JP2016100226A - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2016100226A
JP2016100226A JP2014237110A JP2014237110A JP2016100226A JP 2016100226 A JP2016100226 A JP 2016100226A JP 2014237110 A JP2014237110 A JP 2014237110A JP 2014237110 A JP2014237110 A JP 2014237110A JP 2016100226 A JP2016100226 A JP 2016100226A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
particles
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237110A
Other languages
Japanese (ja)
Other versions
JP6609909B2 (en
Inventor
本棒 英利
Hidetoshi Honbo
英利 本棒
石井 義人
Yoshito Ishii
義人 石井
圭児 岡部
Keiji Okabe
圭児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014237110A priority Critical patent/JP6609909B2/en
Publication of JP2016100226A publication Critical patent/JP2016100226A/en
Application granted granted Critical
Publication of JP6609909B2 publication Critical patent/JP6609909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode material for a lithium ion secondary battery capable of manufacturing a negative electrode which has high capacity and is excellent in cycle characteristics, to provide a negative electrode using the negative electrode material and the lithium ion secondary battery.SOLUTION: Negative electrode material for a lithium ion secondary battery includes a composite particle A made of a silicon particle and a conductive fine particulate, where ratio r(=t/l) between a longest diameter l and a shortest diameter t of the silicon particle is 0.5 or less.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池用負極材料には、リチウムイオンを吸蔵放出する炭素材料が広く使用されている。炭素材料としては、黒鉛が挙げられる。黒鉛を炭素材料として用いると、充放電におけるリチウムイオンの吸蔵放出反応が可逆性に優れるため、サイクル特性が良好なリチウムイオン二次電池が得られる。しかしながら、黒鉛のリチウムイオンの吸蔵放出容量は、LiCを形成する372mAh/gが理論値であり、さらなる高容量化には限界がある。 Carbon materials that occlude and release lithium ions are widely used as negative electrode materials for lithium ion secondary batteries. An example of the carbon material is graphite. When graphite is used as a carbon material, a lithium ion secondary battery having good cycle characteristics can be obtained because the lithium ion occlusion and release reaction during charge and discharge is excellent in reversibility. However, the lithium ion storage / release capacity of graphite is 372 mAh / g forming LiC 6, which is a theoretical value, and there is a limit to further increasing the capacity.

シリコン(Si)は、リチウムと合金(金属間化合物)を形成するため、電気化学的にリチウムイオンを吸蔵放出することが可能である。リチウムイオンの吸蔵放出容量は、Li22Siを形成する4197mAh/gが理論値であり、黒鉛負極を用いたリチウムイオン二次電池よりも高容量化が可能である。
一方で、シリコンはリチウムイオンの吸蔵放出に伴い3倍〜4倍の大きな体積変化を生じる。このため、充放電サイクルを行った場合、膨張収縮が繰り返されることによりシリコンが崩壊して微細化してしまい、良好なサイクル特性が得られないという課題があった。
Since silicon (Si) forms an alloy (intermetallic compound) with lithium, it is possible to occlude and release lithium ions electrochemically. The lithium ion storage / release capacity has a theoretical value of 4197 mAh / g forming Li 22 Si 5 , and can have a higher capacity than a lithium ion secondary battery using a graphite negative electrode.
On the other hand, silicon causes a large volume change of 3 to 4 times with occlusion and release of lithium ions. For this reason, when a charge / discharge cycle is performed, the expansion and contraction is repeated, so that silicon collapses and becomes finer, so that there is a problem that good cycle characteristics cannot be obtained.

そこで、黒鉛粒子、シリコン微粒子、及び非晶質炭素を含む複合粒子の表面に、黒鉛又はカーボンブラックから選ばれる少なくとも1種類以上の物質である炭素質物質が配置されるとともに、該炭素質物質が非晶質炭素によって被覆された構造を有するリチウムイオン二次電池材料が開示されている(例えば、特許文献1参照)。   Therefore, a carbonaceous material which is at least one kind of material selected from graphite or carbon black is disposed on the surface of the composite particles containing graphite particles, silicon fine particles, and amorphous carbon, and the carbonaceous material is A lithium ion secondary battery material having a structure covered with amorphous carbon is disclosed (for example, see Patent Document 1).

特開2008−277232号公報JP 2008-277232 A

リチウムイオン二次電池の高容量化及びサイクル特性の向上に対する要求が高まっているなか、さらに高容量でサイクル特性の優れたリチウムイオン二次電池を作製可能な負極材が求められている。そこで本発明は、高容量かつサイクル特性に優れる負極を作製可能なリチウムイオン二次電池用負極材、並びにこの負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを課題とする。   Amid the increasing demand for higher capacity and improved cycle characteristics of lithium ion secondary batteries, there is a need for a negative electrode material capable of producing a lithium ion secondary battery with higher capacity and excellent cycle characteristics. Accordingly, the present invention provides a negative electrode material for a lithium ion secondary battery capable of producing a negative electrode having a high capacity and excellent cycle characteristics, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode material. Is an issue.

上記課題を解決するための手段は、以下の通りである。
<1> シリコン粒子と導電性微粒子との複合粒子Aを含み、前記シリコン粒子の最長径lと最短径tとの比r(=t/l)が0.5以下である、リチウムイオン二次電池用負極材。
Means for solving the above problems are as follows.
<1> A lithium ion secondary containing composite particles A of silicon particles and conductive fine particles, wherein the ratio r (= t / l) of the longest diameter l to the shortest diameter t of the silicon particles is 0.5 or less. Negative electrode material for batteries.

<2> 上記シリコン粒子の最長径lと最短径tとの比r(=t/l)が0.001以上である、上記<1>に記載のリチウムイオン二次電池用負極材。 <2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein a ratio r (= t / l) between the longest diameter l and the shortest diameter t of the silicon particles is 0.001 or more.

<3> 上記シリコン粒子の最長径lが10nm〜5000nmである、上記<1>又は<2>に記載のリチウムイオン二次電池用負極材。 <3> The negative electrode material for a lithium ion secondary battery according to <1> or <2>, wherein the longest diameter l of the silicon particles is 10 nm to 5000 nm.

<4> 上記複合粒子Aにおける上記シリコン粒子の含有率が40質量%〜85質量%である、上記<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <4> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>, wherein the content of the silicon particles in the composite particle A is 40% by mass to 85% by mass.

<5> 上記複合粒子Aと黒鉛粒子との複合粒子Bを含む、上記<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <5> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>, including the composite particles B of the composite particles A and graphite particles.

<6> 上記複合粒子Bの表面の一部又は全部が炭素質材料で被覆された、上記<5>に記載のリチウムイオン二次電池用負極材。 <6> The negative electrode material for a lithium ion secondary battery according to <5>, wherein a part or all of the surface of the composite particle B is coated with a carbonaceous material.

<7> 上記複合粒子Bにおける上記シリコン粒子の含有率が40質量%〜85質量%である、上記<5>又は<6>に記載のリチウムイオン二次電池用負極材。 <7> The negative electrode material for a lithium ion secondary battery according to <5> or <6>, wherein the content of the silicon particles in the composite particle B is 40% by mass to 85% by mass.

<8> 内部に細孔を有する炭素質粒子をさらに含む、上記<1>〜<7>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <8> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <7>, further including carbonaceous particles having pores therein.

<9> 上記炭素質粒子において、サイズが0.1μm〜1μmの範囲である細孔についての積算細孔容積が0.05×10−3/kg〜0.4×10−3/kgである、上記<8>に記載のリチウムイオン二次電池用負極材。 <9> In the carbonaceous particle, the cumulative pore volume of pores having a size in the range of 0.1 μm to 1 μm is 0.05 × 10 −3 m 3 / kg to 0.4 × 10 −3 m 3. The negative electrode material for lithium ion secondary batteries according to the above <8>, which is / kg.

