JP2015060642A - Silicon oxide-graphite composite particle and method for producing the same - Google Patents

Silicon oxide-graphite composite particle and method for producing the same Download PDF

Info

Publication number
JP2015060642A
JP2015060642A JP2013191947A JP2013191947A JP2015060642A JP 2015060642 A JP2015060642 A JP 2015060642A JP 2013191947 A JP2013191947 A JP 2013191947A JP 2013191947 A JP2013191947 A JP 2013191947A JP 2015060642 A JP2015060642 A JP 2015060642A
Authority
JP
Japan
Prior art keywords
particles
silicon oxide
graphite
composite particles
siox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013191947A
Other languages
Japanese (ja)
Inventor
山本 浩司
Koji Yamamoto
浩司 山本
永田 辰夫
Tatsuo Nagata
辰夫 永田
克浩 西原
Katsuhiro Nishihara
克浩 西原
藤原 徹
Toru Fujiwara
徹 藤原
小林 幸司
Koji Kobayashi
幸司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Chuo Denki Kogyo Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP2013191947A priority Critical patent/JP2015060642A/en
Priority to CN201480041817.1A priority patent/CN105409040A/en
Priority to PCT/JP2014/073344 priority patent/WO2015041063A1/en
Publication of JP2015060642A publication Critical patent/JP2015060642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: composite particles capable of improving charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery, such as a lithium ion secondary battery, furthermore; and a method for producing the composite particles.SOLUTION: Silicon oxide-graphite composite particles according to the present invention include a plurality of scale-like graphite particles and SiOx particles (where 0<x≤0.9). The plurality of scale-like graphite particles are disposed in layers. The SiOx particles are inserted between the plurality of scale-like graphite particles. When an electrode having an electrode density of 1.70±0.02 g/cmis manufactured from the silicon oxide-graphite composite particles, the ratio of the "intensity I(110) of the peak attributed to the (110) plane" to the "intensity I(004) of the peak attributed to the (004) plane" in an X-ray diffraction image of the electrode is preferably within a range of 0.0010 or more and 0.0300 or less.

Description

本発明は、ケイ素酸化物黒鉛複合粒子およびその製造方法に関する。   The present invention relates to silicon oxide graphite composite particles and a method for producing the same.

従来、リチウムイオン二次電池の負極活物質として一般的に黒鉛、ケイ素、スズの粒子等が用いられている。これらの負極活物質の中でも、高放電容量の負極を作製することができることからケイ素粒子が特に注目されている。しかし、ケイ素粒子は、リチウムイオンの吸蔵・放出に伴う体積変化が約4倍と極めて大きい。このため、ケイ素粒子を負極活物質とする電池に対して充放電が繰り返されると、ケイ素粒子の導電ネットワークが徐々に崩壊し、その結果、電池の放電容量が低下してしまう。   Conventionally, graphite, silicon, tin particles and the like are generally used as a negative electrode active material of a lithium ion secondary battery. Among these negative electrode active materials, silicon particles are particularly attracting attention because a negative electrode having a high discharge capacity can be produced. However, the silicon particles have an extremely large volume change of about 4 times due to insertion and extraction of lithium ions. For this reason, when charging / discharging is repeated with respect to the battery which uses a silicon particle as a negative electrode active material, the conductive network of a silicon particle will collapse gradually, As a result, the discharge capacity of a battery will fall.

そこで、近年、リチウムイオン二次電池の負極の「放電容量の向上」および「充放電サイクルによる放電容量低下の抑制」の両立を目的として「黒鉛にケイ素を複合化させたケイ素黒鉛複合粒子」が提案されている。このようなケイ素黒鉛複合粒子としては、例えば、「ケイ素、鱗片状黒鉛および炭素質物を含有し、炭素質物の含有量が20質量%未満であり、アルゴンレーザーを用いたラマン分光法により測定したDバンド1360cm−1ピーク強度IDとGバンド1580cm−1ピーク強度IGの比ID/IG(R値)が0.4未満である複合黒鉛粒子(例えば、特開2005−243508号公報等参照)」、「ケイ素粒子、黒鉛質材料および炭素質材料からなり、圧縮力およびせん断力を付与する処理が施されて、炭素質材料からなる被膜を表面の少なくとも一部に有するケイ素粒子と、黒鉛質材料とが密着している構造を有する複合材料(例えば、特開2008−235247号公報等参照)」等が挙げられる。 Therefore, in recent years, for the purpose of coexistence of “improvement of discharge capacity” and “suppression of decrease in discharge capacity due to charge / discharge cycle” of the negative electrode of a lithium ion secondary battery, Proposed. As such silicon graphite composite particles, for example, “D, measured by Raman spectroscopy using an argon laser, containing silicon, scaly graphite and carbonaceous material, the content of carbonaceous material being less than 20% by mass. Composite graphite particles in which the ratio ID / IG (R value) of the band 1360 cm −1 peak intensity ID and the G band 1580 cm −1 peak intensity IG is less than 0.4 (for example, see JP-A-2005-243508) “Silicon particles comprising a silicon particle, a graphite material, and a carbonaceous material, subjected to a treatment for imparting a compressive force and a shearing force, and having a coating made of the carbonaceous material on at least a part of the surface; And the like (for example, refer to Japanese Patent Application Laid-Open No. 2008-235247).

特開2005−243508号公報JP 2005-243508 A 特開2008−235247号公報JP 2008-235247 A

しかし、上述のケイ素黒鉛複合粒子を負極活物質としたリチウムイオン二次電池の充放電サイクル特性は十分であるとは言い難い。   However, it is difficult to say that the charge / discharge cycle characteristics of a lithium ion secondary battery using the above-described silicon graphite composite particles as a negative electrode active material are sufficient.

本発明の課題は、リチウムイオン二次電池等の非水電解質二次電池の充放電サイクル特性をさらに向上させることができる複合粒子およびその製造方法を提供することにある。   The subject of this invention is providing the composite particle which can further improve the charging / discharging cycling characteristics of nonaqueous electrolyte secondary batteries, such as a lithium ion secondary battery, and its manufacturing method.

本発明の一局面に係るケイ素酸化物黒鉛複合粒子は、複数の鱗片状黒鉛粒子およびSiOx粒子(ただし0<x≦0.9)を備える。ちなみに、このSiOx粒子は、比表面積40m/g以上の湿式粉砕物であることが好ましい。なお、この比表面積は200m/g以下であることが好ましい。ところで、過去に、ケイ素粒子を粉砕して小さくして、サイクル特性を改善する試みがなされている。ケイ素粒子の粒径が大きいと、充放電時の膨張・収縮によりケイ素粒子に割れ等が生じてサイクル毎にケイ素粒子において新生面が生成し、その新生面が電解液と反応してサイクル毎に電解液が消費されるためサイクル劣化が起こるが、最初からケイ素粒子の粒径を小さくしておけばこのような問題が生じないからである。これはサイクル途中の充放電効率が低いことから推定することができる。そして、ケイ素粒子の粒径を小さくするとケイ素粒子の比表面積が増大すると共に新生面の酸化が進み、そのケイ素粒子はケイ素相と二酸化ケイ素相との混合組織を持つようになる。本願ではこのようなケイ素粒子を「ケイ素酸化物粒子」または「SiOx粒子」と称する。そして、本願においてSiOxの「x」は上述の通り0超0.9以下の範囲内である。複数の鱗片状黒鉛粒子は、層状に配列する。なお、複数の鱗片状黒鉛粒子は、同一方向または略同一方向に配向するのが好ましい。SiOx粒子は、複数の鱗片状黒鉛粒子に挟み込まれる。 The silicon oxide graphite composite particles according to one aspect of the present invention include a plurality of scaly graphite particles and SiOx particles (where 0 <x ≦ 0.9). Incidentally, the SiOx particles are preferably a wet pulverized product having a specific surface area of 40 m 2 / g or more. In addition, it is preferable that this specific surface area is 200 m < 2 > / g or less. By the way, in the past, attempts have been made to improve cycle characteristics by pulverizing and reducing silicon particles. If the particle size of the silicon particles is large, cracks and the like occur in the silicon particles due to expansion and contraction during charge and discharge, and a new surface is generated in the silicon particles for each cycle, and the new surface reacts with the electrolyte solution, and the electrolyte solution for each cycle. This is because cycle deterioration occurs due to consumption of silicon, but such a problem does not occur if the particle size of the silicon particles is reduced from the beginning. This can be estimated from the low charge / discharge efficiency during the cycle. When the particle size of the silicon particles is reduced, the specific surface area of the silicon particles increases and the oxidization of the new surface proceeds, and the silicon particles have a mixed structure of a silicon phase and a silicon dioxide phase. In the present application, such silicon particles are referred to as “silicon oxide particles” or “SiOx particles”. In the present application, “x” of SiOx is in the range of more than 0 and not more than 0.9 as described above. A plurality of scaly graphite particles are arranged in layers. The plurality of scaly graphite particles are preferably oriented in the same direction or substantially the same direction. The SiOx particles are sandwiched between a plurality of scaly graphite particles.

本願発明者らは、鋭意研究の結果、上述のようなケイ素酸化物黒鉛複合粒子が非水電解質二次電池の充放電サイクル特性をさらに向上させることができることを明らかにした。本願発明者らは、この原因を以下の通りに推測している。   As a result of intensive studies, the inventors of the present application have clarified that the above-described silicon oxide graphite composite particles can further improve the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery. The inventors of the present application presume this cause as follows.

本願発明に係るケイ素酸化物黒鉛複合粒子を含む電極合剤スラリーから電極を形成する場合、ケイ素酸化物黒鉛複合粒子の積層方向が電極厚み方向に沿うようにケイ素酸化物黒鉛複合粒子が積層する。この結果、その電極には、例えば、電極厚み方向に沿って・・・//黒鉛層/SiOx粒子層/黒鉛層//黒鉛層/SiOx粒子層/黒鉛層//・・・の繰り返し層が形成される(前述中、「//」の記号は、粒子間の境界線を示し、「/」はケイ素酸化物黒鉛複合粒子内の層の境界線を示す。)。このような電極構造によりケイ素酸化物黒鉛複合粒子の体積変化が電極厚み方向に集中することになる。そして、電池内部では、電極に垂直な方向に沿って電極を圧縮する力が常に付与されている。このため、このケイ素酸化物黒鉛複合粒子を電極活物質とする電極は、その圧縮力により崩壊が抑制されることになり、延いては非水電解質二次電池の充放電サイクル特性をさらに向上させる(なお、通常、電極には空隙が存在するため、ケイ素酸化物黒鉛複合粒子があらゆる方向に体積変化すると、電極の崩壊を抑制することは難しい。)。   When forming an electrode from the electrode mixture slurry containing the silicon oxide graphite composite particles according to the present invention, the silicon oxide graphite composite particles are laminated so that the lamination direction of the silicon oxide graphite composite particles is along the electrode thickness direction. As a result, the electrode has, for example, a repeating layer of ... // graphite layer / SiOx particle layer / graphite layer // graphite layer / SiOx particle layer / graphite layer // ... along the electrode thickness direction. (In the above description, the symbol “//” indicates the boundary line between the particles, and “/” indicates the boundary line of the layer in the silicon oxide graphite composite particle). With such an electrode structure, the volume change of the silicon oxide graphite composite particles is concentrated in the electrode thickness direction. And in the inside of a battery, the force which compresses an electrode along the direction perpendicular | vertical to an electrode is always provided. For this reason, the electrode using the silicon oxide graphite composite particles as an electrode active material is prevented from being collapsed by its compressive force, and further improves the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery. (Normally, since there are voids in the electrode, it is difficult to suppress the collapse of the electrode when the volume of the silicon oxide-graphite composite particles changes in all directions).

上述のケイ素酸化物黒鉛複合粒子では、SiOx粒子が複数の鱗片状黒鉛粒子に挟み込まれると共に、SiOx粒子が最外層の鱗片状黒鉛粒子の外表面上に非黒鉛質炭素によって付着されることが好ましい。ケイ素酸化物黒鉛複合粒子をこのような構造にすることにより、ケイ素酸化物黒鉛複合粒子中のSiOx粒子含有量を増加させることができ、延いてはリチウムイオン二次電池等の非水電解質二次電池の放電容量・充電容量の向上に貢献することができるからである。   In the above-mentioned silicon oxide graphite composite particles, it is preferable that the SiOx particles are sandwiched between a plurality of scaly graphite particles and the SiOx particles are adhered to the outer surface of the outermost scaly graphite particles by non-graphitic carbon. . By making the silicon oxide graphite composite particles into such a structure, the content of SiOx particles in the silicon oxide graphite composite particles can be increased, and as a result, a non-aqueous electrolyte secondary such as a lithium ion secondary battery can be increased. It is because it can contribute to the improvement of the discharge capacity and charge capacity of the battery.

ちなみに、上述のケイ素酸化物黒鉛複合粒子を含む電極合剤スラリーから電極を形成する場合、その電極には、例えば、電極厚み方向に沿って・・・//SiOx粒子層/黒鉛層/SiOx粒子層/黒鉛層/SiOx粒子層//SiOx粒子層/黒鉛層/SiOx粒子層/黒鉛層/SiOx粒子層//・・・の繰り返し層が形成される(前述中、「//」の記号は、粒子間の境界線を示し、「/」はケイ素酸化物黒鉛複合粒子内の層の境界線を示す。)。   Incidentally, when an electrode is formed from an electrode mixture slurry containing the above-mentioned silicon oxide graphite composite particles, the electrode has, for example, along the electrode thickness direction ... // SiOx particle layer / graphite layer / SiOx particle Layer / graphite layer / SiOx particle layer // SiOx particle layer / graphite layer / SiOx particle layer / graphite layer / SiOx particle layer // ... (in the above, the symbol “//” , Indicates a boundary line between the particles, and “/” indicates a boundary line of the layer in the silicon oxide graphite composite particle).

上述のケイ素酸化物黒鉛複合粒子において、鱗片状黒鉛粒子、SiOx粒子および非黒鉛質炭素の質量比は97〜55:1〜30:2〜15であることが好ましく、97〜70:1〜15:2〜15であることがより好ましい。ここで、「97〜55」との表記は97以下55以上を意味し、「1〜30」との表記は1以上30以下を意味する(以下同じ)。ケイ素酸化物黒鉛複合粒子の配合がこの通りであれば、放電容量、充放電効率および充放電サイクル特性のバランスに優れた電極を形成することができるからである。   In the above-mentioned silicon oxide graphite composite particles, the mass ratio of the scaly graphite particles, the SiOx particles, and the non-graphitic carbon is preferably 97 to 55: 1 to 30: 2 to 15, and 97 to 70: 1 to 15 : More preferably, it is 2-15. Here, the notation of “97 to 55” means 97 or less and 55 or more, and the notation of “1 to 30” means 1 or more and 30 or less (the same applies hereinafter). This is because if the composition of the silicon oxide graphite composite particles is as described above, an electrode having an excellent balance of discharge capacity, charge / discharge efficiency, and charge / discharge cycle characteristics can be formed.

上述のケイ素酸化物黒鉛複合粒子から電極密度1.70±0.02g/cmの電極を作製したとき、その電極のX線回折像において「黒鉛(004)面に帰属されるピークの強度I(004)」に対する「黒鉛(110)面に帰属されるピークの強度I(110)」の比が0.0010以上0.0300以下の範囲内であることが好ましい。ケイ素酸化物黒鉛複合粒子がこの条件を満たせば、電極内における鱗片状黒鉛粒子の配向度が良好となり、上述の効果をより効率的に享受することができるからである。 When an electrode having an electrode density of 1.70 ± 0.02 g / cm 3 was prepared from the above-mentioned silicon oxide graphite composite particles, the peak intensity I attributed to the graphite (004) plane in the X-ray diffraction image of the electrode The ratio of “peak intensity I (110) attributed to the graphite (110) plane” to (004) ”is preferably within the range of 0.0010 to 0.0300. This is because if the silicon oxide graphite composite particles satisfy this condition, the degree of orientation of the scaly graphite particles in the electrode becomes good, and the above-described effects can be enjoyed more efficiently.

上述のケイ素酸化物黒鉛複合粒子において、鱗片状黒鉛粒子の積層方向の長さに対する長軸長さの比(いわゆるアスペクト比)が1.5以上10以下の範囲内であることが好ましく、1.5以上5以下の範囲内であることがより好ましい。上述のケイ素酸化物黒鉛複合粒子がこの条件を満たせば、電極内における鱗片状黒鉛粒子の配向度が良好となり、上述の効果をより効率的に享受することができるからである。   In the above-mentioned silicon oxide graphite composite particles, the ratio of the major axis length to the length in the stacking direction of the scaly graphite particles (so-called aspect ratio) is preferably in the range of 1.5 or more and 10 or less. More preferably, it is in the range of 5 or more and 5 or less. This is because if the above-mentioned silicon oxide graphite composite particles satisfy this condition, the degree of orientation of the scaly graphite particles in the electrode becomes good, and the above-described effects can be enjoyed more efficiently.

本発明の一局面に係るケイ素酸化物黒鉛複合粒子の製造方法は、一次複合粒子調製工程、混合粉末調製工程および加熱工程を備える。なお、一次複合粒子調製工程および混合粉末調製工程は乾式で行われる。一次複合粒子調製工程では、SiOx粒子(ただし0<x≦0.9)および鱗片状黒鉛粒子の混合粒子に圧縮力およびせん断力が付与されて一次複合粒子が調製される。この一次複合粒子調製工程では、SiOx粒子および鱗片状黒鉛粒子の混合粒子に対してメカノケミカル(登録商標)処理が行われることが好ましい。混合粉末調製工程では、一次複合粒子と固体の非黒鉛質炭素原料とが混合されて混合粉末が調製される。加熱工程では、混合粉末が加熱処理される。その結果、一次複合粒子に非黒鉛質炭素原料が溶融付着させられて、さらに非黒鉛質炭素原料が非黒鉛質炭素に変換される。   The method for producing silicon oxide graphite composite particles according to one aspect of the present invention includes a primary composite particle preparation step, a mixed powder preparation step, and a heating step. The primary composite particle preparation step and the mixed powder preparation step are performed by a dry method. In the primary composite particle preparation step, primary composite particles are prepared by applying compressive force and shear force to the mixed particles of SiOx particles (where 0 <x ≦ 0.9) and scaly graphite particles. In this primary composite particle preparation step, it is preferable that a mechanochemical (registered trademark) treatment is performed on the mixed particles of SiOx particles and scaly graphite particles. In the mixed powder preparation step, the primary composite particles and the solid non-graphitic carbon raw material are mixed to prepare a mixed powder. In the heating step, the mixed powder is heated. As a result, the non-graphitic carbon raw material is melted and adhered to the primary composite particles, and the non-graphitic carbon raw material is further converted into non-graphitic carbon.

このケイ素酸化物黒鉛複合粒子の製造方法により、上述のケイ素酸化物黒鉛複合粒子が製造される。すなわち、このケイ素酸化物黒鉛複合粒子は、上述の効果を発現することができる。   By the method for producing silicon oxide graphite composite particles, the above-mentioned silicon oxide graphite composite particles are produced. That is, this silicon oxide graphite composite particle can express the above-mentioned effect.

本発明の他の局面に係るケイ素酸化物黒鉛複合粒子の製造方法は、中間体複合粒子調製工程および加熱工程を備える。なお、中間体複合粒子調製工程は、乾式で行われる。中間体複合粒子調製工程では、SiOx粒子(ただし0<x≦0.9)、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。この中間体複合粒子調製工程では、SiOx粒子、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に対してメカノケミカル(登録商標)処理が行われることが好ましい。圧縮力が作用する状況下で、溶融した非黒鉛質炭素原料が接着剤の役割を果たして鱗片状黒鉛粒子とSiOx粒子の積層数を増加させるからである。加熱工程では、中間体複合粒子が加熱処理される。その結果、非黒鉛質炭素原料が非黒鉛質炭素に変換される。   The method for producing silicon oxide-graphite composite particles according to another aspect of the present invention includes an intermediate composite particle preparation step and a heating step. The intermediate composite particle preparation step is performed by a dry method. In the intermediate composite particle preparation step, the mixture is compressed to a mixture of SiOx particles (where 0 <x ≦ 0.9), flaky graphite particles and solid non-graphitic carbon raw material at a temperature equal to or higher than the softening point of the non-graphitic carbon raw material. An intermediate composite particle is prepared by applying a force and a shearing force. In this intermediate composite particle preparation step, it is preferable that a mechanochemical (registered trademark) treatment is performed on a mixture of SiOx particles, scaly graphite particles, and a solid non-graphitic carbon raw material. This is because the melted non-graphitic carbon raw material plays the role of an adhesive and increases the number of layers of scaly graphite particles and SiOx particles under the condition where compressive force acts. In the heating step, the intermediate composite particles are heated. As a result, the non-graphitic carbon raw material is converted to non-graphitic carbon.

このケイ素酸化物黒鉛複合粒子の製造方法により、上述のケイ素酸化物黒鉛複合粒子が製造される。すなわち、このケイ素酸化物黒鉛複合粒子は、上述の効果を発現することができる。   By the method for producing silicon oxide graphite composite particles, the above-mentioned silicon oxide graphite composite particles are produced. That is, this silicon oxide graphite composite particle can express the above-mentioned effect.

上述のケイ素酸化物黒鉛複合粒子の製造方法は、湿式粉砕工程、混合工程および乾燥工程をさらに備えることが好ましい。湿式粉砕工程では、ケイ素粉末が湿式粉砕されてSiOx粒子スラリーが調製される。混合工程では、SiOx粒子スラリーに鱗片状黒鉛粒子が混合されて混合スラリーが調製される。乾燥工程では、混合スラリーが乾燥させられて混合粉末が調製される。なお、乾燥は、湿式粉砕に用いた溶媒を完全に蒸発させなくとも、粉末として取り扱うことができる程度に行えばよい。そして、中間体複合粒子調製工程では、混合粉末および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。   The above-described method for producing silicon oxide graphite composite particles preferably further includes a wet pulverization step, a mixing step, and a drying step. In the wet pulverization step, the silicon powder is wet pulverized to prepare a SiOx particle slurry. In the mixing step, scaly graphite particles are mixed with the SiOx particle slurry to prepare a mixed slurry. In the drying step, the mixed slurry is dried to prepare a mixed powder. Note that drying may be performed to such an extent that the solvent used in the wet pulverization can be handled as a powder without completely evaporating. Then, in the intermediate composite particle preparation step, the composite powder and the solid non-graphitic carbon raw material are given compressive force and shear force at a temperature equal to or higher than the softening point of the non-graphitic carbon raw material, so that the intermediate composite particle is Prepared.

上述のケイ素酸化物黒鉛複合粒子は、電極、特に非水電解質二次電池の電極を構成する活物質として使用することができる。ここにいう非水電解質二次電池は、リチウムイオン二次電池に代表される。   The above-mentioned silicon oxide graphite composite particles can be used as an active material that constitutes an electrode, particularly an electrode of a nonaqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery here is represented by a lithium ion secondary battery.

本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子の模式的側面図である。1 is a schematic side view of silicon oxide graphite composite particles according to an embodiment of the present invention. 本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子に形成される電極の構造を模式的に表す図である。It is a figure which represents typically the structure of the electrode formed in the silicon oxide graphite composite particle which concerns on embodiment of this invention. 実施例2に係るケイ素酸化物黒鉛複合粒子の断面の反射電子像写真である。なお、写真中、灰色の領域が鱗片状黒鉛粒子を示し、白色の領域がケイ素酸化物粒子を示している。4 is a reflected electron image photograph of a cross section of a silicon oxide graphite composite particle according to Example 2. FIG. In the photograph, the gray area indicates the scaly graphite particles, and the white area indicates the silicon oxide particles.

<ケイ素酸化物黒鉛複合粒子の構成>
本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100は、図1および図2に示されるように、主に、SiOx粒子110、鱗片状黒鉛粒子120および非黒鉛質炭素(図示せず)から構成される。ただし、xは0超0.9以下の範囲内であり、0超0.7以下の範囲内であることが好ましい。このケイ素酸化物黒鉛複合粒子100では、図1および図2に示されるように、複数の鱗片状黒鉛粒子120にSiOx粒子110が挟み込まれると共に、最外層の鱗片状黒鉛粒子120の外表面にSiOx粒子110が付着する(図1参照)。以下、ケイ素酸化物黒鉛複合粒子100の各構成要素について詳述する。
<Configuration of silicon oxide graphite composite particles>
As shown in FIGS. 1 and 2, silicon oxide graphite composite particles 100 according to an embodiment of the present invention mainly include SiOx particles 110, scaly graphite particles 120, and non-graphitic carbon (not shown). Consists of However, x is in the range of more than 0 and not more than 0.9, and preferably in the range of more than 0 and not more than 0.7. In this silicon oxide graphite composite particle 100, as shown in FIGS. 1 and 2, the SiOx particles 110 are sandwiched between the plurality of scaly graphite particles 120, and the outer surface of the scaly graphite particles 120 as the outermost layer has SiOx. Particles 110 adhere (see FIG. 1). Hereinafter, each component of the silicon oxide graphite composite particle 100 will be described in detail.

(1)SiOx粒子
SiOx粒子110は、複数の鱗片状黒鉛粒子120に挟み込まれると共に、ケイ素黒鉛複合粒子100の最外層の鱗片状黒鉛粒子120の外表面に付着する(図1および図2参照)。このSiOx粒子110は、粒子径ができるだけ小さい方が好ましい。リチウムイオンの吸蔵・放出に伴う体積変化によって生じる応力を分散することができるからである。具体的には、体積分率50%時の粒子径(すなわちメジアン径)が2μm以下であることが好ましく、500nm以下であることがより好ましく、200nm以下であることがさらに好ましく、100nm以下であることが特に好ましい。
(1) SiOx Particles The SiOx particles 110 are sandwiched between a plurality of scaly graphite particles 120 and adhere to the outer surface of the scaly graphite particles 120 as the outermost layer of the silicon graphite composite particles 100 (see FIGS. 1 and 2). . The SiOx particles 110 are preferably as small as possible. This is because it is possible to disperse the stress caused by the volume change accompanying the insertion / release of lithium ions. Specifically, the particle diameter (that is, the median diameter) at a volume fraction of 50% is preferably 2 μm or less, more preferably 500 nm or less, further preferably 200 nm or less, and 100 nm or less. It is particularly preferred.

(2)鱗片状黒鉛粒子
鱗片状黒鉛粒子120は、層状に配列しており、上述の通り、SiOx粒子110を挟み込む(図1参照)。この鱗片状黒鉛粒子120は、天然黒鉛粒子、人造黒鉛粒子、キッシュ黒鉛粒子のいずれでもよいが、経済性および放電容量確保の観点から天然黒鉛粒子であることが好ましい。鱗片状黒鉛粒子120として、上述の黒鉛粒子の混合物が用いられてもかまわない。鱗片状黒鉛粒子120を予め高温で熱処理したものを鱗片状黒鉛粒子として使用しても差し支えない。鱗片状黒鉛粒子120の体積分率50%時の粒子径(すなわちメジアン径)は5μm以上30μm以下であることが好ましい。また、この鱗片状黒鉛粒子120は、アスペクト比が3以上50以下であることが好ましい。本発明の実施の形態において、鱗片状黒鉛粒子120は、SiOx粒子110を挟み込むに当たり、柔軟性に富み、高結晶であり、しかも易変形性を有することが好ましい。このため、本発明の実施の形態において使用される鱗片状黒鉛粒子120の六角網平面間隔d002は0.3354nm以上0.3370nm以下の範囲内であることが好ましく、ペレット密度が1.80g/cm以上2.00g/cm以下の範囲内であることが好ましい。
(2) Scale-like graphite particles The scale-like graphite particles 120 are arranged in layers and sandwich the SiOx particles 110 as described above (see FIG. 1). The scaly graphite particles 120 may be any of natural graphite particles, artificial graphite particles, and quiche graphite particles, but are preferably natural graphite particles from the viewpoint of economical efficiency and securing discharge capacity. As the scale-like graphite particles 120, the above-mentioned mixture of graphite particles may be used. The scaly graphite particles 120 previously heat-treated at a high temperature may be used as the scaly graphite particles. The particle size (that is, the median diameter) of the scaly graphite particles 120 when the volume fraction is 50% is preferably 5 μm or more and 30 μm or less. The scaly graphite particles 120 preferably have an aspect ratio of 3 or more and 50 or less. In the embodiment of the present invention, the scaly graphite particles 120 are preferably flexible, highly crystalline, and easily deformable when sandwiching the SiOx particles 110. Therefore, the hexagonal mesh plane spacing d002 of the scaly graphite particles 120 used in the embodiment of the present invention is preferably in the range of 0.3354 nm or more and 0.3370 nm or less, and the pellet density is 1.80 g / cm. it is preferably in the range of 3 to 2.00 g / cm 3 or less.

(3)非黒鉛質炭素
非黒鉛質炭素は、SiOx粒子110を鱗片状黒鉛粒子120に付着させる。非黒鉛質炭素は、非晶質炭素および乱層構造炭素の少なくともいずれかである。なお、ここで「非晶質炭素」とは、短距離秩序(数原子〜十数個原子オーダー)を有しても、長距離秩序(数百〜数千個の原子オーダー)を有さない炭素をいう。ここで「乱層構造炭素」とは、六角網平面方向に平行な乱層構造を有するが、三次元方向には結晶学的規則性が見られない炭素原子からなる炭素をいう。X線回折図形では101面、103面に対応するhkl回折線は現れない。ただし、本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100は、基材である黒鉛の回折線が強いため、X線回折によって乱層構造炭素の存在を確認することが難しい。このため、乱層構造炭素は、透過型電子顕微鏡(TEM)等で確認されることが好ましい。
(3) Non-graphitic carbon Non-graphitic carbon causes the SiOx particles 110 to adhere to the scaly graphite particles 120. Non-graphitic carbon is at least one of amorphous carbon and turbostratic carbon. Here, “amorphous carbon” has short-range order (several atoms to tens of atoms order), but does not have long-range order (several hundreds to thousands of atoms order). Refers to carbon. Here, “turbulent structure carbon” refers to carbon composed of carbon atoms having a turbulent structure parallel to the hexagonal network plane direction but having no crystallographic regularity in the three-dimensional direction. In the X-ray diffraction pattern, hkl diffraction lines corresponding to the 101 plane and the 103 plane do not appear. However, since the silicon oxide graphite composite particles 100 according to the embodiment of the present invention have strong diffraction lines of graphite as a base material, it is difficult to confirm the existence of the turbostratic structure carbon by X-ray diffraction. For this reason, it is preferable that the turbostratic structure carbon is confirmed with a transmission electron microscope (TEM) or the like.

この乱層構造炭素は、非黒鉛質炭素の原料を焼成することによって得られる。本発明の実施の形態において、非黒鉛質炭素の原料は、固体の非黒鉛質炭素の原料であって、例えば、石油系ピッチ粉末、石炭系ピッチ粉末、熱可塑性樹脂粉末等の有機化合物である。非黒鉛質炭素の原料は、上述の粉末の混合物であってもよい。これらの中でも、ピッチ粉末が特に好ましい。ピッチ粉末は、昇温過程で溶融すると共に炭化され、その結果、SiOx粒子110を鱗片状黒鉛粒子120に好適に固定化することができるからである。ピッチ粉末は、低温焼成されても不可逆容量が小さいという観点から好ましい。焼成における熱処理条件の一例として、熱処理温度を800℃から1200℃の範囲内とすることが挙げられる。この熱処理時間は、熱処理温度および非黒鉛質炭素の原料の特性等を加味して適宜決定され、典型的には1時間程度である。熱処理時の雰囲気は非酸化雰囲気(不活性ガス雰囲気、真空雰囲気)であることが好ましく、経済的観点から窒素雰囲気が好ましい。非晶質炭素は、例えば、真空蒸着法やプラズマCVD法等の気相法により形成することができる。   This turbostratic carbon is obtained by firing a non-graphitic carbon raw material. In the embodiment of the present invention, the non-graphitic carbon raw material is a solid non-graphitic carbon raw material, for example, an organic compound such as petroleum pitch powder, coal pitch powder, and thermoplastic resin powder. . The raw material for non-graphitic carbon may be a mixture of the aforementioned powders. Among these, pitch powder is particularly preferable. This is because the pitch powder is melted and carbonized in the temperature raising process, and as a result, the SiOx particles 110 can be suitably fixed to the scaly graphite particles 120. Pitch powder is preferable from the viewpoint of low irreversible capacity even when fired at low temperature. As an example of the heat treatment conditions in the firing, the heat treatment temperature may be in the range of 800 ° C to 1200 ° C. This heat treatment time is appropriately determined in consideration of the heat treatment temperature and the characteristics of the non-graphitic carbon raw material, and is typically about 1 hour. The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere), and a nitrogen atmosphere is preferred from an economic viewpoint. Amorphous carbon can be formed, for example, by a vapor phase method such as a vacuum deposition method or a plasma CVD method.

<ケイ素酸化物黒鉛複合粒子の特性>
本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100において、上述のSiOx粒子110、鱗片状黒鉛粒子120および非黒鉛質炭素の質量比は、1〜30:97〜55:2〜15であることが好ましく、1〜15:97〜70:2〜15であることがより好ましい。ケイ素酸化物黒鉛複合粒子100をこの組成とすることにより、ケイ素酸化物黒鉛複合粒子100の最外層の鱗片状黒鉛粒子120の外表面にSiOx粒子110を強固に固定化することができると共に、電極作製時において放電容量、充放電効率および充放電サイクル特性を好適化することができるからである。
<Characteristics of silicon oxide graphite composite particles>
In the silicon oxide graphite composite particles 100 according to the embodiment of the present invention, the mass ratio of the above-mentioned SiOx particles 110, the scaly graphite particles 120, and the non-graphitic carbon is 1 to 30:97 to 55: 2 to 15. It is preferable that it is 1-15: 97-70: 2-15. By setting the silicon oxide graphite composite particles 100 to this composition, the SiOx particles 110 can be firmly fixed to the outer surface of the scaly graphite particles 120 of the outermost layer of the silicon oxide graphite composite particles 100, and the electrodes This is because the discharge capacity, charge / discharge efficiency, and charge / discharge cycle characteristics can be optimized during production.

本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100の体積分率50%時の粒子径(すなわちメジアン径)は10μm以上35μm以下の範囲内であることが好ましい。粒子径がこの範囲内であると、電極作製時において充放電効率および充放電サイクル特性を好適化することができるからである。   The particle diameter (that is, the median diameter) of the silicon oxide graphite composite particles 100 according to the embodiment of the present invention when the volume fraction is 50% is preferably in the range of 10 μm to 35 μm. This is because, when the particle diameter is within this range, the charge / discharge efficiency and the charge / discharge cycle characteristics can be optimized during electrode production.

