JPH03252053A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03252053A
JPH03252053A JP2048185A JP4818590A JPH03252053A JP H03252053 A JPH03252053 A JP H03252053A JP 2048185 A JP2048185 A JP 2048185A JP 4818590 A JP4818590 A JP 4818590A JP H03252053 A JPH03252053 A JP H03252053A
Authority
JP
Japan
Prior art keywords
negative electrode
carbonaceous material
discharge capacity
cycle life
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048185A
Other languages
Japanese (ja)
Other versions
JP3136594B2 (en
Inventor
Hiroshi Imoto
浩 井本
Hideto Azuma
秀人 東
Tokuo Komaru
篤雄 小丸
Mio Nishi
西 美緒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP02048185A priority Critical patent/JP3136594B2/en
Publication of JPH03252053A publication Critical patent/JPH03252053A/en
Application granted granted Critical
Publication of JP3136594B2 publication Critical patent/JP3136594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the discharge capacity and to improve the cycle life property by using a carbonaceous material made by carbonizing a petrolic pitch and regulating the morphologic parameter in a specific scope. CONSTITUTION:As a negative electrode, a carbonaceous material obtained by carbonizing a petrolic pitch, in which the surface interval of the (002) surface is 3.70 A or more, the true density is less than 1.70g/cm<3>, and there is no heating peak more than 70 deg.C in the differential thermal analysis in the air current is used, while a substance including Li which is doped and dope-released to the negative electrode is used as a positive electrode, and a nonaqueous electrolyte is used. When the carbonaceous material used as the negative electrode has the surface interval of the (002) surface less than 3.70Angstrom , the discharge capacity is reduced and the cycle life is deteriorated. In the same manner, when its true density exceeds 1.70g/cm<3>, the discharge capacity and the cycle life are deteriorated. And when the heating peak is at 700 deg.C or higher in the result of the differential thermal analysis, the battery property is deteriorated. Consequently, the cycle life property can be improved, and the discharge capacity can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解液二次電池に関するものであり、特
にその負極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvement of its negative electrode.

〔発明の概要〕[Summary of the invention]

本発明は、負極の炭素質材料の特性を規定するとともに
、十分なLiを含んだ正極を用いることにより、高容量
でしかもサイクル寿命特性に優れた非水電解液二次電池
を提供しようとするものである。
The present invention aims to provide a non-aqueous electrolyte secondary battery with high capacity and excellent cycle life characteristics by specifying the characteristics of the carbonaceous material of the negative electrode and using a positive electrode containing sufficient Li. It is something.

〔従来の技術〕[Conventional technology]

電子機器の小型化に伴い、電池の高エネルギー密度化が
要求されており、かかる要求に応えるべく、いわゆるリ
チウム電池の如き種々の非水電解液電池が提案されてい
る。
BACKGROUND ART With the miniaturization of electronic devices, there is a demand for higher energy density batteries, and in order to meet this demand, various non-aqueous electrolyte batteries such as so-called lithium batteries have been proposed.

しかしながら、例えば負極にリチウム金属を使用した電
池では、特に二次電池とする場合に次のような欠点を有
している。すなわち、 ■充電に通常5〜10時間を必要とし、急速充電性に劣
ること、 ■サイクル寿命が短いこと、 等である。
However, for example, batteries using lithium metal in the negative electrode have the following drawbacks, especially when used as secondary batteries. That is, (1) Charging usually requires 5 to 10 hours and is poor in rapid charging performance, (2) Cycle life is short, and so on.

これらは、いずれもリチウム金属自身に起因するもので
、充放電の繰り返しに伴って起こるリチラム形態の変化
、デンドライト状リチウムの形成。
All of these are caused by the lithium metal itself, including changes in the lithium form that occur with repeated charging and discharging, and the formation of dendrite-like lithium.

リチウムの非可逆的変化等がその原因とされている。Irreversible changes in lithium are said to be the cause.

そこで、これらの問題を解決する一手法として、負極に
炭素質材料を用いることが提案されている。
Therefore, as a method to solve these problems, it has been proposed to use a carbonaceous material for the negative electrode.

これは、リチウムの炭素層間化合物が電気化学的に容易
に形成できることを利用したものであり、例えば、炭素
を負極として非水電解液中で充電を行うと、正極中のリ
チウムは電気化学的に負極炭素の眉間にドープされる。
This takes advantage of the fact that carbon intercalation compounds of lithium can be easily formed electrochemically. For example, when carbon is used as a negative electrode and charged in a non-aqueous electrolyte, lithium in the positive electrode electrochemically forms. The negative electrode carbon is doped between the eyebrows.

そして、リチウムをドープした炭素は、リチウム電極と
して作用し、放電に伴ってリチウムは炭素層間から脱ド
ープされ、正極中に戻る。
Then, the carbon doped with lithium acts as a lithium electrode, and with discharge, lithium is dedoped from between the carbon layers and returned to the positive electrode.

〔発明が解決しようとする課!!] ところで、このとき炭素の単位重量当たりの電流容量(
mAll/g)は、リチウムのドープ量によって決まる
ため、このような負極ではリチウムのドープ量を出来る
限り大きくすることが望ましい。
[The problem that the invention attempts to solve! ! ] By the way, at this time, the current capacity per unit weight of carbon (
mAll/g) is determined by the amount of lithium doped, so in such a negative electrode, it is desirable to increase the amount of lithium doped as much as possible.

(理論的には、炭素原子6個に対してL+原子1個の割
合が上限である。) 従来、負極の炭素質材料としては、例えば特開昭62−
122066号公報、あるいは特開昭62−90863
号公報等に開示されるように、(002)面の面間隔が
3.40〜3.60人程度密度が1.70〜2.20g
/aJ程度のものが用いられている。
(Theoretically, the upper limit is the ratio of 1 L+ atom to 6 carbon atoms.) Conventionally, carbonaceous materials for negative electrodes include, for example, JP-A-62-
Publication No. 122066 or JP-A-62-90863
As disclosed in the publication, the spacing between (002) planes is about 3.40 to 3.60, and the density is about 1.70 to 2.20 g.
/aJ is used.

しかしながら、このような炭素質材料ではリチウムのド
ープ量が不十分で、理論値の半分程度に過ぎないのが実
情である。
However, in reality, the amount of lithium doped in such carbonaceous materials is insufficient and is only about half of the theoretical value.

そこで本発明は、前述の従来の実情に鑑みて提案された
ものであって、リチウムドープ量の大きな炭素質材料を
開発することを目的とし、これによりサイクル寿命特性
に優れるのみならず放電容量も大きな非水電解液二次電
池を提供することを目的とする。
Therefore, the present invention was proposed in view of the above-mentioned conventional situation, and aims to develop a carbonaceous material with a large amount of lithium doped, which not only has excellent cycle life characteristics but also has a high discharge capacity. The purpose is to provide a large non-aqueous electrolyte secondary battery.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上述の目的を達成するために、石油ピッチを
炭素化して得られ、(002)面の面間隔が3.70Å
以上、真密度が1.70g/cd未満であり、且つ空気
気流中における示差熱分析で700℃以上に発熱ピーク
を有しない炭素質材料よりなる負極と、上記負極にドー
プ・脱ドープされるLiを含んだ正極と、非水電解液と
を有することを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is obtained by carbonizing petroleum pitch, and has a (002) plane spacing of 3.70 Å.
As described above, a negative electrode made of a carbonaceous material whose true density is less than 1.70 g/cd and which does not have an exothermic peak at 700° C. or higher in differential thermal analysis in an air stream, and Li doped and dedoped into the negative electrode. It is characterized by having a positive electrode containing the above, and a non-aqueous electrolyte.

負極に使用される炭素質材料の(002)面の面間隔が
3.70人未満であると、放電容量は減少し、サイクル
寿命も従来のものと同程度にまで劣化する。
If the spacing between the (002) planes of the carbonaceous material used for the negative electrode is less than 3.70, the discharge capacity will decrease and the cycle life will deteriorate to the same level as conventional ones.

同様に、真密度が1.70g/cm3を越えても、放電
容量の劣化やサイクル寿命の劣化が見られる。
Similarly, even if the true density exceeds 1.70 g/cm3, deterioration in discharge capacity and cycle life are observed.

また、種々の実験を重ねたところ、示差熱分析の結果が
電池特性に大きく影響し、700℃以上に発熱ピークを
有しないことが必要であることがわかった。
Further, after conducting various experiments, it was found that the results of differential thermal analysis greatly affect the battery characteristics, and that it is necessary that the battery does not have an exothermic peak at 700° C. or higher.

かかる特性を有する炭素質材料としては、特定のH/C
原子比を存する石油ピンチに酸素を含む官能基を導入(
いわゆる酸素架橋)し、これを焼成等の手法により炭素
化したものが挙げられる。
As carbonaceous materials having such characteristics, specific H/C
Introducing a functional group containing oxygen into a petroleum pinch that has an atomic ratio (
(so-called oxygen crosslinking) and then carbonized by a method such as sintering.

前記石油ピッチは、コールタール、エチレンボトム油、
原油等の高温熱分解で得られるタール類、アスファルト
等より蒸留(真空蒸留、常圧蒸留、スチーム蒸留)、熱
重縮合、抽出、化学重縮合等の操作によって得られる。
The petroleum pitch is coal tar, ethylene bottom oil,
It is obtained from tars, asphalt, etc. obtained by high-temperature pyrolysis of crude oil, etc., by distillation (vacuum distillation, atmospheric distillation, steam distillation), thermal polycondensation, extraction, chemical polycondensation, etc.

このとき、石油ピッチのH/C原子比が重要で、難黒鉛
化炭素とするためにはこのH/C原子比を0.6〜0.
8とする必要がある。
At this time, the H/C atomic ratio of petroleum pitch is important, and in order to make it a non-graphitizable carbon, this H/C atomic ratio should be 0.6-0.
It needs to be 8.

これらの石油ピッチに酸素を含む官能基を導入する具体
的な手段は限定されないが、例えば硝酸、混酸、硫酸、
次亜塩素酸等の水溶液による湿式法、あるいは酸化性ガ
ス(空気、酸素)による乾式法、さらに硫黄、硝酸アン
モニア、過硫酸アンモニア、塩化第二鉄等の固体試薬に
よる反応等が用いられる。
The specific means for introducing oxygen-containing functional groups into these petroleum pitches is not limited, but for example, nitric acid, mixed acids, sulfuric acid,
A wet method using an aqueous solution such as hypochlorous acid, a dry method using an oxidizing gas (air, oxygen), and a reaction using a solid reagent such as sulfur, ammonia nitrate, ammonia persulfate, or ferric chloride are used.

前述の手法により酸素を含む官能基を導入した石油ピッ
チを炭素化して負極材とするが、炭素化の際の条件は問
わず、前述の特性を満足する炭素質材料が得られるよう
に設定すればよい0例えば、窒素気流中、300〜70
0 ’Cで炭化した後、窒素気流中、昇温速度1〜20
℃、到達温度900〜1300℃、到達温度での保持時
間θ〜5時間程度の条件で焼成すればよい。勿論、場合
によっては炭化操作は省略してもよい。
Petroleum pitch into which oxygen-containing functional groups have been introduced using the method described above is carbonized and used as a negative electrode material, but the carbonization conditions must be set so as to yield a carbonaceous material that satisfies the characteristics described above. For example, in a nitrogen stream, 300-70
After carbonization at 0'C, the heating rate was 1 to 20 in a nitrogen stream.
℃, the final temperature is 900 to 1300°C, and the holding time at the final temperature is about θ to 5 hours. Of course, the carbonization operation may be omitted depending on the case.

また、得られた炭素質材料は粉砕・分級して負極材に供
されるが、この粉砕は炭化前、炭化後。
In addition, the obtained carbonaceous material is crushed and classified to be used as a negative electrode material, but this crushing is performed before and after carbonization.

焼成後のいずれで行ってもよい。It may be carried out either after firing.

かかる炭素質材料は、例えば特公昭53−31116号
公報等にも記載されるが、ここでは酸素含有量を最適化
することにより(002)面の面間隔d0゜2を3.7
0Å以上、空気気流中での示差熱分析(DTA)におい
て700℃以上に発熱ピークを持たない炭素質材料とし
、前記負極材として使用する。
Such carbonaceous materials are also described in, for example, Japanese Patent Publication No. 53-31116, but here, by optimizing the oxygen content, the interplanar spacing d0°2 of the (002) plane is set to 3.7.
A carbonaceous material having a temperature of 0 Å or more and having no exothermic peak at 700° C. or more in differential thermal analysis (DTA) in an air stream is used as the negative electrode material.

すなわち、石油ピッチに導入される酸素の量は、(00
2)面の面間隔d、。、に大きく影響を及ぼし、例えば
石油ピッチを簡素架橋した前駆体の酸素含有量を10重
量%以上とすることでd、。2を3.70Å以上とする
ことができる。したがって、前記前駆体の酸素含有量は
10重量%以上とすることが好ましく、実用的には10
〜20重量%の範囲である。特に、d、。2が3.72
Å以上であることが充放電効率の点で好ましいことから
、この点を考慮して酸素含有量を設定することが望まし
い。
That is, the amount of oxygen introduced into the oil pitch is (00
2) Interplanar spacing d. For example, by setting the oxygen content of a simply crosslinked petroleum pitch precursor to 10% by weight or more, d. 2 can be set to 3.70 Å or more. Therefore, the oxygen content of the precursor is preferably 10% by weight or more, and practically 10% by weight or more.
-20% by weight. In particular, d. 2 is 3.72
Since it is preferable from the point of view of charging/discharging efficiency that the oxygen content be .ANG. or more, it is desirable to set the oxygen content in consideration of this point.

なお、前述の石油ピッチの焼成の際に、リン化合物ある
いはホウ素化合物を添加することで、容量を470〜5
00 mAh/ g程度とすることが可能であることが
確認されている。
In addition, by adding a phosphorus compound or a boron compound during the firing of the petroleum pitch mentioned above, the capacity can be increased from 470 to 5.
It has been confirmed that it is possible to set it to about 00 mAh/g.

前述の炭素質材料を非水電解液二次電池の負極とする場
合、正極は十分な量のLiを含んでいることが好ましく
、例えば一般式LiMOg(ただし、MはCo、Niの
少なくとも1種を表す、)で表される複合金属酸化物や
Liを含んだ層間化合物等が好適で、特にLiCo0t
を使用した場合に良好な特性を発揮する。
When the above-mentioned carbonaceous material is used as the negative electrode of a non-aqueous electrolyte secondary battery, the positive electrode preferably contains a sufficient amount of Li, for example, the general formula LiMOg (where M is at least one of Co and Ni). Composite metal oxides represented by ) and intercalation compounds containing Li are suitable, especially LiCo0t
It exhibits good characteristics when used.

本発明の非水電解液二次電池は、高容量を達成すること
を狙ったものであるので、前記正極は、定常状1!(例
えば5回程度充放電を繰り返した後)で負極炭素質材料
1ピ当たり250 mAh以上の充放電容量相当分のL
iを含むことが必要で、300mAh以上の充放電容量
相当分のLiを含むことが好ましく、350mAh以上
の充放電容量相当分のLiを含むことがより好ましい、
なお、Liは必ずしも正極材から全てが供給される必要
はなく、要は電池系内に負極炭素質材料1ピ当たり25
0mAh以上の充放電容量相当分のLiが存在すればよ
い、また、このLiの量は、電池の放電容量を測定する
ことによって判断することとする。
Since the non-aqueous electrolyte secondary battery of the present invention aims to achieve high capacity, the positive electrode has a steady state of 1! (For example, after repeating charging and discharging about 5 times) L equivalent to a charge/discharge capacity of 250 mAh or more per pin of negative electrode carbonaceous material
i, preferably contains Li equivalent to a charge/discharge capacity of 300 mAh or more, more preferably contains Li equivalent to a charge/discharge capacity of 350 mAh or more,
It should be noted that Li does not necessarily need to be supplied entirely from the positive electrode material; in short, 25 Li per 1 pin of the negative electrode carbonaceous material in the battery system.
It is sufficient that Li equivalent to a charge/discharge capacity of 0 mAh or more is present, and the amount of Li is determined by measuring the discharge capacity of the battery.

