JP4393075B2 - Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode - Google Patents

Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode Download PDF

Info

Publication number
JP4393075B2
JP4393075B2 JP2003016063A JP2003016063A JP4393075B2 JP 4393075 B2 JP4393075 B2 JP 4393075B2 JP 2003016063 A JP2003016063 A JP 2003016063A JP 2003016063 A JP2003016063 A JP 2003016063A JP 4393075 B2 JP4393075 B2 JP 4393075B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
graphite
carbon material
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003016063A
Other languages
Japanese (ja)
Other versions
JP2004227988A (en
Inventor
祐介 渡会
暁夫 水口
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003016063A priority Critical patent/JP4393075B2/en
Publication of JP2004227988A publication Critical patent/JP2004227988A/en
Application granted granted Critical
Publication of JP4393075B2 publication Critical patent/JP4393075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、高率充放電特性を向上させ、電池のエネルギー密度を高めることができる負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料としてLiCoO2等の含リチウム複合酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン電池が商品化されている。かかる負極活物質に炭素を使用した二次電池においては、これまで各種の炭素が検討されてきた。
それらには、炭素系材料として石炭、コークス、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、有機物の炭素化(低温熱処理)品等が検討されており、黒鉛系材料としては、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化(高温熱処理)品、黒鉛繊維等が検討されている。
【0003】
炭素系材料を使用した負極材料は、初期の充電容量には優れるが、初期の充放電効率が低く、またサイクル特性が劣っており、一方、黒鉛系材料を使用した負極材料は、炭素系材料と比較すると、サイクル特性に優れるものの、初期充電容量が低く、充放電速度が遅いという問題がある。
これらの問題点を補うため、炭素系材料と黒鉛系材料を混合使用することも研究されている。しかし炭素系材料と黒鉛系材料を混合した負極材料は充放電容量が小さい、初期の充放電効率が低い、充放電速度が遅い、更にサイクル寿命が短い等、多くの課題を有していた。
【0004】
このような上記問題点を解決する技術として、550℃以上1300℃以下の熱処理温度で得られる平均粒径が10μm未満のピッチ系炭素質繊維ミルドを60wt%以上98wt%以下含み、かつ2400℃以上の熱処理温度で得られる平均粒径が10μm以上30μm以下のピッチ系黒鉛質繊維ミルドを2wt%以上40wt%以下含むことを特徴とするリチウムイオン二次電池用負極材料が開示されている(例えば、特許文献1参照。)。
この負極材料では、ピッチ系炭素質繊維ミルドに熱処理を施すことにより表層部に存在する欠陥部のラジカル濃度を減少させ、含酸素官能基を除去することによって、Liの不可逆容量を少なくし、初回の充放電高率やサイクル特性を著しく向上させる。更に、このように表面改質処理を施したピッチ系炭素質繊維ミルドとピッチ系黒鉛質繊維ミルドとを所定の割合で混合して負極材料を調製し、この負極材料を用いて負極を製造した場合、この負極は放電容量が大きく、電解液の分解を抑え、サイクル特性が優れる。
【0005】
【特許文献1】
特開平9−310591号公報
【0006】
【発明が解決しようとする課題】
しかし、上記特許文献1に示された負極材料に含まれるピッチ系炭素質繊維ミルドは平均粒径1μm以下の大きさにまで粉砕するのが難しく、ピッチ系炭素質繊維ミルドが平均粒径1μmを越える大きさでは十分な充放電容量が得られない問題があった。
本発明の目的は、充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する、負極材料及びこれを用いた負極を提供することにある。
本発明の別の目的は、電池のエネルギ密度を高めることができる、リチウムイオン電池及びリチウムポリマー電池を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図2に示すように、平均粒径5μm〜40μmの粒子状の第1炭素材料11と平均直径10nm〜500nmの平面状のグラファイト網12が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるカーボンナノファイバ13を主成分とする第2炭素材料14をそれぞれ含み、第2炭素材料14に含まれるカーボンナノファイバ13が1000nm以上の長さと、10以上のアスペクト比を有し、第1炭素材料11が98重量%〜70重量%、第2炭素材料14が2重量%〜30重量%の割合で構成されることを特徴とする負極材料である。
請求項1に係る発明では、平均粒径の大きな粒子状の第1炭素材料11とナノサイズの第2炭素材料14をそれぞれ含む本発明の負極材料を用いて電池の電極を作製した場合、粒子状の第1炭素材料11が形成する空隙に第2炭素材料14が充填されるため、電極中の炭素材料の充填密度が効果的に向上する。また第2炭素材料14の主成分である1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13はグラファイト網12のエッジ面が多く露出するため、このカーボンナノファイバ13を主成分とした第2炭素材料14と従来より用いられてきた炭素材料である第1炭素材料11とをそれぞれ含む本発明の負極材料を用いることによって、従来の炭素材料のみを負極材料として用いた場合に比べて充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する。更に、第2炭素材料14は従来より用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0009】
請求項に係る発明は、請求項1に係る発明であって、第2炭素材料に含まれるカーボンナノファイバのX線回折において測定されるグラファイト網平面の積層間隔d002が0.3354nm〜0.339nmである負極材料である。
請求項に係る発明は、請求項1又は2に係る発明であって、図5に示すように、第2炭素材料14に平均粒径10nm〜500nmの金属又は金属酸化物17のどちらか一方又はその双方を0.5重量%〜10重量%更に含む負極材料である。
請求項に係る発明では、第2炭素材料14に平均粒径10nm〜500nmの金属又は金属酸化物17を更に含ませることで、金属又は金属酸化物が電子伝導の基点となるため、より高率の放電が可能となる。
【0010】
請求項に係る発明は、請求項1ないしいずれか1項に係る発明であって、カーボンナノファイバ13の露出部の少なくとも85%がグラファイト網の端部である負極材料である。
請求項に係る発明は、請求項に係る発明であって、金属又は金属酸化物のどちらか一方又はその双方がカーボンナノファイバの長軸上にある負極材料である。
【0011】
請求項に係る発明は、請求項又はに係る発明であって、金属がFe、Co、Ni、Mg、Al、Mn及びCuからなる群より選ばれた少なくとも1種の元素である負極材料である。
【0012】
請求項に係る発明は、請求項1に係る発明であって、粒子状の第1炭素材料11が石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品及び黒鉛繊維からなる群より選ばれた少なくとも1種を含む負極材料である。
請求項に係る発明は、請求項1ないしいずれか1項に記載の負極材料と、導電助剤とを用いて形成された負極である。
この請求項に記載された負極では、第2炭素材料の主成分であるグラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0013】
請求項に係る発明は、請求項記載の負極を用いて形成されたリチウムイオン電池である。
請求項10に係る発明は、請求項記載の負極を用いて形成されたリチウムポリマー電池である。
この請求項又は10に記載されたリチウムイオン電池又はリチウムポリマー電池では、第2炭素材料の主成分であるグラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、第2炭素材料には従来より用いられてきた炭素材料に比べて、サイズの小さいカーボンナノファイバを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0014】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1及び図2に示すように、リチウムイオン電池又はリチウムポリマー電池の負極は、平均粒径5μm〜40μmの粒子状の第1炭素材料11と平均直径10nm〜500nmの平面状のグラファイト網12が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるカーボンナノファイバ13を主成分とする第2炭素材料14をそれぞれ含む負極材料が用いられる。第2炭素材料14に含まれるカーボンナノファイバ13は1000nm以上の長さと、10以上のアスペクト比を有するように構成される。平均粒径の大きな粒子状の第1炭素材料11とナノサイズの第2炭素材料14をそれぞれ含む本発明の負極材料を用いて電池の電極を作製した場合、第1炭素材料11が形成する空隙に第2炭素材料14が充填されるため、電極中の炭素材料の充填密度が効果的に向上する。また図4に示すように、グラファイト網12のある端部12aの一辺が別のグラファイト網の端部の一辺と接合し、更に別の端部の一辺が更に別のグラファイト網の端部の一辺と接合して形成され、各辺から折り畳んだ構造を有するカーボンナノファイバ13を用いてもよい。
【0015】
本発明の負極材料は第1炭素材料11が98重量%〜70重量%、第2炭素材料14が2重量%〜30重量%の割合で構成される。第1炭素材料11が95重量%〜80重量%、第2炭素材料14が5重量%〜20重量%の割合が好ましい。第1炭素材料11の割合が70重量%未満の負極材料を用いて負極を形成すると、炭素材料の充填密度が上がらず、第1炭素材料11の割合が98重量%を越える負極材料を用いて負極を形成すると、第2炭素材料の含有割合が少なく、第1炭素材料が形成する空隙が十分に充填されない。
【0016】
本発明のカーボンナノファイバ13を主成分とした第2炭素材料14は、グラファイト網12が複数積層し、このグラファイト網がファイバの縦軸に対して実質的に垂直である形状を有するため、グラファイト網12のエッジ面が多く露出しており、リチウムイオンが挿入、脱離反応を起こす各グラファイト網が形成する層間が多数存在する。そのため、多くのリチウムイオンがグラファイト網層間に挿入、脱離することができるため高率放電が可能となる。また、グラファイト網12の平均直径を10nm〜500nmの範囲内とすることで充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行する。グラファイト網12の平均直径が10nm未満ではリチウムイオンを挿入するスペースに乏しく、エネルギー密度を向上する効果が得難い。500nmを越えるとグラファイト網が形成する層間にリチウムイオンが挿入されても拡散し難く、充放電反応がスムーズに進行しないからである。
【0017】
図3(a)に示すように、充電時にはリチウムイオンがグラファイト網層間に挿入する反応が起こる。挿入されたリチウムイオンはグラファイト網層間で拡散する(図3(b))。放電時にはグラファイト網層間に拡散したリチウムイオンがスムーズに脱離反応を起こす(図3(c))。このように本発明のカーボンナノファイバを第2炭素材料に用いることで充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行するため、高率充放電特性が向上する。また、カーボンナノファイバは従来より用いられてきた炭素材料に比べて、サイズの小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0018】
また本発明の第2炭素材料はカーボンナノファイバ13に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体16を含むことが好ましいこの場合、第2炭素材料中のカーボンナノファイバ13の含有量は80重量%〜99.5重量%、粒子状凝集体16の含有量は0.5重量%〜20重量%の割合が好ましい更に好ましくはカーボンナノファイバ13が90重量%〜99重量%、粒子状凝集体16が1重量%〜10重量%の割合である。カーボンナノファイバ13の含有量を80重量%〜99.5重量%の範囲に限定したのは、80重量%未満では十分な電極密度が得られず、エネルギー密度の向上が少ないからであり、99.5重量%を越えると十分な高率放電特性が得難いからである。
【0019】
カーボンナノファイバ又は、カーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をX線回折において測定したとき、得られるグラファイト網平面の積層間隔d002は0.3354nm〜0.339nmの範囲内である。好ましい積層間隔d002は0.3355nm〜0.3380nmである。
【0020】
カーボンナノファイバ12の露出部又は、カーボンナノファイバ12及び粒子状凝集体13をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部であることが好ましい。より好ましくは90%以上である。ここでグラファイト網の端部とは図2及び図4においては符号12aで表される箇所を示す。
【0021】
平均粒径10nm〜500nmの金属又は金属酸化物17のどちらか一方又はその双方を0.5重量%〜10重量%更に含ませることにより、平均粒径10nm〜500nmの金属又は金属酸化物17が電子伝導の基点となるため、より高率の放電が可能となる。金属又は金属酸化物のどちらか一方又はその双方は、カーボンナノファイバの長軸上に位置するように構成される。金属としてはFe、Co、Ni、Mg、Al、Mn及びCuからなる群より選ばれた少なくとも1種の元素が選ばれ、単一金属や合金、金属酸化物の形態で使用される。
【0022】
粒子状の第1炭素材料11の材質には、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品及び黒鉛繊維からなる群より選ばれた少なくとも1種が含まれる。
【0023】
次に、本発明の負極材料の製造方法を説明する。
先ず、本発明の第2炭素材料を製造するために必要な触媒を合成する。この触媒の平均粒径は10nm〜500nmの範囲内の微粉末が第2炭素材料を製造する際に好適な大きさである。触媒としてはFe系微粉末、具体的には、Fe−Ni合金、Fe−Mn合金、Fe−Cu合金、Co金属、Al23やMgO金属酸化物等が挙げられる。触媒は第2炭素材料を製造する前に前処理を施し、活性化させる。触媒をHe及びH2を含む混合ガス雰囲気下で加熱することにより活性化される。
【0024】
図6に本発明の第2炭素材料を製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。原料ガスとしては、CO及びH2を含む混合ガスが挙げられる。COの代わりにC22、C66等を用いてもよい。仕切板26,26により仕切られた空間27は、微粉末の触媒をばらまいたテーブル28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容されるテーブル28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0025】
テーブル28に微粉末の触媒32を載せた後、そのテーブル28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、原料ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料ガスの供給量は0.2L/min〜10L/min、加熱温度は500℃〜700℃に設定される。原料ガスを供給しながら加熱し、1時間〜10時間保持しておくことにより、触媒32を介してカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物33が成長する。得られたカーボンナノファイバ及び粒子状凝集体を含む混合物33には触媒が含まれているので、熱処理炉20内よりテーブル28を搬出して得られた混合物33を取出し、この混合物33を硝酸、塩酸、硫酸、フッ酸等の酸性溶液に浸漬させて、混合物33に含まれる触媒32を除去する。なお、触媒32をそのまま混合物中に含ませ、この触媒を金属又は金属酸化物としてもよい。
【0026】
次に、粒子状の第1炭素材料11として石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品及び黒鉛繊維からなる群より選ばれた少なくとも1種含む平均粒径5μm〜40μmの材料を用意する。
第1炭素材料11と得られた第2炭素材料14とを、第1炭素材料11が98重量%〜70重量%、第2炭素材料14が2重量%〜30重量%の割合で混合することにより負極材料が調製される。
【0027】
このようにして得られた本発明の負極材料を用いて負極を作製する。
先ず得られた負極材料(負極活物質)と、導電助剤(炭素粉末、或いは銅やチタン等のリチウムと合金化し難い金属粉末)と、ポリフッ化ビニリデン(PVdF)等の結着剤とを所定の割合で混合することにより負極スラリーを調製する。ここで結着剤はアセトン等の溶剤に溶解させた状態で混合される。次に負極スラリーを負極集電体箔の上面に、スクリーン印刷法やドクターブレード法等により塗布して乾燥して負極を作製する。なお、負極スラリーをガラス基板上に塗布し乾燥した後に、ガラス基板から剥離して負極フィルムを作製し、更にこの負極フィルムを負極集電体に重ねて所定の圧力でプレス成形することにより、負極を作製してもよい。このように製造された負極では、グラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0028】
得られた本発明の負極と、非水電解液[例えば、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)からなる混合溶媒(混合重量比1:1)と過塩素酸リチウムを1モル/リットル溶解させたもの]を含む電解質層と、正極集電体上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより形成された正極とを積層することにより、リチウムイオン電池が得られる。また本発明の負極と、ポリエチレンオキシドやポリフッ化ビニリデン等からなるポリマー電解質層と、正極集電体上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより形成された正極とを積層することにより、リチウムポリマー電池が得られる。このように製造されたリチウムイオン電池やリチウムポリマー電池では、グラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、従来より用いられてきた炭素材料に比べて、サイズの小さいカーボンナノファイバを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0029】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
(1) 第2炭素材料の製造
先ず、平均粒径0.1μmのFe−Ni合金を触媒とし、この触媒をHe及びH2を含む混合ガス雰囲気下で加熱して活性化させた。次いで活性化させた触媒をテーブル上に載せ、テーブルを熱処理炉内に収容した。次に、熱処理炉内を550℃〜630℃の温度に加熱し、COとH2を含む混合ガスを原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内に供給しながら約10時間保持してカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去して第2炭素材料とした。この第2炭素材料をX線回折により測定したところ、カーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物のグラファイト網平面の積層間隔d002は0.3362nmであった。
【0030】
(2) 負極(作用極)の作製
先ず、平均粒径14μmのメソカーボンマイクロビーズを第1炭素材料として用意し、この第1炭素材料と上記第2炭素材料を95重量%:5重量%の割合で混合して負極材料を調製した。この負極材料18gと、ポリフッ化ビニリデン(PVdF)2gと、n-メチルピロリドン18gとを混合して負極スラリーを調製した。次いで上記負極スラリーをガラス基板上に塗布して乾燥した後に剥離することにより厚さ0.09cmの負極フィルムを作製した。この負極フィルムを縦×横がそれぞれ1.2cm×1.2cmの正方形に切断して、2枚の正方形の負極フィルムを得た。次にこれらの負極フィルムを縦×横×厚さがそれぞれ1cm×1cm×0.1cmの正方形金属網状の負極集電体の両面に配置して積層体を作製した。負極集電体にはメッシュ状に形成された銅箔を用いた。更にこの積層体に110〜130℃に加熱されたプレス機で0.5〜3MPaの圧力をかけて圧着した。これにより負極(作用極)を得た。
【0031】
<実施例2>
第1炭素材料と第2炭素材料を90重量%:10重量%の割合で混合して負極材料を調製した以外は実施例1と同様にして負極(作用極)を作製した。
<実施例3>
第1炭素材料と第2炭素材料を80重量%:20重量%の割合で混合して負極材料を調製した以外は実施例1と同様にして負極(作用極)を作製した。
<実施例4>
第1炭素材料と第2炭素材料を70重量%:30重量%の割合で混合して負極材料を調製した以外は実施例1と同様にして負極(作用極)を作製した。
【0032】
<実施例5>
第1炭素材料に平均粒径23μmのメソカーボンマイクロビーズを用いた以外は実施例1と同様にして負極(作用極)を作製した。
<実施例6>
第1炭素材料に平均粒径23μmのメソカーボンマイクロビーズを用いた以外は実施例2と同様にして負極(作用極)を作製した。
<実施例7>
第1炭素材料に平均粒径23μmのメソカーボンマイクロビーズを用いた以外は実施例3と同様にして負極(作用極)を作製した。
<実施例8>
第1炭素材料に平均粒径23μmのメソカーボンマイクロビーズを用いた以外は実施例4と同様にして負極(作用極)を作製した。
【0033】
<比較例1>
平均粒径10μmの球状黒鉛材料を負極材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
<比較例2>
平均粒径25μmの球状黒鉛材料を負極材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
【0034】
<比較試験及び評価>
図7に示すように、実施例1〜8、比較例1及び2でそれぞれ作製した負極41(作用極)を充放電サイクル試験装置51に取付けた。この装置51は、容器52に電解液53(リチウム塩を有機溶媒に溶かしたもの)が貯留され、上記負極41が正極42及び参照極43とともに電解液53に浸され、更に負極41(作用極)、正極42(対極)及び参照極43がポテンシオスタット54(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。リチウム塩には1MのLiPF6を、有機溶媒にはエチレンカーボネート及びジエチルカーボネートをそれぞれ含む溶液を用いた。この装置を用いて充放電サイクル試験を行い、各負極(作用極)の低率及び高率放電容量を測定した。なお、低率放電容量は70mA/gにて、高率放電容量は500mA/gにてそれぞれ測定を行い、測定電圧範囲を0V〜2.0Vとした。実施例1〜8の電極の測定結果を表1に、比較例1及び2の電極の測定結果を表2にそれぞれ示す。
【0035】
【表1】

Figure 0004393075
【0036】
【表2】
Figure 0004393075
【0037】
表1及び表2より明らかなように、従来より使用されている平均粒径が大きい球状黒鉛材料を負極材料として用いた比較例1及び2では、高率放電容量の低下が著しい結果となった。また、粒径の大きな比較例2の方が比較例1よりも電極密度が低い値を示していた。これに対して本発明の負極材料を用いた実施例1〜8ではそれぞれ高い電極密度を示し、かつ低率放電容量と高率放電容量に大きな差はなく、この材料を用いて電極を作製した場合、高率放電特性が向上できることが判った。
【0038】
【発明の効果】
以上述べたように、本発明の負極材料は、平均粒径5μm〜40μmの粒子状の第1炭素材料と平均直径10nm〜500nmの平面状のグラファイト網が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるカーボンナノファイバを主成分とする第2炭素材料をそれぞれ含み、第2炭素材料に含まれるカーボンナノファイバが1000nm以上の長さと、10以上のアスペクト比を有し、第1炭素材料が98重量%〜70重量%、第2炭素材料が2重量%〜30重量%の割合で構成される。
平均粒径の大きな第1炭素材料とナノサイズの第2炭素材料をそれぞれ含む本発明の負極材料を用いて電池の電極を作製した場合、第1炭素材料が形成する空隙に第2炭素材料が充填されるため、電極中の炭素材料の充填密度が効果的に向上する。また第2炭素材料の主成分である1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバはグラファイト網のエッジ面が多く露出するため、このカーボンナノファイバを主成分とした第2炭素材料と従来より用いられてきた炭素材料である第1炭素材料とをそれぞれ含む本発明の負極材料を用いることによって、従来の炭素材料のみを負極材料として用いた場合に比べて充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する。更に、第2炭素材料は従来より用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる
【図面の簡単な説明】
【図1】本発明の負極材料の模式図。
【図2】本発明の第2炭素材料の主成分であるカーボンナノファイバの模式図。
【図3】グラファイト網層間にリチウムイオンが挿入、脱離する反応を示す模式図。
【図4】図2に対応する別の構造を有するカーボンナノファイバの模式図。
【図5】カーボンナノファイバと粒子状凝集体を示す模式図。
【図6】本発明の負極材料を作製する熱処理炉の断面構成図。
【図7】実施例及び比較例のリチウム二次電池用負極活物質の充放電サイクル試験に用いられる装置。
【符号の説明】
11 第1炭素材料
12 グラファイト網
13 カーボンナノファイバ
14 第2炭素材料
16 粒子状凝集体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material that can improve high rate charge / discharge characteristics and increase the energy density of a battery, a negative electrode using the negative electrode material, and a lithium ion battery and a lithium polymer battery using the negative electrode.
[0002]
[Prior art]
In recent years, along with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity have been required. Currently, LiCoO as a positive electrode material as a high-capacity secondary battery that meets this requirement2Lithium ion batteries using a lithium-containing composite oxide such as a carbon-based material as a negative electrode active material have been commercialized. In the secondary battery using carbon as the negative electrode active material, various types of carbon have been studied so far.
For these, carbon-based materials such as coal, coke, polyacrylonitrile (PAN) -based carbon fibers, pitch-based carbon fibers, carbonized organic materials (low-temperature heat treatment), etc. are being studied. Artificial graphite, synthetic graphite, mesocarbon microbeads, graphitized (high-temperature heat-treated) products of organic substances, graphite fibers, and the like have been studied.
[0003]
A negative electrode material using a carbon-based material is excellent in initial charge capacity, but initial charge / discharge efficiency is low and cycle characteristics are inferior. On the other hand, a negative electrode material using a graphite-based material is a carbon-based material. Compared with, the cycle characteristics are excellent, but the initial charge capacity is low and the charge / discharge rate is low.
In order to compensate for these problems, the use of a mixture of carbon-based materials and graphite-based materials has also been studied. However, a negative electrode material obtained by mixing a carbon-based material and a graphite-based material has many problems such as a small charge / discharge capacity, a low initial charge / discharge efficiency, a slow charge / discharge rate, and a short cycle life.
[0004]
As a technique for solving the above problems, pitch carbonaceous fiber milled having an average particle diameter of less than 10 μm obtained at a heat treatment temperature of 550 ° C. or more and 1300 ° C. or less is contained in an amount of 60 wt% or more and 98 wt% or less and 2400 ° C. or more. There is disclosed a negative electrode material for a lithium ion secondary battery comprising 2 wt% or more and 40 wt% or less of pitch-based graphite fiber milled having an average particle size of 10 μm or more and 30 μm or less obtained at a heat treatment temperature of (for example, (See Patent Document 1).
In this negative electrode material, the pitch-based carbon fiber mill is subjected to heat treatment to reduce the radical concentration of the defective portion existing in the surface layer portion, and by removing oxygen-containing functional groups, the irreversible capacity of Li is reduced. This significantly improves the charge / discharge rate and cycle characteristics. Furthermore, a negative electrode material was prepared by mixing the pitch-based carbon fiber milled and pitch-based graphite fiber milled thus surface-modified in a predetermined ratio, and a negative electrode was manufactured using this negative electrode material. In this case, the negative electrode has a large discharge capacity, suppresses decomposition of the electrolytic solution, and has excellent cycle characteristics.
[0005]
[Patent Document 1]
JP-A-9-310591
[0006]
[Problems to be solved by the invention]
However, it is difficult for the pitch-based carbonaceous fiber milled contained in the negative electrode material disclosed in Patent Document 1 to have an average particle size of 1 μm or less, and the pitch-based carbonaceous fiber milled has an average particle size of 1 μm. There is a problem that a sufficient charge / discharge capacity cannot be obtained if the size exceeds this range.
An object of the present invention is to provide a negative electrode material and a negative electrode using the same, in which insertion and desorption reactions of lithium ions accompanying charge / discharge proceed smoothly and high-rate charge / discharge characteristics are improved.
Another object of the present invention is to provide a lithium ion battery and a lithium polymer battery that can increase the energy density of the battery.
[0007]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIGS. 1 and 2, a plurality of particulate first carbon materials 11 having an average particle diameter of 5 μm to 40 μm and a planar graphite net 12 having an average diameter of 10 nm to 500 nm are laminated. The second carbon material 14 is mainly composed of carbon nanofibers 13 whose graphite net is substantially perpendicular to the longitudinal axis of the fiber, and the carbon nanofibers 13 contained in the second carbon material 14 are 1000 nm or more. The first carbon material 11 is composed of 98 wt% to 70 wt%, and the second carbon material 14 is composed of 2 wt% to 30 wt%. It is a negative electrode material.
In the invention according to claim 1, when an electrode of a battery is produced using the negative electrode material of the present invention including the first carbon material 11 having a large average particle size and the second carbon material 14 having a nano size, Since the second carbon material 14 is filled in the void formed by the first carbon material 11 having a shape, the packing density of the carbon material in the electrode is effectively improved. Further, since the carbon nanofiber 13 having a length of 1000 nm or more and an aspect ratio of 10 or more, which is the main component of the second carbon material 14, exposes many edge surfaces of the graphite network 12, the carbon nanofiber 13 is used as the main component. By using the negative electrode material of the present invention that includes the second carbon material 14 and the first carbon material 11 that is a carbon material that has been conventionally used, compared to the case where only the conventional carbon material is used as the negative electrode material, As a result, lithium ion insertion and desorption reactions during charging and discharging proceed smoothly, and high rate charge and discharge characteristics are improved. Furthermore, since the second carbon material 14 is a material having an average diameter smaller than that of conventionally used carbon materials, when a battery electrode is manufactured, charging can be performed at a high density, and the energy density of the battery. It leads to improvement.
[0009]
  Claim2The invention according to claim1The invention relates to a carbon nano-fibre contained in the second carbon material.BaLamination spacing d of the graphite mesh plane measured in X-ray diffraction002Is a negative electrode material having a thickness of 0.3354 nm to 0.339 nm.
  Claim3The invention according to claim 1Or 25, as shown in FIG. 5, 0.5% by weight to 10% by weight of either or both of a metal and a metal oxide 17 having an average particle diameter of 10 nm to 500 nm are added to the second carbon material 14. Further, the negative electrode material is included.
  Claim3In the invention according to the present invention, since the second carbon material 14 further includes a metal or metal oxide 17 having an average particle diameter of 10 nm to 500 nm, the metal or metal oxide serves as a base point for electron conduction. Is possible.
[0010]
  Claim4The invention according to claim 1 to claim 13The invention according to any one of claims, wherein the carbon nanofibers 13 are exposed.PartAt least 85% of the negative electrode material is the edge of the graphite mesh.
  Claim5The invention according to claim3In this invention, either one or both of a metal and a metal oxide is a negative electrode material on the long axis of the carbon nanofiber.
[0011]
  Claim6The invention according to claim3Or5The metal is a negative electrode material in which the metal is at least one element selected from the group consisting of Fe, Co, Ni, Mg, Al, Mn, and Cu.
[0012]
  Claim7The invention according to claim 1 is the invention according to claim 1, wherein the particulate first carbon material 11 is coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, organic carbonized product, natural graphite, artificial graphite, It is a negative electrode material containing at least one selected from the group consisting of synthetic graphite, mesocarbon microbeads, graphitized organic products, and graphite fibers.
  Claim8The invention according to claim 1 to claim 17It is the negative electrode formed using the negative electrode material of any one, and a conductive support agent.
  This claim8In the negative electrode described in the above, the high rate charge / discharge characteristics are improved because the carbon nanofibers formed by laminating a plurality of graphite nets, which are the main component of the second carbon material, smoothly move in and out of lithium ions. To do.
[0013]
  Claim9The invention according to claim8It is a lithium ion battery formed using the described negative electrode.
  Claim10The invention according to claim8It is a lithium polymer battery formed using the described negative electrode.
  This claim9Or10In the lithium ion battery or lithium polymer battery described in 1), the insertion and extraction of lithium ions proceeds smoothly by the carbon nanofibers formed by laminating a plurality of graphite nets, which are the main components of the second carbon material. The rate charge / discharge characteristics are improved. In addition, since the second carbon material uses carbon nanofibers that are smaller in size than conventionally used carbon materials, charging at a high density is possible, leading to an improvement in the energy density of the battery.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the negative electrode of the lithium ion battery or the lithium polymer battery includes a particulate first carbon material 11 having an average particle diameter of 5 μm to 40 μm and a planar graphite network 12 having an average diameter of 10 nm to 500 nm. A plurality of laminated negative electrodes are used, each including a second carbon material 14 mainly composed of carbon nanofibers 13 whose graphite net is substantially perpendicular to the longitudinal axis of the fiber. The carbon nanofibers 13 included in the second carbon material 14 are configured to have a length of 1000 nm or more and an aspect ratio of 10 or more. When a battery electrode is produced using the negative electrode material of the present invention including the first carbon material 11 having a large average particle size and the second carbon material 14 having a nano size, voids formed by the first carbon material 11 Since the second carbon material 14 is filled, the packing density of the carbon material in the electrode is effectively improved. Also, as shown in FIG. 4, one side of the end portion 12a having the graphite mesh 12 is joined to one side of the end portion of another graphite mesh, and one side of the other end portion is one side of the end portion of another graphite net. Carbon nanofibers 13 formed by bonding to each other and having a structure folded from each side may be used.
[0015]
In the negative electrode material of the present invention, the first carbon material 11 is composed of 98 wt% to 70 wt% and the second carbon material 14 is composed of 2 wt% to 30 wt%. The ratio of the first carbon material 11 to 95 wt% to 80 wt% and the second carbon material 14 to 5 wt% to 20 wt% is preferable. When a negative electrode is formed using a negative electrode material in which the proportion of the first carbon material 11 is less than 70% by weight, the packing density of the carbon material does not increase, and a negative electrode material in which the proportion of the first carbon material 11 exceeds 98% by weight is used. When the negative electrode is formed, the content ratio of the second carbon material is small, and the void formed by the first carbon material is not sufficiently filled.
[0016]
Since the second carbon material 14 mainly composed of the carbon nanofibers 13 of the present invention has a shape in which a plurality of graphite nets 12 are laminated and the graphite nets are substantially perpendicular to the longitudinal axis of the fiber. Many edge surfaces of the mesh 12 are exposed, and there are a number of layers formed by each graphite mesh in which lithium ions are inserted and desorbed. Therefore, a high rate discharge is possible because many lithium ions can be inserted and desorbed between the graphite network layers. Moreover, the insertion and detachment | desorption reaction of lithium ion accompanying charging / discharging advances smoothly by making the average diameter of the graphite network 12 into the range of 10 nm-500 nm. If the average diameter of the graphite net 12 is less than 10 nm, the space for inserting lithium ions is insufficient, and the effect of improving the energy density is difficult to obtain. If the thickness exceeds 500 nm, it is difficult to diffuse even if lithium ions are inserted between the layers formed by the graphite network, and the charge / discharge reaction does not proceed smoothly.
[0017]
As shown in FIG. 3A, a reaction occurs in which lithium ions are inserted between graphite network layers during charging. The inserted lithium ions diffuse between the graphite network layers (FIG. 3B). During discharge, lithium ions diffused between the graphite network layers cause a desorption reaction smoothly (FIG. 3 (c)). As described above, by using the carbon nanofiber of the present invention for the second carbon material, the lithium ion insertion and desorption reactions that accompany charge / discharge proceed smoothly, so that high rate charge / discharge characteristics are improved. In addition, carbon nanofibers are smaller in size than carbon materials that have been used in the past, so when battery electrodes are fabricated, charging at high density is possible, leading to improved battery energy density. .
[0018]
  The second carbon material of the present invention further includes a particulate aggregate 16 made of carbon fine powder having a graphite structure in addition to the carbon nanofiber 13.Is preferable.in this case,The content of the carbon nanofibers 13 in the second carbon material is 80 wt% to 99.5 wt%, and the content of the particulate aggregate 16 is a ratio of 0.5 wt% to 20 wt%.Is preferred.MorePreferably, the carbon nanofibers 13 are 90 wt% to 99 wt%, and the particulate aggregates 16 are 1 wt% to 10 wt%. The reason why the content of the carbon nanofibers 13 is limited to the range of 80% by weight to 99.5% by weight is that when the amount is less than 80% by weight, a sufficient electrode density cannot be obtained, and the energy density is hardly improved. This is because it is difficult to obtain sufficient high rate discharge characteristics when it exceeds 5% by weight.
[0019]
When a carbon nanofiber or a mixture each containing a carbon nanofiber and a particulate aggregate is measured by X-ray diffraction, the stacking distance d of the graphite network plane obtained is measured.002Is in the range of 0.3354 nm to 0.339 nm. Preferred stacking distance d002Is 0.3355 nm to 0.3380 nm.
[0020]
It is preferable that at least 85% of the exposed portion of the carbon nanofiber 12 or the exposed portion of the mixture including the carbon nanofiber 12 and the particulate aggregate 13 is an end portion of the graphite network. More preferably, it is 90% or more. Here, the end portion of the graphite net indicates a portion represented by reference numeral 12a in FIGS.
[0021]
By further including 0.5% by weight to 10% by weight of either or both of the metal and metal oxide 17 having an average particle diameter of 10 nm to 500 nm, the metal or metal oxide 17 having an average particle diameter of 10 nm to 500 nm can be obtained. Since it becomes a base point for electron conduction, a higher rate of discharge becomes possible. Either the metal or the metal oxide or both are configured to lie on the long axis of the carbon nanofiber. As the metal, at least one element selected from the group consisting of Fe, Co, Ni, Mg, Al, Mn, and Cu is selected and used in the form of a single metal, an alloy, or a metal oxide.
[0022]
The particulate first carbon material 11 is made of coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, organic carbonized product, natural graphite, artificial graphite, synthetic graphite, mesocarbon microbead, organic graphite. And at least one selected from the group consisting of chemicals and graphite fibers.
[0023]
Next, the manufacturing method of the negative electrode material of this invention is demonstrated.
First, a catalyst necessary for producing the second carbon material of the present invention is synthesized. The average particle diameter of this catalyst is a size suitable for producing a second carbon material with fine powder in the range of 10 nm to 500 nm. As the catalyst, Fe-based fine powder, specifically, Fe-Ni alloy, Fe-Mn alloy, Fe-Cu alloy, Co metal, Al2OThreeAnd MgO metal oxide. The catalyst is pretreated and activated before producing the second carbon material. Catalysts are He and H2It is activated by heating in a mixed gas atmosphere containing.
[0024]
FIG. 6 shows a heat treatment furnace 20 for producing the second carbon material of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. A heating element 22 is installed on the top and bottom of the apparatus main body 21 partitioned by the partition plates 26, 26, respectively. Examples of the heating source of the heating element 22 used for heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply the source gas to the space partitioned by the partition plates 26 and 26. Source gases include CO and H2The mixed gas containing is mentioned. C instead of CO2H2, C6H6Etc. may be used. The space 27 partitioned by the partition plates 26 and 26 has a size that can accommodate a table 28 in which a fine powder catalyst is dispersed. The other side of the apparatus main body 21 is placed outside the system in the heat treatment furnace 20. A gas outlet 29 for discharging the supplied source gas is provided. The table 28 accommodated in the space 27 is placed on the take-out table 31, and is provided so as to be accommodated and unloaded in the heat treatment furnace.
[0025]
After the fine powder catalyst 32 is placed on the table 28, the table 28 is taken out, placed on the stand 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. Thereafter, the source gas is supplied from the gas supply port 24 and heated by the heating elements 22 and 22. The supply amount of the source gas is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 500 ° C. to 700 ° C. The mixture 33 is heated while supplying the raw material gas and kept for 1 hour to 10 hours, whereby the mixture 33 containing the carbon nanofibers and the particulate aggregates grows through the catalyst 32. Since the obtained mixture 33 containing the carbon nanofibers and the particulate aggregate contains a catalyst, the mixture 33 obtained by unloading the table 28 from the heat treatment furnace 20 is taken out, and the mixture 33 is mixed with nitric acid, The catalyst 32 contained in the mixture 33 is removed by dipping in an acidic solution such as hydrochloric acid, sulfuric acid, or hydrofluoric acid. The catalyst 32 may be included in the mixture as it is, and the catalyst may be a metal or a metal oxide.
[0026]
Next, as the particulate first carbon material 11, coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, carbonized product of organic matter, natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, graphitization of organic matter A material having an average particle diameter of 5 μm to 40 μm including at least one selected from the group consisting of a product and a graphite fiber is prepared.
Mixing the first carbon material 11 and the obtained second carbon material 14 at a ratio of 98 wt% to 70 wt% for the first carbon material 11 and 2 wt% to 30 wt% for the second carbon material 14. Thus, a negative electrode material is prepared.
[0027]
A negative electrode is prepared using the negative electrode material of the present invention thus obtained.
First, a predetermined negative electrode material (negative electrode active material), a conductive additive (carbon powder or metal powder that is difficult to be alloyed with lithium such as copper or titanium), and a binder such as polyvinylidene fluoride (PVdF) are predetermined. A negative electrode slurry is prepared by mixing at a ratio of Here, the binder is mixed in a state dissolved in a solvent such as acetone. Next, the negative electrode slurry is applied to the upper surface of the negative electrode current collector foil by a screen printing method, a doctor blade method, or the like, and dried to produce a negative electrode. In addition, after apply | coating a negative electrode slurry on a glass substrate and drying, it peels from a glass substrate and produces a negative electrode film, Furthermore, this negative electrode film is piled up on a negative electrode collector, and is press-molded by predetermined pressure, and negative electrode May be produced. In the negative electrode manufactured in this way, the insertion and extraction of lithium ions proceed smoothly by the carbon nanofibers formed by laminating a plurality of graphite nets, so that the high rate charge / discharge characteristics are improved.
[0028]
The obtained negative electrode of the present invention, a non-aqueous electrolyte [for example, a mixed solvent composed of ethylene carbonate (EC) and diethylene carbonate (DEC) (mixing weight ratio 1: 1) and lithium perchlorate dissolved in 1 mol / liter A positive electrode formed by applying and drying a positive electrode slurry composed of a binder, a positive electrode material, and a conductive auxiliary agent on a positive electrode current collector by a doctor blade method. Thus, a lithium ion battery is obtained. In addition, a negative electrode of the present invention, a polymer electrolyte layer made of polyethylene oxide, polyvinylidene fluoride, or the like, and a positive electrode slurry made of a binder, a positive electrode material, and a conductive auxiliary agent are applied onto the positive electrode current collector and dried. A lithium polymer battery is obtained by laminating the positive electrode formed in this way. In the lithium ion battery and the lithium polymer battery manufactured in this way, the insertion and release of lithium ions proceed smoothly due to the carbon nanofibers formed by laminating a plurality of graphite nets, thereby improving the high rate charge / discharge characteristics. . In addition, since carbon nanofibers that are smaller in size than conventional carbon materials are used, charging at a high density is possible, leading to an improvement in the energy density of the battery.
[0029]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
(1) Production of second carbon materials
First, an Fe—Ni alloy having an average particle size of 0.1 μm was used as a catalyst, and this catalyst was converted into He and H.2It was activated by heating in a mixed gas atmosphere containing. Next, the activated catalyst was placed on a table, and the table was accommodated in a heat treatment furnace. Next, the inside of the heat treatment furnace is heated to a temperature of 550 ° C. to 630 ° C., and CO and H2A mixed gas containing carbon nanofibers and particulate agglomerates was synthesized by holding the raw material gas at a flow rate of 10 L / min for about 10 hours while supplying the raw material gas into the heat treatment furnace. The obtained mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture to obtain a second carbon material. When this second carbon material was measured by X-ray diffraction, the stacking distance d on the graphite network plane of the mixture containing carbon nanofibers and particulate aggregates was determined.002Was 0.3362 nm.
[0030]
(2) Production of negative electrode (working electrode)
First, mesocarbon microbeads having an average particle diameter of 14 μm were prepared as a first carbon material, and the first carbon material and the second carbon material were mixed at a ratio of 95 wt%: 5 wt% to prepare a negative electrode material. . A negative electrode slurry was prepared by mixing 18 g of this negative electrode material, 2 g of polyvinylidene fluoride (PVdF), and 18 g of n-methylpyrrolidone. Next, the negative electrode slurry having a thickness of 0.09 cm was prepared by coating the negative electrode slurry on a glass substrate, drying it, and then peeling it off. This negative electrode film was cut into squares each having a length × width of 1.2 cm × 1.2 cm to obtain two square negative electrode films. Next, these negative electrode films were arranged on both sides of a square metal net-like negative electrode current collector of 1 cm × 1 cm × 0.1 cm in length × width × thickness, respectively, to prepare a laminate. A copper foil formed in a mesh shape was used for the negative electrode current collector. Further, the laminate was pressure-bonded by applying a pressure of 0.5 to 3 MPa with a press machine heated to 110 to 130 ° C. This obtained the negative electrode (working electrode).
[0031]
<Example 2>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that the negative electrode material was prepared by mixing the first carbon material and the second carbon material in a ratio of 90% by weight to 10% by weight.
<Example 3>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that the negative electrode material was prepared by mixing the first carbon material and the second carbon material in a ratio of 80% by weight to 20% by weight.
<Example 4>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that the negative electrode material was prepared by mixing the first carbon material and the second carbon material in a ratio of 70% by weight to 30% by weight.
[0032]
<Example 5>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that mesocarbon microbeads having an average particle diameter of 23 μm were used as the first carbon material.
<Example 6>
A negative electrode (working electrode) was produced in the same manner as in Example 2 except that mesocarbon microbeads having an average particle diameter of 23 μm were used as the first carbon material.
<Example 7>
A negative electrode (working electrode) was produced in the same manner as in Example 3 except that mesocarbon microbeads having an average particle size of 23 μm were used as the first carbon material.
<Example 8>
A negative electrode (working electrode) was produced in the same manner as in Example 4 except that mesocarbon microbeads having an average particle diameter of 23 μm were used as the first carbon material.
[0033]
<Comparative Example 1>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that a spherical graphite material having an average particle size of 10 μm was used as the negative electrode material.
<Comparative example 2>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that a spherical graphite material having an average particle size of 25 μm was used as the negative electrode material.
[0034]
<Comparison test and evaluation>
As shown in FIG. 7, the negative electrode 41 (working electrode) produced in each of Examples 1 to 8 and Comparative Examples 1 and 2 was attached to a charge / discharge cycle test apparatus 51. In this device 51, an electrolytic solution 53 (lithium salt dissolved in an organic solvent) is stored in a container 52, the negative electrode 41 is immersed in the electrolytic solution 53 together with the positive electrode 42 and the reference electrode 43, and further the negative electrode 41 (working electrode). ), The positive electrode 42 (counter electrode) and the reference electrode 43 are electrically connected to a potentiostat 54 (potentiometer), respectively. Lithium salt contains 1M LiPF6A solution containing ethylene carbonate and diethyl carbonate was used as the organic solvent. Using this apparatus, a charge / discharge cycle test was performed to measure the low rate and high rate discharge capacity of each negative electrode (working electrode). The low-rate discharge capacity was measured at 70 mA / g, and the high-rate discharge capacity was measured at 500 mA / g. The measurement voltage range was 0 V to 2.0 V. The measurement results of the electrodes of Examples 1 to 8 are shown in Table 1, and the measurement results of the electrodes of Comparative Examples 1 and 2 are shown in Table 2, respectively.
[0035]
[Table 1]
Figure 0004393075
[0036]
[Table 2]
Figure 0004393075
[0037]
As is clear from Tables 1 and 2, in Comparative Examples 1 and 2 in which spherical graphite material having a large average particle diameter that has been used conventionally is used as the negative electrode material, the reduction in the high rate discharge capacity was remarkable. . Further, Comparative Example 2 having a larger particle diameter showed a lower electrode density than Comparative Example 1. On the other hand, Examples 1 to 8 using the negative electrode material of the present invention each showed a high electrode density, and there was no significant difference between the low rate discharge capacity and the high rate discharge capacity, and electrodes were produced using this material. In this case, it was found that the high rate discharge characteristics can be improved.
[0038]
【The invention's effect】
  As described above, the negative electrode material according to the present invention is formed by laminating a plurality of particulate first carbon materials having an average particle diameter of 5 μm to 40 μm and a planar graphite network having an average diameter of 10 nm to 500 nm. Each of the second carbon materials mainly includes carbon nanofibers that are substantially perpendicular to the axis, and the carbon nanofibers included in the second carbon material have a length of 1000 nm or more and an aspect ratio of 10 or more. The first carbon material is composed of 98% by weight to 70% by weight, and the second carbon material is composed of 2% by weight to 30% by weight.
  When an electrode of a battery is produced using the negative electrode material of the present invention including the first carbon material having a large average particle size and the nano-sized second carbon material, the second carbon material is in the void formed by the first carbon material. Since it is filled, the packing density of the carbon material in the electrode is effectively improved. In addition, carbon nanofibers having a length of 1000 nm or more, which is the main component of the second carbon material, and an aspect ratio of 10 or more expose many edges of the graphite network. By using the negative electrode material of the present invention each including the first carbon material, which is a carbon material that has been conventionally used, and lithium associated with charge and discharge compared to the case where only the conventional carbon material is used as the negative electrode material Ion insertion and desorption reactions proceed smoothly, improving high rate charge / discharge characteristics. Furthermore, since the second carbon material is a material having an average diameter smaller than that of the conventionally used carbon material, when the battery electrode is produced, it becomes possible to charge at a high density and to improve the energy density of the battery. Lead to.
[Brief description of the drawings]
FIG. 1 is a schematic view of a negative electrode material of the present invention.
FIG. 2 is a schematic view of a carbon nanofiber that is a main component of the second carbon material of the present invention.
FIG. 3 is a schematic diagram showing a reaction in which lithium ions are inserted and desorbed between graphite network layers.
4 is a schematic view of a carbon nanofiber having another structure corresponding to FIG. 2. FIG.
FIG. 5 is a schematic diagram showing carbon nanofibers and particulate aggregates.
FIG. 6 is a cross-sectional configuration diagram of a heat treatment furnace for producing the negative electrode material of the present invention.
FIG. 7 shows an apparatus used for a charge / discharge cycle test of negative electrode active materials for lithium secondary batteries of Examples and Comparative Examples.
[Explanation of symbols]
11 First carbon material
12 Graphite net
13 Carbon nanofiber
14 Second carbon material
16 particulate aggregates

Claims (10)

平均粒径5μm〜40μmの粒子状の第1炭素材料(11)と平均直径10nm〜500nmの平面状のグラファイト網(12)が複数積層され、前記グラファイト網がファイバの縦軸に対して実質的に垂直であるカーボンナノファイバ(13)を主成分とする第2炭素材料(14)をそれぞれ含み、
前記第2炭素材料(14)に含まれるカーボンナノファイバ(13)が1000nm以上の長さと、10以上のアスペクト比を有し、
前記第1炭素材料(11)が98重量%〜70重量%、前記第2炭素材料(14)が2重量%〜30重量%の割合で構成され、
前記第2炭素材料(14)は前記第1炭素材料(11)が形成する空隙に充填されていることを特徴とする負極材料。
A plurality of particulate first carbon materials (11) having an average particle diameter of 5 μm to 40 μm and a planar graphite network (12) having an average diameter of 10 nm to 500 nm are laminated, and the graphite network substantially corresponds to the longitudinal axis of the fiber. A second carbon material (14) mainly composed of carbon nanofibers (13) perpendicular to
The carbon nanofiber (13) contained in the second carbon material (14) has a length of 1000 nm or more and an aspect ratio of 10 or more,
The first carbon material (11) is composed of 98 wt% to 70 wt%, and the second carbon material (14) is composed of 2 wt% to 30 wt%,
The negative electrode material second carbon material (14) is characterized that you have filled in the gap to form the first carbon material (11).
第2炭素材料(14)に含まれるカーボンナノファイバ(13)のX線回折において測定されるグラファイト網(12)平面の積層間隔d002が0.3354nm〜0.339nmである請求項1記載の負極材料。Graphite-net measured in X-ray diffraction of the carbon nanofibers in the second carbon material (14) (13) (12) according to claim 1 Symbol mounting laminate spacing d 002 of the planes is 0.3354nm~0.339nm Negative electrode material. 第2炭素材料(14)に平均粒径10nm〜500nmの金属又は金属酸化物(17)のどちらか一方又はその双方を0.5重量%〜10重量%更に含む請求項1又は2記載の負極材料。The negative electrode according to claim 1 or 2, further comprising 0.5 wt% to 10 wt% of one or both of a metal and a metal oxide (17) having an average particle diameter of 10 nm to 500 nm in the second carbon material (14). material. カーボンナノファイバ(13)の露出部の少なくとも85%がグラファイト網の端部である請求項1ないしいずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1 to 3 , wherein at least 85% of the exposed portion of the carbon nanofiber (13) is an end portion of the graphite network. 金属又は金属酸化物のどちらか一方又はその双方がカーボンナノファイバの長軸上にある請求項に記載の負極材料。4. The negative electrode material according to claim 3 , wherein either one or both of metal and metal oxide are on the long axis of the carbon nanofiber. 金属がFe、Co、Ni、Mg、Al、Mn及びCuからなる群より選ばれた少なくとも1種の元素である請求項又は記載の負極材料。The negative electrode material according to claim 3 or 5 , wherein the metal is at least one element selected from the group consisting of Fe, Co, Ni, Mg, Al, Mn, and Cu. 粒子状の第1炭素材料(11)が石炭、コークス、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品及び黒鉛繊維からなる群より選ばれた少なくとも1種を含む請求項1記載の負極材料。  Particulate primary carbon material (11) is coal, coke, polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, organic carbonized product, natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitization The negative electrode material according to claim 1, comprising at least one selected from the group consisting of a product and graphite fibers. 請求項1ないしいずれか1項に記載の負極材料と、導電助剤とを用いて形成された負極。Negative electrode formed using the negative electrode material according to claims 1 to 7 any one, and a conductive additive. 請求項記載の負極を用いて形成されたリチウムイオン電池。A lithium ion battery formed using the negative electrode according to claim 8 . 請求項記載の負極を用いて形成されたリチウムポリマー電池。A lithium polymer battery formed using the negative electrode according to claim 8 .
JP2003016063A 2003-01-24 2003-01-24 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode Expired - Fee Related JP4393075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016063A JP4393075B2 (en) 2003-01-24 2003-01-24 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016063A JP4393075B2 (en) 2003-01-24 2003-01-24 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008288635A Division JP4950166B2 (en) 2008-11-11 2008-11-11 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode

Publications (2)

Publication Number Publication Date
JP2004227988A JP2004227988A (en) 2004-08-12
JP4393075B2 true JP4393075B2 (en) 2010-01-06

Family

ID=32903638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016063A Expired - Fee Related JP4393075B2 (en) 2003-01-24 2003-01-24 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode

Country Status (1)

Country Link
JP (1) JP4393075B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133983A (en) * 2009-11-03 2011-10-01 Envia Systems Inc High capacity anode materials for lithium ion batteries
JP5806271B2 (en) * 2013-09-24 2015-11-10 株式会社豊田自動織機 Negative electrode active material and power storage device
CN113823766B (en) * 2021-11-22 2022-03-18 河南电池研究院有限公司 Cathode for solid lithium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP2004227988A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
Wang et al. 2D amorphous V2O5/graphene heterostructures for high‐safety aqueous Zn‐ion batteries with unprecedented capacity and ultrahigh rate capability
Gong et al. An iodine quantum dots based rechargeable sodium–iodine battery
US10236500B2 (en) Lithium-ion cell having a high-capacity cathode
US10741335B2 (en) Partially surface-mediated lithium ion-exchanging cells and method for operating same
JP6528826B2 (en) Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same
Zhang et al. Electrospun Fe 2 O 3–carbon composite nanofibers as durable anode materials for lithium ion batteries
US10749171B2 (en) Method for the preparation of anodes for lithium batteries
US8765303B2 (en) Lithium-ion cell having a high energy density and high power density
KR101520508B1 (en) 2 positive electrode-forming member material for the same method for producing the same and lithium ion secondary battery
JP5462445B2 (en) Lithium ion secondary battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
Gaikwad et al. Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery
JP2023502611A (en) Negative electrode and secondary battery containing the same
WO2005024980A1 (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
WO2016158823A1 (en) Carbonaceous molding for cell electrode, and method for manufacturing same
JP6094841B2 (en) Conductive material for secondary battery and electrode for lithium secondary battery including the same
JP2004220909A (en) Positive electrode activator and positive electrode using the same, lithium ion battery and lithium polymer battery using positive electrode
Min et al. High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics
JP2004303613A (en) Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
Li et al. Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes
JP4950166B2 (en) Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode
JP4393075B2 (en) Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees