JP3651225B2 - Lithium secondary battery, negative electrode thereof and method for producing the same - Google Patents

Lithium secondary battery, negative electrode thereof and method for producing the same Download PDF

Info

Publication number
JP3651225B2
JP3651225B2 JP01999698A JP1999698A JP3651225B2 JP 3651225 B2 JP3651225 B2 JP 3651225B2 JP 01999698 A JP01999698 A JP 01999698A JP 1999698 A JP1999698 A JP 1999698A JP 3651225 B2 JP3651225 B2 JP 3651225B2
Authority
JP
Japan
Prior art keywords
graphite particles
negative electrode
graphite
particles
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01999698A
Other languages
Japanese (ja)
Other versions
JPH11219700A (en
Inventor
康一 武井
達也 西田
義人 石井
藤田  淳
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP01999698A priority Critical patent/JP3651225B2/en
Publication of JPH11219700A publication Critical patent/JPH11219700A/en
Application granted granted Critical
Publication of JP3651225B2 publication Critical patent/JP3651225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池、その負極及びその製造法に関し、特に充放電容量、急速充放電特性、サイクル特性に優れたリチウム二次電池、その負極及びその製造法に関する。
【0002】
【従来の技術】
近年、ポータブル機器、電気自動車、電力貯蔵用として小型、軽量で高エネルギー密度を有する二次電池に対する要望が高まっている。このような要望に対し、非水系電解液二次電池、特にリチウム二次電池はとりわけ高電圧、高エネルギー密度を有する電池として注目を集めている。
【0003】
リチウム二次電池の負極材料としては、金属リチウム、低黒鉛化炭素粒子、高黒鉛化炭素粒子が使用されている。金属リチウムは高い充放電容量を実現可能であるが、その高い反応性のため充放電サイクルの経過と共に電解液中の溶媒と反応し容量が低下する、また樹枝状の金属リチウムが生成しやすく、正・負極間に設けられるセパレータを貫通し短絡を引き起こしやすいという問題点を有している。低黒鉛化炭素質材料は、電解液との反応性が低い、樹枝状金属リチウムが生成しずらいという特徴を有するが、充放電容量が一般に低く、また真密度が低いため体積当たりの充放電容量が低いという難点を有し、高エネルギー密度の二次電池を実現することは達成されていない。一方、高黒鉛化炭素粒子は、低黒鉛化炭素粒子と比較して高い充放電容量を有し、金属リチウムと比較して電解液との反応性、樹枝状金属リチウムが生成しずらいという特徴を有することから、近年、負極用材料として盛んに検討がなされるようになってきている。
【0004】
高黒鉛化炭素粒子としては、高純度化された天然黒鉛粒子、コークスやピッチ或いは合成有機高分子材料を炭化・黒鉛化して製造される人造黒鉛粒子が使用されている。これらの高黒鉛化炭素粒子では、黒鉛結晶が高度に発達しているため、形状はアスペクト比の大きな鱗片状をしている。このため、バインダと混練して集電体に塗布して電極を作製した場合、鱗片状の黒鉛粒子が集電体の面方向に高密度に配向し、その結果、負極層内への電解液の浸透性が悪化し充放電容量が低下、高速充放電特性が低下する、黒鉛粒子へのリチウムの吸蔵・放出の繰り返しによって発生する厚さ方向の歪みにより粒子が剥離しやすいためサイクル特性が悪いなどの問題が発生する。一方、上記のような問題を回避するため、電極中の黒鉛質粒子の密度を低下すると体積当たりの充放電容量が低下するという問題が発生する。
【0005】
このような問題を解決する手法として、高黒鉛化粒子の特性の改善が試みられている。特許第2637305号では、メソフェーズピッチから抽出されたメソフェーズ小球体を黒鉛化して得られた球状で微細組織の配向が放射状或いはブルックスーテーラー型の黒鉛化粒子を用いること、及び微細組織の配向がラメラ型又はブルックスーテーラー型の炭素繊維を用いることを提案しているが、前者は充放電容量が280〜300mAh/gと比較的低く、またメソフェーズピッチからの抽出、分離という工程が必要なため高コストであり、後者は電極の高密度化が困難、また長繊維が混在するとセパレータを貫通し短絡が起こりやすいという問題がある。
【0006】
特開平7−335216号公報は、骨材及び結合材を出発原料として作製された高密度黒鉛成形体を粉砕して製造される黒鉛結晶子がランダムに配向した粒子を提案しているが、冷間静水圧成形法を用いる成形体の製造方法は生産性に乏しい。黒鉛化された成形体を粉砕して黒鉛粒子を得る方法としては、この他にWO95/28011号及び特開平9−231974号公報が挙げられる。これらの黒鉛化成形体を粉砕して得られる黒鉛粉末はいずれも嵩密度が高く高強度であり、黒鉛結晶が粒子内でランダムに配向しているため、集電体上での黒鉛結晶の配向が抑制され、また電解液が浸透できる粒子間の空隙が確保されるという点で有効な手段である。しかしながら、粒子が高かさ密度、すなわち緻密質であるということが、今度は粒子内への電解液の浸透を抑制し、急速充放電特性の向上に限界を生じさせる原因となっている。
【0007】
また、高黒鉛化炭素粒子と他の材料を混合して使用する技術も提案されている。
特開平4−237971号公報では、球状の黒鉛質炭素粒子と炭素繊維とを組み合わせることによって、充放電の繰り返しによる粒子の剥離を防止することが提案されているが、これは充放電容量の比較的低い球状粒子を用いている。
特開平6−36760号公報では、高黒鉛化炭素粒子と低黒鉛化炭素粒子の混合物を用いることによって放電末期の急速な電圧降下を防止し電池容量の終点判定を用意とすることが提案されているが、高黒鉛化粒子の集電体面方向へ配向する問題があり、また低黒鉛化炭素粒子の添加量が多い場合は放電電圧が低下する。
【0008】
特開平6−111818号公報では球状黒鉛化炭素粒子と黒鉛化炭素短繊維を組み合わせることを提案しており、電極強度を増加させ充放電サイクルに伴う電極層の破壊の抑制、短繊維による電極層内の導電性向上による急速充放電特性の改善が図れるとしているが、充放電容量の比較的低い球状黒鉛化炭素粒子を用いているにすぎない。また黒鉛化炭素短繊維の添加量が多い場合には電極密度が低下し、体積当たりの充放電容量が低下するという問題がある。
特開平6−302315号公報では球状黒鉛粒子と化学的、電気化学的に不活性な金属被覆ウィスカーを組み合わせることにより電極を高強度化し粒子の剥離を防止することが提案されているが、球状以外の黒鉛粒子についての言及はなく、また添加するウイスカーは充放電には寄与しないため添加量が多い場合には充放電容量の低下が発生する。
【0009】
特開平8−180864号公報では球状黒鉛粒子とこの球状粒子の平均粒径に対して1.3〜4.0の比の平均粒径を有する非球状黒鉛粒子及び炭素繊維粉砕物を添加することにより、電極内の電子伝導性が向上し充放電サイクル特性が改善されるとしている。この中で、非球状粒子(人造黒鉛、天然黒鉛)が球状黒鉛粒子の間に様々な方向を向いて存在するということが言及されており、上記の鱗片状黒鉛粒子の集電体面方向への配向を抑制するということに対して球状黒鉛粒子の存在が効果を有することが示されているが、球状粒子と非球状粒子の粒子径を精密に制御する必要があり、生産性という点で問題がある。
特開平8−83608号公報及び特開平8−83609号公報ではブロック状、フレーク状及び粒状の人造黒鉛又は天然黒鉛粒子に黒鉛化した炭素繊維粉末を添加することにより、高密度で黒鉛結晶が集電体面方向に配向しずらく、充放電サイクル経過に伴う集電体からの粒子の剥離が抑制されるとしている。しかし、この効果が得られるのは黒鉛化炭素繊維粉末添加量が20重量%までであり、これ以上では電極性能が低下することが言及されている。
【0010】
以上に示したこれまでの高黒鉛化炭素質粒子と他の材料の混合系では、それぞれ問題を有しており、また特に黒鉛化炭素繊維と組み合わせる場合、粒子形状が大きく異なるため均一に混合することが困難であり、このため安定した性能を示すリチウム二次電池の製造が困難であるという共通の問題がある。また、メソフェーズ小球体を黒鉛化して得られた球状黒鉛粒子を含む系については、前述のようにこの球状黒鉛粒子の充放電容量が比較的低くかつ高コストであるという問題点を有している。
【0011】
【発明が解決しようとする課題】
請求項1〜5記載の発明は、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有するリチウム二次電池用負極を提供するものである。
請求項6記載の発明は、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有するリチウム二次電池用負極の製造法を提供するものである。
請求項7記載の発明は、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有するリチウム二次電池を提供するものである。
【0012】
【課題を解決するための手段】
本発明は、孔径が0.01〜100μmの範囲の細孔に基づく細孔容積が異なる、2種以上の黒鉛質粒子の混合物を含有してなるリチウム二次電池用負極に関する。また本発明は、前記細孔容積が異なる2種以上の黒鉛質粒子の混合物が、0.01〜100μmの範囲の細孔容積が0.4cc/g以上の黒鉛質粒子と、0.01〜100μmの範囲の細孔容積が0.08cc/g以上0.4cc/g未満の黒鉛質粒子を含むものであるリチウム二次電池用負極に関する。また本発明は、前記細孔容積が異なる2種以上の黒鉛質粒子のそれぞれが、単独で測定された放電容量が300mAh/g以上であり、かつそれらの黒鉛質粒子の放電容量の差が、最も放電容量の大きな黒鉛質粒子の放電容量の値を基準として10%以内である黒鉛質粒子であるリチウム二次電池用負極に関する。また本発明は、前記黒鉛質粒子の少なくとも1種は、扁平状の粒子が複数、配向面が非平行となるように集合又は結合した構造を有するものであるリチウム二次電池用負極に関する。
【0013】
また本発明は、前記細孔容積が異なる2種以上の黒鉛質粒子がそれぞれ、扁平状の粒子が複数、配向面が非平行となるように集合又は結合した構造を有するものであるリチウム二次電池用負極に関する。
また本発明は、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダを含む材料に黒鉛化触媒を添加して混合する工程、焼成・黒鉛化する工程、粉砕する工程の各工程を含む方法で黒鉛質粒子を製造し、別途、前記と同様の各工程を含む方法で前記黒鉛質粒子と、孔径が0.01〜100μmの範囲に基づく細孔の細孔容積が異なる黒鉛質粒子を製造し、製造された2種以上の黒鉛質粒子を混合し、これを負極材料とすることを特徴とするリチウム二次電池用負極の製造法に関する。
さらに本発明は、前記のいずれかに記載の負極と正極を有してなるリチウム二次電池に関する。
【0014】
【発明の実施の形態】
一般に、炭素材料を用いたリチウム二次電池は、リチウムイオンを吸蔵・放出する炭素質物からなる負極と正極と非水電解液を有するが、本発明におけるリチウム二次電池用負極は、前記炭素質物が、孔径が0.01〜100μmの範囲の細孔に基づく細孔容積が異なる2種以上の黒鉛質粒子の混合物を含むことを特徴とする。ここで黒鉛質粒子が1種類では細孔容積が大きい場合、電極の作製条件によっては粒子が過剰に変形し黒鉛結晶が集電体の面方向に配向し易く、サイクル特性、急速充放電特性が劣化し、充放電容量が低下し易い。一方細孔容積が小さい場合、粒子内への電解液の浸透が不十分であり急速充放電特性が低下する。孔径が前記範囲の細孔に基づく細孔容積は、水銀圧入法による細孔径分布測定で測定される。
【0015】
前記2種以上の黒鉛質粒子としては、孔径が0.01〜100μmの範囲の細孔容積が0.4cc/g以上の黒鉛質粒子と、孔径が0.01〜100μmの範囲の細孔容積が0.08cc/g以上0.4cc/g未満の黒鉛質粒子を含むことが好ましい。
ここで、前者の黒鉛質粒子、即ち細孔容積の大きい黒鉛質粒子の細孔容積の上限については特に制限はないが、細孔容積が過剰に多いと電極密度の低下が生じ体積当たりの充放電容量が低下するので2.0cc/g以下とすることが好ましい。また、急速充放電特性がより優れる点で0.4〜0.9cc/gの範囲であることがより好ましい。
【0016】
一方、小さな細孔容積を有する黒鉛質粒子の、孔径が0.01〜100μmの範囲の細孔容積が0.08cc/g以上、0.4cc/g未満であることが好ましいのは、電極作製時の過剰な粒子変形を抑制し、且つ良好は急速充放電特性が得られるためである。また、より良好な急速充放電特性を得るために0.15〜0.35cc/gの範囲であることがより好ましい。
【0017】
上記の2種の細孔容積の黒鉛質粒子の混合比については特に制限はなく、目的とするリチウム二次電池の設計に合わせて選択される。
その混合比は、電極作製時の過剰な粒子変形を抑制し、且つ良好な急速充放電特性が得られる点で細孔容積の大きな黒鉛質粒子/細孔容積の小さな黒鉛質粒子の重量比で98/2〜20/80とすることが好ましく、90/10〜50/50とすることがより好ましい。
また、3種以上の黒鉛質粒子を含む場合、孔径が0.01〜100μmの範囲の細孔容が0.4cc/g以上の黒鉛質粒子と、孔径が0.01〜100μmの範囲の細孔容積が0.08cc/g以上0.4cc/g未満の黒鉛質粒子に分類したときに、それぞれの割合が前記の範囲となることが好ましい。
【0018】
また本発明において、2以上の黒鉛質粒子のいずれも、(002)面の格子面間隔d002、c軸方向の結晶子サイズLc、真密度がそれぞれ0.338nm以下、50nm以上、2.21g/cm以上とすることが負極全体での充放電容量を高めるという点で好ましい。また、それぞれの黒鉛質粒子は、単独で測定された放電容量が300mAh/g以上であり、かつそれらの黒鉛質粒子の放電容量の差が、最も放電容量の大きな黒鉛質粒子の放電容量の値を基準として10%以内である黒鉛質粒子であることが好ましい。これにより充放電容量の変化(低下)を伴わずに2以上の黒鉛質粒子を組み合わせた効果を得ることができる。ここで、単独で測定された放電容量とは、各黒鉛質粒子を用いて公知の手法で作製された負極を用い、対極を金属リチウムとして公知の手法で測定された一サイクル目の放電容量を意味する。
【0019】
本発明において、この放電容量の測定は、具体的には下記の方法で行うことができる。
黒鉛質粒子90重量%に、N−メチル−2−ピロリドンに溶解したポリ弗化ビニリデン(PVDF)を固形分で10重量%加えて混練して黒鉛ペーストを作製し、この黒鉛ペーストを厚さ10μmの圧延銅箔に塗布し、さらに乾燥し負極とする。
作製した試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行う。図2はこの測定に用いたリチウム二次電池の概略図である。図2に示すようにガラスセル9に、電解液10としてLiPF4をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極(負極)11、セパレータ12及び対極(正極)13を積層して配置し、さらに参照電極14を上部から吊るしてリチウム二次電池を作製して行う。対極13及び参照電極14には金属リチウムを使用し、セパレータ12にはポリエチレン微孔膜を使用する。0.5mA/cm2の定電流で、5mV(V vsLi/Li+)まで充電し、1V(V vs Li/Li+)まで放電する試験により放電容量を測定する。
【0020】
この方法で測定された各黒鉛質粒子の放電容量が300mAh/g未満の場合、組み合わせて用いた時の充放電容量、急速充放電特性、サイクル特性の改善が小さいか低下する場合がある。
【0021】
また、負極を構成する2以上の細孔容積の異なる黒鉛質粒子の形状がほぼ等しいことが適当であり、具体的には、いずれもアスペクト比が5以下であることが好ましく、1〜3であることがより好ましい。これにより、2以上の細孔容積の異なる黒鉛質粒子を混合して負極を構成した場合、これらの黒鉛質粒子の均一な分布が容易に実現され、ばらつきの少ない良好な特性のリチウム二次電池を得ることができる。
なお、アスペクト比は、黒鉛質粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、顕微鏡で黒鉛質粒子を拡大し、任意に100個の黒鉛質粒子を選択し、A/Bを測定し、その平均値をとったものである。
【0022】
また、負極を構成する2以上の黒鉛質粒子の比表面積はほぼ等しくすることが適当であり、具体的にはいずれも0.5〜5.0m2/gの範囲とすることが好ましく、これによって細孔容積の異なる2以上の黒鉛質粒子を組み合わせて負極を作製しても不可逆容量の増加を伴わず、また負極を作製する際に使用する黒鉛質粒子とバインダーと溶媒の混合物の粘度の変化を最小限とすることができる。
【0023】
また、負極を構成する2以上の黒鉛質粒子の構造としては、2種以上の黒鉛質粒子の少なくとも1種、より好ましくは2種以上が扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた構造であることが好ましい。
ここで、扁平状の粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。
複数の扁平状の粒子において、配向面が非平行とは、それぞれの粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の粒子がそれぞれの配向面を一定の方向にそろうことなく集合している状態をいう。
個々の扁平状の粒子は、材質的には、黒鉛化可能な骨材または黒鉛であることが好ましい。
【0024】
この黒鉛質粒子において扁平状の粒子は集合又は結合しているが、結合とは互いの粒子がバインダー等を介して接着されている状態をいい、集合とは互いの粒子がバインダー等で接着されてはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。
該構造の黒鉛質粒子を負極に使用すると、集電体上に黒鉛結晶が配向し難く、負極黒鉛にリチウムを吸蔵・放出し易くなるため、得られるリチウム二次電池の急速充放電特性及びサイクル特性を向上させることができる。
【0025】
本発明に用いられる黒鉛質粒子の製造方法に特に制限はないが、前述の各特性、形状、構造の黒鉛質粒子が比較的容易に得られることから、少なくとも1種、より好ましくはすべてが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダを含む材料に黒鉛化触媒を添加して混合する工程、焼成・黒鉛化する工程、粉砕する工程の各工程を含む方法で製造されたものであることが好ましい。
この方法において、より具体的にいくつかの方法を挙げることができる。
第1の方法は、黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダとしてタール又はピッチを用い、これに黒鉛化触媒を添加して混合し、ついで焼成・黒鉛化した後、粉砕する方法である。
【0026】
黒鉛化可能な骨材としては、フルードコークス、ニードルコークス等の各種コークス類が好ましい。また、骨材として天然黒鉛や人造黒鉛などの既に黒鉛化されているものを使用することもできる。
黒鉛化可能なバインダとしては、石炭系、石油系、人造等の各種ピッチ、タールが使用される。
バインダの配合量は、特に制限されないが、黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%添加することが好ましく、10〜80重量%添加することがより好ましく、15〜80重量%添加することがさらに好ましい。バインダの量が多すぎたり少なすぎると、作製する黒鉛質粒子のアスペクト比及び比表面積が大きくなるという傾向がある。
【0027】
黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、ニーダー等を用いて行われるが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ、タール等の際には、50〜300℃が好ましい。
黒鉛化触媒としては、鉄、ニッケル、チタン、ホウ素、珪素等、これらの酸化物、炭化物、窒化物等が使用可能である。黒鉛化触媒は、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに1〜50重量%添加することが好ましい。その添加量が1重量%未満であると黒鉛質粒子の結晶の発達が悪くなり、充放電容量が低下する傾向にある。一方、50重量%を越えると、均一に混合することが困難となり、作業性の悪化及び得られる黒鉛質粒子の特製のばらつきが大きくなる傾向にある。
【0028】
黒鉛化可能な骨材又は黒鉛とバインダに黒鉛化触媒を添加して混合し、焼成・黒鉛化を行う。焼成の前に、必要に応じて前記混合物を適当な形に成形しても良い。焼成は前記混合物が酸化しがたい雰囲気で行うことが好ましく、例えば窒素雰囲気中、アルゴンガス中、真空中で焼成する方法等が挙げられる。
黒鉛化の温度は2000℃以上が好ましく、2500℃以上であることが好ましく、2800〜3200℃であることがさらに好ましい。黒鉛化温度が低いと、黒鉛の結晶の発達が悪くなると共に、黒鉛化触媒が作製した黒鉛質粒子に残存し易くなり、いずれの場合も充放電容量が低下する傾向にある。一方、黒鉛化の温度が高すぎると、黒鉛が昇華することがある。
【0029】
次に、得られた黒鉛化物を粉砕する。黒鉛化物の粉砕方法については特に制限を設けないが、ジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法及びこれらの複数を組み合わせて用いることができる。粉砕後の平均粒子径は1〜100μmが好ましく、10〜50μmがより好ましい。平均粒子径は大きすぎる場合、作製した電極表面に凸凹ができやすくなる。
【0030】
得られた黒鉛質粒子はそのまま使用することも可能であるが、さらに非酸化性雰囲気中で400℃以上の温度で加熱処理してもよい。この処理により比表面積を低下させることができ、リチウム二次電池の安全性及び不可逆容量を改善することができる。非酸化性雰囲気としては、例えば窒素雰囲気、アルゴン雰囲気、真空等が挙げられる。
【0031】
第2の方法としては、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%添加して混合し、粉砕し、ついで、不融化処理し、その後、焼成・黒鉛化して製造する方法がある。
この方法の第1の方法との違いは、材料の混合物を粉砕し、次いで不融化処理を行う点である。
粉砕に際しては、最終的に得られる黒鉛質粒子の平均粒子径が100μm以下、好ましくは50μm以下となるように混合物の粒子径を選択することが好ましい。
粉砕方法としては特に限定しないが、ハンマーミル、ピンミル、振動ミル、ジュエットミル等の粉砕装置及びこれらを複数組み合わせて使用することが出来る。また、必要であれば粉砕して得られた粒子を分級することができる。分級の方法としては特に限定しないが、機械式分級機、風力式分級機等から適時、最適な機種が選択される。
【0032】
不融化処理方法としては、混合物粉末が焼成工程で互いに融着することを防止できる方法であれば特に限定されず、各種ピッチ類の不融化に一般的に用いられている酸化剤(空気、酸素、NO2、塩素、臭素等)と接触させ、さらに必要に応じて適当な温度に加熱する乾式法、硝酸水溶液、塩素水溶液、硫酸水溶液、過酸化水素水溶液等を用いた湿式法、並びにこれらを組み合わせた方法によって達成することができる。また、熱硬化性樹脂を混合物粉体の表面に被覆することによっても目的とする焼成工程での粒子の融着を防止することが可能である。
被覆する熱硬化性樹脂については特に限定しないが、用いるバインダの融解温度以下で硬化する樹脂であれば使用可能であり、フェノール樹脂、フルフリルアルコール樹脂、ポリイミド樹脂、セルロース樹脂、ポリ塩化ビニリデン樹脂等が好ましい。不融化処理の後、必要であれば再度粉砕、分級処理を行っても良い。不融化処理を施した混合物粉体は、前記第1の方法に従って、焼成、黒鉛化することができる。
【0033】
第3の方法としては、黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダとして熱硬化性樹脂を用い、これらに黒鉛化触媒を添加して混合し、粉砕し、次いで焼成・黒鉛化して製造する方法である。
この方法は、バインダとして熱硬化性樹脂を用い、混合物を粉砕することが第1の方法との違いである。
熱硬化性樹脂としては、フェノール樹脂、フルフリルアルコール樹脂、ポリイミド樹脂、セルロース樹脂、ポリ塩化ビニリデン樹脂、塩素化ポリ塩化ビニル樹脂などが使用できる。黒鉛化可能な骨材又は黒鉛とバインダの混合方法は、特に制限はなく、ニーダー等を用いて行われるが、その温度は熱硬化性樹脂の場合には、20〜100℃が好ましい。
【0034】
黒鉛化可能な骨材又は黒鉛、バインダとしての熱硬化性樹脂との配合比については特に制限しないが、粉砕物の焼成過程で粒子の融着が起こらない程度に熱硬化性樹脂の配合量を設定することが必要であり、一方、過剰に熱硬化性樹脂の割合を増やすと得られる黒鉛質粒子の黒鉛化度が低下し、充放電容量が低下するので好ましくない。これらの点から熱硬化性樹脂の配合量は、黒鉛化可能な骨材又は黒鉛に対し、5〜80重量%添加することが好ましい。
混合物の粉砕条件は前記第2の方法に従うことができる。また、焼成・黒鉛化の条件は前記第1の方法に従うことができる。
【0035】
本発明においては、少なくとも2種の黒鉛質粒子は、いずれも、前記第1、第2及び第3の方法から選択される少なくとも1種の方法でそれぞれ製造された粒子であることが高い充放電容量、良好な急速充放電特性、少ない不可逆容量、良好なサイクル特性を実現する上で好ましい。
【0036】
上記により得られる孔径が0.01〜100μmの範囲の細孔容積が異なる2以上の黒鉛質粒子は、黒鉛質粒子同士を結着するための有機系結着剤と均一に混合した後、加圧成形するか、または有機溶媒等を用いてペースト化して集電体上に塗布乾燥後プレスするなど、公知の方法でリチウム二次電池用負極とすることができる。
有機系結着剤としては、例えばポリエチレン、ポリプロピレン、エチレンプロピレンポリマー、ブタジエンゴム、スチレンブタジエンゴム、イオン導電性の大きな高分子化合物が使用できる。
イオン導電性高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォファゼン、ポリアクリロニトリル等が使用できる。
有機系結着剤の含有量は、黒鉛質粒子と有機系結着剤との混合物に対して3〜20重量%とする事が好ましい。
集電体としては、例えばニッケル、銅等の箔、メッシュなどが使用できる。
【0037】
上記により得られるリチウム二次電池用負極は、充放電可能なリチウムを含有する活物質から構成した正極と組み合わせてリチウム二次電池を構成する。ここで使用される正極活物質としては、Lixyz(ここでM=V、Mn,Fe、Co、Niから選ばれる少なくとも一種を主体、x=0.05〜1.2、y=1或いは2、z=1.5〜5)で表されるリチウムを含有する遷移金属酸化物が挙げられる。
またこれらに、リチウム以外のアルカリ金属、アルカリ土類金属、上記M以外の遷移金属、あるいは周期律表13〜15族元素(Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi、P、B)などを含ませてもよい。
正極にはさらに活物質としてMnO2、MoO3、V25、TiO2、TiS2、FeS、活性炭などの無機化合物やポリアニリンなどの高分子化合物等を選ぶこともできる。この場合には、予め、負極に所定量のリチウムを吸蔵させるか、又は所定量のリチウムを圧着させて使用することもできる。
【0038】
リチウム二次電池にはさらに非水系電解液が含まれる。非水系電解液としては、リチウム塩を高誘電率の有機溶媒に溶解させた溶液が好ましい。リチウム塩については特に制限はなく、LiClO4、LiPF6、LiBF4、LiCF3SO3等を使用することが出来る。また、有機溶媒は、リチウム塩を溶解して電気化学的に安定性を与え、かつ構成する負極・正極材に対して電気化学的に安定性を有するものであればよい。例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1、2ージメトキシエタン、テトラヒドロフラン、アセトニトリル、スルホラン、γーブチロラクトン、これらの混合物等が用いられる。また、電解質としてポリフッ化ビニリデン等の高分子固体電解質に含ませた有機電解液を使用することもできる。
【0039】
本発明のリチウム二次電池においては、液体の電解液を用いる場合は、正極と負極と非水系電解液の他に、両極の接触を防止し、かつ電解液を保持し、リチウムイオンを通過できる機能を有するセパレータと、電極材を保持して集電する機能を有する集電体とを組み合わせて用いることが好ましい。
セパレータとしては、例えばポリエチレン、ポリプロピレン又はポリテトラフルオロエチレン等の多孔質フィルムや不織布、織布等が挙げられる。セパレータの厚さは20〜200μm程度が好ましい。
【0040】
また、集電体としては、正極・負極の活物質に対して電気化学的に安定性を有する導体を使用することが出来る。例えば、ニッケル、チタン、ステンレス、銅、アルミニウムが挙げられる。
また、本発明の水銀圧入法で測定される0.01〜100μmの範囲の細孔の細孔容積が異なる2以上の黒鉛質粒子を含有してなる負極を備えたリチウム二次電池は、円筒型、箱型、コイン型、ボタン型、ペーパー型、カード型など、様々な形状とすることが出来る。
【0041】
こうして得られるリチウム二次電池において、仮に負極に含まれる粒子が1種の黒鉛質粒子、例えば、孔径が0.01〜100μmの範囲に0.4cc/g以上の細孔容積を有する黒鉛質粒子だけでは、粒子の過剰な変形が無い状態では、優れた急速充放電特性及びサイクル特性を有するが、負極作製条件等に起因して粒子の過剰な変形は生じた場合、偏平な粒子は集電体面に平行に配向し易く、また粒子内及び粒子間の空隙も減少するため、リチウムイオンのドープ、脱ドープが起こりづらくなり、急速充放電特性及びサイクル特性が低下してしまう。そこで、上記黒鉛質粒子に孔径が0.01〜100μmの範囲に細孔容積を有し、且つ上記黒鉛質粒子よりも少ない細孔容積を有する黒鉛質粒子を添加すると、該黒鉛質粒子は比較的緻密質であるため、上記黒鉛質粒子の過剰な変形を抑制し、その結果として急速充放電特性及びサイクル特性が改善される。また、該黒鉛質粒子は、それ自身が高い充放電容量を有し、また孔径が0.01〜100μmの範囲に細孔を有しているため急速充放電特性が比較的良好であり、さらに形状、真密度などの特性についても上記黒鉛質粒子と類似しているため、均一な混合が容易に実現できるため、高い充放電容量のリチウム二次電池を安定して作製することが可能である。
【0042】
【実施例】
以下、本発明の実施例及び比較例を示して、その効果を具体的に説明する。
実施例1
(リチウム二次電池の作製)
図1に円筒型リチウムイオン二次電池の一例の一部断面正面図を示す。図1において、1は正極、2は負極、3はセパレータ、4は正極タブ、5は負極タブ、6は正極蓋、7は電池缶及び8はガスケットである。図1に示すリチウム二次電池は以下のようにして作製した。
【0043】
(正極の作製)
正極活物質としてのLiCoO 288重量部に、導電剤として平均粒子径が1μmの鱗片状天然黒鉛7重量部と、結着剤としてのポリ弗化ビニリデン5重量部を添加し、これにN−メチル−2−ピロリドンを加え混合して正極合剤のスラリーを調製した。次いで、この正極合剤を正極集電体としてのアルミニウム箔 (厚さ25μm)にドクターブレード法により両面に塗付、乾燥、次いでローラープレスによって電極を加圧成形した。これを幅40mmで長さが285mmの大きさに切り出して正極10を作製した。但し、正極10の両端の長さ10mmの部分は正極合剤が塗布されておらずアルミニウム箔が露出しており、この一方に正極タブ13を超音波接合によって圧着した。
【0044】
(黒鉛質粒子Aの作製)
平均粒子径が5μmのコークス粉末50重量部、タールピッチ20重量部、平均粒子径が48μmの炭化珪素7重量部及びコールタール10重量部を混合し、200℃で1時間混合した。得られた混合物を粉砕し、ペレット状に加圧成形し、次いで窒素雰囲気中、900℃まで加熱、次いで同じく窒素雰囲気中で3000℃まで昇温し黒鉛化を行った。得られた黒鉛化物をハンマーミルを用いて粉砕し、平均粒径が20μmの黒鉛質粒子を作製した。この黒鉛質粒子のBET法による比表面積は3.6m2/gであった。得られた黒鉛質粒子について水銀圧入法による細孔径分布測定を行った結果、0.01〜100μmの範囲に細孔を有し、この細孔体積は0.9cc/gであった。また、得られた黒鉛質粒子を100個任意に選び出し、アスペクト比を測定した結果、2.0であり、黒鉛質粒子のX線広角回折による結晶の層間距離d(002)は0.336nm及び結晶子の大きさLc(002)は100nm以上であった。さらに、得られた黒鉛質粒子の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平状の粒子が複数、配向面が非平行となるように集合又は結合した構造をしていた。以上のようにして作製した黒鉛質粒子を以下A試料を称する。
【0045】
(黒鉛質粒子Bの作製)
平均粒径が5μmのコークス粉末50重量部、タールピッチ30重量部、平均粒子径が48μmの炭化珪素3重量部及びコールタール10重量部を混合し、200℃で1時間混合した。得られた混合物を粉砕し、ペレット状に加圧成形し、次いで窒素雰囲気中、900℃まで加熱、次いで同じく窒素雰囲気中で3000℃まで昇温し黒鉛化を行った。得られた黒鉛化物をハンマーミルを用いて粉砕し、平均粒径が20μmの黒鉛質粒子を作製した。この黒鉛質粒子のBET法による比表面積は3.3m2/gであった。得られた黒鉛質粒子について水銀圧入法による細孔径分布測定を行った結果、0.01〜100μmの範囲に細孔を有し、この細孔体積は0.30cc/gであった。また、得られた黒鉛質粒子を100個任意に選び出し、アスペクト比を測定した結果、1.8であり、黒鉛質粒子のX線広角回折による結晶の層間距離d(002)は0.336nm及び結晶子の大きさLc(002)は100nm以上であった。さらに、得られた黒鉛質粒子の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平状の粒子が複数、配向面が非平行となるように集合又は結合した構造をしていた。以上のようにして作製した黒鉛質粒子を以下B試料を称する。
【0046】
(黒鉛質粒子Cの作製)
平均粒径が5μmのコークス粉末50重量部、タールピッチ20重量部、平均粒子径が48μmの炭化珪素7重量部及びコールタール10重量部を混合し、200℃で1時間混合した。得られた混合物を粉砕した。次いで混合物を空気中、250℃で30分加熱処理し、タールピッチを不融化した。不融化した該混合物を窒素雰囲気中、900℃まで加熱、次いで同じく窒素雰囲気中で3000℃まで昇温し黒鉛化を行った。得られた黒鉛質粒子の平均粒径は23μmであった。この黒鉛質粒子のBET法による比表面積は2.5m2/gであった。得られた黒鉛質粒子について水銀圧入法による細孔径分布測定を行った結果、0.01〜100μmの範囲に細孔を有し、この細孔体積は0.8cc/gであった。また、得られた黒鉛質粒子を100個任意に選び出し、アスペクト比を測定した結果、1.7であり、黒鉛質粒子の、黒鉛質粒子のX線広角回折による結晶の層間距離d(002)は0.336nm及び結晶子の大きさLc(002)は100nm以上であった。さらに、得られた黒鉛質粒子の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平状の粒子が複数、配向面が非平行となるように集合又は結合した構造をしていた。以上のようにして作製した黒鉛質粒子を以下C試料を称する。
【0047】
(黒鉛質粒子Dの作製)
平均粒径が5μmのコークス粉末50重量部、タールピッチ20重量部、ノボラック型フェノール樹脂(商品名 レジトップPGA−2504、群栄化学(株)製)10重量部、平均粒子径が48μmの炭化珪素7重量部及びコールタール10重量部を混合し、200℃で1時間混合した。得られた混合物を粉砕し、窒素雰囲気中、900℃まで加熱、次いで同じく窒素雰囲気中で3000℃まで昇温し黒鉛化を行った。得られた黒鉛質粒子の平均粒径は21μmの黒鉛質粒子を作製した。この黒鉛質粒子のBET法による比表面積は2.6m2/gであった。得られた黒鉛質粒子について水銀圧入法による細孔径分布測定を行った結果、0.01〜100μmの範囲に細孔を有し、この細孔体積は0.70cc/gであった。また、得られた黒鉛質粒子を100個任意に選び出し、アスペクト比を測定した結果、1.7であり、黒鉛質粒子の、黒鉛質粒子のX線広角回折による結晶の層間距離d(002)は0.336nm及び結晶子の大きさLc(002)は100nm以上であった。さらに、得られた黒鉛質粒子の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平状の粒子が複数、配向面が非平行となるように集合又は結合した構造をしていた。以上のようにして作製した黒鉛質粒子を以下D試料を称する。
【0048】
(黒鉛質粒子の放電容量の測定)
黒鉛質粒子90重量%に、N−メチル−2−ピロリドンに溶解したポリ弗化ビニリデン(PVDF)を固形分で10重量%加えて混練して黒鉛ペーストを作製した。この黒鉛ペーストを厚さ10μmの圧延銅箔に塗布し、さらに乾燥し負極とした。
作製した試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。
図2は実験に用いたリチウム二次電池の概略図である。図2に示すようにガラスセル9に、電解液10としてLiPF4をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極(負極)11、セパレータ12及び対極(正極)13を積層して配置し、さらに参照電極14を上部から吊るしてリチウム二次電池を作製して行った。対極13及び参照電極14には金属リチウムを使用し、セパレータ12にはポリエチレン微孔膜を使用した。0.5mA/cm2の定電流で、5mV(V vs Li/Li+)まで充電し、1V(V vs Li/Li+)まで放電する試験を繰り返した。得られた結果を表1に示す。
【0049】
【表1】

Figure 0003651225
【0050】
(負極の作製)
A試料90重量部とB試料10重量部とを均一に混合し、次いでこの混合黒鉛と結着剤としてのPVDFとを、重量比90:10の比率で混合し、これを溶剤(N―メチル−2−ピロリドン)に分散させてスラリーととした後、負極集電体としての銅箔(厚さ10μm)の両面にドクターブレード法により塗付し、乾燥、次いでローラープレスによって電極を加圧成形して負極とした。これを幅40mmで長さが290mmの大きさに切り出して負極を作製した。この負極を正極と同様に、両端の長さ10mmの負極合剤が塗布されていない部分の一方に負極タブを超音波接合によって圧着した。
【0051】
(電解液の調製)
エチレンカーボネートとジメチルカーボネートとの等体積混合溶媒に、LiPF6を1モル/リットル溶解し、電解液を調製した。
(電池の作製)
前記正極、ポリエチレン製多孔質フィルム(厚さ25μm、幅44mm)からなるセパレータ及び前記負極をそれぞれこの順序で積層した後、前記負極が外側に位置するように渦巻き状に捲回して電極群を作製した。この電極群をステンレス製の電池缶にそれぞれ収納し、負極タブを缶底溶接し、正極蓋をかしめるための絞り部を設けた。この後、前記電解液を電池缶に注入した後、正極タブを正極蓋に溶接し、正極蓋をかしめて円筒型リチウム二次電池を組み立てた。
【0052】
実施例2
負極作製でのA試料及びB試料の配合比をそれぞれ、80重量部、20重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0053】
実施例3
負極作製でのA試料及びB試料の配合比をそれぞれ、70重量部、30重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0054】
実施例4
負極作製でのA試料及びB試料の配合比をそれぞれ、60重量部、40重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0055】
実施例5
負極作製でのA試料及びB試料の配合比をそれぞれ、50重量部、50重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0056】
比較例1
負極作製でのA試料及びB試料の配合比をそれぞれ、100重量部、0重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0057】
比較例2
負極作製でのA試料及びB試料の配合比をそれぞれ、0重量部、100重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0058】
実施例6
負極作製において、C試料とB試料の配合比をそれぞれ、90重量部、10重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0059】
実施例7
負極作製において、C試料とB試料の配合比をそれぞれ、80重量部、20重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0060】
実施例8
負極作製において、C試料とB試料の配合比をそれぞれ、70重量部、30重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0061】
実施例9
負極作製において、C試料とB試料の配合比をそれぞれ、60重量部、40重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0062】
実施例10
負極作製において、C試料とB試料の配合比をそれぞれ、50重量部、50重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0063】
比較例3
負極作製において、C試料とB試料の配合比をそれぞれ、100重量部、0重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0064】
実施例11
負極作製において、D試料とB試料の配合比をそれぞれ、90重量部、10重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0065】
実施例12
負極作製において、D試料とB試料の配合比をそれぞれ、80重量部、20重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0066】
実施例13
負極作製において、D試料とB試料の配合比をそれぞれ、70重量部、30重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0067】
実施例14
負極作製において、D試料とB試料の配合比をそれぞれ、60重量部、40重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0068】
実施例15
負極作製において、D試料とB試料の配合比をそれぞれ、50重量部、50重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0069】
比較例4
負極作製において、D試料とB試料の配合比をそれぞれ、100重量部、0重量部とした以外は実施例1と同様にして円筒型リチウム二次電池を組み立てた。
【0070】
得られた実施例1〜15及び比較例1〜4のリチウム二次電池について、充電終止電圧を4.15V、放電終止電圧を2.8Vとし、充放電電流を200mAから800mAの範囲で変化させ、急速充放電時の放電容量を測定した。その結果を比較例1の充放電電流200mAの時の放電容量を100%として表2及び表3に示す。また、充放電電流200mAとして各電池の充放電サイクル特性を測定した。その結果を比較例1のサイクル数1の時の放電容量を100%として表4及び表5に示す。
【0071】
【表2】
Figure 0003651225
【0072】
【表3】
Figure 0003651225
【0073】
【表4】
Figure 0003651225
【0074】
【表5】
Figure 0003651225
【0075】
表2及び表3より明らかなように、実施例の急速充放電特性は比較例と比較して良好であり、大きな充放電電流においても放電容量の低下が極めて少ないことが分かる。
また、表4及び表5より明らかなように、実施例のサイクル特性は、比較例と比較して良好であり、高いサイクル数を経ても大きな放電容量を維持できることが分かる。
【0076】
【発明の効果】
請求項1〜5記載のリチウム二次電池用負極は、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有するものである。
請求項6記載のリチウム二次電池用負極の製造法によれば、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有する負極が得られる。
請求項7記載のリチウム二次電池は、電極作製条件の変動による粒子の過剰な変形、黒鉛質粒子の配向を抑制し、特に高い充放電電流で充放電を行った場合のリチウムの吸蔵・放出量が多くて充放電容量が大きく、かつ充放電サイクルによる充放電容量の低下が少ないもの、すなわち、良好なサイクル特性を有し、かつ高い充放電容量及び急速充放電特性を有するものである。
【図面の簡単な説明】
【図1】円筒型リチウム二次電池の一部断面正面図である。
【図2】黒鉛質粒子の単独での放電容量の測定に用いたリチウム二次電池の概略図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極(負極)
12 セパレータ
13 対極(正極)
14 参照極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, a negative electrode thereof, and a manufacturing method thereof, and more particularly to a lithium secondary battery excellent in charge / discharge capacity, rapid charge / discharge characteristics, and cycle characteristics, a negative electrode thereof, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, there has been an increasing demand for secondary batteries that are small, lightweight, and have a high energy density for portable devices, electric vehicles, and power storage. In response to such demands, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, are attracting attention as batteries having high voltage and high energy density.
[0003]
As a negative electrode material of a lithium secondary battery, metallic lithium, low graphitized carbon particles, and highly graphitized carbon particles are used. Metallic lithium can achieve a high charge / discharge capacity, but due to its high reactivity, it reacts with the solvent in the electrolyte as the charge / discharge cycle progresses, and the capacity decreases, and dendritic metal lithium tends to be produced, It has a problem that it easily causes a short circuit through a separator provided between the positive and negative electrodes. Low graphitized carbonaceous materials are characterized by low reactivity with electrolytes and difficulty in forming dendritic metallic lithium, but charge / discharge capacity per volume due to generally low charge / discharge capacity and low true density. Realizing a secondary battery with a high energy density has the difficulty of low capacity, and has not been achieved. On the other hand, highly graphitized carbon particles have a high charge / discharge capacity compared to low graphitized carbon particles, and are characterized by reactivity with electrolytes compared to metallic lithium and difficulty in forming dendritic metallic lithium. In recent years, studies have been actively conducted as negative electrode materials.
[0004]
As highly graphitized carbon particles, highly purified natural graphite particles, artificial graphite particles produced by carbonizing and graphitizing coke, pitch, or synthetic organic polymer materials are used. In these highly graphitized carbon particles, graphite crystals are highly developed, and thus the shape is a scaly shape with a large aspect ratio. For this reason, when an electrode is produced by kneading with a binder and applying it to a current collector, the scaly graphite particles are oriented with high density in the surface direction of the current collector, and as a result, the electrolyte solution into the negative electrode layer Cycle characteristics are poor because the permeability of the resin deteriorates, the charge / discharge capacity decreases, the high-speed charge / discharge characteristics deteriorate, and the particles easily peel off due to strain in the thickness direction caused by repeated insertion and extraction of lithium into and from the graphite particles. Problems occur. On the other hand, in order to avoid the above problems, when the density of the graphite particles in the electrode is lowered, there arises a problem that the charge / discharge capacity per volume is lowered.
[0005]
As a technique for solving such problems, attempts have been made to improve the characteristics of highly graphitized particles. In Japanese Patent No. 2,637,305, spherical graphitic particles obtained by graphitizing mesophase spherules extracted from mesophase pitch and having a radial or fine texture orientation are used, and a fine texture orientation is lamellar. Type or Brooks Taylor type carbon fiber has been proposed, but the former has a relatively low charge / discharge capacity of 280 to 300 mAh / g, and requires a process of extraction and separation from mesophase pitch. In the latter case, there is a problem that it is difficult to increase the density of the electrodes, and that when long fibers are mixed, a short circuit easily occurs through the separator.
[0006]
Japanese Laid-Open Patent Publication No. 7-335216 proposes particles in which graphite crystallites produced by pulverizing a high-density graphite molded body prepared using an aggregate and a binder as starting materials are randomly oriented. The manufacturing method of the molded body using the isostatic pressing method is poor in productivity. Other methods for pulverizing the graphitized compact to obtain graphite particles include WO95 / 28011 and JP-A-9-231974. The graphite powder obtained by pulverizing these graphitized compacts has a high bulk density and high strength, and the graphite crystals are randomly oriented within the particles, so that the orientation of the graphite crystals on the current collector is This is an effective means in that it is suppressed and a gap between particles that can be penetrated by the electrolyte is secured. However, the high bulk density, that is, the denseness of the particles, this time, suppresses the penetration of the electrolyte solution into the particles, causing a limit to the rapid charge / discharge characteristics.
[0007]
In addition, a technique in which highly graphitized carbon particles and other materials are mixed and used has been proposed.
In JP-A-4-237971, it has been proposed to prevent separation of particles due to repeated charge / discharge by combining spherical graphitic carbon particles and carbon fibers. This is a comparison of charge / discharge capacities. Low spherical particles are used.
In JP-A-6-36760, it is proposed to prepare a battery capacity end point determination by using a mixture of high graphitized carbon particles and low graphitized carbon particles to prevent a rapid voltage drop at the end of discharge. However, there is a problem that the highly graphitized particles are oriented in the direction of the current collector surface, and when the amount of the low graphitized carbon particles is large, the discharge voltage is lowered.
[0008]
Japanese Patent Laid-Open No. 6-111818 proposes to combine spherical graphitized carbon particles and graphitized carbon short fibers, increase the electrode strength, suppress the destruction of the electrode layer accompanying the charge / discharge cycle, and the electrode layer by the short fibers. Although it is said that rapid charge / discharge characteristics can be improved by improving the electrical conductivity, only spherical graphitized carbon particles having a relatively low charge / discharge capacity are used. Moreover, when there is much addition amount of a graphitized carbon short fiber, there exists a problem that an electrode density falls and the charge / discharge capacity per volume falls.
In JP-A-6-302315, it has been proposed to combine spherical graphite particles with chemically and electrochemically inactive metal-coated whiskers to increase the strength of the electrode and prevent particle peeling. There is no mention of graphite particles, and whiskers to be added do not contribute to charge / discharge, so that the charge / discharge capacity decreases when the amount added is large.
[0009]
In JP-A-8-180864, spherical graphite particles, non-spherical graphite particles having an average particle size of 1.3 to 4.0 with respect to the average particle size of the spherical particles, and a pulverized carbon fiber are added. Thus, the electron conductivity in the electrode is improved and the charge / discharge cycle characteristics are improved. Among these, it is mentioned that non-spherical particles (artificial graphite, natural graphite) exist in various directions between the spherical graphite particles, and the above-mentioned scaly graphite particles are directed toward the current collector surface. Although the presence of spherical graphite particles has been shown to have an effect on suppressing orientation, it is necessary to precisely control the particle size of spherical and non-spherical particles, which is problematic in terms of productivity There is.
In JP-A-8-83608 and JP-A-8-83609, graphite crystals are collected at a high density by adding graphitized carbon fiber powder to block-like, flake-like and granular artificial graphite or natural graphite particles. It is difficult to orient in the surface direction of the electric body, and the separation of particles from the current collector as the charge / discharge cycle progresses is suppressed. However, this effect is obtained when the graphitized carbon fiber powder addition amount is up to 20% by weight, and it is mentioned that the electrode performance deteriorates beyond this.
[0010]
The above-described mixed system of highly graphitized carbonaceous particles and other materials has problems, and particularly when combined with graphitized carbon fiber, the particle shape is greatly different, so they are mixed uniformly. Therefore, there is a common problem that it is difficult to manufacture a lithium secondary battery exhibiting stable performance. Further, the system containing spherical graphite particles obtained by graphitizing mesophase microspheres has a problem that the charge / discharge capacity of the spherical graphite particles is relatively low and high in cost as described above. .
[0011]
[Problems to be solved by the invention]
The invention described in claims 1 to 5 suppresses excessive deformation of particles due to fluctuations in electrode preparation conditions and orientation of graphite particles, and in particular, the amount of occlusion / release of lithium when charging / discharging is performed at a high charge / discharge current. For lithium secondary batteries having a large charge / discharge capacity and little decrease in charge / discharge capacity due to charge / discharge cycles, that is, having good cycle characteristics and having high charge / discharge capacity and rapid charge / discharge characteristics A negative electrode is provided.
The invention according to claim 6 suppresses excessive deformation of particles due to fluctuations in electrode preparation conditions and orientation of graphitic particles, and has a large amount of occlusion / release of lithium when charging / discharging is performed at a particularly high charge / discharge current. Of a negative electrode for a lithium secondary battery having a large charge / discharge capacity and a small decrease in charge / discharge capacity due to the charge / discharge cycle, that is, having good cycle characteristics and having high charge / discharge capacity and rapid charge / discharge characteristics. A manufacturing method is provided.
The invention according to claim 7 suppresses excessive deformation of the particles due to fluctuations in electrode preparation conditions and orientation of the graphite particles, and particularly has a large amount of occlusion / release of lithium when charging / discharging at a high charge / discharge current. Provided is a lithium secondary battery having a large charge / discharge capacity and a small decrease in charge / discharge capacity due to a charge / discharge cycle, that is, having good cycle characteristics and having high charge / discharge capacity and rapid charge / discharge characteristics. Is.
[0012]
[Means for Solving the Problems]
The present invention relates to a negative electrode for a lithium secondary battery comprising a mixture of two or more types of graphite particles having different pore volumes based on pores having a pore diameter in the range of 0.01 to 100 μm. Further, the present invention provides a mixture of two or more types of graphite particles having different pore volumes, the graphite particles having a pore volume in the range of 0.01 to 100 μm of 0.4 cc / g or more, and 0.01 to The present invention relates to a negative electrode for a lithium secondary battery, which contains graphite particles having a pore volume in the range of 100 μm of 0.08 cc / g or more and less than 0.4 cc / g. Further, in the present invention, each of the two or more types of graphite particles having different pore volumes has a discharge capacity measured by itself of 300 mAh / g or more, and the difference in discharge capacity between these graphite particles is: The present invention relates to a negative electrode for a lithium secondary battery, which is a graphite particle that is within 10% based on the value of the discharge capacity of the graphite particles having the largest discharge capacity. The present invention also relates to a negative electrode for a lithium secondary battery, wherein at least one of the graphite particles has a structure in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel.
[0013]
Further, the present invention provides a secondary lithium particle having a structure in which two or more kinds of graphite particles having different pore volumes are aggregated or bonded such that a plurality of flat particles and alignment planes are non-parallel. The present invention relates to a negative electrode for a battery.
Further, the present invention is a method comprising each step of adding a graphitization catalyst to a graphitizable aggregate or a material containing graphite and a graphitizable binder, mixing, firing and graphitizing, and crushing The graphite particles are manufactured separately, and the graphite particles having a pore volume different from that of the pores based on the pore diameter range of 0.01 to 100 μm are manufactured separately by the method including the same steps as described above. In addition, the present invention relates to a method for producing a negative electrode for a lithium secondary battery, wherein two or more kinds of produced graphite particles are mixed and used as a negative electrode material.
Furthermore, the present invention relates to a lithium secondary battery comprising the negative electrode and the positive electrode as described above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Generally, a lithium secondary battery using a carbon material has a negative electrode, a positive electrode, and a non-aqueous electrolyte made of a carbonaceous material that occludes / releases lithium ions. The negative electrode for a lithium secondary battery in the present invention is the carbonaceous material. Is characterized by containing a mixture of two or more types of graphite particles having different pore volumes based on pores having a pore diameter in the range of 0.01 to 100 μm. Here, when the type of graphite particles is large and the pore volume is large, the particles are excessively deformed depending on the electrode preparation conditions, and the graphite crystals are easily oriented in the plane direction of the current collector. It deteriorates and the charge / discharge capacity tends to decrease. On the other hand, when the pore volume is small, the penetration of the electrolytic solution into the particles is insufficient and the rapid charge / discharge characteristics are deteriorated. The pore volume based on pores having a pore diameter in the above range is measured by pore diameter distribution measurement by mercury porosimetry.
[0015]
The two or more types of graphite particles include a graphite particle having a pore volume in the range of 0.01 to 100 μm and a pore volume of 0.4 cc / g or more and a pore volume in the range of 0.01 to 100 μm. It is preferable to contain graphite particles of 0.08 cc / g or more and less than 0.4 cc / g.
Here, the upper limit of the pore volume of the former graphite particles, that is, the graphite particles having a large pore volume, is not particularly limited, but if the pore volume is excessively large, the electrode density is lowered and the charge per volume is increased. Since discharge capacity falls, it is preferable to set it as 2.0 cc / g or less. Moreover, it is more preferable that it is the range of 0.4-0.9 cc / g at the point which a quick charge / discharge characteristic is more excellent.
[0016]
On the other hand, it is preferable that the graphite particles having a small pore volume have a pore volume in the range of 0.01 to 100 μm having a pore volume of 0.08 cc / g or more and less than 0.4 cc / g. This is because excessive particle deformation at the time is suppressed, and good rapid charge / discharge characteristics can be obtained. Further, in order to obtain better rapid charge / discharge characteristics, the range of 0.15 to 0.35 cc / g is more preferable.
[0017]
The mixing ratio of the two kinds of pore volume graphite particles is not particularly limited, and is selected according to the design of the target lithium secondary battery.
The mixing ratio is the weight ratio of graphite particles with a large pore volume / graphite particles with a small pore volume in that excessive particle deformation during electrode fabrication is suppressed and good rapid charge / discharge characteristics are obtained. The ratio is preferably 98/2 to 20/80, and more preferably 90/10 to 50/50.
When three or more kinds of graphite particles are included, the graphite particles having a pore volume in the range of 0.01 to 100 μm and the pore volume of 0.4 cc / g or more and the fine particles in the range of the pore diameter of 0.01 to 100 μm. When the pore volume is classified into graphite particles having a pore volume of 0.08 cc / g or more and less than 0.4 cc / g, it is preferable that each ratio falls within the above range.
[0018]
In the present invention, any of the two or more graphite particles has a (002) plane lattice spacing d002, a crystallite size Lc in the c-axis direction, and a true density of 0.338 nm or less, 50 nm or more, 2.21 g / cm 3 The above is preferable in terms of increasing the charge / discharge capacity of the entire negative electrode. Further, each of the graphite particles has a discharge capacity measured by itself of 300 mAh / g or more, and the difference in discharge capacity between the graphite particles is the value of the discharge capacity of the graphite particles having the largest discharge capacity. It is preferable that it is a graphite particle which is within 10% on the basis of. Thereby, the effect which combined two or more graphite particles can be acquired, without a change (decrease) of charging / discharging capacity | capacitance. Here, the discharge capacity measured alone is the discharge capacity of the first cycle measured by a known technique using a negative electrode prepared by a known technique using each graphite particle and the counter electrode as metallic lithium. means.
[0019]
In the present invention, this discharge capacity can be specifically measured by the following method.
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 90% by weight of graphite particles in a solid content and kneaded to prepare a graphite paste. The graphite paste was 10 μm thick. It is applied to a rolled copper foil and further dried to obtain a negative electrode.
The produced sample electrode is charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 2 is a schematic view of the lithium secondary battery used for this measurement. As shown in FIG. 2, the glass cell 9 has LiPF as the electrolyte 10. Four Is added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC are 1: 1 by volume) to a concentration of 1 mol / liter, and a sample electrode (negative electrode) 11 is added. The separator 12 and the counter electrode (positive electrode) 13 are stacked and arranged, and the reference electrode 14 is suspended from the upper part to produce a lithium secondary battery. Metal lithium is used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous film is used for the separator 12. 0.5mA / cm 2 5 mV (V vs Li / Li + ) To 1V (V vs Li / Li + ) The discharge capacity is measured by a test to discharge up to.
[0020]
When the discharge capacity of each graphitic particle measured by this method is less than 300 mAh / g, the charge / discharge capacity, rapid charge / discharge characteristics, and cycle characteristics when used in combination may be small or reduced.
[0021]
Further, it is appropriate that two or more graphite particles having different pore volumes constituting the negative electrode have substantially the same shape. Specifically, it is preferable that all of them have an aspect ratio of 5 or less. More preferably. As a result, when a negative electrode is formed by mixing two or more graphite particles having different pore volumes, a uniform distribution of these graphite particles can be easily realized, and the lithium secondary battery having good characteristics with little variation Can be obtained.
The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. In the present invention, the aspect ratio is obtained by enlarging the graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value.
[0022]
Further, it is appropriate that the specific surface areas of the two or more graphite particles constituting the negative electrode are substantially equal, and specifically, both are 0.5 to 5.0 m. 2 It is preferable that the negative electrode is made in the range of 2 g / g. Thus, even if a negative electrode is produced by combining two or more graphite particles having different pore volumes, the irreversible capacity is not increased, and the graphite used for producing the negative electrode The change in the viscosity of the mixture of the fine particles, binder and solvent can be minimized.
[0023]
The structure of the two or more graphite particles constituting the negative electrode is at least one of two or more types of graphite particles, more preferably two or more types are flat particles and the orientation planes are non-parallel. It is preferable that the structure be assembled or combined.
Here, the flat particles are particles having a major axis and a minor axis, and are not completely spherical. For example, those having a shape such as a scale shape, a scale shape, or a part of a lump shape are included.
In a plurality of flat particles, the orientation plane is non-parallel means that the flat surface in the shape of each particle, in other words, the plane that is closest to the plane is the orientation plane, and the plurality of particles have a constant orientation plane. A state of gathering without aligning in the direction of.
The individual flat particles are preferably made of graphitizable aggregate or graphite.
[0024]
In these graphite particles, flat particles are aggregated or bonded, but bonding means a state in which the particles are bonded via a binder or the like. Aggregation means that the particles are bonded by a binder or the like. Although it is not, it means a state in which the shape as an aggregate is maintained due to the shape or the like. From the viewpoint of mechanical strength, those bonded are preferable.
When the graphite particles having this structure are used for the negative electrode, the graphite crystals are difficult to be oriented on the current collector, and lithium is easily occluded / released into the negative electrode graphite. Therefore, the rapid charge / discharge characteristics and cycle of the obtained lithium secondary battery Characteristics can be improved.
[0025]
There is no particular limitation on the method for producing the graphite particles used in the present invention, but at least one, more preferably all of the above-mentioned characteristics, shapes and structures can be obtained relatively easily. Produced by a method that includes each step of adding a graphitization catalyst to a graphitizable aggregate or a material containing graphite and a graphitizable binder, mixing, firing and graphitizing, and crushing It is preferable that
In this method, several methods can be mentioned more specifically.
The first method is to use graphitizable aggregate or graphite and tar or pitch as a graphitizable binder, add a graphitization catalyst to this, mix, then calcinate and graphitize, and then pulverize Is the method.
[0026]
As the aggregate that can be graphitized, various cokes such as fluid coke and needle coke are preferable. Further, as the aggregate, those already graphitized such as natural graphite and artificial graphite can be used.
As the graphitizable binder, various pitches and tars such as coal-based, petroleum-based, and artificial are used.
The blending amount of the binder is not particularly limited, but is preferably 5 to 80% by weight, more preferably 10 to 80% by weight, more preferably 15 to 80% by weight based on the graphitizable aggregate or graphite. More preferably, it is added. If the amount of the binder is too large or too small, the aspect ratio and specific surface area of the graphite particles to be produced tend to increase.
[0027]
The method for mixing the graphitizable aggregate or graphite and the binder is not particularly limited and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, 50 to 300 ° C. is preferable.
As the graphitization catalyst, iron, nickel, titanium, boron, silicon and the like, oxides, carbides, nitrides and the like thereof can be used. The graphitization catalyst is preferably added in an amount of 1 to 50% by weight to a graphitizable aggregate or graphite and a graphitizable binder. If the amount added is less than 1% by weight, the development of the graphite particle crystals tends to deteriorate, and the charge / discharge capacity tends to decrease. On the other hand, when it exceeds 50% by weight, it becomes difficult to uniformly mix, and there is a tendency that the workability is deteriorated and the special variation of the obtained graphite particles is increased.
[0028]
A graphitization catalyst is added to the aggregate that can be graphitized or graphite and a binder and mixed, followed by firing and graphitization. Prior to firing, the mixture may be formed into an appropriate shape as necessary. Firing is preferably performed in an atmosphere in which the mixture is difficult to oxidize. Examples thereof include a method of firing in a nitrogen atmosphere, argon gas, and vacuum.
The graphitization temperature is preferably 2000 ° C. or higher, preferably 2500 ° C. or higher, more preferably 2800 to 3200 ° C. When the graphitization temperature is low, the development of graphite crystals deteriorates and the graphitization catalyst tends to remain in the produced graphite particles, and in either case, the charge / discharge capacity tends to decrease. On the other hand, if the graphitization temperature is too high, the graphite may sublime.
[0029]
Next, the obtained graphitized material is pulverized. The method for pulverizing the graphitized material is not particularly limited, but a known method such as a jet mill, a vibration mill, a pin mill, a hammer mill, or a combination of these can be used. The average particle size after pulverization is preferably 1 to 100 μm, and more preferably 10 to 50 μm. If the average particle diameter is too large, irregularities are likely to be formed on the produced electrode surface.
[0030]
The obtained graphite particles can be used as they are, but may be further heat-treated at a temperature of 400 ° C. or higher in a non-oxidizing atmosphere. By this treatment, the specific surface area can be reduced, and the safety and irreversible capacity of the lithium secondary battery can be improved. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a vacuum.
[0031]
As a second method, 1 to 50% by weight of a graphitization catalyst is added to a graphitizable aggregate or graphite and a graphitizable binder, mixed, pulverized, then infusibilized, and then fired. -There is a method of manufacturing by graphitization.
The difference of this method from the first method is that the mixture of materials is pulverized and then infusibilized.
Upon pulverization, it is preferable to select the particle size of the mixture so that the average particle size of the finally obtained graphite particles is 100 μm or less, preferably 50 μm or less.
Although it does not specifically limit as a grinding | pulverization method, Grinding apparatuses, such as a hammer mill, a pin mill, a vibration mill, a jet mill, and these can be used in combination. If necessary, the particles obtained by pulverization can be classified. The classification method is not particularly limited, but an optimal model is selected from a mechanical classifier, a wind classifier, or the like in a timely manner.
[0032]
The infusibilization method is not particularly limited as long as it is a method capable of preventing the mixture powder from being fused to each other in the firing step, and an oxidizing agent (air, oxygen, etc.) generally used for infusibility of various pitches. , NO 2 , Chlorine, bromine, etc.) and further heating to an appropriate temperature if necessary, wet methods using nitric acid aqueous solution, chlorine aqueous solution, sulfuric acid aqueous solution, hydrogen peroxide aqueous solution, etc., and a combination of these methods Can be achieved. It is also possible to prevent the particles from being fused in the intended firing step by coating the surface of the mixture powder with a thermosetting resin.
Although it does not specifically limit about the thermosetting resin to coat | cover, It is possible to use if it is a resin which hardens below the melting temperature of the binder to be used, such as a phenol resin, a furfuryl alcohol resin, a polyimide resin, a cellulose resin, a polyvinylidene chloride resin, etc. Is preferred. After the infusibilization treatment, if necessary, pulverization and classification treatment may be performed again. The mixture powder subjected to the infusibilization treatment can be fired and graphitized according to the first method.
[0033]
As a third method, a graphitizable aggregate or graphite and a thermosetting resin as a graphitizable binder are added, a graphitization catalyst is added to these, mixed, pulverized, and then fired and graphitized. It is a manufacturing method.
This method is different from the first method in that a thermosetting resin is used as a binder and the mixture is pulverized.
As the thermosetting resin, phenol resin, furfuryl alcohol resin, polyimide resin, cellulose resin, polyvinylidene chloride resin, chlorinated polyvinyl chloride resin and the like can be used. The mixing method of the graphitizable aggregate or graphite and binder is not particularly limited and is performed using a kneader or the like. The temperature is preferably 20 to 100 ° C. in the case of a thermosetting resin.
[0034]
There are no particular restrictions on the blending ratio with graphitizable aggregate or graphite, and thermosetting resin as a binder, but the blending amount of thermosetting resin should be such that particle fusion does not occur during the firing of the pulverized product. On the other hand, if the ratio of the thermosetting resin is excessively increased, the graphitized degree of the obtained graphite particles decreases, and the charge / discharge capacity decreases, which is not preferable. From these points, it is preferable to add 5 to 80% by weight of the thermosetting resin based on the graphitizable aggregate or graphite.
The pulverization conditions of the mixture can follow the second method. Moreover, the conditions of baking and graphitization can follow the said 1st method.
[0035]
In the present invention, at least two types of graphite particles are both charged / discharged to be particles produced by at least one method selected from the first, second and third methods. It is preferable for realizing capacity, good rapid charge / discharge characteristics, low irreversible capacity, and good cycle characteristics.
[0036]
Two or more graphite particles having different pore volumes in the range of 0.01 to 100 μm obtained as described above are mixed with an organic binder for binding the graphite particles, and then added. A negative electrode for a lithium secondary battery can be obtained by a known method such as pressure molding or pasting using an organic solvent or the like, coating on a current collector, drying and pressing.
As the organic binder, for example, polyethylene, polypropylene, ethylene propylene polymer, butadiene rubber, styrene butadiene rubber, and a polymer compound having high ionic conductivity can be used.
As the ion conductive polymer compound, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphophazene, polyacrylonitrile and the like can be used.
The content of the organic binder is preferably 3 to 20% by weight with respect to the mixture of the graphite particles and the organic binder.
As the current collector, for example, a foil such as nickel or copper, a mesh, or the like can be used.
[0037]
The negative electrode for a lithium secondary battery obtained as described above constitutes a lithium secondary battery in combination with a positive electrode composed of an active material containing lithium that can be charged and discharged. The positive electrode active material used here is Li x M y O z (Here, at least one selected from M = V, Mn, Fe, Co, and Ni is a main component, x = 0.05 to 1.2, y = 1 or 2, and z = 1.5 to 5). Examples include lithium-containing transition metal oxides.
In addition, an alkali metal other than lithium, an alkaline earth metal, a transition metal other than M, or a group 13 to 15 element of the periodic table (Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, P, B) or the like may be included.
The positive electrode further contains MnO as an active material. 2 , MoO Three , V 2 O Five TiO 2 TiS 2 Inorganic compounds such as FeS and activated carbon, and polymer compounds such as polyaniline can also be selected. In this case, a predetermined amount of lithium can be occluded in advance in the negative electrode, or a predetermined amount of lithium can be pressure bonded.
[0038]
The lithium secondary battery further includes a non-aqueous electrolyte. As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent having a high dielectric constant is preferable. The lithium salt is not particularly limited, and LiClO Four , LiPF 6 , LiBF Four , LiCF Three SO Three Etc. can be used. Moreover, the organic solvent should just dissolve lithium salt and give electrochemical stability, and should have electrochemical stability with respect to the negative electrode and positive electrode material which comprise. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, acetonitrile, sulfolane, γ-butyrolactone, a mixture thereof, and the like are used. Moreover, the organic electrolyte solution contained in polymer solid electrolytes, such as a polyvinylidene fluoride, can also be used as electrolyte.
[0039]
In the lithium secondary battery of the present invention, when a liquid electrolyte is used, in addition to the positive electrode, the negative electrode, and the non-aqueous electrolyte, contact between both electrodes can be prevented, and the electrolyte can be held and lithium ions can pass. It is preferable to use a separator having a function in combination with a current collector having a function of collecting and holding an electrode material.
Examples of the separator include porous films such as polyethylene, polypropylene, and polytetrafluoroethylene, nonwoven fabrics, and woven fabrics. The thickness of the separator is preferably about 20 to 200 μm.
[0040]
Moreover, as a collector, the conductor which has electrochemical stability with respect to the active material of a positive electrode and a negative electrode can be used. For example, nickel, titanium, stainless steel, copper, and aluminum can be mentioned.
Further, a lithium secondary battery including a negative electrode comprising two or more graphite particles having different pore volumes in the range of 0.01 to 100 μm as measured by the mercury intrusion method of the present invention is a cylinder. Various shapes such as a mold, a box, a coin, a button, a paper, and a card can be used.
[0041]
In the lithium secondary battery thus obtained, the particles included in the negative electrode are one type of graphite particles, for example, graphite particles having a pore volume of 0.4 cc / g or more in a pore diameter range of 0.01 to 100 μm. In the state where there is no excessive deformation of the particles, it has excellent rapid charge / discharge characteristics and cycle characteristics, but if excessive deformation of the particles occurs due to negative electrode preparation conditions, etc., the flat particles It is easy to orient in parallel to the body surface, and the voids in and between the particles are reduced, so that lithium ions are not easily doped or dedoped, and the rapid charge / discharge characteristics and cycle characteristics are deteriorated. Therefore, when graphite particles having a pore volume in the range of 0.01 to 100 μm and having a pore volume smaller than that of the graphite particles are added to the graphite particles, the graphite particles are compared. Therefore, excessive deformation of the graphite particles is suppressed, and as a result, rapid charge / discharge characteristics and cycle characteristics are improved. Further, the graphite particles themselves have a high charge / discharge capacity, and since the pore diameter is in the range of 0.01 to 100 μm, the rapid charge / discharge characteristics are relatively good. Since the shape, true density, and other characteristics are similar to those of the above graphite particles, uniform mixing can be easily realized, so that a lithium secondary battery having a high charge / discharge capacity can be stably produced. .
[0042]
【Example】
Hereinafter, the effects of the present invention will be described in detail with reference to Examples and Comparative Examples.
Example 1
(Production of lithium secondary battery)
FIG. 1 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode tab, 5 is a negative electrode tab, 6 is a positive electrode lid, 7 is a battery can, and 8 is a gasket. The lithium secondary battery shown in FIG. 1 was produced as follows.
[0043]
(Preparation of positive electrode)
To 288 parts by weight of LiCoO as a positive electrode active material, 7 parts by weight of flaky natural graphite having an average particle diameter of 1 μm as a conductive agent and 5 parts by weight of polyvinylidene fluoride as a binder are added, and N-methyl is added thereto. 2-Pyrrolidone was added and mixed to prepare a positive electrode mixture slurry. Next, this positive electrode mixture was applied to both surfaces by a doctor blade method on an aluminum foil (thickness 25 μm) as a positive electrode current collector, dried, and then the electrode was pressure-formed by a roller press. This was cut into a size of 40 mm in width and 285 mm in length to produce the positive electrode 10. However, the positive electrode mixture was not applied to the 10 mm long portions at both ends of the positive electrode 10 and the aluminum foil was exposed, and the positive electrode tab 13 was pressure bonded to this one by ultrasonic bonding.
[0044]
(Preparation of graphite particles A)
50 parts by weight of coke powder having an average particle diameter of 5 μm, 20 parts by weight of tar pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and pressure-molded into pellets, then heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere for graphitization. The obtained graphitized material was pulverized using a hammer mill to produce graphite particles having an average particle diameter of 20 μm. The specific surface area of this graphite particle by the BET method is 3.6 m. 2 / g. The obtained graphite particles were measured for pore size distribution by mercury porosimetry. As a result, the graphite particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.9 cc / g. Further, 100 pieces of the obtained graphite particles were arbitrarily selected and the aspect ratio was measured. As a result, it was 2.0, and the interlayer distance d (002) of the crystal by X-ray wide angle diffraction of the graphite particles was 0.336 nm. The crystallite size Lc (002) was 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphite particles, the graphite particles have a structure in which a plurality of flat particles are assembled or bonded so that the orientation planes are non-parallel. It was. The graphite particles produced as described above are hereinafter referred to as Sample A.
[0045]
(Preparation of graphite particles B)
50 parts by weight of coke powder having an average particle diameter of 5 μm, 30 parts by weight of tar pitch, 3 parts by weight of silicon carbide having an average particle diameter of 48 μm and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized and pressure-molded into pellets, then heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere for graphitization. The obtained graphitized material was pulverized using a hammer mill to produce graphite particles having an average particle diameter of 20 μm. The specific surface area of this graphite particle by the BET method is 3.3 m. 2 / g. As a result of measuring the pore size distribution by mercury porosimetry for the obtained graphite particles, the graphite particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.30 cc / g. Further, as a result of arbitrarily selecting 100 obtained graphite particles and measuring the aspect ratio, it was 1.8, and the interlayer distance d (002) of the crystal by X-ray wide angle diffraction of the graphite particles was 0.336 nm and The crystallite size Lc (002) was 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphite particles, the graphite particles have a structure in which a plurality of flat particles are assembled or bonded so that the orientation planes are non-parallel. It was. The graphite particles produced as described above are hereinafter referred to as B sample.
[0046]
(Preparation of graphite particles C)
50 parts by weight of coke powder having an average particle diameter of 5 μm, 20 parts by weight of tar pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 μm, and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The resulting mixture was ground. Subsequently, the mixture was heat-treated in air at 250 ° C. for 30 minutes to make the tar pitch infusible. The infusibilized mixture was heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere for graphitization. The average particle diameter of the obtained graphite particles was 23 μm. The specific surface area of this graphite particle by BET method is 2.5 m. 2 / g. The obtained graphite particles were measured for pore size distribution by mercury porosimetry. As a result, the graphite particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.8 cc / g. Further, 100 pieces of the obtained graphite particles were arbitrarily selected and the aspect ratio was measured. As a result, it was 1.7, and the interlayer distance d (002) of the graphite particles by X-ray wide angle diffraction of the graphite particles. Was 0.336 nm and the crystallite size Lc (002) was 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphite particles, the graphite particles have a structure in which a plurality of flat particles are assembled or bonded so that the orientation planes are non-parallel. It was. The graphite particles produced as described above are hereinafter referred to as C samples.
[0047]
(Preparation of graphite particles D)
50 parts by weight of coke powder having an average particle size of 5 μm, 20 parts by weight of tar pitch, 10 parts by weight of a novolac type phenolic resin (trade name Resist Top PGA-2504, manufactured by Gunei Chemical Co., Ltd.), carbonized with an average particle diameter of 48 μm 7 parts by weight of silicon and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. The obtained mixture was pulverized, heated to 900 ° C. in a nitrogen atmosphere, and then heated to 3000 ° C. in the same nitrogen atmosphere for graphitization. Graphite particles having an average particle diameter of 21 μm were prepared. The specific surface area of the graphite particles by the BET method is 2.6 m. 2 / g. As a result of measuring the pore size distribution by mercury porosimetry for the obtained graphite particles, the graphite particles had pores in the range of 0.01 to 100 μm, and the pore volume was 0.70 cc / g. Further, 100 pieces of the obtained graphite particles were arbitrarily selected and the aspect ratio was measured. As a result, it was 1.7, and the interlaminar distance d (002) of the graphite particles by X-ray wide angle diffraction of the graphite particles. Was 0.336 nm and the crystallite size Lc (002) was 100 nm or more. Further, according to a scanning electron microscope (SEM) photograph of the obtained graphite particles, the graphite particles have a structure in which a plurality of flat particles are assembled or bonded so that the orientation planes are non-parallel. It was. The graphite particles produced as described above are hereinafter referred to as D sample.
[0048]
(Measurement of discharge capacity of graphite particles)
Polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added to 90% by weight of graphite particles in a solid content of 10% by weight and kneaded to prepare a graphite paste. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm and further dried to obtain a negative electrode.
The prepared sample electrode was subjected to constant current charge / discharge by the three-terminal method, and evaluated as a negative electrode for a lithium secondary battery.
FIG. 2 is a schematic view of a lithium secondary battery used in the experiment. As shown in FIG. 2, the glass cell 9 has LiPF as the electrolyte 10. Four Is added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC and DMC are 1: 1 by volume) to a concentration of 1 mol / liter, and a sample electrode (negative electrode) 11 is added. The separator 12 and the counter electrode (positive electrode) 13 were stacked and arranged, and the reference electrode 14 was suspended from the top to produce a lithium secondary battery. Metallic lithium was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous film was used for the separator 12. 0.5mA / cm 2 5 mV (V vs Li / Li + ) To 1V (V vs Li / Li + ) Was repeated. The obtained results are shown in Table 1.
[0049]
[Table 1]
Figure 0003651225
[0050]
(Preparation of negative electrode)
90 parts by weight of sample A and 10 parts by weight of sample B are uniformly mixed, and then this mixed graphite and PVDF as a binder are mixed at a weight ratio of 90:10, and this is mixed with a solvent (N-methyl). -2-pyrrolidone) to form a slurry, which is then applied to both sides of a copper foil (thickness 10 μm) as a negative electrode current collector by a doctor blade method, dried, and then pressure-formed by a roller press. Thus, a negative electrode was obtained. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Similarly to the positive electrode, the negative electrode tab was bonded by ultrasonic bonding to one of the portions where the negative electrode mixture having a length of 10 mm at both ends was not applied.
[0051]
(Preparation of electrolyte)
In an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate, LiPF 6 Was dissolved at 1 mol / liter to prepare an electrolytic solution.
(Production of battery)
The positive electrode, a separator made of a polyethylene porous film (thickness 25 μm, width 44 mm) and the negative electrode are laminated in this order, and then wound in a spiral shape so that the negative electrode is located outside to produce an electrode group. did. Each electrode group was housed in a battery can made of stainless steel, a negative electrode tab was welded to the bottom of the can, and a constricted portion for caulking the positive electrode lid was provided. Thereafter, the electrolytic solution was poured into a battery can, and then a positive electrode tab was welded to the positive electrode cover, and the positive electrode cover was crimped to assemble a cylindrical lithium secondary battery.
[0052]
Example 2
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the A sample and the B sample in producing the negative electrode were 80 parts by weight and 20 parts by weight, respectively.
[0053]
Example 3
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratios of the A sample and the B sample were 70 parts by weight and 30 parts by weight, respectively.
[0054]
Example 4
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the A sample and the B sample in producing the negative electrode were 60 parts by weight and 40 parts by weight, respectively.
[0055]
Example 5
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the A sample and the B sample were 50 parts by weight and 50 parts by weight, respectively.
[0056]
Comparative Example 1
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the A sample and the B sample in producing the negative electrode were 100 parts by weight and 0 parts by weight, respectively.
[0057]
Comparative Example 2
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the A sample and the B sample in producing the negative electrode were 0 parts by weight and 100 parts by weight, respectively.
[0058]
Example 6
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the C sample and the B sample was 90 parts by weight and 10 parts by weight, respectively.
[0059]
Example 7
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that in the preparation of the negative electrode, the mixing ratio of the C sample and the B sample was 80 parts by weight and 20 parts by weight, respectively.
[0060]
Example 8
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the C sample and the B sample was 70 parts by weight and 30 parts by weight, respectively.
[0061]
Example 9
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the C sample and the B sample was 60 parts by weight and 40 parts by weight, respectively.
[0062]
Example 10
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the C sample and the B sample was 50 parts by weight and 50 parts by weight, respectively.
[0063]
Comparative Example 3
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that in the preparation of the negative electrode, the mixing ratio of the C sample and the B sample was 100 parts by weight and 0 parts by weight, respectively.
[0064]
Example 11
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 90 parts by weight and 10 parts by weight, respectively.
[0065]
Example 12
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 80 parts by weight and 20 parts by weight, respectively.
[0066]
Example 13
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 70 parts by weight and 30 parts by weight, respectively.
[0067]
Example 14
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the mixing ratio of the D sample and the B sample was 60 parts by weight and 40 parts by weight, respectively.
[0068]
Example 15
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratios of the D sample and the B sample were 50 parts by weight and 50 parts by weight, respectively.
[0069]
Comparative Example 4
In preparing the negative electrode, a cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the blending ratio of the D sample and the B sample was 100 parts by weight and 0 parts by weight, respectively.
[0070]
For the obtained lithium secondary batteries of Examples 1 to 15 and Comparative Examples 1 to 4, the charge end voltage was 4.15 V, the discharge end voltage was 2.8 V, and the charge / discharge current was changed in the range of 200 mA to 800 mA. The discharge capacity at the time of rapid charge / discharge was measured. The results are shown in Tables 2 and 3 with the discharge capacity of Comparative Example 1 at a charge / discharge current of 200 mA as 100%. Further, the charge / discharge cycle characteristics of each battery were measured at a charge / discharge current of 200 mA. The results are shown in Tables 4 and 5 with the discharge capacity at the cycle number 1 of Comparative Example 1 being 100%.
[0071]
[Table 2]
Figure 0003651225
[0072]
[Table 3]
Figure 0003651225
[0073]
[Table 4]
Figure 0003651225
[0074]
[Table 5]
Figure 0003651225
[0075]
As is clear from Tables 2 and 3, the rapid charge / discharge characteristics of the examples are better than those of the comparative examples, and it is understood that the decrease in discharge capacity is extremely small even at a large charge / discharge current.
Further, as apparent from Tables 4 and 5, the cycle characteristics of the examples are better than those of the comparative examples, and it can be seen that a large discharge capacity can be maintained even after a high number of cycles.
[0076]
【The invention's effect】
The negative electrode for a lithium secondary battery according to any one of claims 1 to 5 suppresses excessive deformation of particles due to fluctuations in electrode preparation conditions and orientation of graphite particles, and particularly when lithium is charged / discharged at a high charge / discharge current. Has a large charge / discharge capacity and a small decrease in charge / discharge capacity due to the charge / discharge cycle, that is, has good cycle characteristics, and has high charge / discharge capacity and rapid charge / discharge characteristics. Is.
According to the method for producing a negative electrode for a lithium secondary battery according to claim 6, excessive deformation of particles due to fluctuations in electrode preparation conditions and orientation of graphite particles are suppressed, and charging / discharging is performed with a particularly high charge / discharge current. In which the amount of occlusion / release of lithium is large, the charge / discharge capacity is large, and the decrease in charge / discharge capacity due to the charge / discharge cycle is small, that is, the battery has good cycle characteristics and has high charge / discharge capacity and rapid charge / discharge. A negative electrode having characteristics is obtained.
The lithium secondary battery according to claim 7 suppresses excessive deformation of particles due to fluctuations in electrode preparation conditions and orientation of graphite particles, and occlusion / release of lithium when charging / discharging is performed at a particularly high charging / discharging current. The amount is large, the charge / discharge capacity is large, and the decrease in charge / discharge capacity due to the charge / discharge cycle is small, that is, it has good cycle characteristics, and has high charge / discharge capacity and rapid charge / discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional front view of a cylindrical lithium secondary battery.
FIG. 2 is a schematic view of a lithium secondary battery used for measuring the discharge capacity of graphite particles alone.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 Positive tab
5 Negative electrode tab
6 Positive cover
7 Battery can
8 Gasket
9 Glass cell
10 Electrolytic solution
11 Sample electrode (negative electrode)
12 Separator
13 Counter electrode (positive electrode)
14 Reference pole

Claims (7)

孔径が0.01〜100μmの範囲の細孔に基づく細孔容積が異なる、2種以上の黒鉛質粒子の混合物を含有してなるリチウム二次電池用負極であって、細孔容積が異なる2種以上の黒鉛質粒子の混合物が、0.01〜100μmの範囲の細孔容積が0.4cc/g以上の黒鉛質粒子と、0.01〜100μmの範囲の細孔容積が0.08cc/g以上0.4cc/g未満の黒鉛質粒子を含むものであり、細孔容積が異なる2種以上の黒鉛質粒子のそれぞれが、アスペクト比が5以下の黒鉛質粒子であるリチウム二次電池用負極。A negative electrode for a lithium secondary battery comprising a mixture of two or more kinds of graphite particles having different pore volumes based on pores having a pore diameter in the range of 0.01 to 100 μm, wherein the pore volumes are different. The mixture of graphite particles of at least seeds has a pore volume in the range of 0.01 to 100 μm having a pore volume of 0.4 cc / g or more, and a pore volume in the range of 0.01 to 100 μm is 0.08 cc / g for lithium secondary batteries, each containing two or more types of graphite particles having different pore volumes, and each having graphite particles having an aspect ratio of 5 or less. Negative electrode. 細孔容積が異なる2種以上の黒鉛質粒子のそれぞれが、比表面積が0.5〜5.0m/gの黒鉛質粒子である請求項1記載のリチウム二次電池用負極。2. The negative electrode for a lithium secondary battery according to claim 1, wherein each of the two or more types of graphite particles having different pore volumes is a graphite particle having a specific surface area of 0.5 to 5.0 m 2 / g. 細孔容積が異なる2種以上の黒鉛質粒子のそれぞれが、単独で測定された放電容量が300mAh/g以上であり、かつそれらの黒鉛質粒子の放電容量の差が、最も放電容量の大きな黒鉛質粒子の放電容量の値を基準として10%以内である黒鉛質粒子である請求項1又は2記載のリチウム二次電池用負極。Each of the two or more types of graphite particles having different pore volumes has a discharge capacity measured independently of 300 mAh / g or more, and the difference in discharge capacity between these graphite particles is the graphite having the largest discharge capacity. 3. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode is a graphite particle that is within 10% based on the value of the discharge capacity of the particle. 黒鉛質粒子の少なくとも1種は、扁平状の粒子が複数、配向面が非平行となるように集合又は結合した構造を有するものである請求項1、2又は3記載のリチウム二次電池用負極。4. The negative electrode for a lithium secondary battery according to claim 1, 2 or 3, wherein at least one of the graphite particles has a structure in which a plurality of flat particles are aggregated or combined so that the orientation planes are non-parallel. . 細孔容積が異なる2種以上の黒鉛質粒子がそれぞれ、扁平状の粒子が複数、配向面が非平行となるように集合又は結合した構造を有するものである請求項1、2、3又は4記載のリチウム二次電池用負極。2, 2, 3, or 4, wherein two or more kinds of graphite particles having different pore volumes each have a structure in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel. The negative electrode for lithium secondary batteries as described. 黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダを含む材料に黒鉛化触媒を添加して混合する工程、焼成・黒鉛化する工程、粉砕する工程の各工程を含む方法で黒鉛質粒子を製造し、別途、前記と同様の各工程を含む方法で前記黒鉛質粒子と、孔径が0.01〜100μmの範囲に基づく細孔の細孔容積が異なる黒鉛質粒子を製造し、製造された2種以上の黒鉛質粒子を混合し、これを負極材料とすることを特徴とする請求項1記載のリチウム二次電池用負極の製造法。Graphite particles are produced by a method including the steps of adding and mixing a graphitization catalyst to a graphitizable aggregate or a material containing graphite and a graphitizable binder, firing and graphitizing, and crushing. Produced separately and produced graphite particles having a pore volume different from that of the pores based on a range of 0.01 to 100 μm in pore diameter by a method including the same steps as described above. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein two or more kinds of graphite particles are mixed and used as a negative electrode material. 請求項1〜5のいずれかに記載の負極又は請求項6記載の製造法により得られる負極と正極を有してなるリチウム二次電池。A lithium secondary battery comprising the negative electrode according to claim 1 or the negative electrode obtained by the production method according to claim 6 and a positive electrode.
JP01999698A 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same Expired - Lifetime JP3651225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01999698A JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01999698A JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11219700A JPH11219700A (en) 1999-08-10
JP3651225B2 true JP3651225B2 (en) 2005-05-25

Family

ID=12014783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01999698A Expired - Lifetime JP3651225B2 (en) 1998-01-30 1998-01-30 Lithium secondary battery, negative electrode thereof and method for producing the same

Country Status (1)

Country Link
JP (1) JP3651225B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185149A (en) * 1999-12-28 2001-07-06 Hitachi Chem Co Ltd Lithium secondary battery
JP4336087B2 (en) * 2002-09-19 2009-09-30 シャープ株式会社 Lithium polymer battery and manufacturing method thereof
JP2005044775A (en) * 2003-01-22 2005-02-17 Hitachi Maxell Ltd Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP4693470B2 (en) 2004-04-12 2011-06-01 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery
CN103328377B (en) 2011-10-21 2015-10-21 昭和电工株式会社 graphite material, carbon material for battery electrode and battery
DE112014000661T5 (en) * 2013-02-04 2015-11-26 Showa Denko K.K. Graphite powder for a negative electrode active material of a lithium-ion secondary battery
KR102519441B1 (en) 2017-12-22 2023-04-07 삼성에스디아이 주식회사 Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode

Also Published As

Publication number Publication date
JPH11219700A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
JP3779461B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH10158005A (en) Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP3892957B2 (en) Method for producing graphite particles
JP2001185149A (en) Lithium secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term