非水電解液は、有機溶媒と電解質とを適宜組み合わせて
調製されるが、これら有機溶媒や電解質としてはこの種
の電池に用いられるものであればいずれも使用可能であ
る。
The nonaqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any organic solvent or electrolyte that is used in this type of battery can be used.

例示するならば、有機溶媒としてはプロピレンカーボネ
ート、エチレンカーボネート、1.2ジメトキシエタン
、1.2−’:;エトキシエタン、γ−ブチロラクトン
、テトラヒドロフラン、2−メチルテトラヒドロフラン
、1.3−ジオキソラン、4−メチル−1,3−ジオキ
ソラン、ジエチルエーテル、スルホラン、メチルスルホ
ラン、アセトニトリル、プロピオニトリル、アニソール
等である。
To illustrate, examples of organic solvents include propylene carbonate, ethylene carbonate, 1.2-dimethoxyethane, 1.2-':;ethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1.3-dioxolane, 4- These include methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, and the like.

電解質としては、LiCo0t、、LiAsFi、1i
PF*、LiBFa、L i B(CaHs)4、L 
i Cj!XL i Br、CH,So、L i。
As the electrolyte, LiCo0t, , LiAsFi, 1i
PF*, LiBFa, L i B (CaHs)4, L
i Cj! XL i Br, CH, So, L i.

CFsSOsLi等である。CFsSOsLi etc.

(作用〕 リチウムをドープした炭素は、その眉間距離((002
)面の面間隔〕d0゜2が3.70人になることが知ら
れている。したがって、従来使用されてきた炭素質材料
のように、d、。2が3.40〜3.60人であると、
リチウムがドープされた場合に層間距離が拡大するもの
と考えられる。すなわち、do。t<3.10人の炭素
質材料では、層間を拡げなければならない分だけリチウ
ムのドープが困難になるものと考えられ、これによって
ドープ量が少なくなるものと考えられる。
(Function) Carbon doped with lithium has a distance between the eyebrows ((002
) is known to have a surface spacing of d0°2 of 3.70 people. Therefore, like the conventionally used carbonaceous materials, d. 2 is 3.40 to 3.60 people,
It is thought that the interlayer distance increases when lithium is doped. That is, do. In a carbonaceous material with t<3.10, it is considered that doping with lithium becomes difficult as the interlayer space must be widened, and this is considered to reduce the amount of doping.

真密度ρは、前記層間距離と密接な関係にあり、ρ>1
.70g/dとなると前述の眉間距離を確保することが
難しくなり、やはりドープ量が減少する。
The true density ρ has a close relationship with the interlayer distance, and ρ>1
.. When it becomes 70 g/d, it becomes difficult to secure the above-mentioned distance between the eyebrows, and the amount of dope also decreases.

また、放電容量やサイクル寿命特性は炭素質材料の構造
に影響され、示差熱分析で700℃以上にピークのない
ものが良好な結果を示したが、その構造について詳細は
不明である。
Furthermore, the discharge capacity and cycle life characteristics are affected by the structure of the carbonaceous material, and although differential thermal analysis showed that materials with no peaks above 700° C. showed good results, the details of the structure are unknown.

所定のH/C原子比を有する石油ピッチに酸素架橋を施
した後、焼成して得られる炭素質材料は、これらの特性
をいずれも満足するものであり、したがってこの炭素質
材料を非水電解液二次電池の負極とすることで、効率的
な充放電が行われる。
The carbonaceous material obtained by oxygen crosslinking petroleum pitch having a predetermined H/C atomic ratio and then firing satisfies all of these characteristics. By using it as the negative electrode of a liquid secondary battery, efficient charging and discharging can be performed.

また、炭素を負極とする電池は、リチウム金属を負極と
する電池よりも充電時間が短くて済むが、本発明の電池
でもその特徴は維持される。
Further, a battery using carbon as a negative electrode requires a shorter charging time than a battery using lithium metal as a negative electrode, and the battery of the present invention maintains this characteristic.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明する。 The present invention will be explained below based on specific experimental results.

l」11級 先ず、石油ピッチ(H/C原子比0.6〜0.8 )を
酸化し、酸素含有量が2.2重量%、6.7重量%10
68重量%、15.4重量%、16.3重量%なる5種
類の炭素前駆体を用意し、窒素気流中で500℃、5時
間炭化した。
First, petroleum pitch (H/C atomic ratio 0.6-0.8) was oxidized, and the oxygen content was 2.2% by weight and 6.7% by weight10
Five types of carbon precursors, 68% by weight, 15.4% by weight, and 16.3% by weight, were prepared and carbonized at 500° C. for 5 hours in a nitrogen stream.

次いで、膨化後のピースをミルにて粉砕し、これをルツ
ボ中に仕込んで、窒素気流中、昇温速度5℃/分、最高
到達温度1100°C1最高到達温度での保持時間1時
間なる条件で焼成した。
Next, the expanded piece was pulverized in a mill, placed in a crucible, and heated in a nitrogen stream at a temperature increase rate of 5°C/min, a maximum temperature of 1100°C, and a holding time of 1 hour at the maximum temperature. It was fired in

冷却後、乳鉢で粉砕し、メツシュにて38μm以下に分
級した。
After cooling, it was ground in a mortar and classified into particles of 38 μm or less using a mesh.

得られた炭素質材料の(002)面の面間隔d、。R、
L co。8並びに示差熱分析でのメインピーク温度T
pを第1表に、また酸素含有量による真密度の変化を第
1図にそれぞれ示す、なお、面間隔d、。2はX線回折
測定結果より接線法により求めた2θ値より計夏して求
め、またLc+。、は(002)ピークの半411II
iiをもとにシェーラー(5cherrer )の式よ
り計真によって求めた。示差熱分析は、200m/分の
空気気流中で昇温速度lO℃/分なる条件で行い、真密
度はビクノメータ法により測定した。
The spacing d between the (002) planes of the obtained carbonaceous material. R,
L co. 8 and main peak temperature T in differential thermal analysis
p is shown in Table 1, and changes in true density due to oxygen content are shown in FIG. 1, and the interplanar spacing d. 2 is calculated from the 2θ value determined by the tangential method from the X-ray diffraction measurement results, and Lc+. , is the half of the (002) peak 411II
Based on ii, it was calculated using the Scheler equation. Differential thermal analysis was performed in an air stream of 200 m/min at a heating rate of 10° C./min, and the true density was measured by a vicinometer method.

第1表 これら第1表並びに第1図を見ると、面間隔d、。!、
LC@。8、示差熱分析でのメインビーク温度Tp並び
に真密度のいずれもが酸素の含有量によって大きく影響
を受け、特に面間隔d、。2に関しては、酸素含有率を
10重量%以上としたときにはじめて3.70Å以上と
なることがわかる。
Table 1 Looking at Table 1 and Figure 1, the interplanar spacing d. ! ,
LC@. 8. Both the main beak temperature Tp and true density in differential thermal analysis are greatly affected by the oxygen content, especially the interplanar spacing d. Regarding No. 2, it can be seen that the oxygen content becomes 3.70 Å or more only when the oxygen content is 10% by weight or more.

そこで、これらの炭素質材料をテストセルにより評価し
た。
Therefore, these carbonaceous materials were evaluated using a test cell.

テストセルの作製に際しては、先ず前記炭素質材料に対
し負極ミックス作製直前にAr雰囲気中で昇温速度約り
0℃/分、到達温度600°C3到達温度保持時間1時
間なる条件で前熱処理を施した後、バインダーとして炭
素質材料の10重量%相当量のポリフッ化ビニリデンを
加え、ジメチルホルムアミドを溶媒として混合、乾燥し
て負極ミックスを調製した。その後、その37■を集電
体であるNiメツシュとともに直径15.5■のベレッ
トに成形し、カーボン電極を作製した。また、テストセ
ルの構成は下記の通りである。
When preparing the test cell, first, immediately before preparing the negative electrode mix, the carbonaceous material was subjected to preheat treatment in an Ar atmosphere at a temperature increase rate of about 0°C/min and a final temperature of 600°C and a holding time of 1 hour. After the application, polyvinylidene fluoride was added as a binder in an amount equivalent to 10% by weight of the carbonaceous material, mixed using dimethylformamide as a solvent, and dried to prepare a negative electrode mix. Thereafter, the 37 square centimeters were formed into a pellet with a diameter of 15.5 square centimeters together with a Ni mesh serving as a current collector to produce a carbon electrode. Furthermore, the configuration of the test cell is as follows.

セル構成 コイン型セル(直径20■、厚さ2,5■)対極   
: Li金属 セパレータ: 多孔質膜(ポリプロピレン)電解液  
: プロピレンカーボネートとジメトキシエタンの混合
溶媒 (容量比で1:1)にLiCIO4 を1 mol/ f!の割合で溶解したもの。
Cell configuration Coin-shaped cell (diameter 20cm, thickness 2.5cm) Opposite electrode
: Li metal separator: Porous membrane (polypropylene) electrolyte
: 1 mol/f! of LiCIO4 in a mixed solvent of propylene carbonate and dimethoxyethane (1:1 by volume). dissolved at the rate of

集電体  : 銅箔 上記構成のテストセルに対して、通電条件1mA(電流
密度0.53mA/cm3)で充放電を5回繰り返し、
定常状態となったところで負極炭素質材料1g当たりの
放電容量を測定した。結果を第2表に示す。
Current collector: copper foil The test cell with the above configuration was repeatedly charged and discharged five times at a current flow condition of 1 mA (current density 0.53 mA/cm3).
When a steady state was reached, the discharge capacity per gram of negative electrode carbonaceous material was measured. The results are shown in Table 2.

第2表 1000〜1300℃の範囲で変え、そのときの放電容
量の変化、並びに(002)面の面間隔d、。! 、L
 C@Is 、示差熱分析でのメインピーク温度TPを
測定した。結果を第3表に示す。
Table 2 shows the change in discharge capacity and the spacing d of the (002) plane when the temperature is varied in the range of 1000 to 1300°C. ! , L
C@Is, the main peak temperature TP in differential thermal analysis was measured. The results are shown in Table 3.

第3表 この第2表からも明らかなように、原料石油ピッチ中の
酸素含有率が上昇するにしたがって、放電容量が上昇し
ている。
Table 3 As is clear from Table 2, the discharge capacity increases as the oxygen content in the raw petroleum pitch increases.

次に、石油ピッチを焼成して炭素質材料とする際の焼成
温度の影響について調べた。
Next, we investigated the influence of firing temperature when firing petroleum pitch to produce a carbonaceous material.

すなわち、石油ピッチの酸素含有量を15.4重量%に
固定し、先の焼成の際の最高到達温度のみこの第3表を
見ると、焼成温度が上がるにつれLc・・1は大きくa
S。2は小さくなっており、炭素層の成長、積層が進行
していることを示している。したがって、容量について
は、焼成温度の上昇とともに小さくなっている。
In other words, if we fix the oxygen content of petroleum pitch at 15.4% by weight and look only at the maximum temperature reached during the previous firing, we can see that as the firing temperature increases, Lc...1 increases and a
S. 2 has become smaller, indicating that the growth and stacking of the carbon layer is progressing. Therefore, the capacity decreases as the firing temperature increases.

以上の予備実験の結果をもとに、実際に非水電解液二次
電池を組み立ててその特性を調べた。
Based on the results of the above preliminary experiments, we actually assembled a non-aqueous electrolyte secondary battery and investigated its characteristics.

直IJ0− H/C原子比が0.6〜0.8の範囲から適当に選んだ
石油ピッチを粉砕し、空気気流中で酸化処理して炭素前
駆体を得た。この炭素前駆体のキノリンネ溶分(JIS
遠心法: K2425−1983)は80%であり、ま
た酸素含有率(有機元素分析法による)は15.4重量
%であった。
Petroleum pitch appropriately selected from a range of 0.6 to 0.8 with a direct IJ0-H/C atomic ratio was ground and oxidized in an air stream to obtain a carbon precursor. Quinoline solubility of this carbon precursor (JIS
Centrifugal method: K2425-1983) was 80%, and the oxygen content (according to organic elemental analysis) was 15.4% by weight.

