JPH10116605A - Lithium secondary battery negative electrode material and its manufacture - Google Patents
Lithium secondary battery negative electrode material and its manufactureInfo
- Publication number
- JPH10116605A JPH10116605A JP8289074A JP28907496A JPH10116605A JP H10116605 A JPH10116605 A JP H10116605A JP 8289074 A JP8289074 A JP 8289074A JP 28907496 A JP28907496 A JP 28907496A JP H10116605 A JPH10116605 A JP H10116605A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- resin
- negative electrode
- carbon
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Inorganic Fibers (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭素繊維表面が熱
硬化性樹脂の炭化物で被覆された複合組成構造の炭素材
をリチウム担持体とした充放電容量が大きく、優れたサ
イクル特性を備えるリチウム二次電池用負極材とその製
造方法に関する。The present invention relates to a lithium battery having a large charge / discharge capacity and excellent cycle characteristics using a carbon material having a composite composition structure in which a carbon fiber surface is coated with a carbide of a thermosetting resin as a lithium carrier. The present invention relates to a negative electrode material for a secondary battery and a method for producing the same.
【0002】[0002]
【従来の技術】近年、小型電子機器の電源あるいは電力
貯蔵用の電池として、高エネルギー密度を有するリチウ
ム二次電池が注目され、開発が進められている。リチウ
ム二次電池の負極には、当初リチウム金属が用いられて
いたが、充放電を繰り返すうちに負極にデンドライトと
呼ばれる樹枝状の活性なリチウムが析出し、この析出し
たデンドライトの剥離や成長による正極との短絡が起こ
り、サイクル特性が低下する問題がある。2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have attracted attention and are being developed as batteries for power supply or power storage of small electronic devices. Lithium metal was initially used for the negative electrode of a lithium secondary battery, but dendritic active lithium called dendrite was deposited on the negative electrode during repeated charging and discharging, and the positive electrode was formed by peeling and growing of the deposited dendrite. Short circuit occurs, and the cycle characteristics deteriorate.
【0003】デンドライトの析出を防止するためにリチ
ウム合金を負極材とする方法もあるが電池性能が充分で
ない欠点があり、その後、炭素材料を用いるとデンドラ
イトの生成が防止されることが明らかとなり、負極活物
質であるリチウムをある種の炭素材に担持させて負極材
とする研究が盛んに行われており、担持炭素材の性状に
ついても多くの提案(例えば、特開昭62−90863 号公
報、同62−193463号公報、同63−236259号公報、同64−
2258号公報、特開平1−274360号公報、同2−44644 号
公報、同2−66856 号公報、同2−230660号公報、同3
−93162 号公報など)がなされている。There is a method of using a lithium alloy as a negative electrode material in order to prevent the precipitation of dendrite, but there is a disadvantage that the battery performance is not sufficient, and it is clear that the use of a carbon material prevents the formation of dendrite. A great deal of research has been conducted to make lithium, which is a negative electrode active material, supported on a certain type of carbon material to produce a negative electrode material. Many proposals have also been made regarding the properties of the carbon material to be supported (for example, Japanese Patent Application Laid-Open No. Nos. 62-193463, 63-236259, 64-64.
No. 2258, JP-A-1-274360, JP-A-2-44644, JP-A-2-66856, JP-A-2-230660, and 3
No.-93162).
【0004】炭素材として天然黒鉛に代表される高結晶
性の黒鉛は六角網面構造の黒鉛層間が発達しているの
で、理論的に300 mAh/g以上の電池容量を示すうえ電
位の平坦性にも優れている。また炭素繊維を負極として
用いた場合には繊維状であるために繊維間の接触が良好
となり、接触抵抗が低下するので、比較的に大きな電池
容量の負極材料として注目されている。[0004] Highly crystalline graphite represented by natural graphite as a carbon material has a battery capacity of 300 mAh / g or more theoretically and a flatness of potential, since a graphite layer having a hexagonal mesh structure is developed. Is also excellent. Further, when carbon fiber is used as the negative electrode, since the carbon fiber is fibrous, the contact between the fibers becomes good and the contact resistance is reduced, so that it is attracting attention as a negative electrode material having a relatively large battery capacity.
【0005】例えば、炭素繊維を用いたリチウム二次電
池の負極材として、電極表面が繊維軸を平行に揃えた炭
素繊維集合体の繊維軸に垂直な断面によって構成された
リチウム二次電池用負極(特開平4−359862号公報)や
シート状炭素繊維含有炭素材料であって、炭素繊維が該
シートの表面に平行に配向しているリチウム二次電池用
負極(特開平7−22022 号公報)などが提案されてい
る。For example, as a negative electrode material for a lithium secondary battery using carbon fibers, a negative electrode for a lithium secondary battery having an electrode surface formed by a cross section perpendicular to the fiber axis of a carbon fiber assembly whose fiber axes are aligned in parallel. (JP-A-4-359862) or a sheet-like carbon fiber-containing carbon material in which carbon fibers are oriented parallel to the surface of the sheet (JP-A-7-22022). And so on.
【0006】炭素繊維の黒鉛化度を上げると、300 m
Ah/g程度の高電池容量が得られる反面、電極表面に黒鉛
構造のエッジ面が露出する度合いが大きくなり、初期の
充放電効率が低下する欠点があり、更に炭素繊維単独で
は近年の高容量化の要請に応えられない難点がある。When the degree of graphitization of carbon fiber is increased, 300 m
While a high battery capacity of about Ah / g can be obtained, the degree of exposure of the graphite structure edge surface to the electrode surface becomes large, and the initial charge / discharge efficiency decreases. There are difficulties that cannot be met.
【0007】そこで、負極材として炭素繊維などを用い
た多相構造の炭素材が開発されており、例えば、負極の
構成要素として用いられるカーボン材の表面をアモルフ
ァス炭素の薄膜でコーティングしたリチウム二次電池用
の負極(特開平5−275076号公報)や、核を形成する炭
素質物と、この核の表面に形成される表層の炭素質物の
少なくとも2相からなる多相構造を有し、(002)面
の面間隔d002 が3.35オングストローム以上3.4
3オングストローム未満のピークと、d002 が3.43
オングストローム以上のピークの少なくとも2つのピー
クを有する炭素質物(特開平5−290889号公報)、また
d002 が3.37オングストローム以下の炭素質物の粒
子をd002 が3.38オングストローム以上の炭素質物
で被覆した多相構造の電極材料(特開平6−267531号公
報)などが提案されている。Therefore, a carbon material having a multiphase structure using carbon fibers or the like as a negative electrode material has been developed. For example, a lithium secondary material in which the surface of a carbon material used as a component of a negative electrode is coated with a thin film of amorphous carbon is used. A negative electrode for a battery (Japanese Patent Application Laid-Open No. 5-275076), a multiphase structure comprising at least two phases of a carbonaceous material forming a nucleus and a surface carbonaceous material formed on the surface of the nucleus; ) The plane spacing d 002 is 3.35 Å or more and 3.4.
A peak less than 3 angstroms and a d002 of 3.43
Carbonaceous material having at least two peaks or more peaks Å (JP-A-5-290889), also d 002 is less 3.37 Angstrom particles of carbonaceous material d 002 is in carbonaceous material above 3.38 angstroms An electrode material having a coated multiphase structure (JP-A-6-267531) has been proposed.
【0008】[0008]
【発明が解決しようとする課題】これらの多相構造を有
する炭素材は、いずれも黒鉛化度の高い炭素を内核にし
て、その表層に黒鉛化度の低い炭素が形成されているも
のであって、上記の特開平5−290889号公報には
複数の繊維状の黒鉛化度の高い炭素を内核にし、それよ
り黒鉛化度の低い炭素が包含した多相構造のモデルが示
されている。All of these carbon materials having a multi-phase structure have carbon having a high degree of graphitization as an inner core and carbon having a low degree of graphitization is formed on the surface layer. JP-A-5-290889 discloses a model of a multiphase structure in which a plurality of fibrous carbons having a high degree of graphitization are used as an inner core and carbons having a lower degree of graphitization are included.
【0009】このような黒鉛化度の高い炭素材料を内包
物とし、これより黒鉛化度の低いアモルファス質の炭素
材料を被覆した2相構造の炭素材をリチウム二次電池用
の負極材として用いるとサイクル特性の向上を図ること
ができる。しかしながら、充放電時のリチウムイオンの
吸脱着、特に充電時のリチウムイオンのドープにより高
黒鉛化度の内部の黒鉛層間が膨張し、逆に放電時には黒
鉛層間が収縮するために、充放電の繰り返しにより損傷
や破壊が生じて、電池容量を向上させるには限界があ
る。Such a carbon material having a high degree of graphitization is used as an inclusion, and a carbon material having a two-phase structure coated with an amorphous carbon material having a lower degree of graphitization is used as a negative electrode material for a lithium secondary battery. And cycle characteristics can be improved. However, the adsorption and desorption of lithium ions during charging and discharging, especially the doping of lithium ions during charging, expands the graphite layers inside the high degree of graphitization, and conversely contracts during discharging, causing repeated charging and discharging. As a result, damage or destruction occurs, and there is a limit to improving the battery capacity.
【0010】本発明者は、炭素繊維の優れた成形性を維
持しつつ、充放電容量が大きく、サイクル特性に優れた
リチウム二次電池用の負極材について鋭意研究した結
果、炭素繊維を難黒鉛化性の熱硬化性樹脂で被覆して焼
成すると、樹脂炭化部が比較的黒鉛化度の高い炭素層と
なり、充放電容量やサイクル特性が向上することを見出
した。The present inventor has conducted extensive studies on a negative electrode material for a lithium secondary battery having a large charge / discharge capacity and excellent cycle characteristics while maintaining excellent moldability of carbon fibers. It has been found that when coated with a curable thermosetting resin and fired, the carbonized portion of the resin becomes a carbon layer having a relatively high degree of graphitization, and the charge / discharge capacity and cycle characteristics are improved.
【0011】本発明は上記の知見に基づいて開発された
ものであり、その目的は充放電容量が大きく、優れたサ
イクル特性を備えたリチウム二次電池用負極材とその製
造方法を提供することにある。The present invention has been developed based on the above findings, and an object thereof is to provide a negative electrode material for a lithium secondary battery having a large charge / discharge capacity and excellent cycle characteristics, and a method for producing the same. It is in.
【0012】[0012]
【課題を解決するための手段】上記の目的を達成するた
めの本発明のリチウム二次電池用負極材は、炭素繊維表
面が熱硬化性樹脂の炭化物で被覆され、X線回折による
格子面間隔(d002 )の値が炭素繊維部でd002 <0.
343nm、樹脂炭化部でd002 <0.340nmであり、
かつ炭素繊維と樹脂炭化物の重量比が1:0.5〜2の
炭素材からなることを構成上の特徴とする。According to the present invention, there is provided a negative electrode material for a lithium secondary battery according to the present invention, in which a carbon fiber surface is coated with a carbide of a thermosetting resin, and a lattice spacing is determined by X-ray diffraction. The value of (d 002 ) is d 002 <0.
343 nm, d 002 <0.340 nm in the resin carbonized part,
In addition, it is characterized in that it is made of a carbon material having a weight ratio of carbon fiber to resin carbide of 1: 0.5 to 2.
【0013】また、その製造方法は、熱硬化性樹脂を有
機溶媒に溶解した溶液を炭素繊維シートに含浸、硬化し
て、炭素繊維表面に熱硬化性樹脂を被着し、次いで非酸
化性雰囲気中2000〜3000℃の温度で炭化するこ
とにより炭素繊維表面が熱硬化性樹脂の炭化物で被覆さ
れ、X線回折による格子面間隔(d002 )の値が炭素繊
維部でd002 <0.343nm、樹脂炭化部でd002 <
0.340nm、かつ炭素繊維と樹脂炭化物の重量比が
1:0.5〜2の炭素材を得ることを構成上の特徴とす
る。[0013] Further, the production method is such that a solution obtained by dissolving a thermosetting resin in an organic solvent is impregnated into a carbon fiber sheet, cured, and the thermosetting resin is applied to the carbon fiber surface. By carbonizing at a temperature of 2000 to 3000 ° C., the carbon fiber surface is covered with a carbide of a thermosetting resin, and the value of lattice spacing (d 002 ) by X-ray diffraction is d 002 <0.343 nm in the carbon fiber portion. , D 002 <
A structural feature is to obtain a carbon material having 0.340 nm and a weight ratio of carbon fiber to resin carbide of 1: 0.5 to 2.
【0014】[0014]
【発明の実施の形態】本発明のリチウム二次電池用負極
材は、炭素繊維の表面が熱硬化性樹脂の炭化物で被覆さ
れた2相構造から構成され、格子面間隔(d002 )の値
が炭素繊維部でd002 <0.343nm、樹脂炭化部でd
002 <0.340nmの黒鉛結晶性状を備えているいるこ
とに特徴がある。すなわち、炭素繊維部の黒鉛化度に比
べて、その表面を被覆する熱硬化性樹脂の炭化物の黒鉛
化度が相対的に高い点を特徴とし、両者の相互作用によ
りリチウムイオンの新たな吸蔵サイトが発生して充放電
容量の向上がもたらされ、更に初期の電流効率の向上や
充放電曲線の電位の平坦性が良好となる。黒鉛化度(d
002 )の値が炭素繊維部で0.343nm以上および樹脂
炭化部で0.340nm以上であると、このような相互作
用の効果が小さく電池容量を増大させることができなく
なる。なお、黒鉛化度を表す格子面間隔(d002 )はX
線回折による炭素層間に相当する002回折線をピーク
分離することにより求めらる。BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode material for a lithium secondary battery according to the present invention has a two-phase structure in which the surface of a carbon fiber is coated with a carbide of a thermosetting resin, and has a value of lattice spacing (d 002 ). Is d 002 <0.343 nm in the carbon fiber portion and d in the resin carbonized portion.
It is characterized by having graphite crystal properties of 002 <0.340 nm. That is, it is characterized by the fact that the degree of graphitization of the carbide of the thermosetting resin coating the surface thereof is relatively higher than the degree of graphitization of the carbon fiber portion, and the interaction between the two causes a new occlusion site for lithium ions. Is generated, thereby improving the charge / discharge capacity, and further improving the initial current efficiency and improving the flatness of the potential of the charge / discharge curve. Graphitization degree (d
When the value of ( 002 ) is 0.343 nm or more in the carbon fiber portion and 0.340 nm or more in the resin carbonized portion, the effect of such interaction is small and the battery capacity cannot be increased. The lattice spacing (d 002 ) representing the degree of graphitization is X
It is determined by separating peaks of 002 diffraction lines corresponding to carbon layers by line diffraction.
【0015】また、炭素繊維と樹脂炭化物の重量比は
1:0.5〜2の範囲にあることが必要である。樹脂炭
化物の重量比が0.5未満では樹脂炭化物の被覆が充分
でないために相互作用の効果が小さく、一方2を越える
と炭素繊維部の割合が少なくなって充放電容量が低下
し、初期の電流効率も小さくなる。The weight ratio between the carbon fiber and the resin carbide must be in the range of 1: 0.5 to 2. When the weight ratio of the resin carbide is less than 0.5, the effect of the interaction is small because the coating of the resin carbide is not sufficient. On the other hand, when the weight ratio exceeds 2, the ratio of the carbon fiber portion is reduced and the charge / discharge capacity is reduced. The current efficiency also decreases.
【0016】本発明のリチウム二次電池用負極材は、炭
素繊維シートに熱硬化性樹脂を有機溶媒に溶解した溶液
を含浸し、加熱硬化して炭素繊維表面に熱硬化性樹脂を
被着したのち、非酸化性雰囲気中で2000〜3000
℃の温度で熱処理して炭化、黒鉛化することにより製造
される。熱処理温度が2000℃を下回る場合には黒鉛
化度が不充分となり、また3000℃を越える温度で熱
処理しても黒鉛化度の向上はあまり認められなくなるた
めである。In the negative electrode material for a lithium secondary battery according to the present invention, a carbon fiber sheet is impregnated with a solution obtained by dissolving a thermosetting resin in an organic solvent, and then heat-cured to apply the thermosetting resin to the carbon fiber surface. Then, in a non-oxidizing atmosphere, 2000 to 3000
It is produced by carbonizing and graphitizing by heat treatment at a temperature of ° C. If the heat treatment temperature is lower than 2000 ° C., the degree of graphitization becomes insufficient, and even if the heat treatment is performed at a temperature exceeding 3000 ° C., the graphitization degree is hardly improved.
【0017】本発明で用いる炭素繊維は特に限定される
ものでなく、ポリアクリロニトリル系炭素繊維、レーヨ
ン系炭素繊維、ピッチ系炭素繊維のいずれも使用するこ
とができるが、炭素繊維の横断面における結晶の配列構
造がラジアル(放射状)構造であるとリチウムイオンの
拡散速度が大きくなるので好ましい。The carbon fiber used in the present invention is not particularly limited, and any of polyacrylonitrile-based carbon fiber, rayon-based carbon fiber, and pitch-based carbon fiber can be used. Is preferably a radial (radial) structure because the diffusion rate of lithium ions increases.
【0018】熱硬化性樹脂は残炭率が50%以上の難黒
鉛化性のフェノール系樹脂、フラン系樹脂、ポリイミド
樹脂、ポリカルボジイミド樹脂などの熱硬化性樹脂が用
いられ、好ましくはフェノール樹脂あるいはフラン樹脂
が用いられる。残炭率が50%未満では炭素繊維表面を
樹脂炭化物で充分に被覆することができないためであ
る。これらの熱硬化性樹脂はメタノール、エタノール、
ベンゼン、アセトン、トルエンなどの有機溶媒に適宜な
濃度に溶解した溶液を炭素繊維シートに塗布するか、溶
液中に炭素繊維シートを浸漬するなどの方法により含浸
し、加熱して硬化、乾燥して炭素繊維表面に熱硬化性樹
脂を被着する。なお含浸量は炭化、黒鉛化後の樹脂炭化
物が重量比で炭素繊維1に対し0.5〜2の範囲となる
ように設定する。As the thermosetting resin, a thermosetting resin such as a non-graphitizable phenol resin, a furan resin, a polyimide resin and a polycarbodiimide resin having a residual carbon ratio of 50% or more is used. Furan resin is used. If the residual carbon ratio is less than 50%, the carbon fiber surface cannot be sufficiently covered with the resin carbide. These thermosetting resins are methanol, ethanol,
A solution dissolved in an organic solvent such as benzene, acetone, or toluene at an appropriate concentration is applied to the carbon fiber sheet, or impregnated by a method such as immersing the carbon fiber sheet in the solution, heated, cured, and dried. A thermosetting resin is applied to the carbon fiber surface. The amount of impregnation is set so that the weight of the resin carbide after carbonization and graphitization is in the range of 0.5 to 2 with respect to carbon fiber 1 in weight ratio.
【0019】次いで、アルゴン、窒素ガスなどの非酸化
性雰囲気中で2000〜3000℃の温度に加熱して焼
成し、被覆された熱硬化性樹脂を炭化、黒鉛化すること
により炭素繊維の表面を熱硬化性樹脂の炭化物で被覆す
る。熱硬化性樹脂は炭化、黒鉛化の過程で体積収縮が起
こるが、炭素繊維の体積収縮は熱硬化性樹脂に比べて小
さいので、適度な緊張状態下に炭化、黒鉛化が進行して
樹脂炭化物が剥離することなく、炭素繊維部および樹脂
炭化物の黒鉛化度を本発明の黒鉛結晶性状、すなわち格
子面間隔(d002 )の値が炭素繊維部でd002 <0.3
43nm、樹脂炭化部でd002 <0.340nmの黒鉛結晶
性状とすることができる。なお、熱処理温度が2000
℃未満では炭化、黒鉛化が不充分であり、また3000
℃を越える温度での熱処理は不必要なためである。この
ようにして得られた炭素繊維表面を樹脂炭化物で被覆し
た炭素材は適宜な大きさに粉砕して、本発明のリチウム
二次電池用負極材が製造される。Then, the surface of the carbon fiber is heated by heating to a temperature of 2000 to 3000 ° C. in a non-oxidizing atmosphere such as argon or nitrogen gas, and carbonizing and graphitizing the coated thermosetting resin. Coated with carbide of thermosetting resin. Thermosetting resin undergoes volume shrinkage during carbonization and graphitization, but the volume shrinkage of carbon fiber is smaller than that of thermosetting resin. Without delamination, the degree of graphitization of the carbon fiber portion and the resin carbide was measured by the graphite crystalline property of the present invention, that is, the value of the lattice spacing (d 002 ) was d 002 <0.3 in the carbon fiber portion.
The graphite crystallinity can be made to be 43 nm and d 002 <0.340 nm in the resin carbonized portion. The heat treatment temperature is 2000
If the temperature is lower than ℃, carbonization and graphitization are insufficient.
This is because heat treatment at a temperature exceeding ℃ is unnecessary. The carbon material obtained by coating the surface of the carbon fiber thus obtained with the resin carbide is pulverized to an appropriate size to produce the negative electrode material for a lithium secondary battery of the present invention.
【0020】本発明のリチウム二次電池用負極材は、炭
素繊維表面に被覆した樹脂炭化物を適切な黒鉛化度とす
ることにより、表面におけるエッジ面の露出が少ないの
で電解液との反応が抑制され初期における電流効率の低
下が防止される。また、炭素繊維と表面に被覆された樹
脂炭化物との相互作用によりリチウムイオンの吸蔵サイ
トが増加して充放電時の電池容量が増大し、充放電時の
電位の平坦性の向上や充放電の差が大きくなり不可逆容
量の抑制を図ることが可能となる。更に、充放電時のリ
チウムイオンの吸脱着による炭素繊維の膨張、収縮によ
る破壊が防止されサイクル特性を向上させることができ
る。In the negative electrode material for a lithium secondary battery of the present invention, since the resin carbide coated on the carbon fiber surface has an appropriate degree of graphitization, the edge surface on the surface is less exposed, so that the reaction with the electrolytic solution is suppressed. This prevents a decrease in current efficiency in the initial stage. In addition, the interaction between the carbon fiber and the resin carbide coated on the surface increases the number of lithium ion occlusion sites, thereby increasing the battery capacity during charge and discharge, improving the flatness of the potential during charge and discharge, and improving the charge and discharge. The difference increases, and the irreversible capacity can be suppressed. Further, the carbon fibers are prevented from being broken by expansion and contraction due to adsorption and desorption of lithium ions during charge and discharge, and cycle characteristics can be improved.
【0021】このように、本発明のリチウム二次電池用
負極材は、炭素繊維表面が熱硬化性樹脂の炭化物で被覆
され、その黒鉛化度を特定した複合組成構造の炭素材を
リチウム担持体とするので、充放電容量の増大、サイク
ル特性の向上などを図ることが可能であり、また繊維形
態も保持されているので接触抵抗も低位に維持すること
ができる。As described above, the negative electrode material for a lithium secondary battery of the present invention comprises a carbon material having a carbon fiber surface coated with a carbide of a thermosetting resin and a carbon material having a composite composition structure having a specified degree of graphitization. Therefore, the charge / discharge capacity can be increased, the cycle characteristics can be improved, and the contact resistance can be maintained at a low level because the fiber form is maintained.
【0022】[0022]
【実施例】以下、本発明の実施例を比較例と対比しなが
ら具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.
【0023】実施例1〜9、比較例1〜3 炭素繊維として長さ3mmにチョップしたピッチ系炭素繊
維〔日本グラファイトファイバー(株)製、XN-40 〕、
およびポリアクリロニトリル系炭素繊維〔東レ(株)
製、T300〕を用い、これらのチョップド炭素繊維をエタ
ノール中に分散させ、濾過、乾燥して炭素繊維シートを
作成した。この炭素繊維シートに、残炭率50%のフェ
ノール樹脂〔住友デュレズ(株)製、PR940 〕をアセト
ンに溶解した溶液(樹脂濃度 5〜40重量%)を炭素繊維
1に対して樹脂分の重量比が0.6〜2.5となるよう
に含浸させ、加熱して硬化および乾燥した。このように
してフェノール樹脂を被着した炭素繊維チョップを窒素
雰囲気中で1800〜3000℃の範囲で温度を変えて
熱処理し、炭化、黒鉛化した。このようにして製造した
フェノール樹脂の炭化物を被覆した炭素繊維チョップに
ついて、炭素繊維部および樹脂炭化部の格子面間隔(d
002 )をX線回折により測定し、得られた炭素材の黒鉛
化特性を製造条件と対比して表1に示した。Examples 1 to 9 and Comparative Examples 1 to 3 Pitch-based carbon fibers chopped to a length of 3 mm (XN-40, manufactured by Nippon Graphite Fiber Co., Ltd.) as carbon fibers,
And polyacrylonitrile-based carbon fiber [Toray Industries, Inc.
, T300], these chopped carbon fibers were dispersed in ethanol, filtered and dried to prepare a carbon fiber sheet. A solution (resin concentration of 5 to 40% by weight) of a phenol resin having a residual carbon ratio of 50% (PR940, manufactured by Sumitomo Durez Co., Ltd.) dissolved in acetone was added to the carbon fiber sheet. It was impregnated so that the ratio was 0.6 to 2.5, and was heated and cured and dried. The carbon fiber chop to which the phenolic resin was applied in this manner was heat-treated in a nitrogen atmosphere at a temperature in the range of 1800 to 3000 ° C., and carbonized and graphitized. With respect to the carbon fiber chop coated with the carbide of the phenolic resin produced in this way, the lattice spacing (d
002 ) was measured by X-ray diffraction, and the graphitization characteristics of the obtained carbon material are shown in Table 1 in comparison with the production conditions.
【0024】[0024]
【表1】 表注)*1 Ph-1;残炭率50%のフェノール樹脂 *2 樹脂炭化物と炭素繊維の重量比[Table 1] Table Note) * 1 Ph-1; phenol resin with residual carbon ratio of 50% * 2 Weight ratio of carbonized resin to carbon fiber
【0025】このフェノール樹脂の炭化物を被覆した炭
素繊維チョップを平均繊維長が100μm となるように
粉砕し、これらの炭素材をリチウム担持体として、炭素
材88重量部に、ポリフッ化ビニリデン粉末(結着剤)
12重量部、およびN−メチルピロリドン(有機溶媒)
100重量部を加えて混練して均質な混合ペーストを調
製した。このペーストを厚さ50μm の銅箔に均一に塗
布し、150℃の温度に加熱して有機溶媒を除去すると
ともに乾燥したのち、プレスして厚さ50μmの負極材
を作製した。The carbon fiber chop coated with the carbide of the phenolic resin is pulverized so that the average fiber length becomes 100 μm, and these carbon materials are used as a lithium carrier, and 88 parts by weight of the carbon material is mixed with polyvinylidene fluoride powder (condensed matter). Adhesive)
12 parts by weight, and N-methylpyrrolidone (organic solvent)
100 parts by weight were added and kneaded to prepare a homogeneous mixed paste. This paste was uniformly applied to a copper foil having a thickness of 50 μm, heated to a temperature of 150 ° C. to remove the organic solvent and dried, and then pressed to produce a negative electrode material having a thickness of 50 μm.
【0026】この負極材をエチレンカーボネートとジエ
チルカーボネートの1:1の混合溶液を電解液として、
対極に酸化バナジウムを、参照極に金属リチウムを用い
て3極セルを作製し、充放電試験により負極材の性能を
評価した。充放電試験は50mA/gの定電流密度で行い、
充電停止電位および放電停止電位をそれぞれ0V、1V
として、1サイクル目と100サイクル目の放電容量を
測定して負極材としての性能を評価し、その結果を表2
に示した。This negative electrode material was prepared by using a 1: 1 mixed solution of ethylene carbonate and diethyl carbonate as an electrolyte.
A three-electrode cell was prepared using vanadium oxide as a counter electrode and metallic lithium as a reference electrode, and the performance of the negative electrode material was evaluated by a charge / discharge test. The charge / discharge test is performed at a constant current density of 50 mA / g.
Charge stop potential and discharge stop potential are 0 V and 1 V, respectively.
The discharge capacity at the 1st cycle and the 100th cycle was measured to evaluate the performance as a negative electrode material.
It was shown to.
【0027】[0027]
【表2】 [Table 2]
【0028】比較例4〜6 炭素繊維に等方性の炭素繊維〔呉羽化学工業(株)製、
C-199T〕を使用し、その他は実施例1〜9と同一の手法
により炭素材の製造、および負極材の作製、電池性能の
評価を行い、それらの結果を表3、表4に示した。Comparative Examples 4 to 6 Carbon fibers areotropic carbon fibers [Kureha Chemical Industry Co., Ltd.
C-199T], the production of a carbon material, the production of a negative electrode material, and the evaluation of battery performance were performed in the same manner as in Examples 1 to 9, and the results are shown in Tables 3 and 4. .
【0029】比較例7〜8 フェノール樹脂の残炭率を40%とした他は、実施例1
〜9と同一の手法により炭素材の製造、および負極材の
作製、電池性能の評価を行い、それらの結果を表3、表
4に示した。Comparative Examples 7 and 8 Example 1 was repeated except that the residual carbon ratio of the phenol resin was changed to 40%.
Production of a carbon material, production of a negative electrode material, and evaluation of battery performance were performed in the same manner as in Examples 9 to 9, and the results are shown in Tables 3 and 4.
【0030】比較例9〜10 フェノール樹脂に変えて石油ピッチを使用した他は、実
施例1〜9と同一の手法により炭素材の製造、および負
極材の作製、電池性能の評価を行い、それらの結果を表
3、表4に示した。Comparative Examples 9 to 10 Except for using petroleum pitch in place of the phenolic resin, the same method as in Examples 1 to 9 was used to produce a carbon material, produce a negative electrode material, and evaluate battery performance. Are shown in Tables 3 and 4.
【0031】比較例11〜12 熱硬化性樹脂を被着せずに、ピッチ系炭素繊維〔日本グ
ラファイトファイバー(株)製、XN-40 〕のみを用いて
炭素材を製造し、実施例1〜9と同一の手法により負極
材の作製、電池性能の評価を行った。得られた結果を表
3、表4に示した。Comparative Examples 11 to 12 Carbon materials were produced using only pitch-based carbon fibers (Nippon Graphite Fiber Co., Ltd., XN-40) without applying a thermosetting resin. Production of a negative electrode material and evaluation of battery performance were performed in the same manner as described above. Tables 3 and 4 show the obtained results.
【0032】比較例13〜14 残炭率50%のフェノール樹脂〔住友デュレズ(株)
製、PR940 〕のみを用いて炭素材を製造した他は、実施
例1〜9と同一の手法により負極材の作製、電池性能の
評価を行い、得られた結果を表3、表4に示した。Comparative Examples 13 and 14 A phenol resin having a residual carbon ratio of 50% [Sumitomo Durez Co., Ltd.
And PR940] were used to manufacture the negative electrode material and the battery performance was evaluated in the same manner as in Examples 1 to 9, and the obtained results are shown in Tables 3 and 4. Was.
【0033】[0033]
【表3】 表注)*1 Ph-1;残炭率50%のフェノール樹脂 Ph-2;残炭率40%のフェノール樹脂 ピッチ;石油ピッチ樹脂 *2 樹脂炭化物と炭素繊維の重量比[Table 3] Table Note) * 1 Ph-1: Phenolic resin with residual carbon ratio of 50% Ph-2; Phenolic resin with residual carbon ratio of 40% Pitch; Petroleum pitch resin * 2 Weight ratio of carbonized resin to carbon fiber
【0034】[0034]
【表4】 [Table 4]
【0035】表1〜表4の結果から、本発明の要件を満
たす実施例の負極材は、いずれも放電容量が300mAh/
g を越え、初期放電容量も大きいことが判る。また充放
電を繰り返しても放電容量の低下が少なく、電池容量な
らびにサイクル特性に優れた電池性能を示すことが認め
られる。これに対して、本発明の要件を外れる比較例の
負極材は放電容量が小さく、また初期放電容量も低位に
あることが判る。From the results of Tables 1 to 4, all of the negative electrode materials of Examples satisfying the requirements of the present invention have a discharge capacity of 300 mAh /
g, the initial discharge capacity is also large. In addition, it is recognized that the discharge capacity is less reduced even after repeated charge and discharge, and that the battery performance is excellent in battery capacity and cycle characteristics. On the other hand, it can be seen that the negative electrode material of the comparative example which does not meet the requirements of the present invention has a small discharge capacity and a low initial discharge capacity.
【0036】[0036]
【発明の効果】以上のとおり、本発明の負極材によれば
炭素繊維の表面が熱硬化性樹脂の炭化物で被覆された2
相構造から構成され、格子面間隔(d00 2)の値が炭素繊
維部でd002 <0.343nm、樹脂炭化部でd002 <
0.340nmの黒鉛結晶性状を備え、また炭化物の被覆
量を炭素繊維との重量比が1:0.5〜2の範囲に設定
することにより、放電容量が高く、また充放電を繰り返
しても放電容量の低下が少ない、優れた電池性能ならび
にサイクル特性を有するリチウム二次電池用負極材を提
供することができる。また、本発明の製造方法によれば
上記の性能を備えた負極材を能率よく製造することが可
能であり、リチウム二次電池用負極材の工業的製造方法
として極めて有用である。As described above, according to the negative electrode material of the present invention, the surface of the carbon fiber is covered with the carbide of the thermosetting resin.
Is composed of a phase structure, d value of the lattice spacing (d 00 2) is a carbon fiber unit 002 <0.343 nm, a resin carbonized part d 002 <
By providing graphite crystal properties of 0.340 nm, and by setting the coating amount of carbide to the weight ratio with carbon fiber in the range of 1: 0.5 to 2, the discharge capacity is high, and even if charge / discharge is repeated. It is possible to provide a negative electrode material for a lithium secondary battery having excellent battery performance and cycle characteristics with little decrease in discharge capacity. Further, according to the production method of the present invention, it is possible to efficiently produce a negative electrode material having the above-mentioned performance, and it is extremely useful as an industrial production method of a negative electrode material for a lithium secondary battery.
Claims (3)
被覆され、X線回折による格子面間隔(d002 )の値が
炭素繊維部でd002 <0.343nm、樹脂炭化部でd
002 <0.340nmであり、かつ炭素繊維と樹脂炭化物
の重量比が1:0.5〜2の炭素材からなることを特徴
とするリチウム二次電池用負極材。1. A carbon fiber surface is coated with a carbide of a thermosetting resin, and the value of lattice spacing (d 002 ) by X-ray diffraction is d 002 <0.343 nm in the carbon fiber portion and d in the resin carbonized portion.
002 <0.340 nm, and a negative electrode material for a lithium secondary battery, comprising a carbon material having a carbon fiber to resin carbide weight ratio of 1: 0.5 to 2.
を炭素繊維シートに含浸、硬化して、炭素繊維表面に熱
硬化性樹脂を被着し、次いで非酸化性雰囲気中2000
〜3000℃の温度で炭化することにより炭素繊維表面
が熱硬化性樹脂の炭化物で被覆され、X線回折による格
子面間隔(d002 )の値が炭素繊維部でd002 <0.3
43nm、樹脂炭化部でd002 <0.340nm、かつ炭素
繊維と樹脂炭化物の重量比が1:0.5〜2の炭素材を
得ることを特徴とするリチウム二次電池用負極材の製造
方法。2. A carbon fiber sheet is impregnated with a solution obtained by dissolving a thermosetting resin in an organic solvent and cured to apply the thermosetting resin to the carbon fiber surface.
By carbonizing at a temperature of 33000 ° C., the carbon fiber surface is coated with a carbide of a thermosetting resin, and the value of lattice spacing (d 002 ) by X-ray diffraction is d 002 <0.3 in the carbon fiber portion.
A method for producing a negative electrode material for a lithium secondary battery, comprising: obtaining a carbon material having a diameter of 43 nm, a d 002 <0.340 nm in a resin carbonized portion, and a weight ratio of carbon fiber to resin carbide of 1: 0.5 to 2. .
ェノール樹脂、フラン樹脂である請求項2記載のリチウ
ム二次電池用負極材の製造方法。3. The method for producing a negative electrode material for a lithium secondary battery according to claim 2, wherein the thermosetting resin is a phenol resin or a furan resin having a residual carbon ratio of 50% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8289074A JPH10116605A (en) | 1996-10-11 | 1996-10-11 | Lithium secondary battery negative electrode material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8289074A JPH10116605A (en) | 1996-10-11 | 1996-10-11 | Lithium secondary battery negative electrode material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10116605A true JPH10116605A (en) | 1998-05-06 |
Family
ID=17738494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8289074A Pending JPH10116605A (en) | 1996-10-11 | 1996-10-11 | Lithium secondary battery negative electrode material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10116605A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100293A (en) * | 2001-09-25 | 2003-04-04 | Showa Denko Kk | Carbon material and manufacturing method and usage thereof |
JP2004210634A (en) * | 2002-12-19 | 2004-07-29 | Jfe Chemical Corp | COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY |
JP2010129169A (en) * | 2008-11-25 | 2010-06-10 | National Institute Of Advanced Industrial Science & Technology | Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode |
US10388956B2 (en) | 2014-03-20 | 2019-08-20 | Kureha Corporation | Carbonaceous molded article for electrodes and method of manufacturing the same |
-
1996
- 1996-10-11 JP JP8289074A patent/JPH10116605A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100293A (en) * | 2001-09-25 | 2003-04-04 | Showa Denko Kk | Carbon material and manufacturing method and usage thereof |
JP2004210634A (en) * | 2002-12-19 | 2004-07-29 | Jfe Chemical Corp | COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY |
JP2010129169A (en) * | 2008-11-25 | 2010-06-10 | National Institute Of Advanced Industrial Science & Technology | Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode |
US10388956B2 (en) | 2014-03-20 | 2019-08-20 | Kureha Corporation | Carbonaceous molded article for electrodes and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6554508B2 (en) | Composite materials for electrochemical storage | |
US10236500B2 (en) | Lithium-ion cell having a high-capacity cathode | |
US20220376233A1 (en) | Binding agents for electrochemically active materials and methods of forming the same | |
US8765303B2 (en) | Lithium-ion cell having a high energy density and high power density | |
JP6499153B2 (en) | Silicon particles for battery electrodes | |
US20140349186A1 (en) | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries | |
KR20040040473A (en) | Carbon material, production method and use thereof | |
JPWO2005024980A1 (en) | Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery | |
Li et al. | Synthesis and characterization of PVDF‐coated cotton‐derived hard carbon for anode of Li‐ion batteries | |
Lee et al. | TiO2/Carbon Nanosheets Derived from Delaminated Ti3C2‐MXenes as an Ultralong‐Lifespan Anode Material in Lithium‐Ion Batteries | |
US20130316244A1 (en) | Electrode for lithium ion batteries and the method for manufacturing the same | |
Li et al. | Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes | |
KR100935129B1 (en) | Carbon material, production method and use thereof | |
JP2000251890A (en) | Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same | |
JPH10116605A (en) | Lithium secondary battery negative electrode material and its manufacture | |
CN114144908A (en) | Method of forming carbon-silicon composite on current collector | |
JP4393075B2 (en) | Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode | |
KR100580111B1 (en) | Method of preparing anode material for lithium ion battery | |
Yan et al. | Realizing the high energy density and flexibility of a fabric electrode through hierarchical structure design | |
US20240145686A1 (en) | Binding agents for electrochemically active materials and methods of forming the same | |
JP2000058051A (en) | Carbon compound material for secondary battery | |
JP2009059713A (en) | Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode | |
Das et al. | Carbon-Based Nanomaterials for Energy Storage: A Review | |
JPH10223234A (en) | Manufacture of porous electrode substrate for phosphate-type fuel cell | |
EP2643875A1 (en) | An electrode for lithium ion batteries and the method for manufacturing the same |