本実施の形態に係るケイ素酸化物黒鉛複合粒子100のアスペクト比、すなわち、鱗片状黒鉛粒子120の積層方向の長さ(図1の「H」に相当)に対する長軸長さ(図1の「W」に相当)の比は1.5以上10以下の範囲内であることが好ましく、1.5以上8以下の範囲内であることがより好ましく、1.5以上6以下の範囲内であることがさらに好ましく、1.5以上5以下の範囲内であることが特に好ましい。アスペクト比がこの範囲であると、充放電サイクル特性を好適化することができると共に、容易に電極を作製することができるからである。   The aspect ratio of silicon oxide graphite composite particles 100 according to the present embodiment, that is, the long axis length (corresponding to “H” in FIG. 1) in the stacking direction of scaly graphite particles 120 (“ W ”) is preferably in the range of 1.5 or more and 10 or less, more preferably in the range of 1.5 or more and 8 or less, and in the range of 1.5 or more and 6 or less. More preferably, it is particularly preferably within the range of 1.5 to 5. This is because when the aspect ratio is within this range, the charge / discharge cycle characteristics can be optimized and the electrode can be easily produced.

本実施の形態に係るケイ素酸化物黒鉛複合粒子100から電極密度1.70±0.02g/cmの電極を作製したとき(図2参照)、その電極200のX線回折像において「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0300以下であることが好ましく、0.0200以下であることがより好ましく、0.0150以下であることがさらに好ましく、0.0100以下であることが特に好ましい。このケイ素酸化物黒鉛複合粒子100がこの条件を満たすことができれば、電極内における鱗片状黒鉛粒子120の配向度が良好となり、上述の効果をより効率的に享受することができるからである。なお、図2中、符号210は活物質層を示し、符号220は集電体を示す。 When an electrode having an electrode density of 1.70 ± 0.02 g / cm 3 was produced from the silicon oxide-graphite composite particles 100 according to the present embodiment (see FIG. 2), the X-ray diffraction image of the electrode 200 shows “(004 The ratio of the peak intensity I (110) attributed to the (110) plane is preferably 0.0300 or less, and 0.0200 or less. More preferably, it is more preferably 0.0150 or less, and particularly preferably 0.0100 or less. This is because if this silicon oxide graphite composite particle 100 can satisfy this condition, the degree of orientation of the scaly graphite particles 120 in the electrode will be good, and the above-described effects can be enjoyed more efficiently. In FIG. 2, reference numeral 210 denotes an active material layer, and reference numeral 220 denotes a current collector.

<ケイ素酸化物黒鉛複合粒子の製造>
本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100は、以下に示すいずれかの製造方法により製造される。
<Manufacture of silicon oxide graphite composite particles>
Silicon oxide graphite composite particles 100 according to an embodiment of the present invention are manufactured by any of the following manufacturing methods.

(1)第1の製造方法
第1の製造方法では、一次複合粒子調製工程、混合粉末調製工程および加熱工程を経てケイ素酸化物黒鉛複合粒子100が製造される。なお、一次複合粒子調製工程および混合粉末調製工程は、乾燥状態で実施される。
(1) First Manufacturing Method In the first manufacturing method, silicon oxide graphite composite particles 100 are manufactured through a primary composite particle preparation step, a mixed powder preparation step, and a heating step. The primary composite particle preparation step and the mixed powder preparation step are performed in a dry state.

一次複合粒子調製工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理により、SiOx粒子110および鱗片状黒鉛粒子120の混合粒子に圧縮力およびせん断力が付与されて一次複合粒子が調製される。なお、このとき、SiOx粒子110および鱗片状黒鉛粒子120の混合粒子がメカノケミカルシステム、メカノフュージョンシステムに投入されてもよいし、SiOx粒子110および鱗片状黒鉛粒子120それぞれを順にメカノケミカルシステム、メカノフュージョンシステムに投入した後に、両粒子を混合しながらメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理を行ってもよい。なお、一次複合粒子では、SiOx粒子110が弱い力で鱗片状黒鉛粒子120の表面に付着している。   In the primary composite particle preparation step, a compression force and a shear force are applied to the mixed particles of the SiOx particles 110 and the scaly graphite particles 120 by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process. Composite particles are prepared. At this time, the mixed particles of the SiOx particles 110 and the scaly graphite particles 120 may be introduced into the mechanochemical system and the mechanofusion system, or the SiOx particles 110 and the scaly graphite particles 120 are sequentially added to the mechanochemical system and the mechanochemical system, respectively. After being introduced into the fusion system, a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process may be performed while mixing both particles. In the primary composite particles, the SiOx particles 110 are attached to the surface of the scaly graphite particles 120 with a weak force.

混合粉末調製工程では、一次複合粒子と固体の非黒鉛質炭素原料とが固相混合されて混合粉末が調製される。   In the mixed powder preparation step, the primary composite particles and the solid non-graphitic carbon raw material are solid-phase mixed to prepare a mixed powder.

混合粉末調製工程において一次複合粒子と固体の非黒鉛質炭素原料とを混合する方法としては、粒子を破壊せずに均一に混合することができる方法であれば、特に限定されない。例えば、通常の混合機を用いる方法がある。混合機としては、例えば、回転容器型混合機、固定容器型混合機、気流型混合機、高速流動型混合機などが挙げられる。回転容器型混合機としては、例えば、Vブレンダーが挙げられる。   The method for mixing the primary composite particles and the solid non-graphitic carbon raw material in the mixed powder preparation step is not particularly limited as long as the method can uniformly mix the particles without destroying them. For example, there is a method using an ordinary mixer. Examples of the mixer include a rotating container type mixer, a fixed container type mixer, an airflow type mixer, and a high-speed flow type mixer. Examples of the rotating container type mixer include a V blender.

加熱工程では、非酸化雰囲気下(不活性ガス雰囲気下、真空雰囲気下等)で混合粉末が800℃以上1200℃以下の温度で加熱処理される。この結果、一次複合粒子に非黒鉛質炭素原料が溶融付着され、さらに非黒鉛質炭素原料が非黒鉛質炭素に変換され、目的のケイ素酸化物黒鉛複合粒子100が得られる。加熱温度を1200℃以下とすることにより、炭化ケイ素(SiC)の生成量を抑制することができるため、放電容量に優れた電極を形成することができる。加熱温度を800℃以上とすることにより、充放電効率に優れた電極を形成することができる。このように、加熱温度が上記範囲であると、放電容量および充放電効率のバランスに優れた電極を形成することができる。   In the heating step, the mixed powder is heat-treated at a temperature of 800 ° C. or higher and 1200 ° C. or lower in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere, etc.). As a result, the non-graphitic carbon raw material is melted and adhered to the primary composite particles, and the non-graphitic carbon raw material is converted to non-graphitic carbon, whereby the target silicon oxide graphite composite particles 100 are obtained. By setting the heating temperature to 1200 ° C. or lower, the amount of silicon carbide (SiC) produced can be suppressed, so that an electrode excellent in discharge capacity can be formed. By setting the heating temperature to 800 ° C. or higher, an electrode having excellent charge / discharge efficiency can be formed. Thus, the electrode excellent in the balance of discharge capacity and charging / discharging efficiency can be formed as heating temperature is the said range.

(2)第2の製造方法
第2の製造方法では、中間体複合粒子調製工程および加熱工程を経てケイ素酸化物黒鉛複合粒子100が製造される。なお、中間体複合粒子調製工程は、乾燥状態で実施される。
(2) Second Manufacturing Method In the second manufacturing method, silicon oxide graphite composite particles 100 are manufactured through an intermediate composite particle preparation step and a heating step. The intermediate composite particle preparation step is performed in a dry state.

中間体複合粒子調製工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理により、SiOx粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。このとき、圧縮力が作用する状況下で、溶融した非黒鉛質炭素原料が接着剤の役割を果たして鱗片状黒鉛粒子120とSiOx粒子110の積層数を増加させる。なお、このとき、SiOx粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料の混合物がメカノケミカルシステム、メカノフュージョンシステムに投入されてもよいし、SiOx粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料それぞれを順にメカノケミカルシステム、メカノフュージョンシステムに投入した後に、それら粒子を混合しながらメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理を行ってもよい。   In the intermediate composite particle preparation step, the mixture of the SiOx particles 110, the scaly graphite particles 120 and the solid non-graphitic carbon raw material is processed into a non-graphitic carbon raw material by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process. Intermediate composite particles are prepared by applying compressive force and shear force at a temperature equal to or higher than the softening point of the graphitic carbon raw material. At this time, the melted non-graphitic carbon raw material serves as an adhesive to increase the number of layers of the scaly graphite particles 120 and the SiOx particles 110 under a situation where a compressive force acts. At this time, the mixture of the SiOx particles 110, the scaly graphite particles 120 and the solid non-graphitic carbon raw material may be put into a mechanochemical system or a mechanofusion system, or the SiOx particles 110, the scaly graphite particles 120 and After each solid non-graphitic carbon raw material is put into the mechanochemical system and mechanofusion system in sequence, the mechanochemical (registered trademark) processing, mechanofusion (registered trademark) processing, etc. can be performed while mixing the particles. Good.

加熱工程では、非酸化雰囲気下(不活性ガス雰囲気下、真空雰囲気下等)で混合物が800℃以上1200℃以下の温度で加熱処理される。この結果、非黒鉛質炭素原料が非黒鉛質炭素に変換され、目的のケイ素酸化物黒鉛複合粒子100が得られる。加熱温度を1200℃以下とすることにより、炭化ケイ素(SiC)の生成量を抑制することができるため、放電容量に優れた電極を形成することができる。加熱温度を800℃以上とすることにより、充放電効率に優れた電極を形成することができる。このように、加熱温度が上記範囲であると、放電容量および充放電効率のバランスに優れた電極を形成することができる。   In the heating step, the mixture is heat-treated at a temperature of 800 ° C. to 1200 ° C. in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere, etc.). As a result, the non-graphitic carbon raw material is converted to non-graphitic carbon, and the target silicon oxide graphite composite particles 100 are obtained. By setting the heating temperature to 1200 ° C. or lower, the amount of silicon carbide (SiC) produced can be suppressed, so that an electrode excellent in discharge capacity can be formed. By setting the heating temperature to 800 ° C. or higher, an electrode having excellent charge / discharge efficiency can be formed. Thus, the electrode excellent in the balance of discharge capacity and charging / discharging efficiency can be formed as heating temperature is the said range.

なお、この製造方法では、中間体複合粒子調製工程開始前に湿式粉砕工程、混合工程および乾燥工程が設けられるのが好ましい。湿式粉砕工程では、ケイ素粉末が湿式粉砕されてSiOx粒子スラリーが調製される。混合工程では、SiOx粒子スラリーに鱗片状黒鉛粒子が混合されて混合スラリーが調製される。乾燥工程では、混合スラリーが乾燥させられて混合粉末が調製される。そして、中間体複合粒子調製工程では、混合粉末および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。この場合、乾燥は、湿式粉砕に用いた溶媒を完全に蒸発させなくとも、粉末として取り扱うことができる程度に行えばよい。   In this production method, it is preferable that a wet pulverization step, a mixing step, and a drying step are provided before the start of the intermediate composite particle preparation step. In the wet pulverization step, the silicon powder is wet pulverized to prepare a SiOx particle slurry. In the mixing step, scaly graphite particles are mixed with the SiOx particle slurry to prepare a mixed slurry. In the drying step, the mixed slurry is dried to prepare a mixed powder. Then, in the intermediate composite particle preparation step, the composite powder and the solid non-graphitic carbon raw material are given compressive force and shear force at a temperature equal to or higher than the softening point of the non-graphitic carbon raw material, so that the intermediate composite particle is Prepared. In this case, drying may be performed to such an extent that it can be handled as a powder without completely evaporating the solvent used for wet grinding.