<10> 上記炭素質粒子が黒鉛粒子であり、上記黒鉛粒子の飽和タップ密度が0.4g/cm〜0.9g/cmである、上記<8>又は<9>に記載のリチウムイオン二次電池用負極材。 <10> the carbonaceous particles is graphite particles, saturated tapping density of the graphite particles is 0.4g / cm 3 ~0.9g / cm 3 , the lithium ions described above <8> or <9> Secondary battery negative electrode material.

<11> 上記シリコン粒子の含有率が3質量%〜50質量%である、上記<1>〜<10>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <11> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <10>, wherein the content of the silicon particles is 3% by mass to 50% by mass.

<12> 上記<1>〜<11>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。 <12> A negative electrode for a lithium ion secondary battery, comprising the negative electrode material for a lithium ion secondary battery according to any one of <1> to <11>.

<13> 上記<12>に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含む、リチウムイオン二次電池。 <13> A lithium ion secondary battery comprising the negative electrode for lithium ion secondary batteries according to <12> above, a positive electrode, and an electrolyte.

本発明によれば、高容量かつサイクル特性に優れる負極を作製可能なリチウムイオン二次電池用負極材、並びにこの負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries which can produce the negative electrode which is excellent in a capacity | capacitance and cycling characteristics, the negative electrode for lithium ion secondary batteries using this negative electrode material, and a lithium ion secondary battery are provided. The

複合粒子Aの一例を示す概略断面図である。2 is a schematic cross-sectional view showing an example of composite particles A. FIG. 複合粒子Bの一例を示す概略断面図である。2 is a schematic cross-sectional view showing an example of composite particles B. FIG. 炭素質層で被覆した複合粒子Bの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the composite particle B coat | covered with the carbonaceous layer. 炭素質粒子の一例を示す図である。It is a figure which shows an example of a carbonaceous particle. リチウムイオン二次電池用負極の一例を示す図である。It is a figure which shows an example of the negative electrode for lithium ion secondary batteries. リチウムイオン二次電池の一例を示す図である。It is a figure which shows an example of a lithium ion secondary battery.

以下、本発明を実施するための形態について説明する。以下は、本発明の具体例を示すものであり、本発明はこれらに限定されるものではなく、本明細書に開示される技術的思想の範囲内において、様々な変更及び修正が可能である。   Hereinafter, modes for carrying out the present invention will be described. The following are specific examples of the present invention, and the present invention is not limited to these, and various changes and modifications can be made within the scope of the technical idea disclosed in the present specification. .

なお、本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。   In addition, the numerical value range shown using "to" in this specification shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. In addition, in the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity. In the present specification, the particle diameter of each component in the composition is such that when there are a plurality of particles corresponding to each component in the composition, the plurality of particles present in the composition unless otherwise specified. The value for a mixture of In addition, in the present specification, the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.

<リチウムイオン二次電池用負極材>
本発明のリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう。)は、シリコン粒子と導電性微粒子との複合粒子Aを含み、上記シリコン粒子の最長径lと最短径tとの比r(=t/l)が0.5以下である。
<Anode material for lithium ion secondary battery>
The negative electrode material for lithium ion secondary batteries of the present invention (hereinafter also simply referred to as “negative electrode material”) includes composite particles A of silicon particles and conductive fine particles, and the longest diameter l and shortest diameter t of the silicon particles. The ratio r (= t / l) is 0.5 or less.

本発明の負極材を用いて作製されるリチウムイオン二次電池は高容量かつサイクル特性に優れている。その理由について本発明者らは以下のように推測している。複合粒子Aを構成するシリコン粒子は、その最長径lと最短径tとの比r(=t/l)が0.5以下である。このため、リチウムイオンの吸蔵放出に伴う膨張収縮によってシリコン粒子に割れが発生しても、主として厚み方向の割れとなり、導電性微粒子との接点が失われることを抑制できる。また、複合粒子Aを構成する導電性微粒子によって負極材の電気的導通が確保される。さらに、複合粒子Aの内部には、リチウムイオンの吸蔵放出に伴うシリコン粒子の膨張収縮による応力を緩和できる適度な空隙が形成される。これらの理由により、リチウムイオン二次電池の高容量化及びサイクル特性の向上が実現できると考えられる。   The lithium ion secondary battery produced using the negative electrode material of the present invention has a high capacity and excellent cycle characteristics. The reason for this is estimated by the inventors as follows. The silicon particles constituting the composite particle A have a ratio r (= t / l) of the longest diameter l to the shortest diameter t of 0.5 or less. For this reason, even if the silicon particles are cracked due to expansion and contraction accompanying the insertion and extraction of lithium ions, it is possible to suppress the loss of the contact with the conductive fine particles mainly due to the crack in the thickness direction. In addition, the electrical conduction of the negative electrode material is ensured by the conductive fine particles constituting the composite particle A. Furthermore, moderate voids that can relieve stress due to expansion and contraction of silicon particles accompanying the insertion and release of lithium ions are formed inside the composite particles A. For these reasons, it is considered that a higher capacity and improved cycle characteristics of the lithium ion secondary battery can be realized.

(複合粒子A)
図1は、複合粒子Aの一例を示す概略断面図である。図1に示すように、シリコン粒子11と導電性微粒子13とを付着させることにより、符号12で示される複合粒子Aが構成されている。
(Composite particle A)
FIG. 1 is a schematic cross-sectional view showing an example of the composite particle A. As shown in FIG. 1, the composite particle A shown by the code | symbol 12 is comprised by making the silicon particle 11 and the electroconductive fine particles 13 adhere.

複合粒子Aを構成するシリコン粒子は、その最長径lと最短径tとの比r(=t/l)が0.5以下である。シリコン粒子の最長径は、シリコン粒子を2つの平行な面で挟んだ場合に、面間距離が最大となるときの値であり、シリコン粒子の最短径は、シリコン粒子を2つの平行な面で挟んだ場合に、面間距離が最小となるときの値である。   The silicon particles constituting the composite particle A have a ratio r (= t / l) of the longest diameter l to the shortest diameter t of 0.5 or less. The longest diameter of a silicon particle is a value when the inter-surface distance is maximum when the silicon particle is sandwiched between two parallel surfaces. The shortest diameter of a silicon particle is the silicon particle between two parallel surfaces. This is the value when the inter-surface distance is minimum when sandwiched.

シリコン粒子の最長径lと最短径tとの比r(=t/l)は0.001以上であることが好ましい。   The ratio r (= t / l) between the longest diameter l and the shortest diameter t of the silicon particles is preferably 0.001 or more.

負極内での接点が失われることを抑制する観点から、複合粒子A中のシリコン粒子の比rの数平均値が0.5以下であることが好ましい。また、複合粒子A中のシリコン粒子の比rの数平均値が0.001以上であることが好ましい。   From the viewpoint of suppressing the loss of the contact in the negative electrode, the number average value of the ratio r of the silicon particles in the composite particles A is preferably 0.5 or less. Further, the number average value of the ratio r of the silicon particles in the composite particles A is preferably 0.001 or more.

シリコン粒子の最長径lは10nm以上であることが好ましい。シリコン粒子の最長径lは5000nm以下であることが好ましい。また、複合粒子A中のシリコン粒子の最長径lの数平均値が10nm〜5000nmであることが好ましい。   The longest diameter l of the silicon particles is preferably 10 nm or more. The longest diameter l of the silicon particles is preferably 5000 nm or less. In addition, the number average value of the longest diameter l of the silicon particles in the composite particles A is preferably 10 nm to 5000 nm.

シリコン粒子の形状は、「比rが0.5以下である」という条件を満たしていれば特に制限されず、薄片状、板状、棒状、針状等のいずれであってもよい。本発明の負極材においては、形状の異なるシリコン粒子が混在していてもよい。   The shape of the silicon particles is not particularly limited as long as the condition that the ratio r is 0.5 or less is satisfied, and may be any of a flake shape, a plate shape, a rod shape, a needle shape, and the like. In the negative electrode material of the present invention, silicon particles having different shapes may be mixed.

複合粒子Aを構成する導電性微粒子は、複合化処理によって上記のシリコン粒子と付着する。これにより、複合粒子Aの電気的導通が確保される。また、複合粒子Aの内部には、リチウムイオンの吸蔵放出に伴うシリコン粒子の膨張収縮による応力を緩和できる適度な空隙が形成される。   The conductive fine particles constituting the composite particle A adhere to the silicon particles by the composite treatment. Thereby, electrical conduction of the composite particles A is ensured. In addition, moderate voids that can relieve stress due to expansion and contraction of the silicon particles accompanying the insertion and extraction of lithium ions are formed inside the composite particles A.

導電性微粒子としては、例えば、黒鉛の微細粉;非晶質炭素の微細粉;カーボンブラック(アセチレンブラック、サーマルブラック、ファーネスブラック等)などの炭素質導電性微粒子;銅(Cu)、ニッケル(Ni)等のリチウムと合金を形成しない金属の金属導電性微粒子;及びCuO、Fe等の導電性を有する金属酸化物導電性微粒子が挙げられる。導電性微粒子は1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの導電性微粒子の中でも、銅微粒子、一次粒子径が200nm以下のカーボンブラックが好ましく、一次粒子径が200nm以下のカーボンブラックがより好ましい。 Examples of the conductive fine particles include graphite fine powder; amorphous carbon fine powder; carbonaceous conductive fine particles such as carbon black (acetylene black, thermal black, furnace black, etc.); copper (Cu), nickel (Ni And metal metal conductive fine particles that do not form an alloy with lithium; and metal oxide conductive fine particles having conductivity such as CuO and Fe 2 O 3 . The conductive fine particles may be used alone or in combination of two or more. Among these conductive fine particles, copper fine particles and carbon black having a primary particle size of 200 nm or less are preferable, and carbon black having a primary particle size of 200 nm or less is more preferable.

導電性微粒子の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。   The particle diameter of the conductive fine particles is not particularly limited as long as the effect of the present invention is achieved.

なお、本明細書における平均粒径は、以下の方法によって求められる。
(1)界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)で測定した粒度分布において小径側からの体積累積50%に対応する値(50%D)を求める。
(2)走査型電子顕微鏡(SEM)等で観察し、無作為に選択した試料の数平均値を求める。
In addition, the average particle diameter in this specification is calculated | required with the following method.
(1) A sample is dispersed in purified water containing a surfactant, and in the particle size distribution measured by a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-3000J), the volume accumulation from the small diameter side becomes 50%. The corresponding value (50% D) is determined.
(2) Observation with a scanning electron microscope (SEM) or the like, and obtain the number average value of randomly selected samples.

シリコン粒子と導電性微粒子とを複合化する手段は特に限定されない。例えば、ボールミル、ビーズミル等の粒子複合処理装置を用いて、メカニカルなせん断力を加えてシリコン粒子と導電性微粒子とを付着させる方法が挙げられる。   The means for combining silicon particles and conductive fine particles is not particularly limited. For example, there may be mentioned a method of attaching silicon particles and conductive fine particles by applying a mechanical shearing force using a particle composite processing apparatus such as a ball mill or a bead mill.

複合粒子Aの粒子径は、本発明の効果が達成される限りにおいて特に制限されない。比表面積を十分に確保し、リチウムイオン二次電池の初回充放電効率の低下を抑制するとともに、粒子同士の接触が悪化して入出力特性が低下するのを抑制する観点からは、複合粒子Aの平均粒径(50%D)が5μm以上であることが好ましい。また、電極面に凸凹が発生してリチウムイオン二次電池の短絡の原因となること、及び、粒子表面から内部へのリチウムの拡散距離が長くなりリチウムイオン二次電池の入出力特性が低下することを抑制する観点からは、複合粒子Aの平均粒径(50%D)が30μm以下であることが好ましく、25μm以下であることがより好ましい。   The particle diameter of the composite particle A is not particularly limited as long as the effect of the present invention is achieved. From the viewpoint of ensuring a sufficient specific surface area and suppressing a decrease in the initial charge / discharge efficiency of the lithium ion secondary battery, and also suppressing a decrease in input / output characteristics due to deterioration of contact between particles, the composite particle A It is preferable that the average particle diameter (50% D) of this is 5 micrometers or more. In addition, unevenness is generated on the electrode surface, causing a short circuit of the lithium ion secondary battery, and the diffusion distance of lithium from the particle surface to the inside becomes long, and the input / output characteristics of the lithium ion secondary battery are deteriorated. From the viewpoint of suppressing this, the average particle size (50% D) of the composite particles A is preferably 30 μm or less, and more preferably 25 μm or less.

複合粒子Aにおけるシリコン粒子の含有率は、リチウムイオン二次電池の高容量化及びサイクル特性の向上の観点から、35質量%〜90質量%であることが好ましく、40質量%〜85質量%であることがより好ましい。
また、本発明の負極材におけるシリコン粒子の含有率は、リチウムイオン二次電池の高容量化及びサイクル特性の向上の観点から、3質量%〜50質量%であることが好ましい。
The content of the silicon particles in the composite particles A is preferably 35% by mass to 90% by mass, and 40% by mass to 85% by mass from the viewpoint of increasing the capacity of the lithium ion secondary battery and improving the cycle characteristics. More preferably.
Moreover, it is preferable that the content rate of the silicon particle in the negative electrode material of this invention is 3 mass%-50 mass% from a viewpoint of the high capacity | capacitance of a lithium ion secondary battery, and the improvement of cycling characteristics.

(複合粒子B)
複合粒子Aは、黒鉛粒子と複合化して複合粒子Bとなっていてもよい。このように黒鉛粒子と複合化することにより粒子強度が増大し、負極を作製する際に複合粒子Aの形態が崩れることを低減できる。図2は、複合粒子Bの一例を示す概略断面図である。図2に示すように、符号12で示される複合粒子Aと黒鉛粒子15とが付着することにより、符号14で示される複合粒子Bが構成されている。
(Composite particle B)
The composite particles A may be composited with graphite particles to form composite particles B. Thus, by combining with graphite particles, the particle strength is increased, and it is possible to reduce the collapse of the form of the composite particles A when a negative electrode is produced. FIG. 2 is a schematic sectional view showing an example of the composite particle B. As shown in FIG. As shown in FIG. 2, the composite particle A shown by the code | symbol 14 is comprised by the composite particle A and the graphite particle 15 shown by the code | symbol 12 adhering.

黒鉛粒子の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。   The particle diameter of the graphite particles is not particularly limited as long as the effect of the present invention is achieved.

複合粒子Aと黒鉛粒子とを複合化する手段は特に限定されない。例えば、ボールミル、ビーズミル等の粒子複合処理装置を用いて、メカニカルなせん断力を加えて複合粒子Aと黒鉛粒子とを付着させる方法が挙げられる。   The means for combining the composite particles A and the graphite particles is not particularly limited. For example, a method of attaching the composite particles A and the graphite particles by applying a mechanical shearing force using a particle composite processing apparatus such as a ball mill or a bead mill can be used.

シリコン粒子と導電性微粒子との間、及び複合粒子Aと黒鉛粒子との間の良好な電気的導通を保持する観点から、複合粒子Bの表面の一部又は全部が炭素質材料で被覆されていることが好ましい。すなわち、図3に示すように、符号12で示される複合粒子Aと黒鉛粒子15とが複合化した複合粒子Bの表面の一部又は全部が炭素質材料(炭素質層)17で被覆されることにより、符号16で示される、炭素質層で被覆した複合粒子Bが構成されていることが好ましい。   From the viewpoint of maintaining good electrical continuity between the silicon particles and the conductive fine particles and between the composite particles A and the graphite particles, part or all of the surface of the composite particles B is coated with a carbonaceous material. Preferably it is. That is, as shown in FIG. 3, a part or all of the surface of the composite particle B in which the composite particle A indicated by reference numeral 12 and the graphite particle 15 are combined is covered with the carbonaceous material (carbonaceous layer) 17. Thus, it is preferable that the composite particle B covered with the carbonaceous layer indicated by reference numeral 16 is constituted.

複合粒子Bの表面の一部又は全部を炭素質材料で被覆する方法は、特に限定されない。例えば、以下のような湿式混合方式、乾式混合方式、気相方式等の方法が挙げられる。   A method of coating a part or all of the surface of the composite particle B with the carbonaceous material is not particularly limited. For example, methods such as the following wet mixing method, dry mixing method, and gas phase method are exemplified.

湿式混合方式の方法としては、炭素質材料の前駆体となる物質(有機化合物等)を溶媒に溶解又は分散させた混合液に、複合粒子Bを分散して混合した後、溶媒を除去する方法が挙げられる。   As a wet mixing method, a method of removing the solvent after dispersing and mixing the composite particles B in a mixed solution in which a substance (organic compound or the like) that is a precursor of a carbonaceous material is dissolved or dispersed in a solvent. Is mentioned.

乾式混合方式の方法としては、複合粒子Bと有機化合物とをそれぞれ固体の状態で混合し、得られた混合物に力学的エネルギーを加えることで複合粒子Bの表面に有機化合物を付着させ、有機化合物を付着させた状態の複合粒子Bを熱処理して有機化合物を炭素化することにより、複合粒子Bを炭素質材料で被覆することができる。   As a dry mixing method, the composite particles B and the organic compound are mixed in a solid state, and an organic compound is adhered to the surface of the composite particles B by applying mechanical energy to the resulting mixture. The composite particle B can be coated with a carbonaceous material by heat-treating the composite particle B in a state of adhering to carbonize the organic compound.

気相方式の方法としては、CVD法等の、アセチレン、プロピレン等のガス分解反応によって複合粒子Bの表面を炭素質材料で被覆する方法が挙げられる。   Examples of the vapor phase method include a method of coating the surface of the composite particle B with a carbonaceous material by a gas decomposition reaction such as acetylene or propylene, such as a CVD method.

有機化合物の具体例としては、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチなどが挙げられる。また、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成樹脂を有機化合物として用いることもできる。また、デンプン、セルロース等の天然物を有機化合物として用いることもできる。   Specific examples of organic compounds are prepared by polymerizing ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, pitch generated by pyrolyzing polyvinyl chloride, naphthalene, etc. in the presence of a super strong acid. Synthesis pitch and the like. In addition, thermoplastic synthetic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral can also be used as the organic compound. Natural products such as starch and cellulose can also be used as the organic compound.

熱処理の温度は750℃〜2000℃であることが好ましく、800℃〜1800℃であることがより好ましく、850℃〜1400℃であることがさらに好ましい。熱処理時の雰囲気は、負極材が酸化し難い雰囲気であれば特に制限はなく、窒素ガス雰囲気、アルゴンガス雰囲気、自己分解ガス雰囲気等が適用できる。使用する炉の形式は特に制限はないが、電気又はガスを熱源としたバッチ炉、連続炉等が好ましい。   The temperature of the heat treatment is preferably 750 ° C to 2000 ° C, more preferably 800 ° C to 1800 ° C, and further preferably 850 ° C to 1400 ° C. The atmosphere during the heat treatment is not particularly limited as long as the negative electrode material is not easily oxidized, and a nitrogen gas atmosphere, an argon gas atmosphere, a self-decomposing gas atmosphere, or the like can be applied. The type of furnace to be used is not particularly limited, but a batch furnace, a continuous furnace or the like using electricity or gas as a heat source is preferable.

複合粒子B(炭素質材料で被覆されている場合を含む)の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。比表面積を十分に確保し、リチウムイオン二次電池の初回充放電効率の低下を抑制するとともに、粒子同士の接触が悪化して入出力特性が低下するのを抑制する観点からは、複合粒子Bの平均粒径(50%D)が5μm以上であることが好ましい。また、電極面に凸凹が発生してリチウムイオン二次電池の短絡の原因となること、及び、粒子表面から内部へのリチウムの拡散距離が長くなりリチウムイオン二次電池の入出力特性が低下することを抑制する観点からは、複合粒子Bの平均粒径(50%D)が30μm以下であることが好ましく、25μm以下であることがより好ましい。   The particle diameter of the composite particle B (including the case where it is coated with a carbonaceous material) is not particularly limited as long as the effect of the present invention is achieved. From the viewpoint of ensuring a sufficient specific surface area and suppressing a decrease in the initial charge / discharge efficiency of the lithium ion secondary battery, and also suppressing a decrease in input / output characteristics due to deterioration in contact between particles, the composite particle B It is preferable that the average particle diameter (50% D) of this is 5 micrometers or more. In addition, unevenness is generated on the electrode surface, causing a short circuit of the lithium ion secondary battery, and the diffusion distance of lithium from the particle surface to the inside becomes long, and the input / output characteristics of the lithium ion secondary battery are deteriorated. From the viewpoint of suppressing this, the average particle size (50% D) of the composite particles B is preferably 30 μm or less, and more preferably 25 μm or less.

複合粒子B(炭素質材料で被覆されている場合を含む)におけるシリコン粒子の含有率は、リチウムイオン二次電池の高容量化及びサイクル特性の向上の観点から、35質量%〜90質量%であることが好ましく、40質量%〜85質量%であることがより好ましい。   The content rate of the silicon particles in the composite particle B (including the case where it is coated with a carbonaceous material) is 35% by mass to 90% by mass from the viewpoint of increasing the capacity of the lithium ion secondary battery and improving the cycle characteristics. It is preferable that there is 40% by mass to 85% by mass.

(炭素質粒子)
負極材は、内部に細孔を有する炭素質粒子をさらに含むことが好ましい。炭素質粒子の内部に存在する細孔は、リチウムイオンの吸蔵放出に伴ってシリコン粒子が膨張収縮する際に適度なクッションとして働くため、膨張収縮による応力を緩和できる傾向にある。
(Carbonaceous particles)
The negative electrode material preferably further includes carbonaceous particles having pores therein. The pores present in the carbonaceous particles serve as an appropriate cushion when the silicon particles expand and contract as the lithium ions are stored and released, and therefore tend to relieve stress due to expansion and contraction.

炭素質粒子は、炭素質材料から構成される複数の一次粒子が集合して形成される二次粒子であることが好ましい。すなわち、図4に示すように、炭素質粒子18は、一次粒子19が集合して形成される二次粒子であり、粒子内部に細孔20を有するものであることが好ましい。   The carbonaceous particles are preferably secondary particles formed by aggregating a plurality of primary particles composed of a carbonaceous material. That is, as shown in FIG. 4, the carbonaceous particles 18 are secondary particles formed by aggregating the primary particles 19 and preferably have pores 20 inside the particles.

炭素質粒子のリチウムイオンの吸蔵放出容量が大きいという観点からは、炭素質材料は黒鉛であることが好ましく、黒鉛層間距離(d002)が0.335nm〜0.337nmであることがより好ましい。 From the standpoint that the lithium ion storage / release capacity of the carbonaceous particles is large, the carbonaceous material is preferably graphite, and the graphite interlayer distance (d 002 ) is more preferably 0.335 nm to 0.337 nm.

炭素質粒子が有する細孔は、サイズが0.1μm〜1μmの範囲である細孔についての積算細孔容積(以下、単に「積算細孔容積」ともいう。)が、0.04×10−3/kg〜0.5×10−3/kgであることが好ましく、0.05×10−3/kg〜0.4×10−3/kgであることがより好ましい。積算細孔容積は、水銀圧入法により測定される値である。 Pores having carbonaceous particles, size cumulative pore volume of pores in the range of 0.1 to 1 m (. Hereinafter, simply referred to as "cumulative pore volume") is, 0.04 × 10 - is preferably 3 m 3 /kg~0.5×10 -3 m 3 / kg, to be 0.05 × 10 -3 m 3 /kg~0.4×10 -3 m 3 / kg More preferred. The integrated pore volume is a value measured by a mercury intrusion method.

炭素質粒子の積算細孔容積を上記範囲とするためには、炭素質粒子の飽和タップ密度が0.4g/cm〜0.9g/cm以下であることが好ましい。 In order to set the cumulative pore volume of the carbonaceous particles in the above range, the saturated tap density of the carbonaceous particles is preferably 0.4 g / cm 3 to 0.9 g / cm 3 or less.

炭素質粒子の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。   The particle diameter of the carbonaceous particles is not particularly limited as long as the effects of the present invention are achieved.

本発明の負極材における炭素質粒子の含有率は特に制限されない。リチウムイオン二次電池の高容量化及びサイクル特性の向上の観点から、炭素質粒子の含有率は、本発明の負極材におけるシリコン粒子の含有率が3質量%〜50質量%となるような含有率であることが好ましい。   The content of carbonaceous particles in the negative electrode material of the present invention is not particularly limited. From the viewpoint of increasing the capacity of a lithium ion secondary battery and improving cycle characteristics, the content of carbonaceous particles is such that the content of silicon particles in the negative electrode material of the present invention is 3% by mass to 50% by mass. It is preferable that it is a rate.

<リチウムイオン二次電池用負極>
本発明のリチウムイオン二次電池用負極(以下、単に「負極」ともいう。)は、本発明の負極材と、必要に応じてその他の成分と、を含む。その他の成分としては、結着剤、添加剤等を挙げることができる。添加剤としては増粘剤、導電補助剤等を挙げることができる。
<Anode for lithium ion secondary battery>
The negative electrode for lithium ion secondary batteries of the present invention (hereinafter also simply referred to as “negative electrode”) includes the negative electrode material of the present invention and, if necessary, other components. Examples of other components include a binder and an additive. Examples of the additive include a thickener and a conductive auxiliary agent.

結着剤としては、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル;アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物;などが挙げられる。上記(メタ)アクリレートは、アクリレート又はメタクリレートを意味し、上記(メタ)アクリロニトリルは、アクリロニトリル又はメタクリロニトリルを意味する。結着剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
結着剤の含有量は特に制限されないが、本発明の負極材と結着剤との合計100質量部に対して1質量部〜20質量部であることが好ましい。
As binder, ethylenically unsaturated carboxylic acid such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, etc. Esters; Ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid; ionic conductivity such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, etc. Large polymer compounds; and the like. The (meth) acrylate means acrylate or methacrylate, and the (meth) acrylonitrile means acrylonitrile or methacrylonitrile. A binder may be used individually by 1 type, or may be used in combination of 2 or more type.
The content of the binder is not particularly limited, but is preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass in total of the negative electrode material and the binder of the present invention.

増粘剤としては、カルボキシメチルセルロース又はその塩(例えばナトリウム塩)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸又はその塩(例えばナトリウム塩)、アルギン酸又はその塩(例えばナトリウム塩)、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。増粘剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。   As the thickener, carboxymethylcellulose or a salt thereof (for example, sodium salt), methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid or a salt thereof (for example, a sodium salt), alginic acid or a salt thereof (for example, a sodium salt) ), Oxidized starch, phosphorylated starch, casein and the like. A thickener may be used individually by 1 type, or may be used in combination of 2 or more type.

導電補助剤としては、カーボンブラック(アセチレンブラック、サーマルブラック、ファーネスブラック等)、グラファイト、導電性を示す酸化物、導電性を示す窒化物などが挙げられる。導電補助剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the conductive auxiliary agent include carbon black (acetylene black, thermal black, furnace black, etc.), graphite, conductive oxide, conductive nitride, and the like. A conductive support agent may be used individually by 1 type, or may be used in combination of 2 or more type.

増粘剤、導電補助剤等の添加剤の含有量は、リチウムイオン二次電池の特性を低下させない範囲であれば特に限定されないが、負極材と添加剤との総量に対して0.1質量%以上10.0質量%未満であることが好ましい。   The content of additives such as thickeners and conductive additives is not particularly limited as long as it does not deteriorate the characteristics of the lithium ion secondary battery, but is 0.1 mass relative to the total amount of the negative electrode material and the additives. % Or more and less than 10.0% by mass.

本発明の負極の作製方法は特に制限されない。例えば、本発明の負極材と、結着剤と、必要に応じて添加される各種添加剤と、溶剤とを含むペースト状の負極材スラリーを調製し、得られた負極材スラリーを集電体の上に塗布し、乾燥し、必要に応じて平板プレス、ロールプレス等の成形法により圧縮成形することで作製することができる。その他、ペースト状の負極材スラリーをシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで作製することもできる。   The method for producing the negative electrode of the present invention is not particularly limited. For example, a paste-like negative electrode material slurry containing the negative electrode material of the present invention, a binder, various additives added as necessary, and a solvent is prepared, and the obtained negative electrode material slurry is used as a current collector. It can be produced by applying the composition onto a substrate, drying it, and compression-molding it by a molding method such as a flat plate press or roll press, if necessary. In addition, the paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, or the like, and can be produced by integrating it with a current collector by a forming method such as a roll press.

負極材スラリーは、例えば負極材スラリーを構成する成分を、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等を用いて撹拌して混練し、必要に応じて粘度を調整することで調製することができる。   The negative electrode material slurry can be prepared by, for example, stirring and kneading the components constituting the negative electrode material slurry using a stirrer, a ball mill, a super sand mill, a pressure kneader, etc., and adjusting the viscosity as necessary. it can.

負極材スラリーの調製に用いられる溶剤は、結着剤を溶解又は分散可能な溶剤であれば特に制限されない。例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチロラクトン等の有機溶媒を例示することができる。溶剤の使用量は、負極材スラリーをペースト等の所望の状態にできれば特に制限されない。例えば、負極材100質量部に対して60質量部以上150質量部未満とすることができる。   The solvent used for the preparation of the negative electrode material slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the binder. Examples thereof include organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and γ-butyrolactone. The usage-amount of a solvent will not be restrict | limited especially if a negative electrode material slurry can be made into desired states, such as a paste. For example, the amount can be 60 parts by mass or more and less than 150 parts by mass with respect to 100 parts by mass of the negative electrode material.

集電体の種類、形状等は特に制限されず、目的に応じて選択することができる。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。また、ポーラスメタル(発泡メタル)等の多孔性材料、カーボンペーパーなどを用いることもできる。   The type and shape of the current collector are not particularly limited, and can be selected according to the purpose. For example, it is possible to use a belt-like one made of aluminum, copper, nickel, titanium, stainless steel, or the like into a foil shape, a perforated foil shape, a mesh shape, or the like. In addition, a porous material such as porous metal (foamed metal), carbon paper, or the like can be used.

負極材スラリーを集電体に塗布する方法は特に制限されず、公知の方法を適宜選択することができる。具体的には、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等を挙げることができる。負極材ペーストの塗布量は特に制限されず、目的に応じて選択することができる。   The method in particular of apply | coating a negative electrode material slurry to a collector is not restrict | limited, A well-known method can be selected suitably. Specific examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. The coating amount of the negative electrode material paste is not particularly limited and can be selected according to the purpose.

図5は、本発明の負極の一例を示す図である。図5に示すように、複合粒子B(符号14)、表面の一部又は全部を炭素質層で被覆した複合粒子B(符号16)、及び内部に細孔を有する炭素質粒子(符号18)を含む負極材層が、負極集電体32の表面に形成されている。図5に示す負極構造は、リチウムイオン二次電池の高容量化及びサイクル特性の向上の観点から好ましい。   FIG. 5 is a diagram showing an example of the negative electrode of the present invention. As shown in FIG. 5, the composite particle B (symbol 14), the composite particle B (symbol 16) in which part or all of the surface is covered with a carbonaceous layer, and the carbonaceous particle having a pore inside (symbol 18) Is formed on the surface of the negative electrode current collector 32. The negative electrode structure shown in FIG. 5 is preferable from the viewpoint of increasing the capacity of the lithium ion secondary battery and improving the cycle characteristics.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、本発明の負極と、正極と、電解質(好ましくは電解液)とを含む。本発明のリチウムイオン二次電池は、例えば、本発明の負極と正極とをセパレータを介して対向するように配置し、電解液を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of this invention contains the negative electrode of this invention, a positive electrode, and electrolyte (preferably electrolyte solution). The lithium ion secondary battery of the present invention can be obtained, for example, by disposing the negative electrode and the positive electrode of the present invention so as to face each other with a separator interposed therebetween and injecting an electrolytic solution.

正極は、負極と同様にして、集電体の表面上に正極材及び必要に応じて含まれる増粘剤、導電補助剤等の添加剤を含む正極材層を形成することで作製される。   In the same manner as the negative electrode, the positive electrode is produced by forming a positive electrode material layer containing an additive such as a positive electrode material and, if necessary, a thickener and a conductive auxiliary agent on the surface of the current collector.

正極材は特に制限されず、必要に応じて適宜選択することができる。例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、導電性高分子材料等が好ましい。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複合酸化物(LiCoNiMn、X+Y+X=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などが挙げられる。正極材は1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The positive electrode material is not particularly limited and can be appropriately selected as necessary. For example, metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions are preferable. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and composite oxides thereof (LiCo x Ni y Mn z O 2 , X + Y + X = 1), Lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, porous carbon, etc. Is mentioned. A positive electrode material may be used individually by 1 type, or may be used in combination of 2 or more type.

正極は、正極材と、結着剤と、結着剤を溶解又は分散可能な溶剤と、必要に応じて添加される添加剤とを含む正極材スラリーを集電体の少なくとも一方の面に塗布し、次いで溶剤を乾燥して除去し、必要に応じて圧延して作製することができる。   The positive electrode is coated on at least one surface of the current collector with a positive electrode material slurry containing a positive electrode material, a binder, a solvent capable of dissolving or dispersing the binder, and an additive added as necessary. Then, the solvent can be removed by drying, and rolled if necessary.

結着剤、溶剤、添加剤、及び集電体としては、本発明の負極の項で例示したものを同様に用いることができる。   As the binder, the solvent, the additive, and the current collector, those exemplified in the section of the negative electrode of the present invention can be similarly used.

本発明のリチウムイオン二次電池に用いられる電解質は特に制限されず、公知のものを用いることができる。例えば、電解質を有機溶剤に溶解させた電解液を用いることにより、非水系リチウムイオン二次電池を製造することができる。   The electrolyte used in the lithium ion secondary battery of the present invention is not particularly limited, and a known one can be used. For example, a non-aqueous lithium ion secondary battery can be manufactured by using an electrolytic solution in which an electrolyte is dissolved in an organic solvent.

電解質としては、例えば、LiClO、LiPF、LiBF、LiSOCF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等が挙げられる。 As the electrolyte, for example, LiClO 4, LiPF 6, LiBF 4, LiSO 3 CF 3, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiC (CF 3 SO 2) 3, LiCl, LiI , and the like.

有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート系溶剤;γ−ブチロラクトン等のラクトン系溶剤;1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等の鎖状エーテル系溶剤;テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン等の環状エーテル系溶剤;スルホラン等のスルホラン系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶剤;ジエチレングリコール等のポリオキシアルキレングリコール系溶剤などが挙げられる。有機溶剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include carbonate solvents such as propylene carbonate, ethylene carbonate, and diethyl carbonate; lactone solvents such as γ-butyrolactone; chain ether solvents such as 1,2-dimethoxyethane, dimethyl ether, and diethyl ether; tetrahydrofuran, 2 -Cyclic ether solvents such as methyltetrahydrofuran, dioxolane, 4-methyldioxolane; sulfolane solvents such as sulfolane; sulfoxide solvents such as dimethyl sulfoxide; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; N, N- Examples include amide solvents such as dimethylformamide and N, N-dimethylacetamide; and polyoxyalkylene glycol solvents such as diethylene glycol. An organic solvent may be used individually by 1 type, or may be used in combination of 2 or more type.

セパレータとしては、公知の各種セパレータを用いることができる。例えば、紙製、ポリプロピレン製、ポリエチレン製、ガラス繊維製、セラミック製等のセパレータが挙げられる。なお、リチウムイオン二次電池の正極と負極とが直接接触しない構造の場合には、セパレータを使用する必要はない。   Various known separators can be used as the separator. Examples of the separator include paper, polypropylene, polyethylene, glass fiber, and ceramic. In the case where the positive electrode and the negative electrode of the lithium ion secondary battery are not in direct contact, it is not necessary to use a separator.

本発明のリチウムイオン二次電池の構造は、特に限定されない。例えば、図6に示すように、正極及び負極とセパレータとを円筒形状に捲回し、電池缶に封入した円筒型リチウムイオン二次電池が挙げられる。図6中、符号21は正極、符号22は負極、符号23はセパレータ、符号24は正極端子タブ、符号25は負極端子タブ、符号26は電池缶、符号27はガスケット、符号28は内圧弁、符号29はPTC(正温度係数抵抗)素子、符号30は正極蓋、符号31は正極内蓋を示す。
また、扁平渦巻状に巻回して巻回式極板群とし、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した、角型構造のリチウムイオン二次電池が挙げられる。
The structure of the lithium ion secondary battery of the present invention is not particularly limited. For example, as shown in FIG. 6, a cylindrical lithium ion secondary battery in which a positive electrode, a negative electrode, and a separator are wound into a cylindrical shape and sealed in a battery can is given. In FIG. 6, reference numeral 21 is a positive electrode, reference numeral 22 is a negative electrode, reference numeral 23 is a separator, reference numeral 24 is a positive electrode terminal tab, reference numeral 25 is a negative electrode terminal tab, reference numeral 26 is a battery can, reference numeral 27 is a gasket, reference numeral 28 is an internal pressure valve, Reference numeral 29 denotes a PTC (positive temperature coefficient resistor) element, reference numeral 30 denotes a positive electrode cover, and reference numeral 31 denotes a positive electrode inner cover.
Moreover, it is wound in a flat spiral shape to form a wound-type electrode plate group, and these are laminated in a flat plate shape to form a laminated electrode plate group. A secondary battery is mentioned.

本発明のリチウムイオン二次電池の種類は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池等として使用される。
以上で説明した本発明のリチウムイオン二次電池は、従来の炭素材料を負極材として用いたリチウムイオン二次電池と比較して高容量であり、サイクル特性に優れる。
The type of the lithium ion secondary battery of the present invention is not particularly limited, and can be used as a paper-type battery, a button-type battery, a coin-type battery, a stacked battery, a cylindrical battery, or the like.
The lithium ion secondary battery of the present invention described above has a higher capacity and excellent cycle characteristics than a lithium ion secondary battery using a conventional carbon material as a negative electrode material.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.

<実施例1>
(負極材の作製)
シリコン粒子(薄片状)とアセチレンブラックとを均一となるように混合し、ボールミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にボールミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。次いで、複合粒子Bにポリ酢酸ビニルを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で加熱処理して、複合粒子Bの表面に炭素質層を形成した。その後、炭素質層を形成した複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=22μm)とを均一となるよう混合して、負極材を作製した。
実施例1で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 1>
(Preparation of negative electrode material)
Silicon particles (in the form of flakes) and acetylene black were mixed uniformly and subjected to mechanical alloying using a ball mill to produce composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a ball mill in the same manner as described above. Next, polyvinyl acetate was added to the composite particles B and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particle B. Thereafter, the composite particle B having the carbonaceous layer and the carbonaceous particles (average particle size = 22 μm) of which the primary particles are graphite (d 002 = 0.3358 nm) were mixed uniformly to prepare a negative electrode material. .
The average value of r and l of silicon particles used in Example 1, the type and average particle size of conductive fine particles, the cumulative pore volume and saturated tap density of carbonaceous particles, and silicon contained in the composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例2>
(負極材の作製)
シリコン粒子(薄片状)と銅(Cu)微粒子とを均一となるように混合し、ボールミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にボールミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。次いで、複合粒子Bにポリ酢酸ビニルを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で加熱処理して、複合粒子Bの表面に炭素質層を形成した。その後、炭素質層を形成した複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=22μm)とを均一となるように混合して、負極材を作製した。
実施例2で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 2>
(Preparation of negative electrode material)
Silicon particles (flaky) and copper (Cu) fine particles were mixed so as to be uniform, and a mechanical alloying process was performed using a ball mill to produce composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a ball mill in the same manner as described above. Next, polyvinyl acetate was added to the composite particles B and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particle B. Thereafter, the composite particles B on which the carbonaceous layer is formed and the carbonaceous particles (average particle diameter = 22 μm) whose primary particles are graphite (d 002 = 0.3358 nm) are mixed so as to be uniform, thereby producing a negative electrode material. did.
The average value of r and l of silicon particles used in Example 2, the type and average particle size of conductive fine particles, the cumulative pore volume and saturated tap density of carbonaceous particles, and silicon contained in the composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例3>
(負極材の作製)
シリコン粒子(薄片状)とアセチレンブラックとを均一となるように混合し、ビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。その後、複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=18μm)とを均一となるように混合して、負極材を作製した。
実施例3で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 3>
(Preparation of negative electrode material)
Silicon particles (in the form of flakes) and acetylene black were mixed so as to be uniform, and a mechanical alloying process was performed using a bead mill to prepare composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a bead mill in the same manner as described above. Thereafter, composite particles B and carbonaceous particles (average particle size = 18 μm) whose primary particles are graphite (d 002 = 0.3358 nm) were mixed uniformly to produce a negative electrode material.
Average values of r and l of silicon particles used in Example 3, types and average particle sizes of conductive fine particles, integrated pore volume and saturated tap density of carbonaceous particles, and silicon contained in composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例4>
(負極材の作製)
シリコン粒子(薄片状)とアセチレンブラックとを均一となるように混合し、ビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。次いで、複合粒子Bにコールタールピッチを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で加熱処理して、複合粒子Bの表面に炭素質層を形成した。その後、炭素質層を形成した複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=18μm)とを均一となるように混合して、負極材を作製した。
実施例4で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 4>
(Preparation of negative electrode material)
Silicon particles (in the form of flakes) and acetylene black were mixed so as to be uniform, and a mechanical alloying process was performed using a bead mill to prepare composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a bead mill in the same manner as described above. Subsequently, the coal tar pitch was added to the composite particles B and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particle B. Thereafter, the composite particles B on which the carbonaceous layer is formed and the carbonaceous particles (average particle size = 18 μm) whose primary particles are graphite (d 002 = 0.3358 nm) are mixed so as to be uniform to produce a negative electrode material. did.
The average values of r and l of the silicon particles used in Example 4, the type and average particle size of the conductive fine particles, the cumulative pore volume and saturated tap density of the carbonaceous particles, and the silicon contained in the composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例5>
(負極材の作製)
シリコン粒子(薄片状)とアセチレンブラックとを均一となるように混合し、ビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。次いで、複合粒子Bにポリ塩化ビニルを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で加熱処理して、複合粒子Bの表面に炭素質層を形成した。その後、炭素質層を形成した複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=20μm)とを均一となるように混合して、負極材を作製した。
実施例5で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 5>
(Preparation of negative electrode material)
Silicon particles (in the form of flakes) and acetylene black were mixed so as to be uniform, and a mechanical alloying process was performed using a bead mill to prepare composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a bead mill in the same manner as described above. Next, polyvinyl chloride was added to the composite particles B and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particle B. Thereafter, the composite particles B having the carbonaceous layer and the carbonaceous particles (average particle size = 20 μm) of which the primary particles are graphite (d 002 = 0.3358 nm) are mixed uniformly to produce a negative electrode material. did.
The average value of r and l of silicon particles used in Example 5, the type and average particle size of conductive fine particles, the cumulative pore volume and saturated tap density of carbonaceous particles, and silicon contained in the composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例6>
(負極材の作製)
シリコン粒子(薄片状)とアセチレンブラックとを均一となるように混合し、ビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Aを作製した。次いで、複合粒子Aに黒鉛粒子(平均粒径=5μm)を加えて均一となるように混合し、上述と同様にビーズミルを用いてメカニカルアロイング処理を行うことにより、複合粒子Bを作製した。次いで、複合粒子Bにポリ塩化ビニルを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で加熱処理して、複合粒子Bの表面に炭素質層を形成した。その後、炭素質層を形成した複合粒子Bと一次粒子が黒鉛(d002=0.3358nm)の炭素質粒子(平均粒径=20μm)とを均一となるように混合して、負極材を作製した。
実施例6で用いたシリコン粒子のr及びlの平均値、導電微粒子の種類及び平均粒径、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに複合粒子B及び負極材全体に含まれるシリコン粒子の割合を表1に示す。
<Example 6>
(Preparation of negative electrode material)
Silicon particles (in the form of flakes) and acetylene black were mixed so as to be uniform, and a mechanical alloying process was performed using a bead mill to prepare composite particles A. Next, graphite particles (average particle size = 5 μm) were added to the composite particles A and mixed so as to be uniform, and composite particles B were prepared by performing mechanical alloying using a bead mill in the same manner as described above. Next, polyvinyl chloride was added to the composite particles B and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particle B. Thereafter, the composite particles B having the carbonaceous layer and the carbonaceous particles (average particle size = 20 μm) of which the primary particles are graphite (d 002 = 0.3358 nm) are mixed uniformly to produce a negative electrode material. did.
The average value of r and l of the silicon particles used in Example 6, the type and average particle size of the conductive fine particles, the cumulative pore volume and saturated tap density of the carbonaceous particles, and the silicon contained in the composite particles B and the whole negative electrode material The proportion of particles is shown in Table 1.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<比較例1>
(負極材の作製)
市販の黒鉛粉末(d002=0.3358nm、平均粒径=20μm)とシリコン粒子(平均粒径=1μm)とを均一となるように混合することにより、負極材を作製した。
比較例1で用いたシリコン粒子のr及びlの平均値、炭素質粒子の積算細孔容積及び飽和タップ密度、並びに負極材全体に含まれるシリコン粒子の割合を表1に示す。なお、表1中の「−」は、該当する項目が存在しないことを意味する。
<Comparative Example 1>
(Preparation of negative electrode material)
A commercially available graphite powder (d 002 = 0.3358 nm, average particle size = 20 μm) and silicon particles (average particle size = 1 μm) were mixed uniformly to produce a negative electrode material.
Table 1 shows the average values of r and l of the silicon particles used in Comparative Example 1, the cumulative pore volume and saturation tap density of the carbonaceous particles, and the ratio of the silicon particles contained in the whole negative electrode material. Note that “-” in Table 1 means that the corresponding item does not exist.

(リチウムイオン二次電池の作製)
上記で作製した負極材を用いて、図6に示す円筒型リチウム電池を前述した手順により作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium ion secondary battery)
Using the negative electrode material prepared above, a cylindrical lithium battery shown in FIG. 6 was prepared according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

表1に示す通り、実施例1〜実施例6のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池に比べて電池容量が大きく、100サイクル後の容量維持率も高く、良好なサイクル特性が得られた。   As shown in Table 1, the lithium ion secondary batteries of Examples 1 to 6 have a large battery capacity compared to the lithium ion secondary battery of Comparative Example 1 and a high capacity retention rate after 100 cycles, which is favorable. Cycle characteristics were obtained.

11 シリコン粒子
12 複合粒子A
13 導電性微粒子
14 複合粒子B
15 黒鉛粒子
16 炭素質層で被覆した複合粒子B
17 炭素質層
18 炭素質粒子
19 一次粒子
20 細孔
21 正極
22 負極
23 セパレータ
24 正極端子タブ
25 負極端子タブ
26 電池缶
27 ガスケット
28 内圧弁
29 PTC(正温度係数抵抗)素子
30 正極蓋
31 正極内蓋
32 負極集電体
11 Silicon particles 12 Composite particles A
13 Conductive Fine Particle 14 Composite Particle B
15 Graphite particle 16 Composite particle B covered with carbonaceous layer
17 carbonaceous layer 18 carbonaceous particle 19 primary particle 20 pore 21 positive electrode 22 negative electrode 23 separator 24 positive electrode terminal tab 25 negative electrode terminal tab 26 battery can 27 gasket 28 internal pressure valve 29 PTC (positive temperature coefficient resistance) element 30 positive electrode lid 31 positive electrode Inner lid 32 Negative electrode current collector

Claims (13)

シリコン粒子と導電性微粒子との複合粒子Aを含み、前記シリコン粒子の最長径lと最短径tとの比r(=t/l)が0.5以下である、リチウムイオン二次電池用負極材。   A negative electrode for a lithium ion secondary battery comprising composite particles A of silicon particles and conductive fine particles, wherein the ratio r (= t / l) of the longest diameter l to the shortest diameter t of the silicon particles is 0.5 or less. Wood. 前記シリコン粒子の最長径lと最短径tとの比r(=t/l)が0.001以上である、請求項1に記載のリチウムイオン二次電池用負極材。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein a ratio r (= t / l) of the longest diameter l and the shortest diameter t of the silicon particles is 0.001 or more. 前記シリコン粒子の最長径lが10nm〜5000nmである、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein a longest diameter l of the silicon particles is 10 nm to 5000 nm. 前記複合粒子Aにおける前記シリコン粒子の含有率が40質量%〜85質量%である、請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein a content of the silicon particles in the composite particles A is 40% by mass to 85% by mass. 前記複合粒子Aと黒鉛粒子との複合粒子Bを含む、請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。   5. The negative electrode material for a lithium ion secondary battery according to claim 1, comprising composite particles B of the composite particles A and graphite particles. 前記複合粒子Bの表面の一部又は全部が炭素質材料で被覆された、請求項5に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 5, wherein a part or all of the surface of the composite particle B is coated with a carbonaceous material. 前記複合粒子Bにおける前記シリコン粒子の含有率が40質量%〜85質量%である、請求項5又は請求項6に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 5 or 6, wherein the content of the silicon particles in the composite particle B is 40% by mass to 85% by mass. 内部に細孔を有する炭素質粒子をさらに含む、請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 7, further comprising carbonaceous particles having pores therein. 前記炭素質粒子において、サイズが0.1μm〜1μmの範囲である細孔についての積算細孔容積が0.05×10−3/kg〜0.4×10−3/kgである、請求項8に記載のリチウムイオン二次電池用負極材。 In the carbonaceous particle size cumulative pore volume of pores in the range of 0.1μm~1μm is at 0.05 × 10 -3 m 3 /kg~0.4×10 -3 m 3 / kg The negative electrode material for lithium ion secondary batteries according to claim 8. 前記炭素質粒子が黒鉛粒子であり、前記黒鉛粒子の飽和タップ密度が0.4g/cm〜0.9g/cmである、請求項8又は請求項9に記載のリチウムイオン二次電池用負極材。 The carbonaceous particles is graphite particles, saturation tap density of the graphite particles is 0.4g / cm 3 ~0.9g / cm 3 , for a lithium ion secondary battery according to claim 8 or claim 9 Negative electrode material. 前記シリコン粒子の含有率が3質量%〜50質量%である、請求項1〜請求項10のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 10, wherein a content of the silicon particles is 3% by mass to 50% by mass. 請求項1〜請求項11のいずれか1項に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries of any one of Claims 1-11. 請求項12に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含む、リチウムイオン二次電池。   The lithium ion secondary battery containing the negative electrode for lithium ion secondary batteries of Claim 12, a positive electrode, and electrolyte.
JP2014237110A 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP6609909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237110A JP6609909B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237110A JP6609909B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016100226A true JP2016100226A (en) 2016-05-30
JP6609909B2 JP6609909B2 (en) 2019-11-27

Family

ID=56075878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237110A Expired - Fee Related JP6609909B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6609909B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110076A (en) * 2017-01-04 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
CN110611094A (en) * 2018-06-15 2019-12-24 尤米科尔公司 Active material powder for battery negative electrode and battery comprising the same
WO2020080245A1 (en) * 2018-10-17 2020-04-23 株式会社村田製作所 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
KR20230017300A (en) * 2020-08-18 2023-02-03 그룹14 테크놀로지스, 인코포레이티드 Manufacture of silicon-carbon composite materials
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250394A (en) * 2006-03-16 2007-09-27 Sony Corp Negative electrode and battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US20100143798A1 (en) * 2008-12-04 2010-06-10 Aruna Zhamu Nano graphene reinforced nanocomposite particles for lithium battery electrodes
JP2013505546A (en) * 2009-09-22 2013-02-14 ジー4 シナジェティクス, インコーポレイテッド High performance electrode
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
US20140234710A1 (en) * 2013-02-15 2014-08-21 Samsung Sdi Co., Ltd. Negative active material, negative electrode, and lithium battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250394A (en) * 2006-03-16 2007-09-27 Sony Corp Negative electrode and battery
JP2008277232A (en) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US20100143798A1 (en) * 2008-12-04 2010-06-10 Aruna Zhamu Nano graphene reinforced nanocomposite particles for lithium battery electrodes
JP2013505546A (en) * 2009-09-22 2013-02-14 ジー4 シナジェティクス, インコーポレイテッド High performance electrode
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
US20140234710A1 (en) * 2013-02-15 2014-08-21 Samsung Sdi Co., Ltd. Negative active material, negative electrode, and lithium battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP7115976B2 (en) 2015-08-28 2022-08-09 グループ14・テクノロジーズ・インコーポレイテッド Novel materials with very durable intercalation of lithium and methods for their production
JP2018110076A (en) * 2017-01-04 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
KR102318270B1 (en) * 2018-06-15 2021-10-27 유미코아 An active material powder for use in a negative electrode of a battery and a battery comprising such an active material powder
US11450849B2 (en) 2018-06-15 2022-09-20 Umicore Active material powder for use in a negative electrode of a battery and a battery comprising such an active material powder
JP7294904B2 (en) 2018-06-15 2023-06-20 ユミコア Active material powders for use in negative electrodes of batteries and batteries containing such active material powders
CN110611094A (en) * 2018-06-15 2019-12-24 尤米科尔公司 Active material powder for battery negative electrode and battery comprising the same
KR20190142260A (en) * 2018-06-15 2019-12-26 유미코아 An active material powder for use in a negative electrode of a battery and a battery comprising such an active material powder
JP2020009754A (en) * 2018-06-15 2020-01-16 ユミコア Active material powder for use in negative electrode of battery and battery including such active material powder
JP2021114476A (en) * 2018-06-15 2021-08-05 ユミコア Active material powder for use in negative electrode of battery and battery including such active material powder
JPWO2020080245A1 (en) * 2018-10-17 2021-09-02 株式会社村田製作所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7074203B2 (en) 2018-10-17 2022-05-24 株式会社村田製作所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020080245A1 (en) * 2018-10-17 2020-04-23 株式会社村田製作所 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
KR20230017300A (en) * 2020-08-18 2023-02-03 그룹14 테크놀로지스, 인코포레이티드 Manufacture of silicon-carbon composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
KR102600078B1 (en) 2020-08-18 2023-11-08 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composite materials
KR20230158629A (en) * 2020-08-18 2023-11-20 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composites materials
KR102640784B1 (en) 2020-08-18 2024-02-28 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composites materials
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z

Also Published As

Publication number Publication date
JP6609909B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6609909B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6503700B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5277656B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
WO2016158187A1 (en) Electrode for lithium-ion cell, lithium-ion cell, and method of manufacturing electrode for lithium-ion cell
JP5985137B2 (en) Manufacturing method of non-aqueous secondary battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6938914B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2011113862A (en) Nonaqueous secondary battery and method of manufacturing the same
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219408A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008251523A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5927823B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP2020187988A (en) Manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5927824B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5990872B2 (en) Lithium secondary battery negative electrode material, lithium secondary battery negative electrode and lithium secondary battery
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6044163B2 (en) Method for producing negative electrode material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R151 Written notification of patent or utility model registration

Ref document number: 6609909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees