JPH07302594A - Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle - Google Patents

Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle

Info

Publication number
JPH07302594A
JPH07302594A JP6119623A JP11962394A JPH07302594A JP H07302594 A JPH07302594 A JP H07302594A JP 6119623 A JP6119623 A JP 6119623A JP 11962394 A JP11962394 A JP 11962394A JP H07302594 A JPH07302594 A JP H07302594A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6119623A
Other languages
Japanese (ja)
Inventor
Isao Kai
勲 甲斐
Mitsunao Osada
光巨 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP6119623A priority Critical patent/JPH07302594A/en
Publication of JPH07302594A publication Critical patent/JPH07302594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a carbonaceous particle suitable for a negative electrode for a lithium ion secondary battery with high electric capacity and high safety and provide a negative electrode for the lithium ion secondary battery with low overvoltage. CONSTITUTION:The surface of a meso-phase pitch green coke particle is covered with an oxygen-containing organic material, then heat treatment is conducted to obtain a carbonaceous particle having a mean particle size of 60mum or less, a layer spacing (d002) of 0.370-0.350nm, a crystallite thickness (Lc) in the direction of (c) axis of 0.8-10nm, and a true specific gravity of 1.7-2.1 suitable for a negative electrode for a lithium ion secondary battery. The carbonaceous particle is used as an active material of the negative electrode for the lithium ion secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質粒子及びこれを
用いた非水系二次電池用負極、特に高電気容量を有する
リチウムイオン二次電池用負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to carbonaceous particles and a negative electrode for a non-aqueous secondary battery using the same, and more particularly to a negative electrode for a lithium ion secondary battery having a high electric capacity.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池は、小型
・軽量の高エネルギー蓄電池であることから携帯用電子
機器用電源として注目されている。そして、その電池性
能を示すエネルギー密度は、負極活物質である炭素質材
料におけるリチウムイオンのドーピング(吸蔵)度合に
依存している。
2. Description of the Related Art In recent years, a lithium ion secondary battery has been attracting attention as a power source for portable electronic devices because it is a compact and lightweight high energy storage battery. The energy density indicating the battery performance depends on the degree of doping (storage) of lithium ions in the carbonaceous material that is the negative electrode active material.

【0003】正極活物質は、一般にLixyz(Mは
遷移金属を主とする1種または2種以上の金属元素、
0.5≦x≦2,1≦y≦2,2≦z≦4)で示される
ものであり、充電時にリチウムイオンを放出し、負極の
炭素質材料にドーピング(充電)され、放電時に炭素質
材料からリチウムイオンが脱ドーピング(放電)され
る。電池缶の限られた内容積に、より多くの活物質を充
填することが電池の高容量化につながることから、負極
の炭素質材料はより高比重であることが望ましい。また
ドーピング電気量に対する脱ドーピング電気量の比率、
すなわち電流効率がほぼ100%になることが正極のリ
チウムが充放電以外に消費されずに済むことで望まし
く、初回の充電時の電流効率もできるだけ高いことが好
ましい。この負極の炭素質材料としては、熱処理された
石油ピッチコークス、石炭ピッチコークスの粒子が通常
使用されているが、各種電子・電気機器の電源用として
はより高容量化を図った電池の出現が待望され、種々の
検討がなされている。
The positive electrode active material is generally Li x M y O z (M is one or more metal elements mainly containing a transition metal,
0.5 ≦ x ≦ 2,1 ≦ y ≦ 2,2 ≦ z ≦ 4), which emits lithium ions during charging, is doped (charged) into the carbonaceous material of the negative electrode, and is discharged during discharge. Ions are dedoped (discharged) from the quality material. It is desirable for the carbonaceous material of the negative electrode to have a higher specific gravity because filling the limited inner volume of the battery can with more active material leads to higher capacity of the battery. Also, the ratio of the dedoping electric quantity to the doping electric quantity,
That is, it is desirable that the current efficiency be almost 100% because the positive electrode lithium is not consumed except for charging and discharging, and it is also preferable that the current efficiency at the first charging is as high as possible. Particles of heat-treated petroleum pitch coke and coal pitch coke are usually used as the carbonaceous material of this negative electrode, but the emergence of batteries with higher capacities as power sources for various electronic and electrical devices has emerged. The long-awaited and various studies have been made.

【0004】例えば、メソフェーズピッチ小球体(ピッ
チ類を熱処理する際に生成する球晶)を2300〜30
00℃で高温熱処理して得られた黒鉛化メソフェーズピ
ッチ小球体を負極活物質として用いることが提案されて
いる。この黒鉛化メソフェーズピッチ小球体は、ピッチ
コークスに比して高い電気容量が得られるものの、リチ
ウムが粒子表面に析出しやすく、リチウムデンドライト
ショート等電池の安全性に問題があった。
For example, 2300 to 30 mesophase pitch small spheres (spherulites generated when heat-treating pitches) are used.
It has been proposed to use graphitized mesophase pitch globule obtained by high temperature heat treatment at 00 ° C. as a negative electrode active material. Although this graphitized mesophase pitch small sphere can obtain a higher electric capacity than pitch coke, lithium is likely to be deposited on the particle surface, and there is a problem in battery safety such as lithium dendrite short circuit.

【0005】また黒鉛化メソフェーズピッチ小球体は、
負極としては定電流にて放電開始の瞬間の電圧降下分を
表す過電圧がピッチコークスに比して大きいという欠点
があった。
Further, the graphitized mesophase pitch microspheres are
As a negative electrode, there was a drawback that the overvoltage, which represents a voltage drop at the moment of starting discharge at a constant current, was larger than that of pitch coke.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、高い
電気容量を有しかつ安全性に優れたリチウムイオン二次
電池用負極に適した炭素質粒子を提供することを第1の
目的とする。そして、本発明の第2の目的は、この炭素
質粒子を用いた過電圧が小さいリチウムイオン二次電池
用負極を提供することにある。
SUMMARY OF THE INVENTION Therefore, it is a first object of the present invention to provide carbonaceous particles having a high electric capacity and excellent safety, which are suitable for a negative electrode for a lithium ion secondary battery. . And the 2nd object of this invention is to provide the negative electrode for lithium ion secondary batteries which uses this carbonaceous particle and whose overvoltage is small.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討した結果、石油タールピッチ、
石炭タールピッチから得られる、表層に粘結物質を有し
かつ揮発物を残留したメソフェーズピッチ小球体が成長
し更に融合した塊状物を細かく砕いたメソフェーズピッ
チのグリーンコークス粉砕物、好ましくは該コークス粉
砕物を主体とするグラファイト粉末との混合物を含酸素
有機物で表面処理した後に、800〜1300℃で熱処
理して得られる不定形炭素質粒子が、前記課題の達成に
極めて有効であることを見い出し、本発明の完成に至っ
た。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that petroleum tar pitch,
A green coke pulverized product of mesophase pitch, which is obtained from coal tar pitch, has fine particles of a mesophase pitch sphere having a caking substance in the surface layer and residual volatile matter, and further fused lumps are finely crushed, preferably the coke pulverization It was found that the amorphous carbonaceous particles obtained by subjecting a mixture of a graphite powder mainly composed of a substance to a surface treatment with an oxygen-containing organic substance and then heat-treating at 800 to 1300 ° C. are extremely effective in achieving the above-mentioned object, The present invention has been completed.

【0008】すなわち本発明は、メソフェーズピッチの
コークス粉砕物の表面に含酸素有機物の熱処理炭素質を
有する炭素質粒子(1)である。また他の発明は平均粒
子径が60μm以下であり、炭素層間距離(d002)が
0.370〜0.350nm、C軸方向の結晶子の厚さ
(Lc)が0.8〜10nm、真比重が1.7〜2.1
の範囲にある炭素質粒子(2)である。さらに他の発明
は、前記炭素質粒子(1又は2)を含んでなるリチウム
イオン二次電池用負極である。
That is, the present invention is a carbonaceous particle (1) having a heat-treated carbonaceous substance of an oxygen-containing organic substance on the surface of a pulverized coke of mesophase pitch. In another invention, the average particle diameter is 60 μm or less, the carbon interlayer distance (d 002 ) is 0.370 to 0.350 nm, the crystallite thickness (Lc) in the C-axis direction is 0.8 to 10 nm, and Specific gravity is 1.7-2.1
The carbonaceous particles (2) are in the range. Still another invention is a negative electrode for a lithium ion secondary battery containing the carbonaceous particles (1 or 2).

【0009】以下、本発明について詳細に説明する。本
発明に用いられるメソフェーズピッチのグリーンコーク
ス粉砕物は、例えばナフサ分解、石油分解、石炭の熱分
解、アスファルト分解等による石油系、石炭系のいずれ
かのタールピッチ、好ましくは蒸留精製タールピッチを
300〜500℃にて加熱した際に生成するメソフェー
ズピッチの小球体が更に融合したものを塊状物として分
離した後に粉砕したものであり、トルエン不溶分80〜
98重量%、キノリン可溶分20〜5重量%、揮発分
(800℃、7分間にて減少する重量比率)6〜25重
量%に制御されたもので、その平均粒子径は1〜15μ
m、好ましくは3〜10μmのものである。
The present invention will be described in detail below. The green coke pulverized product of mesophase pitch used in the present invention is, for example, petroleum-based or coal-based tar pitch by naphtha decomposition, petroleum decomposition, thermal decomposition of coal, asphalt decomposition, etc. It is obtained by further fusing mesophase pitch small spheres generated when heated at ˜500 ° C., separating as a lump, and then pulverizing the mixture.
98% by weight, quinoline-soluble content 20 to 5% by weight, volatile content (weight ratio decreasing at 800 ° C. for 7 minutes) 6 to 25% by weight, and the average particle diameter is 1 to 15 μm.
m, preferably 3 to 10 μm.

【0010】本発明において用いられる含酸素有機物
は、熱処理後に固定炭素を有する物であれば特に限定さ
れることはなく、この様な含酸素有機物の例としては、
フェノール樹脂(ノボラック型、レゾール型、ベンジリ
ックエーテル型)、フラン樹脂、フルフリルアルコー
ル、メラミン樹脂、尿素樹脂、エポキシ樹脂、ポリイミ
ド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、
澱粉、蔗糖、セルローズ、カルボキシメチルセルロー
ズ、ポリビニルアルコール、ポリ酢酸ビニル部分ケン化
物、ポリエチレンオキサイド、ポリプロピレンオキサイ
ド等のポリアルキレンオキサイド及びそのアクリレー
ト、メタクリレート誘導体等がある。なかでも、フェノ
ール樹脂、フラン樹脂、フルフリルアルコール、澱粉及
び蔗糖は、高い固定炭素を有する点で好ましい。特に好
ましいのはフェノール樹脂である。これらは、単独で用
いても良いし、2種以上組み合わせても良い。かかる含
酸素有機物の使用量は、特に限定されないが、一般的に
はメソフェーズコークス粉砕物又はこれとグラファイト
の混合物に対し、固形分換算で3重量%以上とされる。
しかし、被覆処理時や熱処理時の作業性を考慮すると5
〜50重量%であることが好ましい。このような含酸素
有機物には、必要に応じてタールピッチ、粉末コークス
等の他の添加物を併用することができる。
The oxygen-containing organic material used in the present invention is not particularly limited as long as it has fixed carbon after heat treatment, and examples of such oxygen-containing organic material include:
Phenolic resin (novolak type, resol type, benzylic ether type), furan resin, furfuryl alcohol, melamine resin, urea resin, epoxy resin, polyimide resin, unsaturated polyester resin, polyurethane resin,
Examples thereof include starch, sucrose, cellulose, carboxymethyl cellulose, polyvinyl alcohol, partially saponified polyvinyl acetate, polyalkylene oxides such as polyethylene oxide and polypropylene oxide, and acrylate and methacrylate derivatives thereof. Among them, phenol resin, furan resin, furfuryl alcohol, starch and sucrose are preferable because they have a high fixed carbon. Particularly preferred is a phenolic resin. These may be used alone or in combination of two or more. Although the amount of the oxygen-containing organic substance used is not particularly limited, it is generally 3% by weight or more in terms of solid content with respect to the pulverized mesophase coke or the mixture thereof with graphite.
However, considering workability during coating and heat treatment, 5
It is preferably ˜50% by weight. If necessary, other additives such as tar pitch and powder coke can be used in combination with such oxygen-containing organic matter.

【0011】本発明に係る炭素質粒子は、例えば前記メ
ソフェーズピッチのグリーンコークス粉砕物、又は該コ
ークス粉砕物を主体とするグラファイト粉末との混合物
の表面を含酸素有機物で処理し、水分あるいは溶剤を加
熱除去した後、不活性ガス雰囲気下で熱処理を施すこと
により、含酸素有機物(特にフェノール樹脂)と前記コ
ークス粉砕物表層の粘結成分及び残揮発成分とが融合・
分離を繰り返して形成される不定形粒子として製造され
る。特に、リチウムイオン二次電池用負極に適した炭素
質粒子を得るには、熱処理温度が800〜1300℃、
とりわけ900〜1200℃であることが望ましい。そ
の理由は、800℃未満では初期電流効率が著しく低下
し好ましくなく、また、1300℃を越えると、メソフ
ェーズピッチのグリーンコークス粉砕物の熱処理物とほ
ぼ同じ放電電気量となるからである。かかる炭素質粒子
の中でも平均粒子径が60μm以下であり、炭素層間距
離(d002)が0.370〜0.350nm、C軸方向
の結晶子の厚さ(Lc)が0.8〜10nm、真比重が
1.7〜2.1、特に1.8〜2.1の範囲にあるもの
が好ましく、大きい電気容量を具現することができると
ともに、過電圧を小さくすることができる。なお、前記
グラファイト粉末は、負極用炭素質粒子の製造において
好適に使用され、通常は前述したようにコークス粉砕物
と混合して用いるか、含酸素有機物に予め混合して用い
られるが、そのほか含酸素有機物で表面処理されたコー
クス粉砕物に混合して用いても良い。またその配合量と
しては、コークス粉砕物に対して通常0.1重量%、好
ましくは電池の安全性の観点から5〜10重量%であ
る。また、本発明のカーボン粒子の製造に際しては、コ
ークス粉砕物の表面を含酸素有機物で処理しているた
め、従来のようなコークス粉砕物表層の粘結物質を除去
するための前処理、例えば低温熱処理による架橋処理、
酸素による酸化架橋処理を行って融着性を制御するとい
う煩雑な制御を行う必要がない。
In the carbonaceous particles according to the present invention, for example, the surface of a green coke pulverized product of the above mesophase pitch or a mixture of graphite powder mainly composed of the coke pulverized product is treated with an oxygen-containing organic substance to remove water or a solvent. After heat removal, heat treatment is performed in an inert gas atmosphere to fuse the oxygen-containing organic matter (especially phenol resin) with the caking and residual volatile components of the surface layer of the coke pulverized product.
It is manufactured as amorphous particles formed by repeating separation. In particular, in order to obtain carbonaceous particles suitable for a negative electrode for a lithium ion secondary battery, a heat treatment temperature is 800 to 1300 ° C.,
It is particularly desirable that the temperature is 900 to 1200 ° C. The reason is that if the temperature is lower than 800 ° C., the initial current efficiency is remarkably lowered, which is not preferable, and if the temperature exceeds 1300 ° C., the discharge electricity amount is almost the same as that of the heat-treated product of the pulverized green coke of mesophase pitch. Among such carbonaceous particles, the average particle diameter is 60 μm or less, the carbon interlayer distance (d 002 ) is 0.370 to 0.350 nm, the crystallite thickness (Lc) in the C-axis direction is 0.8 to 10 nm, It is preferable that the true specific gravity is in the range of 1.7 to 2.1, especially 1.8 to 2.1, and it is possible to realize a large electric capacity and reduce the overvoltage. The graphite powder is preferably used in the production of carbonaceous particles for a negative electrode, and is usually used as a mixture with a crushed product of coke as described above or as a mixture with an oxygen-containing organic material in advance. You may use it, mixing with the coke pulverized product surface-treated with the oxygen organic substance. The blending amount thereof is usually 0.1% by weight, preferably 5 to 10% by weight from the viewpoint of battery safety, with respect to the coke pulverized product. Further, in the production of the carbon particles of the present invention, since the surface of the coke pulverized product is treated with an oxygen-containing organic substance, a pretreatment for removing the caking substance in the surface layer of the coke pulverized product, such as a conventional low temperature treatment. Crosslinking treatment by heat treatment,
It is not necessary to perform complicated control of controlling the fusion property by performing oxidative crosslinking treatment with oxygen.

【0012】更に詳細に言えば、このような炭素質粒子
は前記メソフェーズピッチのグリーンコークス粉砕物
(好ましくは該コークス粉砕物を主体とするグラファイ
ト粉末との混合物)、前記含酸素有機物及び必要に応じ
て加えられる前記タールピッチ等の添加物を撹拌混合可
能な混練機、例えば加熱式ニーダー等に投入した後、例
えば120〜180℃の温度まで撹拌混合処理されたも
のを熱処理炉に移し、これを酸化を生じにくい雰囲気、
例えば窒素、アルゴン等の雰囲気下で、常温から500
℃迄は0.05〜0.5℃/分の範囲の中から適宜選ば
れた昇温速度で加熱処理した後、500℃を越え所定の
温度迄は、0.05〜10℃/分の範囲から適宜選ばれ
た昇温速度で加熱処理を行うことにより得られる。この
際、前記含酸素有機物の内で加熱溶融しがたいものにつ
いては、予め水溶液若しくは有機溶剤溶液にして用いる
ことが好ましい。
More specifically, such carbonaceous particles include the above-mentioned mesophase pitch green coke pulverized product (preferably a mixture with graphite powder mainly composed of the coke pulverized product), the oxygen-containing organic substance, and if necessary. After adding the additives such as the tar pitch, which are added as described above, to a kneading machine capable of stirring and mixing, such as a heating kneader, the one that is subjected to stirring and mixing treatment up to a temperature of 120 to 180 ° C. is transferred to a heat treatment furnace, An atmosphere that does not easily oxidize,
For example, in an atmosphere of nitrogen, argon, etc., from room temperature to 500
After heat treatment at a temperature rising rate appropriately selected from the range of 0.05 to 0.5 ° C / minute up to ℃, 0.05 to 10 ° C / minute until the temperature exceeds 500 ° C. It can be obtained by performing heat treatment at a heating rate appropriately selected from the range. In this case, it is preferable to use an aqueous solution or an organic solvent solution in advance for the oxygen-containing organic material that is difficult to be heated and melted.

【0013】本発明に係るリチウムイオン二次電池用負
極は、前記炭素質粒子と、バインダー、例えばカルボキ
シメチルセルローズ、フッ素ゴム、ポリフッ化ビニリデ
ン、ポリビニルピリジン、ポリビニルアルコール、ポリ
アクリル酸塩、EPDMゴム、ジエン系ゴム等との分散
液を、例えば1〜50μmの厚みを有する銅、ステンレ
ス、ニッケルの金属箔、網状体、多孔状体等の集電体の
上に塗布し、乾燥し、プレスして得られる。
The negative electrode for a lithium ion secondary battery according to the present invention comprises the above-mentioned carbonaceous particles and a binder such as carboxymethyl cellulose, fluororubber, polyvinylidene fluoride, polyvinyl pyridine, polyvinyl alcohol, polyacrylate, EPDM rubber, The dispersion liquid with a diene-based rubber or the like is applied onto a current collector such as a metal foil of copper, stainless steel, or nickel having a thickness of 1 to 50 μm, a mesh body, a porous body, etc., dried, and pressed. can get.

【0014】本発明でいうリチウムイオン二次電池にあ
っては、正極が、リチウムコバルト酸化物として、例え
ばLixCoyz2(ただし、MはAl,In,Sn,
Mn,Fe,Ti,Zr,Ceの中から選ばれた少なく
とも1種の金属を表し、x,y,zは各々0<x≦1.
1、0.5<y≦1、z≦0.15の数を表す)、Li
xCoO2(0<x≦1)、LixCoyNiz2(0<x
≦1、y+z=1)、リチウムニッケル酸化物として、
例えばLixNiO2(0<x≦1)、LixNiyz2
(ただし、MはMn,Ti,Feの中から選ばれた少な
くとも1種の金属を表し、x,zは各々0<x≦1、
0.1<z≦0.3の数を表す)、リチウムマンガン酸
化物として、例えばLiMnO3、LixMnO2(0<
x≦1)、LixMn24(0<x<2)、LiCox
2-x4(0<x≦0.5)、LixMn2-yy4(た
だし、MはNi,Co,Ti,Feの中から選ばれた少
なくとも1種の金属を表し、x,yは各々0.5≦x≦
2、0.1<y≦0.2の数を表す)、電解液は、電解
質が例えばLiClO4,LiAsF6,LiPF6,L
iBF4,CH3SO3Li,CF3SO3Li,(CF3
22NLi等のリチウム塩のいずれか1種又は2種以
上を混合したもの、溶媒が例えばプロピレンカーボネー
ト、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネート、1,2−ジメトキシエタン、1,
2−ジエトキシエタン、γ−ブチロラクトン、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、1,3−
ジオキソラン、スルホラン、メチルスルホラン、アセト
ニトリル、プロピオニトリル、ギ酸メチル、ギ酸エチ
ル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸ヘキシ
ル、プロピオン酸メチル、プロピオン酸エチル、プロピ
オン酸ブチル、プロピオン酸ヘキシル、リン酸トリエチ
ル、リン酸トリエチルヘキシル、リン酸トリラウレル等
のいずれか1種又は2種以上を混合したもの、セパレー
ターが、ポリエチレン、ポリプロピレン等のポリオレフ
ィン微多孔膜の1種の単独膜或いはそれらの1種又は2
種以上の貼り合わせ膜、そして負極として炭素質材料を
活物質として用いるものをいう。
In the lithium ion secondary battery according to the present invention, the positive electrode is made of, for example, Li x Co y M z O 2 (where M is Al, In, Sn,
It represents at least one metal selected from Mn, Fe, Ti, Zr, and Ce, and x, y, and z are 0 <x ≦ 1.
1, 0.5 <y ≦ 1, z ≦ 0.15), Li
x CoO 2 (0 <x ≦ 1), Li x Co y Ni z O 2 (0 <x
≦ 1, y + z = 1), as lithium nickel oxide,
For example, Li x NiO 2 (0 <x ≦ 1), Li x Ni y M z O 2
(However, M represents at least one kind of metal selected from Mn, Ti, and Fe, and x and z are 0 <x ≦ 1, respectively.
0.1 <z ≦ 0.3), and lithium manganese oxides such as LiMnO 3 and Li x MnO 2 (0 <
x ≦ 1), Li x Mn 2 O 4 (0 <x <2), LiCo x M
n 2-x O 4 (0 <x ≦ 0.5), Li x Mn 2- y My O 4 (where M is at least one metal selected from Ni, Co, Ti and Fe) Where x and y are each 0.5 ≦ x ≦
2, 0.1 <y ≦ 0.2), and the electrolyte is, for example, LiClO 4 , LiAsF 6 , LiPF 6 , L
iBF 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 S
O 2 ) 2 NLi or any one of a mixture of two or more lithium salts, and the solvent is, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,
2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-
Dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, hexyl acetate, methyl propionate, ethyl propionate, butyl propionate, hexyl propionate, triethyl phosphate , Triethylhexyl phosphate, trilaurel phosphate, etc., or a mixture of two or more thereof, and the separator is a single fine film of a polyolefin microporous membrane such as polyethylene or polypropylene, or one or two thereof.
It refers to a bonded film of at least one kind and a film using a carbonaceous material as an active material as a negative electrode.

【0015】本発明のリチウムイオン二次電池用負極
は、そのまま上述の正極、電解液、セパレーターと用い
て、初充電時に正極からのリチウムイオンをドーピング
してもよいし、予めリチウムイオンをリチウム金属、リ
チウム合金、ヨウ化リチウムと接触させてドーピングし
ておいてもよい。
The negative electrode for a lithium ion secondary battery of the present invention may be used as it is as the above-mentioned positive electrode, electrolytic solution and separator, and may be doped with lithium ions from the positive electrode at the time of initial charging. , Lithium alloy, or lithium iodide may be contacted and doped.

【0016】[0016]

【実施例】以下実施例、比較例により本発明を更に詳し
く説明するが、本発明はこれらに限定されるものではな
い。 (測定法) 電流効率(%)は、放電電気量/充電電気量×100
で表す。 負極活物質の放電容量(mAh/g)は、活物質重量
当りの放電電気量としてもとめる。 容量保持率(%)は、1回目の放電容量に対して所定
のサイクルでの放電容量比の百分率である。 C軸方向の炭素網面の積層厚みLc(nm)、炭素網
面の面間隔d002(nm)は、「日本学術振興会法」に
準じたX線回折法により算出する。なお、添加したグラ
ファイトのピークを除いて算出する。 真比重は、JIS K2151の方法に準じて測定す
る。 負極の作成 実施例及び比較例で得られた炭素質粒子100重量部に
対して、バインダーとしてカルボキシメチルセルローズ
0.8重量部と、スチレン−ブタジエンの架橋ゴムラテ
ックス粒子2.0重量部とからなる水溶液を100重量
部加えて分散液とし、これを厚さ18μmの電解銅箔の
片面に塗工し、乾燥し、圧縮プレスする。これを作用極
とし、ポリエチレン微多孔膜を介してステンレスネット
に押しつけたリチウムシートを対極とし、1.0モルの
LiBF4のプロピレンカーボネート25%、エチレン
カーボネート25%、γ−ブチロラクトン50%の容積
分率の混合溶媒中で、1.0mA/cm2の電流密度で
充電を開始し、8時間充電する。対Li/Li+電位1
0mVまでドーピング(充電)する。放電は、対Li/
Li+電位1.0Vまで行い放電容量をもとめ、活物質
重量当りの放電電気量としてmAh/gで表示する。 過電圧(V)は、定電流1.0mA/cm2にて放電
開始の瞬間の電圧降下分をもとめる。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Measurement method) Current efficiency (%) is discharge electricity quantity / charge electricity quantity x 100
It is represented by. The discharge capacity (mAh / g) of the negative electrode active material is obtained as the discharge electricity quantity per weight of the active material. The capacity retention rate (%) is a percentage of the discharge capacity ratio in a predetermined cycle with respect to the first discharge capacity. The layer thickness Lc (nm) of the carbon mesh plane in the C-axis direction and the interplanar spacing d 002 (nm) of the carbon mesh plane are calculated by the X-ray diffraction method according to the “Japan Society for the Promotion of Science”. It should be noted that the calculation is performed by excluding the peak of the added graphite. The true specific gravity is measured according to the method of JIS K2151. Preparation of Negative Electrode 0.8 parts by weight of carboxymethyl cellulose as a binder and 2.0 parts by weight of styrene-butadiene crosslinked rubber latex particles are used with respect to 100 parts by weight of the carbonaceous particles obtained in Examples and Comparative Examples. 100 parts by weight of the aqueous solution is added to form a dispersion, which is applied to one side of an electrolytic copper foil having a thickness of 18 μm, dried, and compressed and pressed. Using this as a working electrode, a lithium sheet pressed against a stainless steel net through a polyethylene microporous membrane was used as a counter electrode, and 1.0 mol of LiBF 4 had 25% propylene carbonate, 25% ethylene carbonate, and 50% γ-butyrolactone by volume. In a mixed solvent having a specific rate, charging is started at a current density of 1.0 mA / cm 2 for 8 hours. Vs. Li / Li + potential 1
Doping (charging) to 0 mV. Discharge is to Li /
The Li + potential was set to 1.0 V to obtain the discharge capacity, which was expressed as mAh / g as the discharge electricity quantity per weight of the active material. For the overvoltage (V), the voltage drop at the moment of the start of discharge is determined at a constant current of 1.0 mA / cm 2 .

【0017】(実施例1)石油系メソフェーズピッチの
グリーンコークス粉砕物(平均粒子径10μm、トルエ
ン不溶分94重量%、キノリン可溶分10重量%、揮発
分8重量%)100重量部と、グラファイト粉末7重量
部と液状レゾール型フェノール樹脂(固形分)30重量
部をヘンシェルミキサーにて混合した後、加熱式ニーダ
ーにて撹拌しながら常温から160℃まで2時間かけて
昇温し、縮合、架橋、脱水する。更に30分間160℃
に保持する。次に、これを電気炉に移し、窒素雰囲気下
で常温から500℃までは0.2℃/分、500℃以降
は2℃/分の昇温速度で900℃まで昇温し、更に30
分間保持することにより、リチウムイオン二次電池用負
極を作成するための炭素質粒子を得た。得られた炭素質
粒子の特性及びこれを用いて作成した負極の評価結果を
表1に示す。
(Example 1) 100 parts by weight of pulverized green coke of petroleum-based mesophase pitch (average particle size 10 μm, toluene insoluble content 94% by weight, quinoline soluble content 10% by weight, volatile content 8% by weight) and graphite After mixing 7 parts by weight of powder and 30 parts by weight of liquid resol type phenol resin (solid content) with a Henschel mixer, the temperature is raised from room temperature to 160 ° C. over 2 hours while stirring with a heating kneader to carry out condensation and crosslinking. , Dehydrate. 160 ℃ for another 30 minutes
Hold on. Next, this is transferred to an electric furnace and heated to 900 ° C. at a temperature rising rate of 0.2 ° C./min from room temperature to 500 ° C. and 2 ° C./min after 500 ° C. in a nitrogen atmosphere, and further 30 ° C.
By holding it for a minute, carbonaceous particles for producing a negative electrode for a lithium ion secondary battery were obtained. Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0018】(実施例2)石炭系メソフェーズピッチの
グリーンコークス粉砕物(平均粒子径7μm、トルエン
不溶分96重量%、キノリン可溶分9重量%、揮発分1
0重量%)100重量部と、グラファイト粉末6重量部
と硬化性を有するノボラック型フェノール樹脂30重量
部とをヘンシェルミキサーにて混合した後、加熱式ニー
ダーにて撹拌しながら常温から160℃まで2時間かけ
て昇温して架橋する。更に30分間160℃に保持す
る。次に、これを電気炉に移し、窒素雰囲気下で常温か
ら500℃までは0.2℃/分、500℃以降は2℃/
分の昇温速度で1100℃まで昇温し、更に30分間保
持することによりリチウムイオン二次電池用負極を作成
するための炭素質粒子を得た。得られた炭素質粒子の特
性及びこれを用いて作成した負極の結果を表1に示す。
Example 2 Pulverized green coke of coal-based mesophase pitch (average particle size 7 μm, toluene insoluble content 96% by weight, quinoline soluble content 9% by weight, volatile content 1)
100 parts by weight, 6 parts by weight of graphite powder and 30 parts by weight of a novolak type phenolic resin having curability are mixed in a Henschel mixer, and then the mixture is heated from room temperature to 160 ° C. while stirring with a heating kneader. Crosslinks by raising the temperature over time. Hold at 160 ° C. for an additional 30 minutes. Next, this was transferred to an electric furnace, and under a nitrogen atmosphere, from room temperature to 500 ° C, 0.2 ° C / min, and after 500 ° C, 2 ° C / min.
The temperature was raised to 1100 ° C. at a heating rate of 1 minute, and the temperature was maintained for 30 minutes to obtain carbonaceous particles for producing a negative electrode for a lithium ion secondary battery. Table 1 shows the characteristics of the obtained carbonaceous particles and the results of the negative electrode prepared using the same.

【0019】(実施例3)石油系メソフェーズピッチの
グリーンコークス粉砕物(平均粒子径10μm、トルエ
ン不溶分94重量%、キノリン可溶分10重量%、揮発
分8重量%)100重量部と、グラファイト粉末4重量
部と液状レゾール型フェノール樹脂(固形分)15重量
部と石炭系ピッチ30重量部とをヘンシェルミキサーに
て混合した後、加熱式ニーダーにて撹拌しながら常温か
ら160℃まで2時間かけて昇温し、縮合、架橋、脱溶
剤する。更に30分間160℃に保持する。次に、これ
を電気炉に移し、窒素雰囲気下で常温から500℃まで
は0.2℃/分、500℃以降は2℃/分の昇温速度で
1200℃まで昇温し、更に30分間保持することによ
りリチウムイオン二次電池用負極を作成するための炭素
質粒子を得た。得られた炭素質粒子の特性及びこれを用
いて作成した負極の評価結果を表1に示す。
Example 3 100 parts by weight of petroleum-based mesophase pitch green coke pulverized product (average particle size 10 μm, toluene insoluble content 94% by weight, quinoline soluble content 10% by weight, volatile content 8% by weight) and graphite After mixing 4 parts by weight of powder, 15 parts by weight of liquid resol type phenol resin (solid content) and 30 parts by weight of coal pitch with a Henschel mixer, it takes 2 hours from room temperature to 160 ° C. while stirring with a heating kneader. Then, the temperature is raised to condense, crosslink, and remove the solvent. Hold at 160 ° C. for an additional 30 minutes. Next, this is transferred to an electric furnace and heated to 1200 ° C. at a temperature rising rate of 0.2 ° C./min from room temperature to 500 ° C. and 2 ° C./min after 500 ° C. in a nitrogen atmosphere, and further for 30 minutes. By holding, carbonaceous particles for producing a negative electrode for a lithium ion secondary battery were obtained. Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0020】(比較例1)上述した実施例1と同一の石
油系メソフェーズピッチのグリーンコークス粉砕物単独
に対し実施例1と同じ熱処理を行ったところ焼結したの
で、これを粉砕しリチウムイオン二次電池用負極を作成
するための炭素質粒子を得た。得られた炭素質粒子の特
性及びこれを用いて作成した負極の評価結果を表1に示
す。
(Comparative Example 1) The same petroleum-based mesophase pitch green coke pulverized product as in Example 1 was subjected to the same heat treatment as in Example 1 and sintered. Carbonaceous particles for producing a negative electrode for a secondary battery were obtained. Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0021】(比較例2)実施例1と同一の石油系メソ
フェーズピッチのグリーンコークス粉砕物をキノリン抽
出した後、実施例1と同じ熱処理を行ってリチウムイオ
ン二次電池用負極を作成するための炭素質粒子を得た。
得られた炭素質粒子の特性及びこれを用いて作成した負
極の評価結果を表1に示す。
(Comparative Example 2) The same petroleum-based mesophase pitch green coke pulverized product as in Example 1 was extracted with quinoline and then subjected to the same heat treatment as in Example 1 to prepare a negative electrode for a lithium ion secondary battery. Carbonaceous particles were obtained.
Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0022】(比較例3)フェノール樹脂を単独で窒素
雰囲気下において電気炉中常温から500℃までは0.
2℃/分、500℃以降は2℃/分で1200℃まで昇
温し、更に30分間保持した後、これを粉砕してリチウ
ムイオン二次電池用負極を作成するための炭素質粒子を
得た。得られた炭素質粒子の特性及びこれを用いて作成
した負極の評価結果を表1に示す。
Comparative Example 3 Phenol resin alone in a nitrogen atmosphere in an electric furnace from room temperature to 500 ° C.
After heating at 2 ° C / min, 500 ° C or higher to 1200 ° C at 2 ° C / min, holding for 30 minutes, and then crushing this to obtain carbonaceous particles for producing a negative electrode for a lithium ion secondary battery. It was Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0023】(比較例4)実施例1と同一の組成物を電
気炉にて窒素雰囲気下で常温から500℃までは0.2
℃/分、500〜750℃までは2℃/分の昇温速度で
熱処理を行ってリチウムイオン二次電池用負極を作成す
るための炭素質粒子を得た。得られた炭素質粒子の特性
及びこれを用いて作成した負極の評価結果を表1に示
す。
(Comparative Example 4) The same composition as in Example 1 was used in an electric furnace in a nitrogen atmosphere at a temperature from room temperature to 500 ° C. of 0.2.
The carbonaceous particles for producing a negative electrode for a lithium ion secondary battery were obtained by performing heat treatment at a temperature rising rate of 2 ° C./min from 500 ° C./min to 500 to 750 ° C. Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0024】(比較例5)実施例1と同一の組成物を実
施例1と同一の温度条件で熱処理し、更に1350℃ま
で2℃/分の昇温速度で熱処理を行ってリチウムイオン
二次電池用負極を作成するための炭素質粒子を得た。得
られた炭素質粒子の特性及びこれを用いて作成した負極
の評価結果を表1に示す。
Comparative Example 5 The same composition as in Example 1 was heat-treated under the same temperature conditions as in Example 1, and further heat-treated at a temperature rising rate of 2 ° C./min up to 1350 ° C. to obtain a lithium ion secondary Carbonaceous particles for producing a battery negative electrode were obtained. Table 1 shows the characteristics of the obtained carbonaceous particles and the evaluation results of the negative electrode prepared using the same.

【0025】(比較例6)従来技術である石油系ピッチ
コークス(ニードルコークス)の特性及びこれを用いて
作成したリチウムイオン二次電池用負極の評価結果を表
1に示す。
Comparative Example 6 Table 1 shows the characteristics of a conventional petroleum pitch coke (needle coke) and the evaluation results of a negative electrode for a lithium ion secondary battery prepared by using the same.

【0026】これらの結果については、表1に示す如
く、本発明に係る実施例1乃至実施例3にあっては、初
回放電容量が比較例6の従来技術である石油系ピッチコ
ークスと比較して、118〜185%と極めて大きく、
また容量保持率である5サイクル目電流効率は全て10
0%であり、過電圧も従来例と同等若しくはそれ以下で
ある。但し、熱処理温度が800℃未満では、初期電流
効率が著しく低下し好ましくない。また、1300℃を
越えると、放電電気量がメソフェーズピッチのグリーン
コークス粉砕物単独の熱処理物とほぼ同じになってしま
う。
As shown in Table 1, these results are compared with the petroleum-based pitch coke, which is the prior art of Comparative Example 6 in initial discharge capacity in Examples 1 to 3 according to the present invention. Is extremely large at 118-185%,
The current efficiency at the 5th cycle, which is the capacity retention rate, is 10
It is 0%, and the overvoltage is equal to or less than that of the conventional example. However, if the heat treatment temperature is lower than 800 ° C., the initial current efficiency is significantly lowered, which is not preferable. On the other hand, when the temperature exceeds 1300 ° C., the amount of discharged electricity becomes almost the same as that of the heat-treated product of the green coke pulverized product of mesophase pitch alone.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明によれば、メソフェーズピッチの
グリーンコークス粉砕物、好ましくは該コークス粉砕物
とグラファイト粉末との混合物をフェノール樹脂を始め
とする含酸素有機化合物等で表面処理し、不活性ガス雰
囲気下で800〜1300℃、好ましくは900〜12
00℃で熱処理を行って得られた炭素質粒子は、比較的
高い真比重を有し、負極活物質として用いた場合、従来
技術である石油系ピッチコークスと比較して118〜1
85%となる特異的な高放電電気量を発現し、かつ安全
性に優れ、更には過電圧が小さいリチウムイオン二次電
池用負極を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a green coke pulverized product of mesophase pitch, preferably a mixture of the pulverized coke and graphite powder, is surface-treated with an oxygen-containing organic compound such as a phenol resin, and is inert. 800 to 1300 ° C. in a gas atmosphere, preferably 900 to 12
The carbonaceous particles obtained by heat treatment at 00 ° C. have a relatively high true specific gravity, and when used as a negative electrode active material, the carbonaceous particles are 118 to 1 in comparison with the conventional petroleum pitch coke.
It is possible to provide a negative electrode for a lithium-ion secondary battery that exhibits a specific high discharge electricity amount of 85%, is excellent in safety, and has a small overvoltage.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メソフェーズピッチのコークス粉砕物の
表面に含酸素有機物の熱処理炭素質を有することを特徴
とする炭素質粒子。
1. A carbonaceous particle characterized by comprising a heat-treated carbonaceous substance of an oxygen-containing organic substance on the surface of a crushed product of coke of mesophase pitch.
【請求項2】 平均粒子径が60μm以下であり、炭素
層間距離(d002)が0.370〜0.350nm、C
軸方向の結晶子の厚さ(Lc)が0.8〜10nm、真
比重が1.7〜2.1の範囲にあることを特徴とする請
求項1記載のリチウムイオン二次電池用負極に適した炭
素質粒子。
2. The average particle diameter is 60 μm or less, the carbon interlayer distance (d 002 ) is 0.370 to 0.350 nm, and C
The negative electrode for a lithium ion secondary battery according to claim 1, wherein the axial crystallite thickness (Lc) is 0.8 to 10 nm and the true specific gravity is in the range of 1.7 to 2.1. Suitable carbonaceous particles.
【請求項3】 請求項1、又は請求項2の炭素質粒子を
含んでなることを特徴とするリチウムイオン二次電池用
負極。
3. A negative electrode for a lithium ion secondary battery, which comprises the carbonaceous particles according to claim 1 or 2.
JP6119623A 1994-05-09 1994-05-09 Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle Pending JPH07302594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6119623A JPH07302594A (en) 1994-05-09 1994-05-09 Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6119623A JPH07302594A (en) 1994-05-09 1994-05-09 Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle

Publications (1)

Publication Number Publication Date
JPH07302594A true JPH07302594A (en) 1995-11-14

Family

ID=14766028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6119623A Pending JPH07302594A (en) 1994-05-09 1994-05-09 Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle

Country Status (1)

Country Link
JP (1) JPH07302594A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102324A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Nonaqueous secondary battery
JP2006032091A (en) * 2004-07-15 2006-02-02 Hitachi Chem Co Ltd Anode carbon material for lithium secondary battery, manufacturing method of the same, lithium secondary battery anode, and lithium secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2009020357A1 (en) * 2007-08-07 2009-02-12 Sodiff Advanced Materials Co., Ltd. Anode active material for lithium secondary cell
JP2011029197A (en) * 2010-09-21 2011-02-10 Hitachi Chem Co Ltd Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2012064565A (en) * 2010-09-16 2012-03-29 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2014141372A1 (en) * 2013-03-12 2014-09-18 日本カーボン株式会社 Negative electrode material for lithium ion secondary cell and negative electrode
WO2015129669A1 (en) * 2014-02-28 2015-09-03 コスモ石油株式会社 Finely pulverized petroleum coke, fired finely pulverized petroleum coke, filler for rubber composition, and rubber composition
JP2015178583A (en) * 2014-02-28 2015-10-08 コスモ石油株式会社 Filler and composition containing the same
CN116995230A (en) * 2023-09-25 2023-11-03 宁德时代新能源科技股份有限公司 Carbon material and preparation method thereof, negative electrode plate, secondary battery and power utilization device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102324A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Nonaqueous secondary battery
JP2006032091A (en) * 2004-07-15 2006-02-02 Hitachi Chem Co Ltd Anode carbon material for lithium secondary battery, manufacturing method of the same, lithium secondary battery anode, and lithium secondary battery
JP4721038B2 (en) * 2004-07-15 2011-07-13 日立化成工業株式会社 Negative electrode carbon material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2009020357A1 (en) * 2007-08-07 2009-02-12 Sodiff Advanced Materials Co., Ltd. Anode active material for lithium secondary cell
JP2012064565A (en) * 2010-09-16 2012-03-29 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2011029197A (en) * 2010-09-21 2011-02-10 Hitachi Chem Co Ltd Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery
WO2014141372A1 (en) * 2013-03-12 2014-09-18 日本カーボン株式会社 Negative electrode material for lithium ion secondary cell and negative electrode
WO2015129669A1 (en) * 2014-02-28 2015-09-03 コスモ石油株式会社 Finely pulverized petroleum coke, fired finely pulverized petroleum coke, filler for rubber composition, and rubber composition
JP2015178583A (en) * 2014-02-28 2015-10-08 コスモ石油株式会社 Filler and composition containing the same
CN116995230A (en) * 2023-09-25 2023-11-03 宁德时代新能源科技股份有限公司 Carbon material and preparation method thereof, negative electrode plate, secondary battery and power utilization device
CN116995230B (en) * 2023-09-25 2024-04-09 宁德时代新能源科技股份有限公司 Carbon material and preparation method thereof, negative electrode plate, secondary battery and power utilization device

Similar Documents

Publication Publication Date Title
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP5570577B2 (en) Method for producing non-graphitizable carbon material
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JPH07302595A (en) Manufacture of carbon particle and negative electrode containing this carbon particle
JP3289231B2 (en) Negative electrode for lithium ion secondary battery
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2003187798A (en) Lithium secondary battery
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP3091943B2 (en) Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH10308236A (en) Nonaqueous electrolyte secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JPH07307164A (en) Lithium ion secondary battery
JP6659331B2 (en) Manufacturing method of non-graphitizable carbon material
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2004356092A (en) Battery
JP2000223124A (en) Carbonaceous negative electrode material for nonaqueous secondary battery, its manufacture, and nonaqueous secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery
JP5621868B2 (en) Lithium ion secondary battery
JPH06275270A (en) High-capacity nonaqueous secondary battery
JPH1111918A (en) Production method of graphite particle, graphite particle obtained by this production method, graphite paste using the graphite particle, negative pole for lithium secondary battery and lithium secondary battery