<ケイ素酸化物黒鉛複合粒子の特徴>
本発明の実施の形態に係るケイ素酸化物黒鉛複合粒子100は、非水電解質二次電池の電極活物質として使用されると、その充放電サイクル特性をさらに向上させることができる。
<Characteristics of silicon oxide graphite composite particles>
When the silicon oxide graphite composite particles 100 according to the embodiment of the present invention are used as an electrode active material of a nonaqueous electrolyte secondary battery, their charge / discharge cycle characteristics can be further improved.

<実施例および比較例>
以下、実施例および比較例を示して、本発明について詳述する。
<Examples and Comparative Examples>
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

<ケイ素酸化物黒鉛複合粒子の製造>
(1)ケイ素粒子の粉砕
1時間、ケイ素粉末(比表面積20m/g)をビーズミルで粉砕して粉砕スラリーを調製した。なお、このとき、溶媒としてエタノールを用い、メディアとしてジルコニアボールを用いた。この際、ケイ素粉末の新生面が酸化されてSiOx粉末になる。この粉砕スラリーのみを大気中で自然乾燥させてSiOx粉末を回収し、ユアサアイオニクス株式会社製カンタソープを用いて、そのSiOx粉末の比表面積をBET1点法により求めたところ、SiOx粉末のBET比表面積は40m/gであった(表1参照)。
<Manufacture of silicon oxide graphite composite particles>
(1) Grinding of silicon particles For 1 hour, silicon powder (specific surface area 20 m 2 / g) was ground with a bead mill to prepare a ground slurry. At this time, ethanol was used as the solvent and zirconia balls were used as the media. At this time, the new surface of the silicon powder is oxidized to become a SiOx powder. Only this pulverized slurry was naturally dried in the air to recover the SiOx powder, and the specific surface area of the SiOx powder was determined by the BET one-point method using a canter soap manufactured by Yuasa Ionics Co., Ltd. The surface area was 40 m 2 / g (see Table 1).

(2)混合スラリーの調製
鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:10μm、d002:0.3357nm、ペレット密度:1.82g/cm)を株式会社セイシン企業製ニューグラマシンに投入し、同マシンを回転させながら上述の粉砕スラリーを加えて混合し、混合スラリーを調製した。なお、この際、鱗片状天然黒鉛粉末とSiOx粉末との質量比が84:7となるように鱗片状天然黒鉛粉末と粉砕スラリーとを混合した。
(2) Preparation of Mixed Slurry Scale-like natural graphite powder (manufactured by Chuetsu Graphite Industry Co., Ltd., average particle size: 10 μm, d002: 0.3357 nm, pellet density: 1.82 g / cm 3 ) The mixture was put into a machine and the above-mentioned pulverized slurry was added and mixed while rotating the machine to prepare a mixed slurry. At this time, the scaly natural graphite powder and the pulverized slurry were mixed so that the mass ratio of the scaly natural graphite powder to the SiOx powder was 84: 7.

なお、鱗片状天然黒鉛粉末のペレット密度は、次の方法により求められる。
1.00gの鱗片状天然黒鉛粉末を直径15mmの金型に充填し、その金型を一軸プレス機で加圧力8.7kNで5秒間加圧した後、その加圧力を0.15kNまで弱めてそのときの上パンチの変位を読み取る。なお、加圧速度は10mm/秒とする。また、鱗片状天然黒鉛粉末を上記金型に充填せずに、その金型を同一軸プレス機で加圧力8.7kNまで加圧した後、その加圧力を0.15kNまで弱めてそのときの上パンチの変位を求める。この変位をリファレンスとする。そして、鱗片状天然黒鉛粉末の充填時の上パンチの変位とリファレンス変位との差を試料厚みとして求め、この厚みから圧縮密度すなわちペレット密度を計算する。
In addition, the pellet density of scaly natural graphite powder is calculated | required with the following method.
1.00 g of scaly natural graphite powder is filled into a 15 mm diameter mold, and the mold is pressurized with a uniaxial press at a pressure of 8.7 kN for 5 seconds, and then the pressure is reduced to 0.15 kN. The displacement of the upper punch at that time is read. The pressing speed is 10 mm / second. In addition, without filling the mold with scaly natural graphite powder, the mold was pressurized to a pressure of 8.7 kN with the same axis press, and then the pressure was reduced to 0.15 kN. Obtain the upper punch displacement. This displacement is used as a reference. Then, the difference between the displacement of the upper punch and the reference displacement at the time of filling the scaly natural graphite powder is obtained as the sample thickness, and the compression density, that is, the pellet density is calculated from this thickness.

(3)中間体複合粒子の調製
混合スラリーを自然乾燥させて混合粉末を得た後、91質量部の混合粉末と18質量部の石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)とを、ローターとインナーピースとの隙間を1mmとした循環型メカノフュージョンシステム(ホソカワミクロン株式会社製AMS−mini)に投入した。そして、その循環型メカノフュージョンシステムの温度を90℃〜120℃に調整しながら、その混合粉末を回転数7000rpmで15分間、メカノケミカル処理して、中間体複合粒子を調製した。
(3) Preparation of intermediate composite particles After the mixed slurry was naturally dried to obtain a mixed powder, 91 parts by mass of the mixed powder and 18 parts by mass of a coal-based pitch powder (softening point 86 ° C., average particle size 20 μm, 1000 The residual carbon ratio after heating at 50 ° C. was introduced into a circulation mechano-fusion system (AMS-mini manufactured by Hosokawa Micron Corporation) in which the gap between the rotor and the inner piece was 1 mm. Then, while adjusting the temperature of the circulation type mechanofusion system to 90 ° C. to 120 ° C., the mixed powder was mechanochemically treated at 7000 rpm for 15 minutes to prepare intermediate composite particles.

(4)石炭系ピッチ粉末の加熱処理
次いで、中間体複合粒子を黒鉛るつぼに投入した後、その中間体複合粒子を窒素気流中、1000℃の温度で1時間加熱し、石炭系ピッチ粉末を非黒鉛質炭素に変換させた。
(4) Heat treatment of coal-based pitch powder Next, the intermediate composite particles were put into a graphite crucible, and then the intermediate composite particles were heated in a nitrogen stream at a temperature of 1000 ° C. for 1 hour to remove the coal-based pitch powder. Converted to graphitic carbon.

(5)解砕処理
最後に、加熱処理後の中間体複合粒子を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的のケイ素酸化物黒鉛複合粒子を得た。なお、このケイ素酸化物黒鉛複合粒子における鱗片状天然黒鉛粉末、SiOx粉末(ケイ素酸化物粉末)およびピッチの熱処理物の質量比は、84:7:9であった(表1参照)。ここで焼成前後の重量変化はすべてピッチによるものとした。
(5) Crushing process Finally, the intermediate composite particles after the heat treatment were pulverized until 98% by mass or more passed through a sieve having an opening of 75 μm to obtain the target silicon oxide graphite composite particles. The mass ratio of the scaly natural graphite powder, the SiOx powder (silicon oxide powder), and the heat-treated product of pitch in the silicon oxide graphite composite particles was 84: 7: 9 (see Table 1). Here, all the weight changes before and after firing were due to pitch.

<ケイ素酸化物黒鉛複合粒子の特性評価>
(1)ケイ素粒子の酸化度の測定
ケイ素酸化物黒鉛複合粒子を酸分解した後、その残渣を融解して試料を作製した。そして、発光分光分析装置を用いてその試料の元素分析を行い、ケイ素原子含有量およびジルコニウム原子含有量を求めた。なお、ジルコニウム原子は、ジルコニアボール(二酸化ジルコニウム,ZrOで形成されている)の摩耗によって混入している。また、別のケイ素酸化物黒鉛複合粒子を不活性ガス搬送融解法により融解させて試料を作製した後、赤外線吸収法を用いてその試料の酸素原子含有量を求めた。そして、酸素原子含有量から二酸化ジルコニウムの酸素原子分を差し引いた値と、ケイ素原子含有量とからケイ素原子に対する酸素原子の組成比(すなわちSiOxの「x」)を求めた。本実施例に係るケイ素酸化物黒鉛複合粒子において、同組成比は0.41であった(表1参照)。
(2)粒子径の測定
レーザー回折/散乱式粒度分布計(株式会社堀場製作所製LA−910)を用いて光散乱回折法によりケイ素酸化物黒鉛複合粒子の体積基準の粒度分布を測定した。その後、得られた粒度分布を用いて体積分率50%時の粒子径(メジアン径)を求めた。その結果、同粒子径は21μmであった(表1参照)。
<Characteristic evaluation of silicon oxide graphite composite particles>
(1) Measurement of oxidation degree of silicon particles After silicon oxide graphite composite particles were acid-decomposed, the residue was melted to prepare a sample. And the elemental analysis of the sample was performed using the emission-spectral-analysis apparatus, and silicon atom content and zirconium atom content were calculated | required. Zirconium atoms are mixed by wear of zirconia balls (made of zirconium dioxide, ZrO 2 ). Further, another silicon oxide-graphite composite particle was melted by an inert gas transport melting method to prepare a sample, and then the oxygen atom content of the sample was determined using an infrared absorption method. Then, the composition ratio of oxygen atoms to silicon atoms (ie, “x” of SiOx) was determined from the value obtained by subtracting the oxygen atom content of zirconium dioxide from the oxygen atom content and the silicon atom content. In the silicon oxide graphite composite particles according to this example, the composition ratio was 0.41 (see Table 1).
(2) Measurement of particle diameter The volume-based particle size distribution of the silicon oxide graphite composite particles was measured by a light scattering diffraction method using a laser diffraction / scattering particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.). Thereafter, the particle size (median diameter) at a volume fraction of 50% was determined using the obtained particle size distribution. As a result, the particle diameter was 21 μm (see Table 1).

(3)電池特性評価
(3−1)電極作製
上述のケイ素酸化物黒鉛複合粒子にAB(アセチレンブラック)と、CMC(カルボキシメチルセルロースナトリウム)粉末と、SBR(スチレン−ブタジエンゴム)の水性分散液と、水とを配合して電極合剤スラリーを得た。ここで、ABは導電助剤であり、CMC及びSBRは結着剤である。ケイ素酸化物黒鉛複合粒子、AB、CMCおよびSBRの配合比は、質量比で97.0:1.0:1.0:1.0であった。そして、この電極合剤スラリーを、厚み17μmの銅箔(集電体)上にドクターブレード法により塗布した(塗布量は7〜8mg/cm2であった)。塗布液を乾燥させて塗膜を得た後、その塗膜を直径13mmのディスク状に打ち抜いた。そして、そのディスクをプレス成形機により加圧して、1.70±0.02g/cm3の電極密度を有する電極を作製した。なお、得られた電極の電極密度は、マイクロメータにより厚みを測定して体積を算出すると共に、そのディスク(銅箔を除いた部分)の質量を計測することにより得られる。
(3) Battery characteristics evaluation (3-1) Electrode preparation AB (acetylene black), CMC (carboxymethylcellulose sodium) powder, and aqueous dispersion of SBR (styrene-butadiene rubber) on the above-described silicon oxide graphite composite particles Then, water was blended to obtain an electrode mixture slurry. Here, AB is a conductive additive, and CMC and SBR are binders. The compounding ratio of the silicon oxide graphite composite particles, AB, CMC and SBR was 97.0: 1.0: 1.0: 1.0 by mass ratio. And this electrode mixture slurry was apply | coated by the doctor blade method on the 17-micrometer-thick copper foil (current collector) (the coating amount was 7-8 mg / cm < 2 >). After drying the coating solution to obtain a coating film, the coating film was punched into a disk shape having a diameter of 13 mm. Then, the disk was pressed by a press molding machine to produce an electrode having an electrode density of 1.70 ± 0.02 g / cm 3 . In addition, the electrode density of the obtained electrode is obtained by measuring the thickness of the disk (part excluding the copper foil) and measuring the volume by measuring the thickness with a micrometer.

(3−2)電池作製
ポリオレフィン製セパレーターの両側に上述の電極と対極のLi金属箔とを配置して電極組立体を作製した。そして、その電極組立体の内部に電解液を注入してセルサイズ2016のコイン型非水試験セルを作製した。なお、電解液の組成は、エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC):ビニレンカーボネート(VC):フルオロエチレンカーボネート(FEC):LiPF6=23:4:48:1:8:16(質量比)とした。
(3-2) Battery Production The electrode assembly was produced by disposing the above electrode and the counter Li metal foil on both sides of the polyolefin separator. And the electrolyte solution was inject | poured into the inside of the electrode assembly, and the coin-type non-aqueous test cell of the cell size 2016 was produced. The composition of the electrolytic solution was ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC): vinylene carbonate (VC): fluoroethylene carbonate (FEC): LiPF 6 = 23: 4: 48: 1 : 8:16 (mass ratio).

(3−3)放電容量、初回充放電効率、電池劣化度および充放電サイクルの評価
この非水試験セルにおいて、先ず、0.33mAの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流ドープ(電極へのリチウムイオンの挿入、リチウムイオン二次電池の充電に相当)を行った後、さらに0Vを保持したまま、5μAになるまで定電圧で対極に対してドープを続け、ドープ容量を測定した。次に、0.33mAの定電流で、電位差1.5Vになるまで脱ドープ(電極からのリチウムイオンの離脱、リチウムイオン二次電池の放電に相当)を行い、脱ドープ容量を測定した。このときのドープ容量、脱ドープ容量は、この電極をリチウムイオン二次電池の負極として用いた時の充電容量、放電容量に相当するので、これを充電容量、放電容量とした。本実施例に係る非水試験セルの放電容量は、472mAh/gであった(表1参照)。このときの脱ドープ容量/ドープ容量の比は、初回におけるリチウムイオン二次電池の放電容量/充電容量の比に相当するので、この比を初回充放電効率とした。本実施例に係る非水試験セルの初回充放電効率は、88.5%であった(表1参照)。
(3-3) Evaluation of Discharge Capacity, Initial Charge / Discharge Efficiency, Battery Deterioration Level, and Charge / Discharge Cycle In this non-aqueous test cell, first, with a current value of 0.33 mA, the potential difference is 0 (zero) V with respect to the counter electrode. After performing constant current dope (equivalent to insertion of lithium ions into the electrode, charging of the lithium ion secondary battery) until it becomes, continue to dope the counter electrode at a constant voltage until 5 μA while maintaining 0 V. The doping capacity was measured. Next, dedoping (corresponding to detachment of lithium ions from the electrode and discharging of the lithium ion secondary battery) was performed at a constant current of 0.33 mA until the potential difference became 1.5 V, and the dedoping capacity was measured. The doping capacity and dedoping capacity at this time correspond to the charging capacity and discharging capacity when this electrode is used as the negative electrode of the lithium ion secondary battery, and these were used as charging capacity and discharging capacity. The discharge capacity of the non-aqueous test cell according to this example was 472 mAh / g (see Table 1). Since the ratio of the dedoping capacity / doping capacity at this time corresponds to the ratio of the discharge capacity / charge capacity of the lithium ion secondary battery at the first time, this ratio was defined as the initial charge / discharge efficiency. The initial charge and discharge efficiency of the non-aqueous test cell according to this example was 88.5% (see Table 1).

サイクル特性の測定は、上記と同様に構成されたコイン型の非水試験セルを用いて行った。この試験セルにおいて、2サイクル目以降、1.33mAの定電流で、対極に対して電位差5mVになるまでドープした後(充電に相当)、さらに5mVを保持したまま、50μAになるまで定電圧でドープを続けた。次に、1.33mAの定電流で、電位差1.5Vになるまで脱ドープを行って(放電に相当)、脱ドープ容量を測定した。このときの脱ドープ容量を放電容量とした。   The cycle characteristics were measured using a coin-type non-aqueous test cell configured in the same manner as described above. In this test cell, after the second cycle, after doping with a constant current of 1.33 mA until the potential difference becomes 5 mV with respect to the counter electrode (corresponding to charging), while maintaining 5 mV, with a constant voltage until 50 μA is reached. Continued dope. Next, dedoping was performed at a constant current of 1.33 mA until the potential difference became 1.5 V (corresponding to discharge), and the dedoping capacity was measured. The dedope capacity at this time was defined as the discharge capacity.

上述と同一条件でドープと脱ドープとを31回繰り返し、10サイクル目から15サイクル目の充放電効率の平均値を求めて電池劣化度を評価すると共に、「2サイクル目の脱ドープ時の放電容量」に対する「31サイクル目の脱ドープ時の放電容量」の比率(容量維持率)を求めてサイクル特性を評価した。なお、10サイクル目から15サイクル目の充放電効率の平均値が100%よりも小さいと、そのサイクル間において電極が破壊されているか活物質と電解液とが反応していることになる。また、容量維持率が90%以上であれば、実用電池として良好であると見なすことができる。なお、本実施例に係る非水試験セルの10サイクル目から15サイクル目の充放電効率の平均値は99.6%であり、容量維持率は96.1%であった(表1参照)。   Doping and dedoping are repeated 31 times under the same conditions as described above, the average value of the charge / discharge efficiency in the 10th to 15th cycles is determined and the degree of battery deterioration is evaluated. The ratio (capacity maintenance ratio) of “discharge capacity at the time of dedoping at the 31st cycle” to “capacity” was determined to evaluate cycle characteristics. If the average value of the charge / discharge efficiency from the 10th cycle to the 15th cycle is smaller than 100%, the electrode is broken or the active material and the electrolytic solution react between the cycles. Further, if the capacity retention rate is 90% or more, it can be considered as a practical battery. In addition, the average value of the charge / discharge efficiency of the 10th cycle to the 15th cycle of the non-aqueous test cell according to the present example was 99.6%, and the capacity retention rate was 96.1% (see Table 1). .

(4)ケイ素酸化物黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度の測定
ケイ素酸化物黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、反射回折式の粉末X線回折法を利用して求められる。具体的には、上記「(3−1)電極作製」で作製した加圧後のディスク状電極を無反射板に両面テープで固定すると共に、リガク製RINT−1200Vを用いて、銅(Cu)をターゲットとし、管電圧40kV、管電流30mAでCuKα線をディスク状電極に照射して測定する。その後、ピーク分離し、CuKα1線による粉末X線回折スペクトルを得る。2θが52〜57°の範囲内にある(004)面の回折ピークと、2θが75〜80°の範囲内にある(110)面の回折ピークの各々の強度を求める。そして、(110)面の回折ピーク強度を(004)面の回折ピーク強度で除してケイ素酸化物黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度を算出する。本実施例に係るケイ素酸化物黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は0.0075であった(表1参照)。なお、この配向度が小さい程、ケイ素酸化物黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向性が高くなる。
(4) Measurement of degree of orientation of scaly natural graphite particles in silicon oxide graphite composite particles The degree of orientation of scaly natural graphite particles in silicon oxide graphite composite particles uses a reflection diffraction type powder X-ray diffraction method. Is required. Specifically, the pressed disk-like electrode produced in the above “(3-1) Electrode production” is fixed to a non-reflective plate with a double-sided tape, and RINT-1200V made by Rigaku is used to make copper (Cu). Is measured by irradiating a disk electrode with CuKα rays at a tube voltage of 40 kV and a tube current of 30 mA. Thereafter, the peaks are separated to obtain a powder X-ray diffraction spectrum by CuKα1 rays. The intensities of the (004) plane diffraction peak with 2θ in the range of 52 to 57 ° and the (110) plane diffraction peak with 2θ in the range of 75 to 80 ° are determined. Then, the degree of orientation of the scaly natural graphite particles in the silicon oxide graphite composite particles is calculated by dividing the diffraction peak intensity of the (110) plane by the diffraction peak intensity of the (004) plane. The degree of orientation of the scaly natural graphite particles in the silicon oxide graphite composite particles according to this example was 0.0075 (see Table 1). Note that the smaller the degree of orientation, the higher the orientation of the scaly natural graphite particles in the silicon oxide graphite composite particles.

(5)アスペクト比の測定
上記「(3−1)電極作製」で作製した加圧前のディスク状電極を樹脂に埋め込んだ後、その樹脂を切断してその切断面を研磨した。そして、その切断面(電極断面)を光学顕微鏡で観察して、ケイ素酸化物黒鉛複合粒子50個の寸法を計測し、各ケイ素酸化物黒鉛複合粒子についてアスペクト比(図1における鱗片状黒鉛粒子の積層方向の長さHに対する長軸長さWの比)を算出する。そして、その50個のケイ素酸化物黒鉛複合粒子のアスペクト比を平均したものをケイ素酸化物黒鉛複合粒子のアスペクト比とした。なお、本実施例に係るケイ素酸化物黒鉛複合粒子のアスペクト比は2.4であった。
(5) Measurement of aspect ratio After embedding the pre-pressurized disk-shaped electrode produced in the above "(3-1) Electrode production", the resin was cut and the cut surface was polished. Then, the cut surface (electrode cross section) was observed with an optical microscope, the dimensions of 50 silicon oxide graphite composite particles were measured, and the aspect ratio (of the scaly graphite particles in FIG. 1) was measured for each silicon oxide graphite composite particle. The ratio of the major axis length W to the length H in the stacking direction is calculated. The average of the aspect ratios of the 50 silicon oxide graphite composite particles was defined as the aspect ratio of the silicon oxide graphite composite particles. The aspect ratio of the silicon oxide graphite composite particles according to this example was 2.4.

ケイ素粒子の粉砕時において、2時間、ケイ素粉末(比表面積20m/g)をビーズミルで粉砕して粉砕スラリーを調製し、粉末混合時において鱗片状天然黒鉛粉末とケイ素粉末との質量比を83:8とした以外は、実施例1と同様にしてケイ素酸化物黒鉛複合粒子を調製し、各特性を評価した。なお、このケイ素酸化物黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末(ケイ素酸化物粉末)およびピッチの熱処理物の質量比は、83:8:9であった(表1参照)。 At the time of pulverization of silicon particles, silicon powder (specific surface area 20 m 2 / g) is pulverized with a bead mill for 2 hours to prepare a pulverized slurry, and at the time of powder mixing, the mass ratio of flaky natural graphite powder to silicon powder is 83. : Except that it was set to 8, silicon oxide graphite composite particles were prepared in the same manner as in Example 1, and each characteristic was evaluated. The mass ratio of the scaly natural graphite powder, silicon powder (silicon oxide powder) and pitch heat-treated product in the silicon oxide graphite composite particles was 83: 8: 9 (see Table 1).

このときのSiOx粒子のケイ素原子に対する酸素原子の組成比(すなわち「x」)は0.69であり、SiOx粒子のBET比表面積は54m/gであった。ケイ素酸化物黒鉛複合粒子のアスペクト比は2.5であった。このケイ素酸化物黒鉛複合粒子の体積分率50%時の粒子径(メジアン径)は20μmであった。このケイ素酸化物黒鉛複合粒子の配向度は0.0078であった。非水試験セルの放電容量は470mAh/gであり、初回充放電効率は87.4%であり、10サイクル目から15サイクル目の充放電効率の平均値は99.7%であり、容量維持率は96.8%であった(表1参照)。 At this time, the composition ratio of oxygen atoms to silicon atoms in the SiOx particles (ie, “x”) was 0.69, and the BET specific surface area of the SiOx particles was 54 m 2 / g. The aspect ratio of the silicon oxide graphite composite particles was 2.5. The particle diameter (median diameter) of the silicon oxide graphite composite particles at a volume fraction of 50% was 20 μm. The degree of orientation of the silicon oxide graphite composite particles was 0.0078. The discharge capacity of the non-aqueous test cell is 470 mAh / g, the initial charge / discharge efficiency is 87.4%, the average value of the charge / discharge efficiency from the 10th cycle to the 15th cycle is 99.7%, and the capacity is maintained. The rate was 96.8% (see Table 1).

ケイ素粒子の粉砕時において、5時間、ケイ素粉末(比表面積20m/g)をビーズミルで粉砕して粉砕スラリーを調製し、粉末混合時において鱗片状天然黒鉛粉末とケイ素粉末との質量比を77:14とした以外は、実施例1と同様にしてケイ素酸化物黒鉛複合粒子を調製し、各特性を評価した。なお、このケイ素酸化物黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末(ケイ素酸化物粉末)およびピッチの熱処理物の質量比は、77:14:9であった(表1参照)。 At the time of pulverization of silicon particles, silicon powder (specific surface area 20 m 2 / g) is pulverized by a bead mill for 5 hours to prepare a pulverized slurry, and at the time of powder mixing, the mass ratio of flaky natural graphite powder to silicon powder is 77. : Except that it was set to 14, silicon oxide graphite composite particles were prepared in the same manner as in Example 1, and each characteristic was evaluated. The mass ratio of the scaly natural graphite powder, silicon powder (silicon oxide powder) and pitch heat-treated product in the silicon oxide graphite composite particles was 77: 14: 9 (see Table 1).

このときのSiOx粒子のケイ素原子に対する酸素原子の組成比(すなわち「x」)は0.85であり、SiOx粒子のBET比表面積は82m/gであった。ケイ素酸化物黒鉛複合粒子のアスペクト比は2.7であった。このケイ素酸化物黒鉛複合粒子の体積分率50%時の粒子径(メジアン径)は20μmであった。このケイ素酸化物黒鉛複合粒子の配向度は0.0081であった。非水試験セルの放電容量は471mAh/gであり、初回充放電効率は86.0%であり、10サイクル目から15サイクル目の充放電効率の平均値は99.6%であり、容量維持率は95.5%であった(表1参照)。 At this time, the composition ratio of oxygen atoms to silicon atoms in the SiOx particles (ie, “x”) was 0.85, and the BET specific surface area of the SiOx particles was 82 m 2 / g. The aspect ratio of the silicon oxide graphite composite particles was 2.7. The particle diameter (median diameter) of the silicon oxide graphite composite particles at a volume fraction of 50% was 20 μm. The degree of orientation of the silicon oxide graphite composite particles was 0.0081. The discharge capacity of the non-aqueous test cell is 471 mAh / g, the initial charge / discharge efficiency is 86.0%, the average value of the charge / discharge efficiency from the 10th cycle to the 15th cycle is 99.6%, and the capacity is maintained. The rate was 95.5% (see Table 1).

(比較例1)
<比較ケイ素酸化物黒鉛複合粒子の製造>
(1)ケイ素粒子の粉砕
実施例2と同様に、2時間、ケイ素粉末(比表面積20m/g)をビーズミルで粉砕して粉砕スラリーを調製した。このとき得られたSiOx粉末のBET比表面積は54m/gであった(表1参照)。
(Comparative Example 1)
<Production of comparative silicon oxide graphite composite particles>
(1) Grinding of silicon particles In the same manner as in Example 2, the silicon powder (specific surface area 20 m 2 / g) was ground for 2 hours with a bead mill to prepare a ground slurry. The BET specific surface area of the SiOx powder obtained at this time was 54 m 2 / g (see Table 1).

(2)混合スラリーの調製
実施例2と同様に、鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:10μm、d002:0.3357nm、ペレット密度:1.82g/cm)を株式会社セイシン企業製ニューグラマシンに投入し、同マシンを回転させながら上述の粉砕スラリーを加えて混合し、混合スラリーを調製した。なお、この際、実施例2と同様に、鱗片状天然黒鉛粉末とSiOx粉末との質量比が83:8となるように鱗片状天然黒鉛粉末と粉砕スラリーとを混合した。
(2) Preparation of mixed slurry As in Example 2, scaly natural graphite powder (manufactured by Chuetsu Graphite Industry Co., Ltd., average particle size: 10 μm, d002: 0.3357 nm, pellet density: 1.82 g / cm 3 ) Was put into a Newgra machine manufactured by Seishin Co., Ltd., and the above pulverized slurry was added and mixed while rotating the machine to prepare a mixed slurry. At this time, as in Example 2, the scaly natural graphite powder and the pulverized slurry were mixed so that the mass ratio of the scaly natural graphite powder to the SiOx powder was 83: 8.

(3)凝集物の調製
次いで、上述の混合スラリーにテトラヒドロフランおよび石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)を混合して分散液を調製した。そして、その分散液を乾燥させて乾燥粉末を得た。次いで、この乾燥粉末を黒鉛るつぼに投入した後、その乾燥粉末を窒素気流中、450℃の温度で1時間加熱したところ、凝集物が得られた。
(3) Preparation of agglomerates Next, tetrahydrofuran and a coal-based pitch powder (softening point 86 ° C., average particle size 20 μm, residual carbon ratio after heating at 1000 ° C. 50%) are mixed with the above mixed slurry to prepare a dispersion. did. The dispersion was dried to obtain a dry powder. Next, after this dry powder was put into a graphite crucible, the dry powder was heated in a nitrogen stream at a temperature of 450 ° C. for 1 hour to obtain an aggregate.

(4)中間体複合粒子の調製
次に、加熱処理後の凝集物をコーヒーミルで粉砕して得られた粉末を、ローターとインナーピースとの隙間を1mmとした循環型メカノフュージョンシステム(ホソカワミクロン株式会社製AMS−mini)に投入した。そして、その循環型メカノフュージョンシステムによって、その粉末を回転数7000rpmで15分間、メカノケミカル処理して、中間体複合粒子を調製した。
(4) Preparation of intermediate composite particles Next, a circulation mechanofusion system (Hosokawa Micron Corporation) with a powder obtained by pulverizing the aggregate after heat treatment with a coffee mill with a gap of 1 mm between the rotor and the inner piece was obtained. AMS-mini). The powder was subjected to mechanochemical treatment for 15 minutes at a rotational speed of 7000 rpm by the circulation type mechanofusion system to prepare intermediate composite particles.

(5)石炭系ピッチ粉末の加熱処理
続いて、中間体複合粒子を黒鉛るつぼに投入した後、その中間体複合粒子を窒素気流中、1000℃の温度で1時間加熱し、石炭系ピッチ粉末を非黒鉛質炭素に変換させた。
(5) Heat treatment of coal-based pitch powder Subsequently, the intermediate composite particles were put into a graphite crucible, and then the intermediate composite particles were heated in a nitrogen stream at a temperature of 1000 ° C. for 1 hour, Converted to non-graphitic carbon.

(6)解砕処理
最後に、加熱処理後の中間体複合粒子を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的の比較ケイ素黒鉛複合粒子を得た。なお、この比較ケイ素酸化物黒鉛複合粒子における鱗片状天然黒鉛粉末、SiOx粉末(ケイ素酸化物粉末)およびピッチの熱処理物の質量比は、83:8:9であった(表1参照)。ここで焼成前後の重量変化はすべてピッチによるものとした。
(6) Crushing process Finally, the intermediate composite particles after the heat treatment were pulverized until 98% by mass or more passed through a sieve having an opening of 75 μm to obtain target comparative silicon graphite composite particles. In this comparative silicon oxide graphite composite particle, the mass ratio of the scaly natural graphite powder, the SiOx powder (silicon oxide powder), and the pitch heat-treated product was 83: 8: 9 (see Table 1). Here, all the weight changes before and after firing were due to pitch.

そして、上述の通りにして得られた比較ケイ素黒鉛複合粒子を実施例1と同様にしてその特性を評価したところ、SiOx粒子のケイ素原子に対する酸素原子の組成比(すなわち「x」)は0.69であった。比較ケイ素酸化物黒鉛複合粒子のアスペクト比は1.9であった。この比較ケイ素酸化物黒鉛複合粒子の体積分率50%時の粒子径(メジアン径)は30μmであった。この比較ケイ素酸化物黒鉛複合粒子の配向度は、0.0350であった。非水試験セルの放電容量は460mAh/gであり、初回充放電効率は86.0%であり、10サイクル目から15サイクル目の充放電効率の平均値は96.0%であり、容量維持率は87.1%であった(表1参照)。   The characteristics of the comparative silicon graphite composite particles obtained as described above were evaluated in the same manner as in Example 1. As a result, the composition ratio of oxygen atoms to silicon atoms in the SiOx particles (ie, “x”) was 0. 69. The aspect ratio of the comparative silicon oxide graphite composite particles was 1.9. The particle diameter (median diameter) of the comparative silicon oxide graphite composite particles at a volume fraction of 50% was 30 μm. The degree of orientation of the comparative silicon oxide graphite composite particles was 0.0350. The discharge capacity of the non-aqueous test cell is 460 mAh / g, the initial charge / discharge efficiency is 86.0%, the average value of the charge / discharge efficiency from the 10th cycle to the 15th cycle is 96.0%, and the capacity is maintained. The rate was 87.1% (see Table 1).

(比較例2)
<比較ケイ素酸化物黒鉛複合粒子の製造>
(1)ケイ素粒子の粉砕
実施例2と同様に、2時間、ケイ素粉末(比表面積20m/g)をビーズミルで粉砕して粉砕スラリーを調製した。このとき得られたSiOx粉末のBET比表面積は54m/gであった(表1参照)。
(Comparative Example 2)
<Production of comparative silicon oxide graphite composite particles>
(1) Grinding of silicon particles In the same manner as in Example 2, the silicon powder (specific surface area 20 m 2 / g) was ground for 2 hours with a bead mill to prepare a ground slurry. The BET specific surface area of the SiOx powder obtained at this time was 54 m 2 / g (see Table 1).

(2)混合スラリーの調製
次に、上述の粉砕スラリーに、石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)のテトラヒドロフラン溶液を混合した後、さらにその液状物に球状化天然黒鉛(平均粒径20μm)を混合して混合スラリーを調製した。
(2) Preparation of mixed slurry Next, a tetrahydrofuran solution of coal-based pitch powder (softening point 86 ° C., average particle size 20 μm, residual carbon ratio 50% after heating at 1000 ° C.) was mixed with the above-described pulverized slurry, Further, spheroidized natural graphite (average particle size 20 μm) was mixed with the liquid to prepare a mixed slurry.

(3)石炭系ピッチ粉末の加熱処理
続いて、混合スラリーを乾燥させてその乾燥物を黒鉛るつぼに投入した後、その乾燥物を窒素気流中、1000℃の温度で1時間加熱し、石炭系ピッチ粉末を非黒鉛質炭素に変換させた。
(3) Heat treatment of coal-based pitch powder Subsequently, the mixed slurry was dried and the dried product was put into a graphite crucible, and then the dried product was heated at a temperature of 1000 ° C. for 1 hour in a nitrogen stream. The pitch powder was converted to non-graphitic carbon.

