JP4707570B2 - Method for producing fine graphite particles - Google Patents

Method for producing fine graphite particles Download PDF

Info

Publication number
JP4707570B2
JP4707570B2 JP2006012784A JP2006012784A JP4707570B2 JP 4707570 B2 JP4707570 B2 JP 4707570B2 JP 2006012784 A JP2006012784 A JP 2006012784A JP 2006012784 A JP2006012784 A JP 2006012784A JP 4707570 B2 JP4707570 B2 JP 4707570B2
Authority
JP
Japan
Prior art keywords
metal
graphite particles
fine graphite
negative electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012784A
Other languages
Japanese (ja)
Other versions
JP2007191369A (en
Inventor
邦彦 江口
真樹子 井尻
勝博 長山
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2006012784A priority Critical patent/JP4707570B2/en
Publication of JP2007191369A publication Critical patent/JP2007191369A/en
Application granted granted Critical
Publication of JP4707570B2 publication Critical patent/JP4707570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Description

本発明は、微小黒鉛質粒子の製造方法に関する。   The present invention relates to a method for producing fine graphite particles.

近年、電子機器の小型化あるいは高性能化に伴い、電池の高エネルギー密度化に対する要望はますます高まっている。特に、リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能であり、エネルギー密度を高められるため注目されている。リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素とする。非水電解質から生じるリチウムイオンは、放電過程および充電過程で負極と正極との間を移動し、二次電池となる。通常、上記のリチウムイオン二次電池の負極材料には炭素材料が使用される。このような炭素材料として、特に、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛(特許文献1)が有望視されている。   In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for higher energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they are capable of higher voltages than other secondary batteries and can increase energy density. A lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharge process and the charge process to form a secondary battery. Usually, a carbon material is used for the negative electrode material of the lithium ion secondary battery. As such a carbon material, graphite (Patent Document 1) that is excellent in charge / discharge characteristics and exhibits high discharge capacity and potential flatness is particularly promising.

負極材料として使用される黒鉛(黒鉛質粒子)としては、天然黒鉛、人造黒鉛などの黒鉛粒子、さらにはタール、ピッチを原料としたメソフェーズピッチやメソフェーズ小球体を熱処理して得られるバルクメソフェーズ黒鉛質粒子やメソフェーズ小球体黒鉛質粒子、粒子状や繊維状のメソフェーズピッチを酸化不融化した後に熱処理して得られるメソフェーズ黒鉛質粒子やメソフェーズ黒鉛質繊維、天然黒鉛や人造黒鉛をタール、ピッチなどで被覆した後に熱処理して得られる複合黒鉛質粒子などが挙げられる。   The graphite (graphite particles) used as the negative electrode material includes bulk graphite particles such as natural graphite and artificial graphite, as well as bulk mesophase graphite obtained by heat treatment of mesophase pitch and mesophase spherules made from tar and pitch. Particles, mesophase small spherical graphite particles, mesophase graphite particles and mesophase graphite fibers obtained by heat-treating particulate or fibrous mesophase pitch after oxidation infusibilization, natural graphite and artificial graphite are coated with tar, pitch, etc. And composite graphite particles obtained by heat treatment.

なかでも、複合黒鉛質粒子としては、天然黒鉛粉末をバインダーでほぼ球形に造粒成形した後、バインダーピッチを含浸被覆し、焼成したもの(特許文献2)、放電容量、急速充放電特性およびサイクル特性の向上を目的として、黒鉛粒子を球状に造粒したのち、化学蒸着処理によって黒鉛粒子の表面に炭素被覆層を形成したもの(特許文献3)、黒鉛化可能な骨材、バインダー、黒鉛化触媒を混合、焼成、粉砕したもの(特許文献4)などが例示される。   Among them, as composite graphite particles, natural graphite powder is granulated and formed into a substantially spherical shape with a binder, impregnated with a binder pitch, fired (Patent Document 2), discharge capacity, rapid charge / discharge characteristics and cycle. For the purpose of improving characteristics, graphite particles are granulated into a spherical shape, and then a carbon coating layer is formed on the surface of the graphite particles by chemical vapor deposition (Patent Document 3), graphitizable aggregate, binder, graphitization Examples thereof include those obtained by mixing, firing and pulverizing a catalyst (Patent Document 4).

前記従来のリチウムイオン二次電池負極材料は、高い結晶性を有する黒鉛を含有するので、リチウムイオン二次電池の放電容量を高めることができ、また、黒鉛が粒子内で一方向に配列していないので、特定の使用条件では良好な急速充放電特性およびサイクル特性を有しているが、下記のような問題もある。   Since the conventional lithium ion secondary battery negative electrode material contains graphite having high crystallinity, the discharge capacity of the lithium ion secondary battery can be increased, and the graphite is aligned in one direction within the particles. Therefore, it has good rapid charge / discharge characteristics and cycle characteristics under specific use conditions, but there are also the following problems.

例えば、特許文献2に記載の造粒型負極材料は、造粒された天然黒鉛にバインダーピッチを含浸、焼成して結着したものであり、ピッチの焼成生成物が硬質であるため、負極の密度を高くすることが難しい。負極の高密度化が可能な硬度になるようにピッチの含浸量を減らすと、天然黒鉛の結着力が弱いものとなり、造粒構造を維持できなくなる。   For example, the granulated negative electrode material described in Patent Document 2 is obtained by impregnating a granulated natural graphite with a binder pitch and baking it, and the sintered product of the pitch is hard. It is difficult to increase the density. If the pitch impregnation amount is reduced so that the density of the negative electrode can be increased, the natural graphite has a weak binding force and the granulated structure cannot be maintained.

特許文献3に記載の造粒型負極材料は、黒鉛を微粉砕して褶曲させた後、化学蒸着処理によって結晶性炭素の被覆層を形成するものであり、被覆層が薄膜で軟質であるため、負極の密度を高くすることができる。しかし、高密度化に伴って、黒鉛の褶曲した積層構造は一方向に配列した構造へと変化し、急速充放電特性やサイクル特性が低下してしまう問題があった。   The granulated negative electrode material described in Patent Document 3 is a material in which graphite is finely pulverized and bent, and then a crystalline carbon coating layer is formed by chemical vapor deposition, and the coating layer is thin and soft. The density of the negative electrode can be increased. However, as the density is increased, the laminated structure in which graphite is bent is changed to a structure arranged in one direction, and there is a problem that rapid charge / discharge characteristics and cycle characteristics are deteriorated.

特許文献4に記載の複合黒鉛粒子は、粒子全体が黒鉛質であるため比較的軟質であり、負極の密度を高くすることができる。しかし、特許文献3に記載の造粒型負極材料と同様に、高密度化に伴って複合粒子が潰れた状態になり、複合粒子内の偏平状黒鉛が一方向に配列してしまい、急速充放電特性やサイクル特性が劣化する。   The composite graphite particles described in Patent Document 4 are relatively soft because the entire particles are graphitic, and the density of the negative electrode can be increased. However, as with the granulated negative electrode material described in Patent Document 3, the composite particles become crushed as the density increases, and the flat graphite in the composite particles is aligned in one direction, resulting in rapid charge. Discharge characteristics and cycle characteristics deteriorate.

このように、従来の造粒型負極材料は、負極の密度が低い場合には、比較的良好な電池特性を発現するものの、負極の密度を高めた場合、特に密度が1.7g/cm3を超えると、粒子内の黒鉛が配向し、リチウムイオンの拡散性や電解液の浸透性が低下し、急速充放電特性やサイクル特性が急落してしまう。近年、リチウムイオン二次電池のエネルギー密度を高める観点から、負極密度はできるだけ高く設定することが望まれているが、従来の負極材料は、その特性を維持できる負極密度が低いという問題がある。 Thus, although the conventional granulated negative electrode material exhibits relatively good battery characteristics when the density of the negative electrode is low, the density is particularly 1.7 g / cm 3 when the density of the negative electrode is increased. If it exceeds 1, graphite in the particles will be oriented, the diffusibility of lithium ions and the permeability of the electrolyte will decrease, and the rapid charge / discharge characteristics and cycle characteristics will drop sharply. In recent years, from the viewpoint of increasing the energy density of a lithium ion secondary battery, it has been desired to set the negative electrode density as high as possible. However, conventional negative electrode materials have a problem that the negative electrode density capable of maintaining the characteristics is low.

優れた急速充放電特性やサイクル特性を得る方法として、負極材料の粒子径を小さくすることが有効である。粒子径が小さいほど、負極材料間の接触点数が増えて、負極材料の利用率が100%に近づくほか、電解質と負極材料の反応(リチウムイオンの吸蔵、放出)面積が大きくなり、急速充放電特性が向上する。また、繰返し充放電に伴って、負極材料が伸縮した場合においても、負極材料間の接触が維持されやすい。しかしながら、一般に粒子径を小さくするほど、負極密度は上がりにくくなる。そこで、粒子径が小さく、かつ、軟質な負極材料が求められる。   As a method for obtaining excellent rapid charge / discharge characteristics and cycle characteristics, it is effective to reduce the particle diameter of the negative electrode material. As the particle size is smaller, the number of contact points between the negative electrode materials increases, the utilization factor of the negative electrode materials approaches 100%, and the reaction (lithium ion occlusion and release) area between the electrolyte and the negative electrode material increases, resulting in rapid charge and discharge. Improved characteristics. In addition, even when the negative electrode material expands and contracts with repeated charge and discharge, the contact between the negative electrode materials is easily maintained. However, in general, the negative electrode density is less likely to increase as the particle size is reduced. Accordingly, a soft negative electrode material having a small particle size is required.

非造粒型負極材料であって、粒子内の結晶構造がランダムな黒鉛質材料としては、メソフェーズ小球体(メソカーボンマイクロビーズとも言う)の黒鉛化物が知られている。メソフェーズ小球体は、石炭系、石油系の重質油やピッチ類を加熱処理した場合に、該重質油やピッチ類の中に生成する光学的異方性の球状の重合物であり、重合度を低く抑えることで、その粒子径を小さく調整することができる。しかし、粒子径を小さくすることは、生産性を落とすことになり、工業的に高コストとなる問題があり、黒鉛化後の結晶性も低い。粒子径の大きいメソフェーズ小球体を粉砕して粒子径を小さくした場合には、粉砕によって生じた破砕面が、負極材料として用いた場合に電解質(溶媒を含む)の副反応の原因となり、初期充放電効率を低下させるなどの問題を生じることがある。加えて、重合度を抑えて粒子径を小さくしたもの、粉砕したもののいずれの場合においても、粒子は硬質であり、高い負極密度に圧縮することが困難である。   As a non-granulated negative electrode material, a graphitized material of mesophase microspheres (also referred to as mesocarbon microbeads) is known as a graphite material having a random crystal structure in the particles. Mesophase spherules are spherical polymers with optical anisotropy produced in heavy oils and pitches when coal or petroleum heavy oils and pitches are heat-treated. By keeping the degree low, the particle diameter can be adjusted small. However, reducing the particle size results in a decrease in productivity, resulting in an industrially high cost problem and low crystallinity after graphitization. When pulverizing mesophase spherules with a large particle size to reduce the particle size, the crushing surface generated by pulverization causes a side reaction of the electrolyte (including the solvent) when used as a negative electrode material, and the initial charge is reduced. Problems such as a reduction in discharge efficiency may occur. In addition, in both cases where the degree of polymerization is suppressed and the particle size is reduced or pulverized, the particles are hard and difficult to compress to a high negative electrode density.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特開2004−31038号公報JP 2004-31038 A 特開2002−367611号公報JP 2002-367611 A 特開平10−188959号公報Japanese Patent Laid-Open No. 10-188959

本発明は、前記のような状況を鑑みてなされたものであり、粒子径の小さい新たな微小黒鉛質粒子の製造方法を提供することを目的とし、特に高い負極密度におけるリチウムイオン二次電池用負極材料として好適な微小黒鉛質粒子の製造方法を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing a new fine graphite particle having a small particle diameter, particularly for a lithium ion secondary battery at a high negative electrode density. An object of the present invention is to provide a method for producing fine graphite particles suitable as a negative electrode material.

本発明は、
炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属および/または金属化合物を、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料に付着させる付着工程と、
該金属および/または金属化合物が付着した炭素材料を、該金属が蒸発および/または該金属化合物が分解後、該金属化合物に含まれる金属元素が蒸発する温度以上の温度で加熱して、該炭素材料を黒鉛化するとともに、該黒鉛質材料の表面に隆起物を形成する黒鉛化工程と、
該隆起物を有する黒鉛質材料にメカノケミカル処理で機械的エネルギーを付与して該隆起物を黒鉛質材料から脱落させて微小黒鉛質粒子を得る隆起物脱落工程
を有することを特徴とする微小黒鉛質粒子の製造方法、である。
また、本発明の製造方法は、前記隆起物脱落工程において、前記隆起物を前記黒鉛質材料から脱落させるとともに、破砕面を摩耗して微小黒鉛質粒子を得ることが好ましい。
The present invention
A metal and / or metal compound having at least one of a property of reacting with carbon and a property of dissolving carbon is attached to a carbon material that forms an optically isotropic crystal structure at least partially after graphitization. An adhering process,
A carbon material in which the metal and / or the metal compound is attached, after the metal evaporation and / or the metal compound is decomposed, and the metal element contained in the metal compound is heated at a temperature higher than the temperature at which evaporation, the While graphitizing the carbon material, a graphitization step of forming a protuberance on the surface of the graphitic material,
A protuberance falling to obtain a fine graphite particles by dropping from graphitic material該隆Okoshibutsu to impart mechanical energy mechanochemical treatment graphitic material having該隆Okoshibutsu,
A method for producing fine graphite particles, comprising:
In the production method of the present invention, it is preferable that, in the protruding product dropping step, the protruding product is dropped from the graphite material and the crushing surface is worn to obtain fine graphite particles.

本発明は、また、  The present invention also provides
炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属および/または金属化合物を、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料に付着させる付着工程と、  A metal and / or metal compound having at least one of a property of reacting with carbon and a property of dissolving carbon is attached to a carbon material that forms an optically isotropic crystal structure at least partially after graphitization. An adhering process,
該金属および/または該金属化合物が付着した炭素材料を、該金属が蒸発および/または該金属化合物が分解後、該金属化合物に含まれる金属元素が蒸発する温度以上の温度で加熱して、該炭素材料を黒鉛化するとともに、該黒鉛質材料の表面に隆起物を形成する黒鉛化工程と、  The carbon material to which the metal and / or the metal compound is attached is heated at a temperature equal to or higher than the temperature at which the metal element contained in the metal compound evaporates after the metal evaporates and / or the metal compound decomposes, While graphitizing the carbon material, a graphitization step of forming a protuberance on the surface of the graphitic material,
該隆起物を有する黒鉛質材料に機械的エネルギーを付与して該隆起物を黒鉛質材料から脱落させて微小黒鉛質粒子を得る隆起物脱落工程と、  Protruding material dropping step of applying mechanical energy to the graphite material having the protruding material to drop the protruding material from the graphite material to obtain fine graphite particles;
を有することを特徴とする微小黒鉛質粒子の製造方法であって、A method for producing fine graphite particles, characterized by comprising:
前記微小黒鉛質粒子の、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて、1570〜1630cm  In the Raman spectrum of the fine graphite particles using an argon laser beam having a wavelength of 514.5 nm, 1570 to 1630 cm. −1-1 の領域に存在するピークの強度をIThe intensity of the peak existing in the region G 、1350〜1370cm1350-1370cm −1-1 の領域に存在するピークの強度をIThe intensity of the peak existing in the region P とするときのII when P /I/ I G 比が0.2未満であることを特徴とする微小黒鉛質粒子の製造方法、であることが好ましい。The method is preferably a method for producing fine graphite particles, wherein the ratio is less than 0.2.

本発明の微小黒鉛質粒子の製造方法は、さらに、前記隆起物脱落工程で得られた微小黒鉛質粒子と黒鉛質材料との混合物から該微小黒鉛質粒子を分離して、微小黒鉛質粒子を得る分離工程を有することが好ましい。  The method for producing micrographitic particles of the present invention further comprises separating the micrographitic particles from the mixture of the micrographitic particles and the graphite material obtained in the protruding product dropping step to obtain the micrographitic particles. It is preferable to have a separation step to obtain.

また、本発明の微小黒鉛質粒子の製造方法は、前記金属および前記金属化合物が粉末であることが好ましい。  In the method for producing fine graphite particles of the present invention, the metal and the metal compound are preferably powders.

また、本発明の微小黒鉛質粒子の製造方法は、前記した金属が蒸発および/または前記した金属元素が蒸発する温度が1500〜3300℃であることが好ましい。  In the method for producing fine graphite particles of the present invention, the temperature at which the metal is evaporated and / or the metal element is evaporated is preferably 1500 to 3300 ° C.

また、本発明の微小黒鉛質粒子の製造方法は、前記微小黒鉛質粒子がリチウムイオン二次電池負極用材料であることが好ましい。   In the method for producing fine graphite particles of the present invention, the fine graphite particles are preferably a material for a negative electrode of a lithium ion secondary battery.

本発明の微小黒鉛質粒子を負極材料として用いてなるリチウムイオン二次電池は、特に高い負極密度においても優れた放電容量、初期充放電効率、急速充放電特性(急速充電率および急速放電率)およびサイクル特性を有する。そのため、該リチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要求を満たし、搭載する機器の小型化および高性能化に有効である。また、本発明の微小黒鉛質粒子は、簡便な方法によって製造することができ、製造コストも低い。   The lithium ion secondary battery using the fine graphite particles of the present invention as a negative electrode material has excellent discharge capacity, initial charge / discharge efficiency, and rapid charge / discharge characteristics (rapid charge rate and rapid discharge rate) even at a high negative electrode density. And has cycle characteristics. For this reason, the lithium ion secondary battery satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted device. Moreover, the micrographitic particles of the present invention can be produced by a simple method and the production cost is low.

以下、本発明をより具体的に説明する。
(微小黒鉛質粒子)
本発明の製造方法で得られる微小黒鉛質粒子(以後、単に本発明の微小黒鉛質粒子とも称す)は高結晶性であり、光学的異方性を示す。結晶性が高いゆえに軟質であり、負極密度を高くすることができる。結晶性の指標として、X線広角回折における(002)面の平均格子面間隔d002が0.3365nm以下、特に0.3360nm以下であることが好ましい。d002が0.3360nmを超える場合には、高い放電容量が得られないことがあり、また、負極密度が1.7g/cm3を超えるように高くするために、高いプレス圧力が必要となり、集電体である銅箔などが破断するなどの問題が生じることがある。さらに好ましいのは0.3358nm以下である。
ここで、X線広角回折における(002)面の平均格子面間隔d002とは、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して黒鉛質粒子の(002)面の回折ピークを測定し、そのピークの位置から算出する。算出方法は、学振法(日本学術振興会第17委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」[ 大谷杉郎、733−742頁(1986年3月)、近代編集社]に記載された方法によって測定された値である。
Hereinafter, the present invention will be described more specifically.
(Micrographite particles)
The fine graphite particles obtained by the production method of the present invention (hereinafter also simply referred to as the fine graphite particles of the present invention) are highly crystalline and exhibit optical anisotropy. Since the crystallinity is high, it is soft and the negative electrode density can be increased. As an index of crystallinity, it is preferable that an average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is 0.3365 nm or less, particularly 0.3360 nm or less. When d 002 exceeds 0.3360 nm, a high discharge capacity may not be obtained, and in order to increase the negative electrode density to exceed 1.7 g / cm 3 , a high pressing pressure is required. Problems such as breakage of a copper foil as a current collector may occur. More preferably, it is 0.3358 nm or less.
Here, the average lattice spacing d 002 of the (002) plane in the X-ray wide angle diffraction is the diffraction of the (002) plane of the graphite particles using CuKα ray as the X-ray and using high-purity silicon as a standard material. A peak is measured and calculated from the position of the peak. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 17th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” [Sugirou Otani, pages 733-742 (March 1986) ), Modern Editorial Company].

本発明の微小黒鉛質粒子の形状は、図2(b)に示すように、球状または擬似球状であることが好ましい。擬似球状とは、楕円体状、多面体状、塊状などを言う。擬似球状の目安は平均アスペクト比が1.0〜1.5の場合である。アスペクト比がこの範囲であると、これを用いてなるリチウムイオン二次電池の急速充放電特性およびサイクル特性が向上する。それは、負極を形成したとき、微小黒鉛質粒子が一方向に配列することなく、かつ電解質が内部に浸透しやすくなるためである。ここで、平均アスペクト比とは、黒鉛質粒子の最大長軸長とそれに直交する軸の長さとの比を表し、走査型電子顕微鏡による黒鉛質粒子の外観観察により、複数(50個以上)の黒鉛質粒子について各々計測した比の平均値である。
本発明の微小黒鉛質粒子は、その表面や内部に細孔や空孔を有していてもよい。
The shape of the fine graphite particles of the present invention is preferably spherical or pseudo-spherical as shown in FIG. The pseudo-spherical shape refers to an ellipsoidal shape, a polyhedral shape, a lump shape, and the like. The standard for the pseudo sphere is when the average aspect ratio is 1.0 to 1.5. When the aspect ratio is within this range, the rapid charge / discharge characteristics and cycle characteristics of a lithium ion secondary battery using the aspect ratio are improved. This is because when the negative electrode is formed, the fine graphite particles are not arranged in one direction and the electrolyte easily penetrates into the inside. Here, the average aspect ratio represents the ratio between the maximum major axis length of the graphite particles and the length of the axis perpendicular thereto, and a plurality (50 or more) of the graphite particles are observed by an appearance observation with a scanning electron microscope. It is an average value of the ratios measured for the graphite particles.
The fine graphite particles of the present invention may have pores or pores on the surface or inside thereof.

本発明の微小黒鉛質粒子の平均粒子径は1〜20μmであることが好ましい。1μm未満の場合は、これを用いてなるリチウムイオン二次電池において、電解質との副反応が多くなり、初期充放電効率が低下することがある。20μmを超えると、急速充放電特性やサイクル特性の向上が小さくなる。特に好ましい平均粒子径は3〜10μmである。平均粒子径とは、レーザー回折式粒度分布計による粒度分布の累積度数が体積百分率で50%となる粒子径である。   The average particle size of the fine graphite particles of the present invention is preferably 1 to 20 μm. When the thickness is less than 1 μm, in the lithium ion secondary battery using the same, side reactions with the electrolyte increase, and the initial charge / discharge efficiency may decrease. If it exceeds 20 μm, rapid charge / discharge characteristics and cycle characteristics will not be improved. A particularly preferable average particle diameter is 3 to 10 μm. The average particle diameter is a particle diameter at which the cumulative frequency of particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume.

本発明の微小黒鉛質粒子は、隆起物脱落工程で生じる破砕面の割合が少ないことが好ましい。該微小黒鉛質粒子の外表面積に占める破砕面の割合は30%以下、好ましくは15%以下である。ここで、破砕面の割合は、粒子の断面を走査型電子顕微鏡で観察し、粒子断面の外周長さに対する破砕によって生じた破壊部分の外周の長さの割合である。
また、一般に、黒鉛質粒子の破砕面には黒鉛結晶のエッジ面が露出している。該エッジ面の露出率は30%以下、特に15%以下であることが好ましい。ここで、その露出率は、粒子断面の外周の長さに対するエッジ面、ベーサル面それぞれの外周の長さの割合である。エッジ面およびベーサル面の露出状態は、粒子の断面を走査型電子顕微鏡または透過型電子顕微鏡で観察することによって確認することができる。なお、エッジ面とは黒鉛を形成する炭素の六角網面の端部を言い、ベーサル面とはエッジ面と直交する面を言う。
It is preferable that the fine graphite particles of the present invention have a small proportion of crushing surfaces generated in the protruding product dropping step. The proportion of the crushed surface in the outer surface area of the fine graphite particles is 30% or less, preferably 15% or less. Here, the ratio of the crushing surface is the ratio of the length of the outer periphery of the fractured portion caused by crushing the particle cross section with respect to the outer peripheral length of the particle cross section.
In general, the edge surface of the graphite crystal is exposed on the crushed surface of the graphite particles. The edge surface exposure rate is preferably 30% or less, particularly preferably 15% or less. Here, the exposure rate is a ratio of the outer peripheral lengths of the edge surface and the basal surface to the outer peripheral length of the particle cross section. The exposed state of the edge surface and the basal surface can be confirmed by observing the cross section of the particle with a scanning electron microscope or a transmission electron microscope. The edge surface refers to the end of the hexagonal carbon surface of carbon forming graphite, and the basal surface refers to the surface orthogonal to the edge surface.

エッジ面の露出量の指標として、ラマンスペクトルにおけるI/I比を用いることもできる。該比が0.2未満、特に0.15以下であると、露出が少なく好ましい。ここで、該I/I比とは、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて、1570〜1630cm−1の領域に存在するピークの強度をI、1350〜1370cm−1の領域に存在するピークの強度をIとするときのI/I比を指し、黒鉛結晶のエッジ面の露出量が増えるとI/I比は大きくなり、逆に黒鉛結晶のベーサル面の露出量が増えるとI/I比は小さくなる。 As an indicator of exposure of the edge surface, it is also possible to use a I P / I G ratio in the Raman spectrum. It is preferable that the ratio is less than 0.2, particularly 0.15 or less because the exposure is small. Here, the I P / I G ratio is the intensity of a peak existing in the region of 1570 to 1630 cm −1 in a Raman spectrum using an argon laser beam having a wavelength of 514.5 nm, I G , 1350 to 1370 cm −1. I P / IG ratio when the intensity of the peak existing in the region is I P. When the exposure amount of the edge surface of the graphite crystal increases, the IP / IG ratio increases. exposure of the basal surface is increased when the I P / I G ratio decreases.

(微小黒鉛質粒子の製造方法)
本発明の微小黒鉛質粒子の製造方法を以下に示す。
・付着工程:黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料に、炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属および/または金属化合物を付着させる工程である。
・黒鉛化工程:付着した金属が蒸発、または金属化合物が分解後、含まれる金属元素が蒸発する温度以上の温度に、該炭素材料を加熱して黒鉛化するとともに、該金属の蒸発または金属化合物の分解・蒸発による金属元素の除去により、該黒鉛化物(黒鉛質材料)の表面に球状または擬似球状の隆起物を形成させる工程である。
・隆起物脱落工程:隆起物を有する黒鉛化物(黒鉛質材料)に、機械的エネルギーを付与して、該隆起物を黒鉛化物(黒鉛質材料)母材から脱落させる工程である。
・分離工程:脱落した隆起物(微小黒鉛質粒子)を黒鉛化物母材から分離し除去する工程である。
(Method for producing fine graphite particles)
A method for producing the fine graphite particles of the present invention will be described below.
Adhesion step: a metal having at least one of a property of reacting with carbon and a property of dissolving carbon in a carbon material that forms an optically isotropic crystal structure at least partially after graphitization and / or It is a step of attaching a metal compound.
Graphitization step: After the attached metal evaporates or the metal compound decomposes, the carbon material is heated to a temperature equal to or higher than the temperature at which the contained metal element evaporates, and the metal evaporates or the metal compound. This is a step of forming spherical or pseudo-spherical ridges on the surface of the graphitized material (graphitic material) by removing metal elements by decomposition / evaporation.
-Protrusion fall-off process: It is a process which gives mechanical energy to the graphitized material (graphite material) which has a protuberance, and makes this protuberance fall off from a graphitized material (graphitic material) base material.
-Separation process: A process of separating and removing the ridges (micrographitic particles) that have fallen off from the graphitized base material.

次に、各材料および各工程について詳述する。
(炭素材料)
本発明の微小黒鉛質粒子の製造に使用される炭素材料(以後、単に炭素材料とも称す)は、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料である。黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料とは、黒鉛化物の断面を偏光顕微鏡で観察した際に、光学的等方性の結晶構造(光学的等方性相)を示すものであり、比較的結晶性の低い炭素材料である。後述するように、光学的等方性の結晶構造を形成する部分がないと隆起が生じない。
該炭素材料は、板状、粒状、繊維状、塊状など、あらゆる形状のものが使用可能であるが、粒状が特に好ましい。その平均粒子径は。粒状の場合で言えば、5〜100μm、好ましくは10〜50μmである。5μm未満では脱落させた隆起物を分離回収することが困難であり、100μm超では隆起物を脱落させることが難しくなる。
Next, each material and each process will be described in detail.
(Carbon material)
The carbon material (hereinafter, also simply referred to as carbon material) used in the production of the micrographitic particles of the present invention is a carbon material that forms an optically isotropic crystal structure at least partially after graphitization. A carbon material that forms an optically isotropic crystal structure at least partially after graphitization refers to an optically isotropic crystal structure (optical isotropic) when a cross section of the graphitized material is observed with a polarizing microscope. A carbon material having a relatively low crystallinity. As will be described later, if there is no portion that forms an optically isotropic crystal structure, the bulge does not occur.
The carbon material can be used in any shape such as a plate shape, a granular shape, a fiber shape, and a lump shape, but a granular shape is particularly preferable. What is the average particle size? In the case of a granular shape, it is 5 to 100 μm, preferably 10 to 50 μm. If the thickness is less than 5 μm, it is difficult to separate and collect the raised ridges, and if it exceeds 100 μm, it is difficult to drop the ridges.

該炭素材料として、光学的等方性を示す炭素材料を単独で用いても、光学的異方性の結晶構造(光学的異方性相)からなる炭素材料の表面に光学的等方性の結晶構造(光学的等方性相)を有する炭素材料を付着させたものを用いてもよい。後者の光学的等方性の炭素材料は薄膜状に付着していることが好ましく、その膜厚は3μm以下、好ましくは1μm以下、さらに好ましくは0.5μm以下である。該膜厚が大きすぎると、最終的に得られる微小黒鉛質粒子の平均粒子径が過大になりやすい。また、該膜厚の下限値は0.01μmであることが好ましい。0.01μm未満であると、最終的に得られる微小黒鉛質粒子の平均粒子径が過小になりやすい。   Even if a carbon material exhibiting optical isotropy is used alone as the carbon material, the surface of the carbon material having an optically anisotropic crystal structure (optically anisotropic phase) is optically isotropic. You may use what attached the carbon material which has a crystal structure (optically isotropic phase). The latter optically isotropic carbon material is preferably attached in the form of a thin film, and the film thickness is 3 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less. If the film thickness is too large, the average particle diameter of the finally obtained fine graphite particles tends to be excessive. Moreover, it is preferable that the lower limit of this film thickness is 0.01 micrometer. If it is less than 0.01 μm, the average particle diameter of the finally obtained fine graphite particles tends to be too small.

光学的等方性を示す炭素材料の具体例は、フェノール樹脂、フリフリルアルコール樹脂などの樹脂類、酸素架橋した石油ピッチなどの光学的等方性ピッチ類である。コークスや天然黒鉛の板や粒子に、該樹脂類や該光学的等方性ピッチ類を被覆したものが好ましく用いられる。中でも、被覆処理を施さなくとも元来光学的等方性相を外表面に有し、内部が光学的異方性相からなるメソフェーズ小球体が最適である。メソフェーズ小球体を用いると、後述する隆起物(微小黒鉛質粒子)の形成と、メソフェーズ小球体の黒鉛化を同時に実現でき、該隆起物を有するメソフェーズ小球体の黒鉛化物が得られるので、これから隆起物を脱落させれば、両者の混合物を容易に得ることができる。
該メソフェーズ小球体は、フリーカーボンを0.01〜2質量%、好ましくは0.3〜0.9質量%含有する石油系または石炭系のタールピッチ類を、350〜1000℃、好ましくは400〜600℃、より好ましくは400〜450℃で熱処理して得ることができる。該ピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられるが、コールタールピッチが好ましい。
Specific examples of the carbon material exhibiting optical isotropy are resins such as phenol resin and furfuryl alcohol resin, and optical isotropic pitches such as oxygen-crosslinked petroleum pitch. A coke or natural graphite plate or particle coated with the resin or the optically isotropic pitch is preferably used. Among these, mesophase microspheres that originally have an optically isotropic phase on the outer surface and are internally composed of an optically anisotropic phase are optimal without any coating treatment. When mesophase spherules are used, the formation of ridges (micrographitic particles), which will be described later, and graphitization of mesophase spherules can be realized at the same time. If a thing is dropped, a mixture of both can be easily obtained.
The mesophase spherules include petroleum-based or coal-based tar pitches containing 0.01 to 2% by mass, preferably 0.3 to 0.9% by mass of free carbon, at 350 to 1000 ° C., preferably 400 to It can be obtained by heat treatment at 600 ° C., more preferably at 400 to 450 ° C. Examples of the pitch include coal tar, tar light oil, tar middle oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, oxygen-crosslinked petroleum pitch, heavy oil and the like, and coal tar pitch is preferable.

(金属材料)
該炭素材料に付着させる金属または金属化合物は、炭素と反応する性質および/または炭素を溶解する性質を有する金属または金属化合物(以後、金属材料とも称す)である。すなわち、該炭素材料が黒鉛化するまで安定で、かつ、黒鉛化工程で、その全量が蒸発または分解して該炭素材料の黒鉛化物には残存しない金属材料である。該金属材料の形状は、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能であるが、球状、粒状の場合、黒鉛化後の隆起物と黒鉛化物の母材との接触面積が小さくなるので、隆起物が脱落しやすくなることから、特に好ましい。また、破砕面の面積が小さくなるので、リチウムイオン二次電池の負極材料に用いたときに、不可逆容量が小さくなる。
(Metal material)
The metal or metal compound attached to the carbon material is a metal or metal compound (hereinafter also referred to as a metal material) having a property of reacting with carbon and / or a property of dissolving carbon. That is, it is a metal material that is stable until the carbon material is graphitized, and that the entire amount is evaporated or decomposed in the graphitization step and does not remain in the graphitized material of the carbon material. The shape of the metal material can be any shape such as powder, plate, granule, fiber, lump, and sphere. In the case of sphere and granule, Since the contact area with a base material becomes small, it is particularly preferable because the raised matter is easily dropped. Moreover, since the area of a crushing surface becomes small, when it uses for the negative electrode material of a lithium ion secondary battery, an irreversible capacity | capacitance becomes small.

該金属材料は、具体的には、Kなどのアルカリ金属、Mg、Caなどのアルカリ土類金属、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、Ta、W、Re、Ptなどの遷移金属とそれらの金属の化合物である。これらは単独で用いても、2種以上併用してもよい。また、2種以上の合金として用いてもよい。好ましいのはFe、Co、Ni、Ptの遷移金属および該遷移金属の化合物である。
金属化合物としては、塩化物、臭化物、オキシ塩化物などのハロゲン化物、硫酸塩、硝酸塩などの無機酸塩、酢酸塩、シュウ酸塩などの有機酸塩、酸化物、水酸化物、窒化物、硫化物などが挙げられる。好ましいのは安定性、コストの点から塩化物、酸化物、水酸化物である。特に好ましい金属化合物は酸化鉄、塩化鉄、酸化コバルト、酸化ニッケルなどである。
金属材料は、粒状、粉状であるのが好ましく、その平均粒子径は5μm以下であることが好ましく、0.01〜5μmであることがより好ましく、0.01〜1μmであることがさらに好ましい。5μmを超える場合は、微小黒鉛質粒子の平均粒子径が過大になりやすく、0.01μm未満の場合には、微小黒鉛質粒子の平均粒子径が過小になりやすい。
Specific examples of the metal material include alkali metals such as K, alkaline earth metals such as Mg and Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Ta, W, Re, and Pt. Transition metals and compounds of these metals. These may be used alone or in combination of two or more. Moreover, you may use as 2 or more types of alloys. Preference is given to transition metals of Fe, Co, Ni, Pt and compounds of the transition metals.
Metal compounds include halides such as chloride, bromide, oxychloride, inorganic acid salts such as sulfate and nitrate, organic acid salts such as acetate and oxalate, oxides, hydroxides, nitrides, Examples thereof include sulfides. Preference is given to chlorides, oxides and hydroxides in terms of stability and cost. Particularly preferred metal compounds are iron oxide, iron chloride, cobalt oxide, nickel oxide and the like.
The metal material is preferably granular or powdery, and the average particle diameter is preferably 5 μm or less, more preferably 0.01 to 5 μm, and even more preferably 0.01 to 1 μm. . When it exceeds 5 μm, the average particle diameter of the fine graphite particles tends to be excessive, and when it is less than 0.01 μm, the average particle diameter of the fine graphite particles tends to be excessive.

(付着工程)
金属材料を炭素材料に付着させる方法は、炭素材料に金属材料が付着できる方法であればいかなる方法でもよい。例えば、粉状、粒状の金属材料と炭素材料を乾式で混合、埋設、担持する方法、金属材料の溶液または分散液と炭素材料を接触させ、媒体を除去する湿式付着法、金属材料を炭素材料に蒸着する方法などが挙げられる。該付着力は格別強力である必要はなく、炭素材料に金属材料が接触していればよく、後述するように、黒鉛化後の機械的エネルギーの付与で脱落すればよい。
金属材料の付着形態は特に限定されず、膜状、粒状、不定形などのいずれであってもよいが、金属材料の粒子が、炭素材料の外表面に点在して付着している形態が好ましい。該点在により黒鉛化工程での隆起物の形成が容易で、隆起物の大きさのバラツキが小さくなる。ここで、外表面とは、炭素材料が多孔質である場合の炭素材料の細孔内部の空隙の表面を含まない。
(Adhesion process)
The method for attaching the metal material to the carbon material may be any method as long as the metal material can be attached to the carbon material. For example, powder, granular metal material and carbon material are mixed, embedded, and supported in a dry process, metal material solution or dispersion is contacted with carbon material, medium is removed, metal material is carbon material The method of vapor deposition is mentioned. The adhesion force does not need to be particularly strong, and it is sufficient that the metal material is in contact with the carbon material. As described later, the adhesion force may be removed by applying mechanical energy after graphitization.
The attachment form of the metal material is not particularly limited and may be any of a film form, a granular form, an indeterminate form, etc., but the form in which the metal material particles are scattered and attached to the outer surface of the carbon material. preferable. Due to the interspersed points, it is easy to form a raised product in the graphitization process, and the size variation of the raised product is reduced. Here, the outer surface does not include the surface of the voids inside the pores of the carbon material when the carbon material is porous.

金属材料の混合量、したがって付着量は、炭素材料100質量%に対して0.1〜30質量%、好ましくは0.5〜15質量%、より好ましくは1〜10質量%である。0.1質量%未満では、微小黒鉛質粒子の生成量が少なく、生産効率が低いものとなる。30質量%超では、黒鉛化工程において、蒸発または分解後蒸発する金属材料の量が多く、黒鉛化炉内の温度の低い部分に金属材料が堆積するなどの操業上の問題を引起こすことがある。なお、金属材料の付着量は、ICP発光分光分析などの方法で測定することができる。   The mixing amount of the metal material, and hence the adhesion amount, is 0.1 to 30% by mass, preferably 0.5 to 15% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the carbon material. If it is less than 0.1% by mass, the amount of fine graphite particles produced is small and the production efficiency is low. If it exceeds 30% by mass, the amount of the metal material that evaporates or decomposes in the graphitization process is large, and it may cause operational problems such as metal material being deposited at a low temperature in the graphitization furnace. is there. Note that the adhesion amount of the metal material can be measured by a method such as ICP emission spectroscopic analysis.

炭素材料の外表面に、金属材料を分散して付着させる方法の具体例を下記する。
乾式付着法では、炭素材料と金属材料を粉末状で混合する。混合は、機械式(攪拌式)、回転式、風力式などの公知の各種混合機を使用することが好ましい。このような方法によれば、粉末状の金属材料の凝集物を生じないように均一に分散させながら、粉末状の金属材料が炭素材料の外表面に点在するように分散して付着させることができる。また、炭素材料と金属材料とを合わせて粉砕し、混合を兼ねてもよい。
Specific examples of the method for dispersing and attaching the metal material to the outer surface of the carbon material will be described below.
In the dry deposition method, a carbon material and a metal material are mixed in powder form. The mixing is preferably performed using various known mixers such as a mechanical type (stirring type), a rotary type, and a wind type. According to such a method, the powdered metal material is dispersed and adhered so as to be scattered on the outer surface of the carbon material while being uniformly dispersed so as not to form an aggregate of the powdered metal material. Can do. Further, the carbon material and the metal material may be pulverized and mixed together.

湿式付着法においては、まず、炭素材料と金属材料とを分散媒体中で混合する。この場合、金属材料を分散させたコロイド状分散液を使用することが好ましい。混合は、攪拌装置を用いて、炭素材料と金属材料とが均一に分散するまで行うことが好ましい。混合の際に、減圧操作や超音波処理を施して気泡を除き、炭素材料と金属材料との接触を促進することが好ましい。混合後は、前記分散媒体を除去するが、その方法に制限はなく、加熱、減圧などの方法を適宜採用できる。分散媒体は、金属材料のみならず炭素材料をも溶解しない分散媒がより好ましく、水、アルコール、ケトンなどの水性の分散媒体が好ましい。中でも、水は、有機溶剤系の分散媒体よりも乾燥除去時の環境への影響が小さく、安全上、コスト上も有利であり、特に好ましい。   In the wet deposition method, first, a carbon material and a metal material are mixed in a dispersion medium. In this case, it is preferable to use a colloidal dispersion in which a metal material is dispersed. The mixing is preferably performed using a stirrer until the carbon material and the metal material are uniformly dispersed. During mixing, it is preferable to apply a pressure reduction operation or ultrasonic treatment to remove bubbles to promote contact between the carbon material and the metal material. After mixing, the dispersion medium is removed, but the method is not limited, and methods such as heating and decompression can be appropriately employed. The dispersion medium is more preferably a dispersion medium that does not dissolve not only the metal material but also the carbon material, and is preferably an aqueous dispersion medium such as water, alcohol, or ketone. Among these, water is particularly preferable because it has less influence on the environment during drying and removal than the organic solvent-based dispersion medium, and is advantageous in terms of safety and cost.

蒸着法は、金属材料を炭素材料の外表面に、PVD法あるいはCVD法により付着させる。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法などのPVD法や、常圧CVD法、減圧CVD法、プラズマCVD法、MO(Magneto-Optic)CVD法、光CVD法などのCVD法が挙げられるが、スパッタリング法が好ましい。スパッタリング法としては、直流スパックリング法、マグネトロレスパッタリング法、高周波スパッタリング法、反応性スパックリング法、バイアススパッタリング法、イオンビームスパッタリング法などが例示される。
スパッタリング法は、カソード側に金属のターゲットを設置し、一般に1〜10−2Pa程度の不活性ガス雰囲気中で電極間にグロー放電を起こし、不活性ガスをイオン化させ、ターゲットの金属を叩き出して、アノード側に設置した炭素材料に該金属を被覆する方法が、代表例として挙げられる。金属の代わりに金属化合物を用いてもよいし、複数の種類の金属を同時用いて炭素材料の外表面に合金を形成してもよいし、金属と金属化合物とを混合してターゲットとして用いてもよい。さらに、2種類以上のターゲットを用いて、スパッタリングを2回以上行い、複数の金属および/または金属化合物を順に付着させてもよい。また、不活性ガスの代わりに反応性ガスを用いてもよい。
In the vapor deposition method, a metal material is attached to the outer surface of a carbon material by a PVD method or a CVD method. Specifically, PVD methods such as vacuum deposition, sputtering, ion plating, molecular beam epitaxy, atmospheric pressure CVD, reduced pressure CVD, plasma CVD, MO (Magneto-Optic) CVD, optical Although CVD methods, such as CVD method, are mentioned, Sputtering method is preferable. Examples of the sputtering method include a direct current spaccling method, a magnetron sputtering method, a high frequency sputtering method, a reactive spackling method, a bias sputtering method, and an ion beam sputtering method.
In the sputtering method, a metal target is set on the cathode side, and generally a glow discharge is generated between the electrodes in an inert gas atmosphere of about 1 to 10 −2 Pa to ionize the inert gas and knock out the target metal. As a typical example, a method of coating the metal on a carbon material placed on the anode side can be given. A metal compound may be used in place of the metal, an alloy may be formed on the outer surface of the carbon material using a plurality of types of metals simultaneously, or a metal and a metal compound may be mixed and used as a target Also good. Furthermore, sputtering may be performed twice or more using two or more types of targets, and a plurality of metals and / or metal compounds may be attached in order. A reactive gas may be used instead of the inert gas.

(黒鉛化工程)
炭素材料と金属材料との混合物を、金属材料に含まれる金属が蒸発または金属化合物が分解後蒸発する温度以上の温度に加熱して黒鉛化する。黒鉛化は、例えば、アチェソン炉などの高温炉を用いて、加熱して黒鉛化する一般的な方法で実施される。これにより、金属材料中の金属が蒸発または金属化合物が分解後蒸発して実質的に全量除去されるので、生成した黒鉛化物には、金属元素が実質的に残存しない。金属元素の除去と同時に、黒鉛化物の表面の全面にほぼ均一に、球状または擬似球状の隆起物が、図1に示すような分散状態で形成される。黒鉛化された該隆起物(微小黒鉛質粒子)中にも、金属元素は実質的に残存しない。
(Graphitization process)
The mixture of the carbon material and the metal material is graphitized by heating to a temperature equal to or higher than the temperature at which the metal contained in the metal material evaporates or the metal compound decomposes and evaporates. Graphitization is performed by a general method of heating and graphitizing using, for example, a high temperature furnace such as an Acheson furnace. As a result, the metal in the metal material evaporates or the metal compound evaporates and evaporates to substantially remove the entire amount, so that substantially no metal element remains in the generated graphitized material. Simultaneously with the removal of the metal element, spherical or pseudo-spherical ridges are formed in a dispersed state as shown in FIG. 1 almost uniformly on the entire surface of the graphitized material. The metal element does not substantially remain in the graphitized protuberance (micrographitic particles).

金属が蒸発または金属化合物が分解後蒸発する温度は、金属種によって変わることは言うまでもないが、多くの場合、一般的には1500〜3300℃、好ましくは2500〜3300、より好ましくは2800〜3300℃である。1500℃未満では、炭素材料が黒鉛化しないほか、金属材料が残存し、金属材料と光学的等方性を示す炭素との反応や溶解が生じないため、隆起物の形成が不充分である。仮に、隆起物を形成したとしても、該炭素材料を負極材料に用いた場合には、リチウムイオン二次電池の放電容量が不足する。3300℃超では、形成された隆起物(微小黒鉛質粒子)の一部が黒鉛化物の母材から昇華することがあり、微小黒鉛質材料の収率が低下するので好ましくない。該黒鉛化は非酸化性雰囲気で行うことが好ましい。黒鉛化に要する時間は一概には言えないが、1〜20時間程度である。   Needless to say, the temperature at which the metal evaporates or the metal compound evaporates varies depending on the metal species, but in many cases, it is generally 1500 to 3300 ° C, preferably 2500 to 3300 ° C, more preferably 2800 to 3300 ° C. It is. Below 1500 ° C., the carbon material is not graphitized, the metal material remains, and the reaction between the metal material and the optically isotropic carbon does not occur or dissolve, so that the formation of ridges is insufficient. Even if the bumps are formed, the discharge capacity of the lithium ion secondary battery is insufficient when the carbon material is used as the negative electrode material. If it exceeds 3300 ° C., part of the formed ridges (micrographitic particles) may sublime from the base material of the graphitized material, which is not preferable because the yield of the micrographitic material is lowered. The graphitization is preferably performed in a non-oxidizing atmosphere. Although the time required for graphitization cannot be generally stated, it is about 1 to 20 hours.

隆起物は、黒鉛化物の母材の表面に黒鉛化の際に通常生じる、波状の連続した皺とは異なり、個別に点在していることが好ましい。隆起物は皺の上に存在しても差支えない。
隆起物の数は、特に制限されないが、母材表面の100μmあたり2〜20個の密度範囲であることが好ましい。隆起物は、母材表面に偏在することなく、該密度範囲で点在することが好ましい。隆起物の高さは好ましくは2〜15μm、より好ましくは3〜10μmである。
隆起物は、黒鉛化物の母材と一体化しているため、該隆起物の脱離には、外部から機械的エネルギーを付与する必要がある。
なお、本発明でいう母材とは、図2(a)に示すように、金属材料が付着した炭素材料の黒鉛化工程で形成された隆起物が脱落した後の黒鉛化物を言う。
Unlike the wavy continuous wrinkles that normally occur during graphitization, the ridges are preferably scattered individually on the surface of the base material of the graphitized material. Raised objects can be present on the fence.
The number of raised objects is not particularly limited, but is preferably in a density range of 2 to 20 per 100 μm 2 on the surface of the base material. It is preferable that the raised objects are scattered in the density range without being unevenly distributed on the surface of the base material. The height of the protuberance is preferably 2 to 15 μm, more preferably 3 to 10 μm.
Since the raised material is integrated with the base material of the graphitized material, it is necessary to apply mechanical energy from the outside to detach the raised material.
In addition, the base material as used in the field of this invention means the graphitized material after the protruding matter formed in the graphitization process of the carbon material to which the metal material adhered fell off as shown in FIG. 2 (a).

隆起物形成のメカニズムは明確ではないが、以下のように推測される。
温度が比較的に低い黒鉛化の前段階で、溶融した金属材料が光学的等方性を示す炭素材料の炭素と反応し金属炭化物を生成する。あるいは、金属材料が炭素材料の光学的等方性を示す炭素を溶解し固溶体を生成する。その際に、該金属材料は該炭素材料から炭素の供給を受けて、一旦、該金属炭化物の隆起物が生成する。しかし、黒鉛化温度が、該金属炭化物を形成している金属の沸点近傍に上昇すると、該金属炭化物と化学平衡状態にある炭素と金属から金属の蒸発が始まる。その後、昇温に伴い、最終的には該金属の全てが蒸発し、母材と同じ黒鉛化した隆起物が残存する。黒鉛化では約3000℃まで昇温されるが、例えば、該金属材料が鉄の場合は、2800℃近傍で鉄の蒸発が始まるものと推測される。したがって、黒鉛化物の母材は、通常、付着工程で用いられた炭素材料の黒鉛化後の残存部がその大部分を占めることになる。したがって、金属または金属化合物は、炭素材料の外表面に分散して付着させることが好ましい。
The mechanism of ridge formation is not clear, but is presumed as follows.
In the previous stage of graphitization, where the temperature is relatively low, the molten metal material reacts with the carbon of the carbon material exhibiting optical isotropy to produce a metal carbide. Alternatively, the metal material dissolves carbon that exhibits the optical isotropy of the carbon material to generate a solid solution. At this time, the metal material is supplied with carbon from the carbon material, and a bump of the metal carbide is once generated. However, when the graphitization temperature rises to near the boiling point of the metal forming the metal carbide, evaporation of the metal starts from carbon and metal in a chemical equilibrium state with the metal carbide. Thereafter, as the temperature rises, all of the metal eventually evaporates, and the same graphitized raised matter as the base material remains. In graphitization, the temperature is raised to about 3000 ° C. For example, when the metal material is iron, it is estimated that the evaporation of iron starts near 2800 ° C. Therefore, the base material of the graphitized material usually occupies most of the remaining part after graphitization of the carbon material used in the adhesion process. Therefore, the metal or metal compound is preferably dispersed and attached to the outer surface of the carbon material.

黒鉛化の前段階で、金属材料は溶融しており、表面張力によって球状を呈している。この金属材料に光学的等方性を示す炭素が反応または溶解して隆起物が生成するので、隆起物も球状を呈するものと考えられる。
本発明の特徴は、炭素材料として光学的等方性を示すものを原料に用いているが、金属材料の作用によって、黒鉛化後に、光学的異方性を示す隆起物を形成させ、これを脱落させて微小な光学的異方性の黒鉛粒子を得ることにある。
Before the graphitization, the metal material is melted and has a spherical shape due to surface tension. Since the metallic material reacts with or dissolves carbon having optical isotropy to form a raised product, the raised product is considered to have a spherical shape.
A feature of the present invention is that a carbon material that exhibits optical isotropy is used as a raw material, but by the action of a metal material, a protuberance exhibiting optical anisotropy is formed after graphitization. The purpose is to obtain fine graphite particles having a small optical anisotropy.

(隆起物脱落工程)
隆起物を有する黒鉛化物に機械的エネルギーを付与して、該隆起物を脱落させる。脱落した隆起物が微小黒鉛質粒子である。機械的エネルギーを付与するとは、剪断、圧縮、衝突、振動、転動などの各種応力が加わる状態を言う。例えば、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノマイクロス(奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)などの剪断圧縮処理機(メカノケミカル処理機)を用いる処理が挙げられる。機械的エネルギーは、隆起物が脱落すると同時に、母材である黒鉛化物が粉砕されない程度の強さに調整することが好ましい。ハイブリダイゼーションシステム、メカノマイクロス、メカノフュージョンシステムなどを用いるメカノケミカル処理は、隆起物を効率よく脱落させることができ、かつ、母材である黒鉛化物の粉砕を抑制できる、さらに、脱落によって生じた微小黒鉛質粒子の破砕面を磨耗し、より球状化できるので、特に好ましい。隆起物を有する黒鉛化物が板状の場合には、ブラシや布などを使って、隆起物を脱落させることができる。
(Protrusion removal process)
Mechanical energy is imparted to the graphitized material having the protuberance, and the protuberance is dropped. The raised bulges are fine graphite particles. Giving mechanical energy means a state in which various stresses such as shearing, compression, collision, vibration, and rolling are applied. For example, shear compression processors (mechanochemical processing machines) such as hybridization systems (manufactured by Nara Machinery Co., Ltd.), mechanomicros (manufactured by Nara Machinery Co., Ltd.), mechanofusion systems (manufactured by Hosokawa Micron), and nobilta (manufactured by Hosokawa Micron) The process to be used is mentioned. It is preferable to adjust the mechanical energy to such a strength that the raised material falls off and the graphitized material as a base material is not crushed. The mechanochemical treatment using the hybridization system, mechanomicros, mechanofusion system, etc. can efficiently remove the raised material, and can suppress the pulverization of the graphitized material as a base material. This is particularly preferable because the crushing surface of the fine graphite particles can be worn and spheroidized. In the case where the graphitized material having the raised material is plate-like, the raised material can be removed by using a brush or a cloth.

(分離工程)
脱落した隆起物は、必要に応じて、母材から分離され、微小黒鉛質粒子として回収される。該分離は、公知の粒子分離装置、例えば、気流分級機、風力分級機などの乾式分級機、湿式分級機、篩などを使用して実施される。
(Separation process)
The fallen raised matter is separated from the base material and collected as fine graphite particles as necessary. The separation is performed using a known particle separation apparatus, for example, a dry classifier such as an air classifier or an air classifier, a wet classifier, a sieve, or the like.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時には、リチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
負極材料として本発明の微小黒鉛質粒子を用いる場合も、特に限定されることはなく、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
以下、負極、正極、電解質などについて説明する。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is composed of a lithium ion carrier, and during charging, lithium ions are occluded in the negative electrode and discharged. It depends on the battery mechanism that is detached from the negative electrode.
When the fine graphite particles of the present invention are used as the negative electrode material, there is no particular limitation, and other battery components conform to the elements of a general lithium ion secondary battery.
Hereinafter, the negative electrode, the positive electrode, the electrolyte, and the like will be described.

(負極)
リチウムイオン二次電池用の負極の作製は、本発明の微小黒鉛質粒子の電池特性を充分に引き出し、かつ賦型性が高く、化学的、電気化学的に安定な負極を得ることができる成型方法であればいずれによってもよいが、本発明の微小黒鉛質粒子と結合剤を溶剤および/または分散媒(以後、単に溶剤とも称す)中で混合して、ペースト化し、得られた負極合剤ペーストを集電材に塗布した後、溶剤を除去し、プレスなどにより固化および/または賦形する方法によるのが一般的である。すなわち、まず、本発明の微小黒鉛質粒子を分級などにより所望の粒度に調整し、結合剤と混合して得た組成物を溶剤に分散させ、ペースト状にして負極合剤を調製する。
(Negative electrode)
The production of a negative electrode for a lithium ion secondary battery is a molding that can sufficiently draw out the battery characteristics of the micrographitic particles of the present invention and has a high moldability and can provide a chemically and electrochemically stable negative electrode. Any method may be used, but the fine graphite particles of the present invention and a binder are mixed in a solvent and / or a dispersion medium (hereinafter also simply referred to as a solvent) to form a paste, and the resulting negative electrode mixture In general, the paste is applied to the current collector, and then the solvent is removed, followed by solidification and / or shaping by a press or the like. That is, first, the fine graphite particles of the present invention are adjusted to a desired particle size by classification or the like, and a composition obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste.

なお、本発明の微小黒鉛質粒子は、負極材料として用いるにあたり、その特徴を損なわない範囲において、液相、気相、固相における各種化学的処理、熱処理、物理的処理、酸化処理などを施されてもよい。また、本発明の微小黒鉛質粒子は、メソフェーズ小球体の黒鉛化物などの負極活物質と混合して使用することができる。その質量混合比は微小黒鉛質粒子:メソフェーズ小球体の黒鉛化物=5〜70:95〜30である。5質量%未満の場合は、急速充放電特性やサイクル特性の向上効果が小さい。70質量%超の場合は、メソフェーズ小球体の黒鉛化物に由来する長所、すなわち、特に優れた初期充放電効率、優れた負極合剤ペーストの安定性や塗装性などが得られない場合がある。   The fine graphite particles of the present invention are subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, physical treatment, oxidation treatment, etc., as long as the characteristics of the fine graphite particles of the present invention are not impaired. May be. The fine graphite particles of the present invention can be used by mixing with a negative electrode active material such as graphitized mesophase spherules. The mass mixing ratio is fine graphite particles: graphitized mesophase spherules = 5 to 70:95 to 30. When the amount is less than 5% by mass, the effect of improving rapid charge / discharge characteristics and cycle characteristics is small. If it exceeds 70% by mass, the advantages derived from the graphitized mesophase spheroids, that is, particularly excellent initial charge / discharge efficiency, excellent stability of the negative electrode mixture paste, and paintability may not be obtained.

より具体的には、本発明の微小黒鉛質粒子と、例えば、カルボキシメチルセルロース、スチレン−ブタジエンゴムなどの結合剤を、水、アルコールなどの溶剤中で混合して得たスラリー、またはポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末を、イソピロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。   More specifically, a slurry obtained by mixing the fine graphite particles of the present invention and a binder such as carboxymethyl cellulose and styrene-butadiene rubber in a solvent such as water or alcohol, or polytetrafluoroethylene A slurry obtained by mixing a fluorine resin powder such as polyvinylidene fluoride with a solvent such as isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, etc., using a known stirrer, mixer, kneader, kneader, etc. The mixture is stirred and mixed to prepare a negative electrode mixture paste. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、負極合剤層は、本発明の微小黒鉛質粒子と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成形して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電効率が低下することがある。   The negative electrode mixture layer can also be produced by dry-mixing the fine graphite particles of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient strength of the negative electrode, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency of the lithium ion secondary battery may be reduced. .

負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電材との接着強度をさらに高めることができる。
負極に用いる集電材の形状は、特に限定されないが、箔状、メッシュ、エキスパンドメタルなどの網状物などが好ましい。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電材の厚みは、箔状の場合は好ましくは5〜20μmである。
After the negative electrode mixture layer is formed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased by press bonding such as pressurization.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably 5 to 20 μm in the case of a foil.

(正極)
正極は、例えば、正極材料と結合剤および導電剤よりなる正極合剤を集電材の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウムと遷移金属の複合カルコゲン化物、なかでもリチウムと遷移金属の複合酸化物(リチウム含有遷移金属酸化物とも称す)が好ましい。該複合酸化物は、リチウムと2種類以上の遷移金属を固溶したものであってもよい。
リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 X2 (式中Xは0≦X≦1の範囲の数値であり、M1、M2 は少なくとも一種の遷移金属元素である)またはLiM1 2-Y2 Y4 (式中Yは0≦Y≦2の範囲の数値であり、M1 、M2 は少なくとも一種の遷移金属元素である)で示される。Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどである。好ましい具体例は、LiCoO2、LiNiO2 、LiMnO2 、LiNi0.9 Co0.12、LiNi0.5 Co0.52 などである。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material (positive electrode active material) that can occlude / release a sufficient amount of lithium. A composite chalcogenide of lithium and transition metal, in particular, a composite oxide of lithium and transition metal (lithium-containing) (Also referred to as transition metal oxide) is preferred. The composite oxide may be a solid solution of lithium and two or more transition metals.
Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition. A metal element) or LiM 1 2-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 2 and M 1 and M 2 are at least one transition metal element) It is. Transition metal elements represented by M are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, and the like. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.

リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤などの各種添加剤を適宜に使用することができる。
The lithium-containing transition metal oxide is obtained by, for example, using lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, mixing these starting materials, and firing at a temperature of 600 to 1000 ° C. in an oxygen atmosphere. Obtainable.
The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent, can be used suitably.

正極は、正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電材の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物など公知のものが使用される。
集電材の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電材の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
The positive electrode is manufactured by applying a positive electrode mixture made of a positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both surfaces of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known ones such as graphitized materials are used.
The shape of the current collector is not particularly limited, and a foil or mesh or net-like material such as expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電材に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。   Similarly to the negative electrode, the positive electrode mixture may be dispersed in a solvent to form a paste, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After the layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(電解質)
電解質としては、溶媒と電解質塩からなる有機系電解質や、高分子化合物と電解質塩とからなるポリマー電解質などが用いられる。電解質塩としては、例えば、LiPF6 、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3SO22 、LiC(CF3 SO23 、LiN(CF3CH2 OSO22 、LiN(CF3 CF2OSO22 、LiN(HCF2 CF2 CH2OSO22 、LiN[(CF32 CHOSO22 、LiB[C63 (CF324、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4が酸化安定性の点から好ましい。
有機系電解質中の電解質塩濃度は0.1〜5mol /lが好ましく、0.5〜3.0mol/l がより好ましい。
(Electrolytes)
As the electrolyte, an organic electrolyte composed of a solvent and an electrolyte salt, a polymer electrolyte composed of a polymer compound and an electrolyte salt, and the like are used. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 6 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
The electrolyte salt concentration in the organic electrolyte is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3.0 mol / l.

有機系電解質の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   Examples of organic electrolyte solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran. , Γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane , Dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethylsulfate Kishido, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.

非水電解質をポリマー電解質とする場合には、可塑剤(非水溶媒)でゲル化されたマトリクス高分子化合物を含むが、このマトリクス高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系樹脂、ポリメタクリレート系樹脂、ポリアクリレート系樹脂、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独、もしくは混合して用いることができる。 これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いることが好ましい。
ポリマー電解質中の溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。該範囲であると、導電率が高く、機械的強度が強く、フィルム化しやすい。
When a non-aqueous electrolyte is used as a polymer electrolyte, it includes a matrix polymer compound gelled with a plasticizer (non-aqueous solvent). Examples of the matrix polymer compound include ethers such as polyethylene oxide and cross-linked products thereof. Resin, polymethacrylate resin, polyacrylate resin, fluorine resin such as polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymer can be used alone or in combination. Among these, from the viewpoint of oxidation-reduction stability, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
10-90 mass% is preferable and, as for the ratio of the solvent in a polymer electrolyte, 30-80 mass% is more preferable. Within this range, the electrical conductivity is high, the mechanical strength is strong, and a film is easily formed.

ポリマー電解質の作製は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して溶融・溶解する方法が挙げられる。また、混合用有機溶媒に、高分子化合物、リチウム塩、および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。   The production of the polymer electrolyte is not particularly limited, and examples thereof include a method in which a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) are mixed and heated to melt and dissolve. Also, after dissolving the polymer compound, lithium salt, and non-aqueous solvent in the mixing organic solvent, the method of evaporating the mixing organic solvent, mixing the polymerizable monomer, lithium salt and non-aqueous solvent, ultraviolet rays, Examples thereof include a method of polymerizing a polymerizable monomer by irradiation with an electron beam or a molecular beam to obtain a polymer.

リチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
リチウムイオン二次電池においては、ゲル電解質を用いることも可能である。
In the lithium ion secondary battery, a separator can also be used.
Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
In the lithium ion secondary battery, it is also possible to use a gel electrolyte.

ポリマー電解質を用いたリチウムイオン二次電池は、一般にポリマー電池と呼ばれ、本発明の微小黒鉛質粒子を用いてなる負極と、正極およびポリマー電解質から構成される。例えば、負極、ポリマー電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にポリマー電解質を配するようにしてもよい。   A lithium ion secondary battery using a polymer electrolyte is generally called a polymer battery, and is composed of a negative electrode using the fine graphite particles of the present invention, a positive electrode, and a polymer electrolyte. For example, the negative electrode, the polymer electrolyte, and the positive electrode are laminated in this order, and are housed in a battery outer packaging material. In addition to this, a polymer electrolyte may be further arranged outside the negative electrode and the positive electrode.

さらに、リチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解質電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。ポリマー電解質を用いたポリマー電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Further, the structure of the lithium ion secondary battery is arbitrary, and the shape and form thereof are not particularly limited, and can be arbitrarily selected from a cylindrical shape, a square shape, a coin shape, a button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer battery using a polymer electrolyte, a structure enclosed in a laminate film can also be used.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図3に示すような構成の評価用のボタン型二次電池を作製して電池特性を評価した。該電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following examples and comparative examples, a button-type secondary battery for evaluation having a configuration as shown in FIG. 3 was produced and battery characteristics were evaluated. The battery can be produced according to a known method based on the object of the present invention.

なお以下の実施例および比較例において、炭素材料および微小黒鉛質粒子の物性は以下の方法により測定した。
炭素材料および微小黒鉛質粒子のアスペクト比は、走査型電子顕微鏡観察にて、その形状を確認できる倍率により50個について測定した、長辺長とそれに直交する短辺長の平均値の比である。
炭素材料および微小黒鉛質粒子の体積換算の平均粒子径は、レーザー回折式粒度分布計により測定した粒度分布の累積度数が体積百分率で50%となる粒子径である。
微小黒鉛質粒子のラマンスペクトル比I/Iは、前述した方法および条件により求めた。
微小黒鉛質粒子の格子面間隔d002 は、前述したX線回折法により求めた。
微小黒鉛質粒子の破砕面のエッジ面の露出率は前述した方法により求めた。
In the following examples and comparative examples, the physical properties of the carbon material and the fine graphite particles were measured by the following methods.
The aspect ratio of the carbon material and the fine graphite particles is a ratio of the average value of the long side length and the short side length orthogonal to the long side length measured with a magnification capable of confirming the shape by observation with a scanning electron microscope. .
The volume-converted average particle size of the carbon material and the fine graphite particles is a particle size at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume.
Raman spectrum ratio I P / I G of the fine graphite particles was determined by the method and conditions described above.
The lattice spacing d 002 of the fine graphite particles was determined by the X-ray diffraction method described above.
The exposure rate of the edge surface of the crushed surface of the fine graphite particles was determined by the method described above.

(実施例1)
(炭素材料の調製)
コールタールピッチを窒素雰囲気中450℃で熱処理し、メソフェーズ小球体を生成させた。その後、タール中油を用いて、コールタールピッチからピッチマトリックスを抽出し、さらにタール中油からメソフェーズ小球体を分離し、乾燥して、球状のメソフェーズ小球体(平均粒子径25μm)を得た。該小球体を窒素雰囲気下600℃で3時間熱処理して、球状の焼成物を調製した。該焼成物の断面を偏光顕微鏡で観察した結果、焼成物表面に薄膜状の光学的等方性相(厚さ約0.5μm)が形成されており、焼成物内部は光学的異方性相を示していた。
Example 1
(Preparation of carbon material)
The coal tar pitch was heat-treated at 450 ° C. in a nitrogen atmosphere to generate mesophase spherules. Thereafter, the pitch matrix was extracted from the coal tar pitch using tar oil, and the mesophase spherules were further separated from the tar oil and dried to obtain spherical mesophase spherules (average particle size 25 μm). The small spheres were heat-treated at 600 ° C. for 3 hours under a nitrogen atmosphere to prepare spherical fired products. As a result of observing the cross section of the fired product with a polarizing microscope, a thin-film optically isotropic phase (thickness of about 0.5 μm) is formed on the surface of the fired product, and the inside of the fired product is an optically anisotropic phase. Was showing.

(微小黒鉛質粒子の調製)
前記焼成物92質量部に、ニッケル粉末(平均粒子径0.21μm)8質量部を加え、ヘンシェルミキサー(三井鉱山社製)を用いて混合した。該混合物をコークスブリーズで囲み、非酸化性雰囲気下3150℃で5時間熱処理して、該焼成物を黒鉛化した。得られた黒鉛化物は、微小な隆起物を外表面に有するメソフェーズ小球体の黒鉛化物であり、平均粒子径は26μmであった(図1)。
該黒鉛化物をメカノフュージョンシステム(ホソカワミクロン社製)に投入し、ローター周速20m/sで30分間運転し、隆起物を脱落させた。生成物の粒度分布を測定したところ、8μmと25μmに二つの粒度ピークが確認された。引続き、風力分級機で、微粉(微小黒鉛質粒子)と粗粉(黒鉛化物の母材)に分離した。微粉[平均粒子径8μm、図2(b)]が18質量部で、粗粉[平均粒子径25μm、図2(a)]が82質量部であった。
(Preparation of fine graphite particles)
To 92 parts by mass of the fired product, 8 parts by mass of nickel powder (average particle size 0.21 μm) was added and mixed using a Henschel mixer (Mitsui Mining Co., Ltd.). The mixture was surrounded by coke breeze and heat-treated at 3150 ° C. for 5 hours in a non-oxidizing atmosphere to graphitize the fired product. The obtained graphitized material was a graphitized material of mesophase spherules having fine ridges on the outer surface, and the average particle size was 26 μm (FIG. 1).
The graphitized product was put into a mechano-fusion system (manufactured by Hosokawa Micron Corporation) and operated at a rotor peripheral speed of 20 m / s for 30 minutes to drop off the raised matter. When the particle size distribution of the product was measured, two particle size peaks were confirmed at 8 μm and 25 μm. Subsequently, it was separated into fine powder (fine graphite particles) and coarse powder (graphite base material) with an air classifier. Fine powder [average particle diameter 8 μm, FIG. 2 (b)] was 18 parts by mass, and coarse powder [average particle diameter 25 μm, FIG. 2 (a)] was 82 parts by mass.

前記微粉は、X線広角回折における(002)面の平均格子面間隔d002が0.3356nm、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおけるI/Iが0.13であった。該微粉を走査型電子顕微鏡で観察すると、ほぼ真球に近い球状であった。該微粉50個について、粒子外観から平均アスペクト比を算出すると1.2であった。また、偏光顕微鏡で粒子断面を観察すると、全領域が光学的異方性相であった。さらに、無作為に測定した5個について、断面を透過型電子顕微鏡で観察し、微粉の外表面の結晶構造を観察した結果、ほぼ全周囲が黒鉛のベーサル面で覆われ、黒鉛のエッジ面の露出領域は約5%であった。 The fine powder, average lattice spacing d 002 of (002) plane in the X-ray wide angle diffraction 0.3356nm, I P / I G in the Raman spectrum using argon laser beam having a wavelength of 514.5nm is 0.13 met It was. When the fine powder was observed with a scanning electron microscope, it was almost spherical. When the average aspect ratio of the 50 fine powders was calculated from the particle appearance, it was 1.2. Moreover, when the particle | grain cross section was observed with the polarization microscope, all the areas were optically anisotropic phases. Furthermore, as a result of observing the cross section of the five measured at random with a transmission electron microscope and observing the crystal structure of the outer surface of the fine powder, almost the entire periphery was covered with the basal surface of graphite. The exposed area was about 5%.

(負極合剤)
前記微小黒鉛質粒子98質量部、結合剤カルボキシメチルセルロース1質量部およびスチレン−ブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
(Negative electrode mixture)
98 parts by mass of the fine graphite particles, 1 part by mass of the binder carboxymethyl cellulose and 1 part by mass of styrene-butadiene rubber were put in water and stirred to prepare a negative electrode mixture paste.

(作用電極の作製)
前記負極合剤ペーストを、銅箔上に均一な厚さで塗布し、さらに真空中で90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をローラープレスによって加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔からなる集電材(厚み16μm)に密着した負極合剤層(厚み60μm、密度1.72g/cm)からなる作用電極12を作製した。
電極密度の測定は次のように行った。作用電極の端部、中央部の計5箇所について、接触部が直径5mmの鏡面であるマイクロメーターを用いて平均厚みを計測し、銅箔の厚みを減じて負極合剤の厚みを求めた。次に、作用電極の質量から同一サイズの銅箔の質量を減じて負極合剤の質量を求めた。次式(1)から電極密度を算出した。
電極密度(g/cm)=負極合剤層の質量/(負極合剤層の厚み×電極面積) (1)
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, and further dried by evaporating the water of the dispersion medium at 90 ° C. in vacuum. Next, the negative electrode mixture applied on the copper foil is pressed by a roller press, and further punched into a circular shape having a diameter of 15.5 mm, thereby adhering to the current collector made of copper foil (thickness 16 μm). A working electrode 12 composed of an agent layer (thickness 60 μm, density 1.72 g / cm 3 ) was produced.
The electrode density was measured as follows. The average thickness was measured using a micrometer whose contact portion was a mirror surface having a diameter of 5 mm, and the thickness of the negative electrode mixture was determined by reducing the thickness of the copper foil. Next, the mass of the negative electrode mixture was determined by subtracting the mass of the copper foil of the same size from the mass of the working electrode. The electrode density was calculated from the following formula (1).
Electrode density (g / cm 3 ) = mass of negative electrode mixture layer / (thickness of negative electrode mixture layer × electrode area) (1)

(対極の作製)
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電材と、該集電材に密着したリチウム金属箔(厚み0.5μm)からなる対極を作製した。
(Production of counter electrode)
Lithium metal foil is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm to produce a current collector made of nickel net and a counter electrode made of lithium metal foil (thickness 0.5 μm) in close contact with the current collector did.

(電解質・セパレータ)
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解質をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解質が含浸されたセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained non-aqueous electrolyte was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolyte.

(評価電池の作製)
評価電池として図3に示すボタン型二次電池を作製した。
集電体7bに密着した作用電極2と集電体7aに密着した対極4との間に、電解質を含浸させたセパレータ5を挟んで、積層した。その後、作用電極の集電体7b側が外装カップ1内に、対極の集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。
(Production of evaluation battery)
A button-type secondary battery shown in FIG. 3 was produced as an evaluation battery.
The separator 5 impregnated with an electrolyte was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a. Thereafter, the exterior cup 1 and the exterior can 3 were combined so that the collector 7 b side of the working electrode was accommodated in the exterior cup 1 and the collector 7 a side of the counter electrode was accommodated in the exterior can 3. In that case, the insulating gasket 6 was interposed in the peripheral part of the exterior cup 1 and the exterior can 3, and both peripheral parts were crimped and sealed.

前記のように作製した評価電池について、25℃の温度下で以下に示すような充放電試験を行い、放電容量、初期充放電効率、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表2に示した。
(放電容量、初期充放電効率)
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式(2)から初期充放電効率を計算した。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100 (2)
なおこの試験では、リチウムイオンを黒鉛質材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
The evaluation battery produced as described above was subjected to a charge / discharge test as shown below at a temperature of 25 ° C. to evaluate the discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics. The evaluation results are shown in Table 2.
(Discharge capacity, initial charge / discharge efficiency)
After 0.9 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation (2).
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100 (2)
In this test, the process of occluding lithium ions in the graphite material was charged, and the process of detaching from the negative electrode material was discharge.

(急速充電率)
引き続き、第2サイクルにて高速充電を行なった。
電流値を第1サイクルの4倍の3.6mAとして、回路電圧が0mVに達するまで定電流充電を行い、充電容量を求め、次式(3)から急速充電率を計算した。
急速充電率=(第3サイクルにおける定電流充電容量/第1サイクルにおける
放電容量)×100 (3)
(Rapid charge rate)
Subsequently, high-speed charging was performed in the second cycle.
Constant current charging was performed until the circuit voltage reached 0 mV, the current value was set to 3.6 mA, which is four times the first cycle, the charging capacity was obtained, and the rapid charging rate was calculated from the following equation (3).
Rapid charge rate = (constant current charge capacity in the third cycle / in the first cycle
Discharge capacity) x 100 (3)

(急速放電率)
前記第2サイクルの定電流充電に引き続き、第3サイクルにて、高速放電を行った。第1サイクルと同様にして定電圧充電に切替え、満充電した後、電流値を第1サイクルの16倍の14.4mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。得られた放電容量から、次式(4)により急速放電率を計算した。
急速放電率=(第2サイクルにおける放電容量/第1サイクルにおける放電容量
)×100 (4)
なお、急速充電率と急速放電率の性能をまとめて、急速充放電特性と称することもある。
(Rapid discharge rate)
Following the constant current charging in the second cycle, high-speed discharge was performed in the third cycle. After switching to constant voltage charging in the same way as in the first cycle and fully charging, constant current discharge was performed until the circuit voltage reached 1.5 V, with the current value being 14.4 mA, 16 times that of the first cycle. From the obtained discharge capacity, the rapid discharge rate was calculated by the following equation (4).
Rapid discharge rate = (discharge capacity in the second cycle / discharge capacity in the first cycle
) × 100 (4)
Note that the performance of the rapid charge rate and the rapid discharge rate may be collectively referred to as rapid charge / discharge characteristics.

(サイクル特性)
放電容量、初期充放電効率、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行なった。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰返し、得られた放電容量から、次式(5)を用いてサイクル特性を計算した。
サイクル特性=(第20サイクルにおける放電容量/第1サイクルにおける放電
容量)×100 (5)
(Cycle characteristics)
An evaluation battery different from the evaluation battery that evaluated the discharge capacity, initial charge / discharge efficiency, rapid charge rate, and rapid discharge rate was produced and evaluated as follows.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation (5).
Cycle characteristics = (discharge capacity in the 20th cycle / discharge in the first cycle)
Capacity) x 100 (5)

表2に示すように、作用電極に実施例1の負極材料を用いて得られる評価電池は、高い負極密度において、高い放電容量を示し、かつ、高い初期充放電効率を示す。さらに、優れた急速充放電特性および優れたサイクル特性を示す。   As shown in Table 2, the evaluation battery obtained using the negative electrode material of Example 1 as the working electrode exhibits a high discharge capacity and a high initial charge / discharge efficiency at a high negative electrode density. Furthermore, it exhibits excellent rapid charge / discharge characteristics and excellent cycle characteristics.

(比較例1)
実施例1において、炭素材料にニッケル粉末を混合することなく、炭素材料をそのまま黒鉛化する以外は、実施例1と同様な方法と条件で、実施例1を繰返して、隆起物がないメソフェーズ小球体の黒鉛化物を得た。該黒鉛化物の平均粒子径は25μm、d002は0.3360nm、I/Iは0.12であった。該黒鉛化物は、ほぼ真球に近い球状であり、50個の平均アスペクト比は1.1であった。
該黒鉛化物を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、メソフェーズ小球体の黒鉛化物を単独で負極材料として用いた場合には、放電容量、急速充放電特性やサイクル特性が低いものとなる。
(Comparative Example 1)
In Example 1, except that the carbon material is graphitized as it is without mixing nickel powder in the carbon material, Example 1 is repeated with the same method and conditions as in Example 1, and a small mesophase with no raised matter is obtained. A spherical graphitized product was obtained. The average particle diameter of the graphitized product was 25 μm, d 002 was 0.3360 nm, and I P / I G was 0.12. The graphitized material was almost spherical and had an average aspect ratio of 1.1.
Using the graphitized product, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when the graphitized mesophase spherule is used alone as the negative electrode material for the working electrode, the discharge capacity, rapid charge / discharge characteristics, and cycle characteristics are low.

(実施例2)
実施例1において、黒鉛化物の母材から隆起物を脱落させるが、その後、風力分級機による微粉と粗粉との分離を行うことなく、微粉と粗粉との混合物をそのまま、負極合剤ペーストに使用すること以外は、実施例1の方法と条件で負極材料を得た。該負極材料を用いて、実施例1と同様な方法と条件で評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、微小黒鉛質粒子と黒鉛化物の母材を併用して得た負極材料を用いた場合には、黒鉛化物の母材を単独仕様して得た負極材料を用いた場合に比べ、初期充放電効率が向上している。
(Example 2)
In Example 1, the raised material is dropped from the base material of the graphitized material, and then the mixture of the fine powder and the coarse powder is left as it is without separating the fine powder and the coarse powder by an air classifier, and the negative electrode mixture paste. A negative electrode material was obtained according to the method and conditions of Example 1 except that it was used in Using the negative electrode material, an evaluation battery was produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when a negative electrode material obtained by using a combination of fine graphite particles and a graphitized base material is used for the working electrode, the negative electrode obtained by independently specifying the base material of the graphitized material Compared with the case of using a material, the initial charge / discharge efficiency is improved.

(実施例3)
(炭素材料の調製)
コークス粒子(平均粒子径15μm)90質量部、フェノール樹脂(残炭率40質量%)25質量部、およびエタノール30質量部を、二軸型ニーダーに投入して、常温で1時間混練した後、真空中150℃で30分間混練してエタノールを除去した。混練生成物を非酸化性雰囲気中300℃で一次焼成を行い、その後1300℃で二次焼成を行った。焼成生成物をハンマーミルで解砕し、炭素質で被覆された塊状のコークス粒子を得た。
該コークス粒子の断面の偏光顕微鏡による観察では、該粒子の表面に光学的等方性相が約1μmの厚みで形成されており、粒子内部は光学的異方性相を示していた。
(Example 3)
(Preparation of carbon material)
Coke particles (average particle size 15 μm) 90 parts by mass, phenol resin (residual carbon ratio 40% by mass) 25 parts by mass, and ethanol 30 parts by mass were put into a biaxial kneader and kneaded at room temperature for 1 hour. The ethanol was removed by kneading in vacuum at 150 ° C. for 30 minutes. The kneaded product was primarily fired at 300 ° C. in a non-oxidizing atmosphere, and then secondary fired at 1300 ° C. The fired product was crushed with a hammer mill to obtain massive coke particles coated with carbonaceous material.
When the cross section of the coke particles was observed with a polarizing microscope, an optically isotropic phase was formed with a thickness of about 1 μm on the surface of the particles, and the inside of the particles showed an optically anisotropic phase.

(微小黒鉛質粒子の調製)
前記炭素被覆コークス粒子90質量部に、酸化鉄粉末(平均粒子径0.30μm)10質量部を加え、ヘンシェルミキサー(三井鉱山社製)を用いて混合した。該混合物をコークスブリーズで囲み、非酸化性雰囲気下3150℃で5時間熱処理して、該焼成物を黒鉛化した。得られた黒鉛化物は、微小な隆起物を外表面に有する被覆コークス粒子の黒鉛化物であり、平均粒子径は17μmであった。酸化鉄は、黒鉛化時に鉄に還元され、その後、炭化鉄となり、隆起物を形成すると考えられる。その後、炭化鉄の鉄元素が蒸発する。
該黒鉛化物をメカノフュージョンシステム(ホソカワミクロン社製)に投入し、ローター周速20m/sで30分間運転し、隆起物を脱落させた。生成物の粒度分布を測定したところ、5μmと15μmに二つの粒度ピークが確認された。引続き、風力分級機で、微粉(微小黒鉛質粒子)と粗粉(黒鉛化物の母材)に分離した。微粉(平均粒子径5μm)が25質量部で、粗粉(平均粒子径15μm)が75質量部であった。
(Preparation of fine graphite particles)
10 parts by mass of iron oxide powder (average particle size 0.30 μm) was added to 90 parts by mass of the carbon-coated coke particles, and mixed using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). The mixture was surrounded by coke breeze and heat-treated at 3150 ° C. for 5 hours in a non-oxidizing atmosphere to graphitize the fired product. The obtained graphitized material was a graphitized material of coated coke particles having fine protrusions on the outer surface, and the average particle size was 17 μm. It is considered that iron oxide is reduced to iron during graphitization, and then becomes iron carbide to form a protuberance. Thereafter, the iron element of the iron carbide evaporates.
The graphitized product was put into a mechano-fusion system (manufactured by Hosokawa Micron Corporation) and operated at a rotor peripheral speed of 20 m / s for 30 minutes to drop off the raised matter. When the particle size distribution of the product was measured, two particle size peaks were confirmed at 5 μm and 15 μm. Subsequently, it was separated into fine powder (fine graphite particles) and coarse powder (graphite base material) with an air classifier. The fine powder (average particle diameter 5 μm) was 25 parts by mass, and the coarse powder (average particle diameter 15 μm) was 75 parts by mass.

前記微粉は、X線広角回折における(002)面の平均格子面間隔d002が0.3358nm、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおけるI/Iが0.14であった。該微粉を走査型電子顕微鏡で観察すると、ほぼ真球に近い球状であった。該微粉50個について、外観から平均アスペクト比を算出すると1.2であった。また、偏光顕微鏡で断面観察すると、全領域が光学的異方性相であった。さらに、無作為に測定した5個について、断面を透過型電子顕微鏡で観察し、微粉の外表面の結晶構造を観察した結果、ほぼ全周囲が黒鉛のベーサル面で覆われ、黒鉛のエッジ面の露出領域は約7%であった。 The fine powder, average lattice spacing d 002 of (002) plane in the X-ray wide angle diffraction 0.3358nm, I P / I G in the Raman spectrum using argon laser beam having a wavelength of 514.5nm is 0.14 met It was. When the fine powder was observed with a scanning electron microscope, it was almost spherical. The average aspect ratio calculated from the appearance of the 50 fine powders was 1.2. Further, when the cross section was observed with a polarizing microscope, the entire region was an optically anisotropic phase. Furthermore, as a result of observing the cross section of the five measured at random with a transmission electron microscope and observing the crystal structure of the outer surface of the fine powder, almost the entire periphery was covered with the basal surface of graphite. The exposed area was about 7%.

該黒鉛化物を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、微小黒鉛質粒子を用いて負極材料とした場合には、高い負極密度においても、放電容量、初期充放電効率、急速充放電特性およびサイクル特性が優れている。
Using the graphitized product, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when the negative electrode material is made of fine graphite particles for the working electrode, the discharge capacity, initial charge / discharge efficiency, rapid charge / discharge characteristics and cycle characteristics are excellent even at a high negative electrode density. ing.

(実施例4)
(微小黒鉛質粒子の調製)
鉄に換算して5質量%の濃度に相当する塩化第二鉄水溶液(酸性)100質量部に、実施例1のメソフェーズ小球体焼成物100質量部を加えた後、水酸化ナトリウム水溶液を添加してpH7まで中和した。これにより、水酸化鉄FeO(OH)の懸濁液に、メソフェーズ小球体焼成物が分散した分散液が得られた。該分散液を100℃に加熱して水を除去し、さらに150℃で5時間真空乾燥して水を完全に除去して、水酸化鉄が表面に点在したメソフェーズ小球体焼成物を得た。
得られた焼成物の外観を走査型電子顕微鏡で観察したところ、粒状および針状の水酸化鉄が点在していた。また、点在している水酸化鉄50個について、走査型電子顕微鏡を用いて、それぞれの長軸長を測定した結果の平均値は0.5μmであった。
Example 4
(Preparation of fine graphite particles)
After adding 100 parts by mass of the calcined mesophase spherules of Example 1 to 100 parts by mass of ferric chloride aqueous solution (acidic) corresponding to a concentration of 5% by mass in terms of iron, an aqueous sodium hydroxide solution was added. Neutralized to pH 7. As a result, a dispersion liquid in which the mesophase microsphere fired product was dispersed in a suspension of iron hydroxide FeO (OH) was obtained. The dispersion was heated to 100 ° C. to remove water, and further vacuum-dried at 150 ° C. for 5 hours to completely remove water to obtain a mesophase spheroid fired product in which iron hydroxide was scattered on the surface. .
When the appearance of the obtained fired product was observed with a scanning electron microscope, granular and needle-like iron hydroxides were scattered. Moreover, about the 50 iron hydroxide scattered, the average value of the result of having measured each major-axis length using the scanning electron microscope was 0.5 micrometer.

次いで、該メソフェーズ小球体焼成物をコークスブリーズで囲み、非酸化性雰囲気下3150℃で5時間熱処理して、該焼成物を黒鉛化した。得られた黒鉛化物は、微小な隆起物を外表面に有する被覆コークス粒子の黒鉛化物であり、平均粒子径は27μmであった。なお、水酸化鉄は、黒鉛化時に鉄に還元され、その後、炭化鉄となり、隆起物を形成すると考えられる。その後、炭化鉄の鉄元素が蒸発する。
実施例1と同様な方法と条件で、隆起物を脱落、分離し、分離した微粉を負極材料とし、実施例1と同様な方法と条件で評価電池を作製し、充放電試験を行った。電池特性の結果を表2に示した。
表2から明らかなように、作用電極に、湿式で水酸化鉄を付着させて得た微小黒鉛質粒子を負極材料を用いた場合、高い負極密度においても、放電容量、初期充放電効率、急速充放電特性およびサイクル特性が優れている。
Next, the mesophase small sphere fired product was surrounded by coke breeze and heat treated at 3150 ° C. for 5 hours in a non-oxidizing atmosphere to graphitize the fired product. The obtained graphitized product was a graphitized product of coated coke particles having fine protrusions on the outer surface, and the average particle size was 27 μm. In addition, it is thought that iron hydroxide is reduced to iron during graphitization, and then becomes iron carbide to form a raised product. Thereafter, the iron element of the iron carbide evaporates.
Using the same method and conditions as in Example 1, the protuberances were dropped and separated, and the separated fine powder was used as the negative electrode material, and an evaluation battery was produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when the negative electrode material is made of fine graphite particles obtained by attaching iron hydroxide to the working electrode in a wet manner, the discharge capacity, initial charge / discharge efficiency, and rapidity are increased even at a high negative electrode density. Excellent charge / discharge characteristics and cycle characteristics.

(実施例5)
実施例1のメソフェーズ小球体焼成物をDC二極スパッタリング装置のアノード側ステージに配置し、カソード側に99.999質量%純度の単結晶コバルトターゲットを配置して、アノード側ステージには、超音波振動子を取付け、メソフェーズ小球体焼成物に振動を付与しながら、圧力0.5Pa、電圧600V、電流0.5Aの条件でスパッタリングを3時間行い、コバルトが表面に点在したメソフェーズ小球体焼成物を得た。得られた焼成物について、ICP発光分光分析装置でコバルトを定量分析し、7質量%含有していることを確認した。
また、走査型電子顕微鏡による観察で、粒状のコバルトが点在している状況が確認された。点在するコバルト50個の各最大長を計測したが、平均値は0.3μmであった。
(Example 5)
The mesophase microsphere fired product of Example 1 was placed on the anode side stage of a DC bipolar sputtering apparatus, a 99.999 mass% pure single crystal cobalt target was placed on the cathode side, and an ultrasonic wave was placed on the anode side stage. Sputtered for 3 hours under conditions of pressure of 0.5 Pa, voltage of 600 V, and current of 0.5 A while attaching a vibrator and applying vibration to the mesophase small sphere fired product, and mesophase small sphere fired product in which cobalt is scattered on the surface. Got. About the obtained baked product, cobalt was quantitatively analyzed with an ICP emission spectroscopic analyzer, and it was confirmed that 7 mass% was contained.
In addition, observation with a scanning electron microscope confirmed the situation where granular cobalt was scattered. Each maximum length of 50 interspersed cobalt was measured, and the average value was 0.3 μm.

次いで、該メソフェーズ小球体焼成物をコークスブリーズで囲み、非酸化性雰囲気下3150℃で5時間熱処理して、該焼成物を黒鉛化した。得られた黒鉛化物は、微小な隆起物を外表面に有するメソフェーズ小球体の黒鉛化物であり、平均粒子径は25μmであった。
実施例1と同様な方法と条件で、隆起物を脱落させた。その後、風力分級機による微粉と粗粉との分離を行うことなく、微粉と粗粉の混合物をそのまま、負極合剤ペーストに使用すること以外は、実施例1と同様な方法と条件で負極材料を作製し、さらに評価電池を作製し、充放電試験を行った。電池特性の結果を表2に示した。
表2から明らかなように、作用電極に、スパッタリング法でコバルトを付着させて得た微小黒鉛質粒子を負極材料を用いた場合、高い負極密度においても、放電容量、初期充放電効率、急速充放電特性およびサイクル特性が優れている。
Next, the mesophase small sphere fired product was surrounded by coke breeze and heat treated at 3150 ° C. for 5 hours in a non-oxidizing atmosphere to graphitize the fired product. The obtained graphitized material was a mesophase spheroidized graphitized material having minute protrusions on the outer surface, and the average particle size was 25 μm.
Using the same method and conditions as in Example 1, the raised matter was dropped. Thereafter, the negative electrode material was subjected to the same method and conditions as in Example 1 except that the mixture of fine powder and coarse powder was used as it was for the negative electrode mixture paste without separating fine powder and coarse powder with an air classifier. Then, an evaluation battery was prepared and a charge / discharge test was performed. The results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when the negative electrode material is made of fine graphite particles obtained by adhering cobalt to the working electrode by sputtering, the discharge capacity, initial charge / discharge efficiency, and rapid charge are increased even at a high negative electrode density. Excellent discharge and cycle characteristics.

(比較例2)
(炭素材料の調製)
鱗片状天然黒鉛(平均粒子径10μm)をカウンタジェットミル(ホソカワミクロン社製:型式200AFG)を用いて、空気圧300kPaで1時間、機内を循環させて転動させ、球状の造粒黒鉛を得た。該造粒黒鉛の平均粒子径8μm、X線広角回折における(002)面の平均格子面間隔d002が0.3356nm、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおけるI/Iが0.11であった。
該造粒黒鉛を走査型電子顕微鏡で観察すると、ほぼ真球に近い球状であった。該微粉50個について、外観から平均アスペクト比を算出すると1.2であった。また、走査型電子顕微鏡で断面観察すると、同心円状に複数の天然黒鉛が凝集している状態が確認された 該造粒黒鉛を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、造粒黒鉛を用いて負極材料とした場合には、放電容量が高いものの、高い負極密度では、急速充放電特性およびサイクル特性が著しく低い。
(Comparative Example 2)
(Preparation of carbon material)
The scale-like natural graphite (average particle diameter 10 μm) was circulated and circulated in the apparatus for 1 hour at an air pressure of 300 kPa using a counter jet mill (manufactured by Hosokawa Micron Corporation: model 200AFG) to obtain spherical granulated graphite. I P / I G in a Raman spectrum using an argon laser beam having an average particle diameter of 8 μm, a (002) plane average lattice spacing d 002 of 0.3356 nm, and a wavelength of 514.5 nm in X-ray wide angle diffraction. Was 0.11.
When the granulated graphite was observed with a scanning electron microscope, it was almost spherical. The average aspect ratio calculated from the appearance of the 50 fine powders was 1.2. In addition, when a cross-section was observed with a scanning electron microscope, it was confirmed that a plurality of natural graphite aggregated concentrically. Using the granulated graphite, the working electrode and the same conditions as in Example 1 were used. An evaluation battery was prepared and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As is apparent from Table 2, when the negative electrode material is made of granulated graphite as the working electrode, the discharge capacity is high, but the rapid charge / discharge characteristics and the cycle characteristics are remarkably low at a high negative electrode density.

(比較例3)
比較例2で得た造粒黒鉛90質量部と、石油系タール(残炭率35%)30質量部を二軸ニーダーに投入し、150℃で1時間混練した。混練生成物を窒素雰囲気中、700℃で一次焼成し、その後、1300℃で二次焼成した。焼成生成物をハンマーミルで解砕し、炭素質で被覆された造粒黒鉛を得た。該被覆造粒黒鉛の平均粒子径は10μm、X線広角回折における(002)面の平均格子面間隔d002が0.3361nm、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおけるI/Iが0.33であった。該被覆造粒黒鉛を走査型電子顕微鏡で観察すると、球状をほぼ維持した造粒黒鉛の表面に石油系タールの焼成物が膜状に付着していた。該被覆造粒黒鉛50個について、外観から平均アスペクト比を算出すると1.3であった。
該被覆造粒黒鉛を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、炭素質で被覆した造粒黒鉛を用いて負極材料とした場合には、放電容量が不足し、高い負極密度では、急速充放電特性およびサイクル特性が低い。
(Comparative Example 3)
90 parts by mass of the granulated graphite obtained in Comparative Example 2 and 30 parts by mass of petroleum-based tar (residual carbon ratio 35%) were charged into a biaxial kneader and kneaded at 150 ° C. for 1 hour. The kneaded product was primarily fired at 700 ° C. in a nitrogen atmosphere, and then secondary fired at 1300 ° C. The fired product was crushed with a hammer mill to obtain granulated graphite coated with carbonaceous material. The average particle diameter of the coated granulated graphite is 10 μm, the average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is 0.3361 nm, and I P / in Raman spectrum using an argon laser beam having a wavelength of 514.5 nm. I G was 0.33. When the coated granulated graphite was observed with a scanning electron microscope, a fired product of petroleum-based tar adhered to the surface of the granulated graphite, which was almost spherical in shape, in the form of a film. The average aspect ratio of the 50 coated granulated graphites calculated from the appearance was 1.3.
Using the coated granulated graphite, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As can be seen from Table 2, when the working electrode is made of carbonized granulated graphite and used as a negative electrode material, the discharge capacity is insufficient, and at a high negative electrode density, rapid charge / discharge characteristics and cycle characteristics are not obtained. Low.

(比較例4)
コルタールピッチを非酸化性雰囲気中、600℃で焼成してバルクメソフェーズ焼成物を得、該焼成生成物をジェットミルで粉砕して、平均粒子径5μmの焼成物粒子に調整した。該焼成物粒子を非酸化性雰囲気中、3200℃で5時間熱処理して黒鉛化した。得られた黒鉛化物の平均粒子径は5μm、X線広角回折における(002)面の平均格子面間隔d002が0.3362nm、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおけるI/Iが0.25であった。該黒鉛化物を走査型電子顕微鏡で観察すると、一部鱗片状を含む塊状であった。50個について、断面を走査型電子顕微鏡で観察し、粒子の外表面の結晶構造を観察した結果、黒鉛のエッジ面の露出領域は約40%であった。
該黒鉛化物を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製し、充放電試験を行った。電池特性の評価結果を表2に示した。
表2から明らかなように、作用電極に、破砕面に占める割合が大きく、I/Iが0.2以上で、平均アスペクト比が2.0を超える黒鉛粒子を用いて負極材料とした場合には、放電容量、初期充放電効率、急速充放電特性およびサイクル特性のいずれもが低い。
(Comparative Example 4)
Coltar pitch was calcined at 600 ° C. in a non-oxidizing atmosphere to obtain a calcined bulk mesophase, and the calcined product was pulverized with a jet mill to prepare calcined particles having an average particle diameter of 5 μm. The fired particles were graphitized by heat treatment at 3200 ° C. for 5 hours in a non-oxidizing atmosphere. The average particle diameter of the obtained graphitized material is 5 μm, the average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is 0.3362 nm, and I P / in Raman spectrum using an argon laser beam having a wavelength of 514.5 nm. The IG was 0.25. When the graphitized product was observed with a scanning electron microscope, it was partly a lump including scales. About 50 pieces, the cross section was observed with a scanning electron microscope, and as a result of observing the crystal structure of the outer surface of the particles, the exposed area of the edge surface of graphite was about 40%.
Using the graphitized product, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 2.
As is clear from Table 2, the working electrode has a large proportion of the fracture surface, I P / IG is 0.2 or more, and graphite particles having an average aspect ratio exceeding 2.0 are used as a negative electrode material. In some cases, the discharge capacity, initial charge / discharge efficiency, rapid charge / discharge characteristics, and cycle characteristics are all low.

(参考例1)
実施例1で得られた黒鉛化物の母材である粗粉[平均粒子径25μm、ほぼ球状、d002:0.3356nm、I/I:0.15、エッジ面の露出率5%、平均アスペクト1.1、図2(a)]のみを用いて、実施例1と同様な方法と条件で負極材料を作製し、評価電池を作製して、充放電試験を行った。電池特性の結果を表2に示した。
表2から明らかなように、作用電極の負極材料に粗粉を用いた場合、微粉を用いた実施例1〜5に比べ、高い負極密度においては、放電容量、初期充放電効率、急速充放電特性およびサイクル特性が劣っている。
(Reference Example 1)
Coarse powder that is a base material of the graphitized product obtained in Example 1 [average particle diameter 25 μm, almost spherical, d 002 : 0.3356 nm, I P / I G : 0.15, edge face exposure rate 5%, Using only the average aspect ratio 1.1 and FIG. 2 (a)], a negative electrode material was produced under the same method and conditions as in Example 1, an evaluation battery was produced, and a charge / discharge test was performed. The results of the battery characteristics are shown in Table 2.
As is clear from Table 2, when coarse powder is used as the negative electrode material of the working electrode, the discharge capacity, initial charge / discharge efficiency, and rapid charge / discharge are higher at higher negative electrode densities than in Examples 1 to 5 using fine powder. Characteristics and cycle characteristics are inferior.

本発明の微小黒鉛質粒子は、搭載する機器の小型化および高性能化に有効に寄与するリチウムイオン二次電池の負極材料として用いることができる。また、その特徴を活かして、導電性や耐熱性を必要とする各種用途、例えば、樹脂添加用導電材、燃料電池セパレータ用導電材、耐火物用黒鉛などに使用することもできる。   The fine graphite particles of the present invention can be used as a negative electrode material for a lithium ion secondary battery that contributes effectively to downsizing and high performance of equipment to be mounted. In addition, taking advantage of this feature, it can also be used in various applications that require electrical conductivity and heat resistance, such as resin additive conductive materials, fuel cell separator conductive materials, and refractory graphite.

Figure 0004707570
Figure 0004707570

Figure 0004707570
Figure 0004707570

本発明の黒鉛化工程で得られた、隆起物を有する黒鉛化物の一例の走査型電子顕微鏡写真である。It is a scanning electron micrograph of an example of the graphitized material which has a protruding object obtained by the graphitization process of this invention. (a)は、本発明の隆起物脱落工程で得られた黒鉛化物の母材の一例の走査型電子顕微鏡写真である。(b)は、本発明の隆起物脱落工程で得られた隆起物(微小黒鉛質粒子)の一例の走査型電子顕微鏡写真である。(A) is a scanning electron micrograph of an example of the base material of the graphitized material obtained in the raised product dropping step of the present invention. (B) is a scanning electron micrograph of an example of a raised product (micrographitic particles) obtained in the raised product dropping step of the present invention. 充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a、7b 集電体
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Electrolyte solution impregnation separator 6 Insulation gasket 7a, 7b Current collector

Claims (7)

炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属および/または金属化合物を、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料に付着させる付着工程と、
該金属および/または金属化合物が付着した炭素材料を、該金属が蒸発および/または該金属化合物が分解後、該金属化合物に含まれる金属元素が蒸発する温度以上の温度で加熱して、該炭素材料を黒鉛化するとともに、該黒鉛質材料の表面に隆起物を形成する黒鉛化工程と、
該隆起物を有する黒鉛質材料にメカノケミカル処理で機械的エネルギーを付与して該隆起物を黒鉛質材料から脱落させて微小黒鉛質粒子を得る隆起物脱落工程
を有することを特徴とする微小黒鉛質粒子の製造方法。
A metal and / or metal compound having at least one of a property of reacting with carbon and a property of dissolving carbon is attached to a carbon material that forms an optically isotropic crystal structure at least partially after graphitization. An adhering process,
A carbon material in which the metal and / or the metal compound is attached, after the metal evaporation and / or the metal compound is decomposed, and the metal element contained in the metal compound is heated at a temperature higher than the temperature at which evaporation, the While graphitizing the carbon material, a graphitization step of forming a protuberance on the surface of the graphitic material,
A protuberance falling to obtain a fine graphite particles by dropping from graphitic material該隆Okoshibutsu to impart mechanical energy mechanochemical treatment graphitic material having該隆Okoshibutsu,
A method for producing fine graphite particles, comprising:
前記隆起物脱落工程において、前記隆起物を前記黒鉛質材料から脱落させるとともに、破砕面を摩耗して微小黒鉛質粒子を得る、請求項1に記載の微小黒鉛質粒子の製造方法。2. The method for producing fine graphite particles according to claim 1, wherein in the step of removing the raised matter, the raised matter is removed from the graphite material, and the crushing surface is worn to obtain fine graphite particles. 炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属および/または金属化合物を、黒鉛化後に少なくとも一部に光学的等方性の結晶構造を形成する炭素材料に付着させる付着工程と、
該金属および/または金属化合物が付着した炭素材料を、該金属が蒸発および/または該金属化合物が分解後、該金属化合物に含まれる金属元素が蒸発する温度以上の温度で加熱して、該炭素材料を黒鉛化するとともに、該黒鉛質材料の表面に隆起物を形成する黒鉛化工程と、
該隆起物を有する黒鉛質材料に機械的エネルギーを付与して該隆起物を黒鉛質材料から脱落させて微小黒鉛質粒子を得る隆起物脱落工程
を有することを特徴とする微小黒鉛質粒子の製造方法であって、
前記微小黒鉛質粒子の、波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて、1570〜1630cm −1 の領域に存在するピークの強度をI 、1350〜1370cm −1 の領域に存在するピークの強度をI とするときのI /I 比が0.2未満であることを特徴とする微小黒鉛質粒子の製造方法。
A metal and / or metal compound having at least one of a property of reacting with carbon and a property of dissolving carbon is attached to a carbon material that forms an optically isotropic crystal structure at least partially after graphitization. An adhering process,
A carbon material in which the metal and / or the metal compound is attached, after the metal evaporation and / or the metal compound is decomposed, and the metal element contained in the metal compound is heated at a temperature higher than the temperature at which evaporation, the While graphitizing the carbon material, a graphitization step of forming a protuberance on the surface of the graphitic material,
A protuberance falling to obtain a fine graphite particles by dropping from graphitic material該隆Okoshibutsu to impart mechanical energy to the graphitic material having該隆Okoshibutsu,
A method for producing fine graphite particles, characterized by comprising :
Wherein the fine graphite particles, in the Raman spectrum using argon laser beam having a wavelength of 514.5 nm, peak present the intensity of a peak present in the region of 1570~1630cm -1 I G, in the region of 1350 -1 method for producing fine graphite particles I P / I G ratio is equal to or less than 0.2 at the time of the strength of the the I P.
さらに、前記隆起物脱落工程で得られた微小黒鉛質粒子と黒鉛質材料との混合物から該微小黒鉛質粒子を分離して、微小黒鉛質粒子を得る分離工程を有することを特徴とする請求項1〜3のいずれかに記載の微小黒鉛質粒子の製造方法。 The method further comprises a separation step of separating the fine graphite particles from the mixture of the fine graphite particles and the graphite material obtained in the protruding product dropping step to obtain the fine graphite particles. The manufacturing method of the fine graphite particle in any one of 1-3. 前記金属および前記金属化合物が粉末であることを特徴とする請求項1〜4のいずれかに記載の微小黒鉛質粒子の製造方法。 Method for producing fine graphite particles according to any one of claims 1-4, wherein the metal and the metal compound is a powder. 前記した金属が蒸発および/または前記した金属元素が蒸発する温度が1500〜3300℃であることを特徴とする請求項1〜のいずれかに記載の微小黒鉛質粒子の製造方法。 The method for producing fine graphite particles according to any one of claims 1 to 5 , wherein the temperature at which the metal is evaporated and / or the metal element is evaporated is 1500 to 3300 ° C. 前記微小黒鉛質粒子がリチウムイオン二次電池負極用材料であることを特徴とする請求項1〜のいずれかに記載の微小黒鉛質粒子の製造方法。 The method for producing fine graphite particles according to any one of claims 1 to 6 , wherein the fine graphite particles are a material for a negative electrode of a lithium ion secondary battery.
JP2006012784A 2006-01-20 2006-01-20 Method for producing fine graphite particles Expired - Fee Related JP4707570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012784A JP4707570B2 (en) 2006-01-20 2006-01-20 Method for producing fine graphite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012784A JP4707570B2 (en) 2006-01-20 2006-01-20 Method for producing fine graphite particles

Publications (2)

Publication Number Publication Date
JP2007191369A JP2007191369A (en) 2007-08-02
JP4707570B2 true JP4707570B2 (en) 2011-06-22

Family

ID=38447357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012784A Expired - Fee Related JP4707570B2 (en) 2006-01-20 2006-01-20 Method for producing fine graphite particles

Country Status (1)

Country Link
JP (1) JP4707570B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010476A1 (en) * 2015-07-16 2017-01-19 昭和電工株式会社 Production method for graphite-containing carbon powder for secondary battery, and carbon material for battery electrode
WO2018128179A1 (en) * 2017-01-06 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2021053956A1 (en) 2019-09-17 2021-03-25 Jfeケミカル株式会社 Method for manufacturing graphite material
WO2022185838A1 (en) 2021-03-01 2022-09-09 Jfeケミカル株式会社 Method for producing carbonaceous substance-coated graphite material
CN115124028B (en) * 2022-05-29 2023-10-31 深圳市钢昱碳晶科技有限公司 Artificial graphite negative electrode material inoculated with high-low temperature molten iron and manufacturing device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP2001357849A (en) * 2000-06-13 2001-12-26 Sec Corp Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2003263982A (en) * 2002-03-08 2003-09-19 Jfe Steel Kk Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236808A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP2001357849A (en) * 2000-06-13 2001-12-26 Sec Corp Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2003263982A (en) * 2002-03-08 2003-09-19 Jfe Steel Kk Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2007191369A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6040022B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6240586B2 (en) Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4215633B2 (en) Method for producing composite graphite particles
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20070026786A (en) Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
WO2005031898A1 (en) Composite particle and, utilizing the same, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4707570B2 (en) Method for producing fine graphite particles
JP2015110506A (en) Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP5173555B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof
JP4839202B2 (en) Method for producing mesophase microspheres and carbon material
JP2004083398A (en) Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees