(表1参照)。
(Comparative Example 1)
“(2) Smoothing spherical natural graphite powder and acetylene black are not composited”, and “(3) Primary composite powder and non-graphitic carbon are composited”. The control was carried out in the same manner as in Example 1 except that the smoothed spherical natural graphite powder and the coal-based pitch powder were mixed so that the mass ratio with the powder (average particle size 20 μm) was 100.0: 2.0. A powder was obtained, and the control powder was evaluated in the same manner as in Example 1. In this control powder, the mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon was 99.0: 0.0: 1.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.6μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は3.83m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は3.60m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.06であった(表2参照)。電極合剤スラリーの固形分濃度は57.2質量%であった(表2参照)。非水試験セルの放電容量は367mAh/gであり(表2参照)、放電効率は93.9%であり(表2参照)、容量維持率は78.8%であった(表2参照)。 The average particle size of the composite graphite particles was 19.6 μm (see Table 1). The BET specific surface area before ultrasonic treatment of the composite graphite particles was 3.83 m 2 / g (see Table 2), and the BET specific surface area after ultrasonic treatment of the particles was 3.60 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.06 (see Table 2). The solid content concentration of the electrode mixture slurry was 57.2% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 367 mAh / g (see Table 2), the discharge efficiency was 93.9% (see Table 2), and the capacity retention rate was 78.8% (see Table 2). .
(比較例2)
 「(2)平滑化球状天然黒鉛粉末とアセチレンブラックとの複合化」において平滑化球状天然黒鉛粉末とアセチレンブラックとの質量比が100.0:1.0となるように平滑化球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせ、「(3)一次複合粉末と非黒鉛質炭素との複合化」を行わなかった以外は、実施例1と同様にして対照粉末を得、実施例1と同様にして対照粉末の特性評価を行った。この対照粉末における平滑化球状天然黒鉛粉末、アセチレンブラックおよび非黒鉛質炭素の質量比は、99.0:1.0:0.0であった(表1参照)。
(Comparative Example 2)
Smoothed spherical natural graphite powder so that the mass ratio of smoothed spherical natural graphite powder and acetylene black is 100.0: 1.0 in “(2) Composite of smoothed spherical natural graphite powder and acetylene black” And acetylene black were mixed, and a control powder was obtained in the same manner as in Example 1 except that “(3) Composite of primary composite powder and non-graphitic carbon” was not performed. The control powder was characterized. The mass ratio of the smoothed spherical natural graphite powder, acetylene black and non-graphitic carbon in this control powder was 99.0: 1.0: 0.0 (see Table 1).
 複合黒鉛質粒子の平均粒径は、19.5μmであった(表1参照)。複合黒鉛質粒子の超音波処理前のBET比表面積は6.80m/gであり(表2参照)、同粒子の超音波処理後のBET比表面積は5.48m/gであった(表2参照)。すなわち、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比は、1.24であった(表2参照)。電極合剤スラリーの固形分濃度は57.2質量%であった(表2参照)。非水試験セルの放電容量は364mAh/gであり(表2参照)、放電効率は89.8%であり(表2参照)、容量維持率は98.3%であった(表2参照)。 The average particle size of the composite graphite particles was 19.5 μm (see Table 1). The BET specific surface area of the composite graphite particles before ultrasonic treatment was 6.80 m 2 / g (see Table 2), and the BET specific surface area of the particles after ultrasonic treatment was 5.48 m 2 / g ( (See Table 2). That is, the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment was 1.24 (see Table 2). The solid content concentration of the electrode mixture slurry was 57.2% by mass (see Table 2). The discharge capacity of the non-aqueous test cell was 364 mAh / g (see Table 2), the discharge efficiency was 89.8% (see Table 2), and the capacity retention rate was 98.3% (see Table 2). .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述の結果より、本発明に係る複合黒鉛質粒子において、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比が1.10以上であると、容量維持率が高いレベルで維持されることが判明した。また、非黒鉛質炭素に対するアセチレンブラックの質量比が大きいほど、超音波処理後のBET比表面積に対する超音波処理前のBET比表面積の比が大きくなることが判明した。 From the above results, in the composite graphite particles according to the present invention, when the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment is 1.10 or more, the capacity retention rate is at a high level. It was found to be maintained. It was also found that the larger the mass ratio of acetylene black to non-graphitic carbon, the greater the ratio of the BET specific surface area before ultrasonic treatment to the BET specific surface area after ultrasonic treatment.
 なお、特開2004-063321号公報では、充放電サイクル特性の評価指標として、第1サイクルの放電容量に対する第10サイクルの放電容量の比をとって百分率で表記されているが、近年のリチウムイオン二次電池の高性能化に伴い、高々10サイクル程度の放電容量の評価では実用上十分ではない。 In Japanese Patent Laid-Open No. 2004-066331, the ratio of the discharge capacity of the 10th cycle to the discharge capacity of the 1st cycle is expressed as a percentage as an evaluation index of charge / discharge cycle characteristics. As the performance of secondary batteries increases, evaluation of discharge capacity of about 10 cycles is not sufficient for practical use.
 本実施例に係る非水試験セル(以下「本願非水試験セル」という)は、電解液の溶媒組成、電解質等が特開2004-063321号公報に開示の非水試験セル(以下「従来非水試験セル」という)のものと相違しているため、2つの非水試験セルを単純に比較することは難しいが、本願非水試験セルの方が従来非水試験セルよりも過酷な条件で充放電サイクル特性が評価されているため、本願非水試験セルの方が従来非水試験セルよりも充放電サイクル特性に優れると考えられる。 The non-aqueous test cell according to this example (hereinafter referred to as “non-aqueous test cell of the present application”) has a non-aqueous test cell (hereinafter referred to as “conventional non-aqueous test cell”) disclosed in Japanese Patent Application Laid-Open No. 2004-066331. It is difficult to simply compare the two non-aqueous test cells, but the non-aqueous test cell of the present application is more severe than the conventional non-aqueous test cell. Since the charge / discharge cycle characteristics are evaluated, it is considered that the non-aqueous test cell of the present application is superior in charge / discharge cycle characteristics than the conventional non-aqueous test cell.

Claims (10)

  1.  黒鉛と、
     前記黒鉛に直接的に付着する導電性炭素質微粒子と、
     前記導電性炭素質微粒子および前記黒鉛に少なくとも部分的に付着する非黒鉛質炭素と
    を備える、複合黒鉛質粒子。
    Graphite,
    Conductive carbonaceous fine particles directly attached to the graphite;
    Composite graphite particles comprising the conductive carbonaceous fine particles and non-graphitic carbon that adheres at least partially to the graphite.
  2.  所定の外力が加えられると、前記導電性炭素質微粒子の一部または全部が前記黒鉛から脱離する
    請求項1に記載の複合黒鉛質粒子。
    The composite graphitic particles according to claim 1, wherein a part or all of the conductive carbonaceous fine particles are detached from the graphite when a predetermined external force is applied.
  3.  「前記外力が加えられた後の比表面積値(m/g)」に対する「前記外力が加えられる前の比表面積値(m/g)」の比が1.10以上である
    請求項2に記載の複合黒鉛質粒子。
    The ratio of the “specific surface area value before the external force is applied (m 2 / g)” to the “specific surface area value after the external force is applied (m 2 / g)” is 1.10 or more. 2. Composite graphite particles described in 1.
  4.  前記黒鉛は、球状であり、円形度が0.92以上であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0が0.7以下である
    請求項1から3のいずれかに記載の複合黒鉛質粒子。
    The graphite is spherical, has a circularity of 0.92 or more, and an incident angle dependency S 60/0 of a peak intensity ratio in a CK edge X-ray absorption spectrum is 0.7 or less. 4. The composite graphite particle according to any one of 3.
  5.  前記黒鉛に対する前記導電性炭素質微粒子の質量割合が0.3%以上2.0%以下の範囲内であり、
     前記黒鉛と前記導電性炭素質微粒子との和に対する前記非黒鉛質炭素の質量割合が0.8%以上15.0%以下の範囲内である
    請求項1から4のいずれかに記載の複合黒鉛質粒子。
    The mass ratio of the conductive carbonaceous fine particles to the graphite is in the range of 0.3% to 2.0%,
    The composite graphite according to any one of claims 1 to 4, wherein a mass ratio of the non-graphitic carbon to a sum of the graphite and the conductive carbonaceous fine particles is in a range of 0.8% to 15.0%. Particle.
  6.  導電性炭素質微粒子を直接的に黒鉛に付着させて一次複合粒子を調製する一次複合粒子調製工程と、
     前記一次複合粒子に非黒鉛質炭素を部分的に又は全体的に付着させて複合黒鉛質粒子を調製する複合黒鉛質粒子調製工程と
    を備える、複合黒鉛質粒子の製造方法。
    A primary composite particle preparation step of preparing primary composite particles by directly attaching conductive carbonaceous fine particles to graphite;
    A method for producing composite graphite particles, comprising: a composite graphite particle preparation step of preparing composite graphite particles by partially or entirely attaching non-graphitic carbon to the primary composite particles.
  7.  前記複合黒鉛質粒子調製工程では、前記一次複合粒子と非黒鉛質炭素の原料粉末とが混合された後に加熱される
    請求項6に記載の複合黒鉛質粒子の製造方法。
    The method for producing composite graphite particles according to claim 6, wherein in the composite graphite particle preparation step, the primary composite particles and the non-graphitic carbon raw material powder are mixed and then heated.
  8.  請求項6または7に記載の複合黒鉛質粒子の製造方法により得られる複合黒鉛質粒子。 Composite graphite particles obtained by the method for producing composite graphite particles according to claim 6 or 7.
  9.  請求項1、2、3、4、5及び8のいずれかに記載の複合黒鉛質粒子を活物質とする電極。 An electrode using the composite graphite particles according to any one of claims 1, 2, 3, 4, 5, and 8 as an active material.
  10.  請求項9に記載の電極を備える非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the electrode according to claim 9.
PCT/JP2013/056414 2012-03-22 2013-03-08 Composite graphitic particles and method for manufacturing same WO2013141041A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014506133A JP5859114B2 (en) 2012-03-22 2013-03-08 Composite graphite particles and method for producing the same
KR1020147017856A KR101607794B1 (en) 2012-03-22 2013-03-08 Composite graphitic particles and method for manufacturing same
CN201380012420.5A CN104169215B (en) 2012-03-22 2013-03-08 Composite graphite matter granule and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065679 2012-03-22
JP2012065679 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141041A1 true WO2013141041A1 (en) 2013-09-26

Family

ID=49222501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056414 WO2013141041A1 (en) 2012-03-22 2013-03-08 Composite graphitic particles and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP5859114B2 (en)
KR (1) KR101607794B1 (en)
CN (1) CN104169215B (en)
WO (1) WO2013141041A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154100A (en) * 2015-02-20 2016-08-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2019175776A (en) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery and manufacturing method thereof, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588919B1 (en) * 2022-09-16 2023-10-16 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery containing the same
WO2024058588A1 (en) * 2022-09-16 2024-03-21 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270019A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004111109A (en) * 2002-09-13 2004-04-08 Kansai Coke & Chem Co Ltd Electrode material for secondary battery, electrode for secondary battery containing the electrode material, and lithium ion secondary battery using the electrode
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216757A (en) * 2001-01-23 2002-08-02 Hitachi Maxell Ltd Nonaqueous secondary battery
US7897283B2 (en) * 2005-06-27 2011-03-01 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
CN101174683B (en) * 2006-11-01 2010-05-12 比亚迪股份有限公司 Cathode of lithium ion secondary battery and lithium ion secondary battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270019A (en) * 1997-03-26 1998-10-09 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004111109A (en) * 2002-09-13 2004-04-08 Kansai Coke & Chem Co Ltd Electrode material for secondary battery, electrode for secondary battery containing the electrode material, and lithium ion secondary battery using the electrode
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154100A (en) * 2015-02-20 2016-08-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2019175776A (en) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery and manufacturing method thereof, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7099005B2 (en) 2018-03-29 2022-07-12 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries

Also Published As

Publication number Publication date
JP5859114B2 (en) 2016-02-10
JPWO2013141041A1 (en) 2015-08-03
KR101607794B1 (en) 2016-03-30
KR20140112491A (en) 2014-09-23
CN104169215A (en) 2014-11-26
CN104169215B (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US8153303B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP6003886B2 (en) Non-aqueous secondary battery carbon material, negative electrode using the carbon material, and non-aqueous secondary battery
WO2018179813A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
JP5798678B2 (en) Silicon graphite composite particles, method for producing the same, electrode, and nonaqueous electrolyte secondary battery including the electrode
WO2018097212A1 (en) Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
US20140093781A1 (en) Modified Natural Graphite Particles
JP2008282547A (en) Anode material for lithium ion secondary battery and its manufacturing method
WO2019150512A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150511A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014067680A (en) Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP5859114B2 (en) Composite graphite particles and method for producing the same
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
JP6451914B1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016091762A (en) Silicon graphite complex particle and method for manufacturing the same
JP6070016B2 (en) Non-aqueous secondary battery composite carbon material and method for producing the same, negative electrode, and non-aqueous secondary battery
JP2019133919A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023181659A1 (en) Particles, method for manufacturing particles, method for manufacturing negative electrode, and method for manufacturing secondary battery
WO2022270539A1 (en) Composite carbon particles and use thereof
JP2019133918A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015060641A (en) Silicon oxide-graphite composite particle and method for producing the same
JP2015060642A (en) Silicon oxide-graphite composite particle and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506133

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147017856

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764637

Country of ref document: EP

Kind code of ref document: A1