(4)解砕処理
最後に、加熱処理後の中間体複合粒子を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的の比較ケイ素黒鉛複合粒子を得た。なお、この比較ケイ素酸化物黒鉛複合粒子における鱗片状天然黒鉛粉末、SiOx粉末(ケイ素酸化物粉末)およびピッチの熱処理物の質量比は、83:8:9であった(表1参照)。ここで焼成前後の重量変化はすべてピッチによるものとした。
(4) Crushing process Finally, the intermediate composite particles after the heat treatment were pulverized until 98% by mass or more passed through a sieve having an opening of 75 μm to obtain target comparative silicon graphite composite particles. In this comparative silicon oxide graphite composite particle, the mass ratio of the scaly natural graphite powder, the SiOx powder (silicon oxide powder), and the pitch heat-treated product was 83: 8: 9 (see Table 1). Here, all the weight changes before and after firing were due to pitch.

そして、上述の通りにして得られた比較ケイ素黒鉛複合粒子を実施例1と同様にしてその特性を評価したところ、SiOx粒子のケイ素原子に対する酸素原子の組成比(すなわち「x」)は0.69であった。比較ケイ素酸化物黒鉛複合粒子のアスペクト比は1.3であった。この比較ケイ素酸化物黒鉛複合粒子の体積分率50%時の粒子径(メジアン径)は21μmであった。この比較ケイ素酸化物黒鉛複合粒子の配向度は0.0420であった。非水試験セルの放電容量は470mAh/gであり、初回充放電効率は88.6%であり、10サイクル目から15サイクル目の充放電効率の平均値は98.2%であり、容量維持率は89.0%であった(表1参照)。   The characteristics of the comparative silicon graphite composite particles obtained as described above were evaluated in the same manner as in Example 1. As a result, the composition ratio of oxygen atoms to silicon atoms in the SiOx particles (ie, “x”) was 0. 69. The aspect ratio of the comparative silicon oxide graphite composite particles was 1.3. The comparative silicon oxide graphite composite particles had a particle size (median diameter) of 21 μm at a volume fraction of 50%. The degree of orientation of the comparative silicon oxide graphite composite particles was 0.0420. The discharge capacity of the non-aqueous test cell is 470 mAh / g, the initial charge / discharge efficiency is 88.6%, the average value of the charge / discharge efficiency from the 10th cycle to the 15th cycle is 98.2%, and the capacity is maintained. The rate was 89.0% (see Table 1).

上述の結果より、本発明の実施例に係るケイ素酸化物黒鉛複合粒子は、リチウムイオン二次電池の負極活物質として使用されると、そのリチウムイオン二次電池の充放電サイクル特性を有効に改善することが明らかとなった。   From the above results, when the silicon oxide graphite composite particles according to the examples of the present invention are used as a negative electrode active material of a lithium ion secondary battery, the charge / discharge cycle characteristics of the lithium ion secondary battery are effectively improved. It became clear to do.

100 ケイ素酸化物黒鉛複合粒子
110 SiOx粒子
120 鱗片状黒鉛粒子
200 電極
210 活物質層
220 集電体
100 Silicon oxide graphite composite particle 110 SiOx particle 120 Scale-like graphite particle 200 Electrode 210 Active material layer 220 Current collector

Claims (12)

層状に配列する複数の鱗片状黒鉛粒子と、
前記複数の鱗片状黒鉛粒子に挟み込まれるSiOx粒子(ただし0<x≦0.9)と
を備える、ケイ素酸化物黒鉛複合粒子。
A plurality of scaly graphite particles arranged in layers;
Silicon oxide graphite composite particles comprising SiOx particles (where 0 <x ≦ 0.9) sandwiched between the plurality of scaly graphite particles.
前記SiOx粒子は、比表面積が40m/g以上200m/g以下の範囲内である
請求項1に記載のケイ素酸化物黒鉛複合粒子。
2. The silicon oxide-graphite composite particles according to claim 1, wherein the SiOx particles have a specific surface area within a range of 40 m 2 / g to 200 m 2 / g.
前記SiOx粒子は、前記複数の鱗片状黒鉛粒子に挟み込まれると共に、最外層の前記鱗片状黒鉛粒子の外表面上に非黒鉛質炭素によって付着される
請求項1または2に記載のケイ素酸化物黒鉛複合粒子。
3. The silicon oxide graphite according to claim 1, wherein the SiOx particles are sandwiched between the plurality of scaly graphite particles and adhered to the outer surface of the scaly graphite particles in the outermost layer by non-graphitic carbon. Composite particles.
前記鱗片状黒鉛粒子、前記SiOx粒子および前記非黒鉛質炭素の質量比が97〜55:1〜30:2〜15である
請求項3に記載のケイ素酸化物黒鉛複合粒子。
The silicon oxide-graphite composite particles according to claim 3, wherein a mass ratio of the scaly graphite particles, the SiOx particles, and the non-graphitic carbon is 97 to 55: 1 to 30: 2 to 15.
電極密度1.70±0.02g/cmの電極を作製したときの前記電極のX線回折像において「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0010以上0.0300以下の範囲内である
請求項1から4のいずれかに記載のケイ素酸化物黒鉛複合粒子。
“(110) plane relative to“ peak intensity I (004) attributed to (004) plane ”in the X-ray diffraction image of the electrode when an electrode density of 1.70 ± 0.02 g / cm 3 was produced 5. The silicon oxide-graphite composite particles according to claim 1, wherein the ratio of the peak intensity I (110) attributed to is in the range of 0.0010 to 0.0300.
前記鱗片状黒鉛粒子の積層方向の長さに対する長軸長さの比が1.5以上10以下の範囲内である
請求項1から5のいずれかに記載のケイ素酸化物黒鉛複合粒子。
The silicon oxide graphite composite particle according to any one of claims 1 to 5, wherein a ratio of a major axis length to a length in a laminating direction of the scaly graphite particles is in a range of 1.5 or more and 10 or less.
SiOx粒子(ただし0<x≦0.9)および鱗片状黒鉛粒子の混合粒子に圧縮力およびせん断力を付与して一次複合粒子を調製する一次複合粒子調製工程と、
前記一次複合粒子と固体の非黒鉛質炭素原料とを混合させて混合粉末を調製する混合粉末調製工程と、
前記混合粉末を加熱処理する加熱工程と
を備える、ケイ素酸化物黒鉛複合粒子の製造方法。
A primary composite particle preparation step of preparing primary composite particles by applying compressive force and shear force to mixed particles of SiOx particles (where 0 <x ≦ 0.9) and scaly graphite particles;
A mixed powder preparation step of preparing a mixed powder by mixing the primary composite particles and a solid non-graphitic carbon raw material;
The manufacturing method of a silicon oxide graphite composite particle provided with the heating process which heat-processes the said mixed powder.
SiOx粒子(ただし0<x≦0.9)、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に、前記非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力を付与して中間体複合粒子を調製する中間体複合粒子調製工程と、
前記中間体複合粒子を加熱処理する加熱工程と
を備える、ケイ素酸化物黒鉛複合粒子の製造方法。
A compressive force and shear force are applied to a mixture of SiOx particles (where 0 <x ≦ 0.9), scaly graphite particles and solid non-graphitic carbon raw material at a temperature equal to or higher than the softening point of the non-graphitic carbon raw material. Intermediate composite particle preparation step for preparing intermediate composite particles,
A method for producing silicon oxide-graphite composite particles, comprising a heating step of heat-treating the intermediate composite particles.
ケイ素粉末を湿式粉砕してSiOx粒子スラリーを調製する湿式粉砕工程と、
前記SiOx粒子スラリーに前記鱗片状黒鉛粒子を混合して混合スラリーを調製する混合工程と、
前記混合スラリーを乾燥させて混合粉末を調製する乾燥工程と
をさらに備え、
前記中間体複合粒子調製工程では、前記混合粉末および前記固体の非黒鉛質炭素原料の混合物に、前記非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される
請求項8に記載のケイ素酸化物黒鉛複合粒子の製造方法。
A wet pulverization step of preparing a SiOx particle slurry by wet pulverization of silicon powder;
A mixing step of mixing the scaly graphite particles with the SiOx particle slurry to prepare a mixed slurry;
And further comprising a drying step of preparing the mixed powder by drying the mixed slurry,
In the intermediate composite particle preparation step, an intermediate composite is obtained by applying a compressive force and a shear force to the mixture of the mixed powder and the solid non-graphitic carbon raw material at a temperature higher than the softening point of the non-graphitic carbon raw material. The method for producing silicon oxide graphite composite particles according to claim 8, wherein the particles are prepared.
請求項7から9のいずれかに記載のケイ素酸化物黒鉛複合粒子の製造方法により得られるケイ素酸化物黒鉛複合粒子。   Silicon oxide graphite composite particles obtained by the method for producing silicon oxide graphite composite particles according to claim 7. 請求項1、2、3、4、5、6及び10のいずれかに記載のケイ素酸化物黒鉛複合粒子を活物質とする電極。   The electrode which uses the silicon oxide graphite composite particle in any one of Claim 1, 2, 3, 4, 5, 6, and 10 as an active material. 請求項11に記載の電極を備える非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the electrode according to claim 11.
JP2013191947A 2013-09-17 2013-09-17 Silicon oxide-graphite composite particle and method for producing the same Pending JP2015060642A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013191947A JP2015060642A (en) 2013-09-17 2013-09-17 Silicon oxide-graphite composite particle and method for producing the same
CN201480041817.1A CN105409040A (en) 2013-09-17 2014-09-04 Composite particles of silicon phase-containing substance and graphite, and method for producing same
PCT/JP2014/073344 WO2015041063A1 (en) 2013-09-17 2014-09-04 Composite particles of silicon phase-containing substance and graphite, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191947A JP2015060642A (en) 2013-09-17 2013-09-17 Silicon oxide-graphite composite particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2015060642A true JP2015060642A (en) 2015-03-30

Family

ID=52818028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191947A Pending JP2015060642A (en) 2013-09-17 2013-09-17 Silicon oxide-graphite composite particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2015060642A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006089356A (en) * 2004-09-27 2006-04-06 Univ Of Electro-Communications Method for manufacturing siox formed body in which crystalline silicon is present, and use thereof
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
WO2013141104A1 (en) * 2012-03-22 2013-09-26 中央電気工業株式会社 Silicon-graphite composite particles and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006089356A (en) * 2004-09-27 2006-04-06 Univ Of Electro-Communications Method for manufacturing siox formed body in which crystalline silicon is present, and use thereof
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP2009535776A (en) * 2006-05-23 2009-10-01 ケイエヌユー‐インダストリー・コオペレイション・ファウンデイション Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode including the same, and lithium secondary battery including the same
WO2013141104A1 (en) * 2012-03-22 2013-09-26 中央電気工業株式会社 Silicon-graphite composite particles and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5798678B2 (en) Silicon graphite composite particles, method for producing the same, electrode, and nonaqueous electrolyte secondary battery including the electrode
EP2081243B1 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
WO2015080203A1 (en) Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
WO2015019993A1 (en) Method for producing composite, and lithium ion battery negative electrode material
WO2015125784A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
KR100702980B1 (en) Composite particle and negative electrode material using the same, negative electrode and lithium ion secondary battery
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
US20190305293A1 (en) All-solid-state lithium ion battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
WO1997018160A1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
JP2012046419A (en) Method for producing carbon material
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP2016110969A (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
KR20200073208A (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, paste for negative electrode, negative electrode sheet and lithium ion secondary battery
KR20150138265A (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP2004253379A (en) Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR102183396B1 (en) Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2016091762A (en) Silicon graphite complex particle and method for manufacturing the same
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2016189294A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method for the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017