この炭素前駆体を窒素気流中で500℃、5時間保持し
て炭化した後、1100℃に昇温しで1時間熱処理した
This carbon precursor was carbonized by being held at 500° C. for 5 hours in a nitrogen stream, and then heated to 1100° C. for 1 hour.

このようにして得られた炭素質材料を用いて次のような
電池を構成した。
The following battery was constructed using the carbonaceous material thus obtained.

炭素質材料は、乳鉢にて粉砕し篩により分級し、390
メツシユ以下のものを用いた。
The carbonaceous material is crushed in a mortar and classified with a sieve, and is
The following materials were used.

この炭素質材1gに結合剤としてポリフッ化ビニリデン
100■を加え、ジメチルホルムアミドを用いてペース
ト状にし、ステンレス網に塗布後、乾燥5トン/dの圧
力で圧着した。これを打ち抜き負極としたが、このとき
の正味の炭素質材料は一方、正極は、活物質としてLi
N1a、 *Coo、 *(hを用い、当該LiN1o
、 zcoo、 sow 91 gにグラファイト粉末
6g、ポリテトラフルオロエチレン3gを加え、十分に
混合した後、そのIgを取って成形型に入れ、2トン/
cm3の圧力でコンブレッジ町ン成形し円盤状の電極を
得た。
100 μm of polyvinylidene fluoride was added as a binder to 1 g of this carbonaceous material, made into a paste using dimethylformamide, applied to a stainless steel mesh, and then pressed under a dry pressure of 5 tons/d. This was punched out to make a negative electrode, but the net carbonaceous material at this time was Li, while the positive electrode was made of Li as an active material.
Using N1a, *Coo, *(h, the LiN1o
, zcoo, sow 6 g of graphite powder and 3 g of polytetrafluoroethylene were added to 91 g, and after mixing thoroughly, the Ig was taken and put into a mold, and 2 tons/
The mixture was molded at a pressure of cm3 to obtain a disc-shaped electrode.

以上の正極、負極を用い、電解液としてプロピレンカー
ボネートと1.2−ジメトキシエタンの1対l(容量比
)混合溶媒にLiCj! O,を1 mol/ lの割
合で溶解させたものを、セパレータにはポリプロピレン
不織布をそれぞれ用い、コイン形電池を試作した。なお
、この電池は活物質使用量を電気化学当量として正極〉
〉負極となるように構成し、負極規制となるようにした
Using the above positive and negative electrodes, LiCj! A coin-shaped battery was prototyped using polypropylene nonwoven fabric as a separator, in which O. was dissolved at a ratio of 1 mol/l. In addition, this battery uses the amount of active material used as the electrochemical equivalent of the positive electrode.
〉It was configured to be a negative electrode, and the negative electrode was regulated.

1m 炭素前駆体の酸素含有率を10.8重量%とじ、他は実
施例1と同様にしてコイン形電池を試作した。
A prototype coin-shaped battery was produced in the same manner as in Example 1 except that the oxygen content of the 1m carbon precursor was 10.8% by weight.

32.4■であった。It was 32.4 ■.

遺1u11 炭素前駆体の酸素含有率を16.3重量%とし、他は実
施例1と同様にしてコイン形電池を試作した。
Example 1u11 A coin-shaped battery was prototyped in the same manner as in Example 1 except that the oxygen content of the carbon precursor was 16.3% by weight.

止較班土 実施例1と同一の石油ピッチを用い、酸化して炭素前駆
体を得た。この炭素前駆体のキノリンネ溶分は8%であ
り、また酸素含有率は6.7重量%であった。
The same petroleum pitch as in Example 1 was oxidized to obtain a carbon precursor. The quinoline solubility of this carbon precursor was 8%, and the oxygen content was 6.7% by weight.

かかる炭素前駆体を用い、他は実施例1と同様にしてコ
イン形電池を試作した。
Using this carbon precursor, a coin-shaped battery was experimentally produced in the same manner as in Example 1 except for the above.

旦m 炭素前駆体の酸素含有率を2.2重量%とし、他は実施
例1と同様にしてコイン形電池を試作した。
A prototype coin-shaped battery was produced in the same manner as in Example 1 except that the oxygen content of the carbon precursor was 2.2% by weight.

先ず、実施例1と比較例2について、放電カーブを描か
せた。結果を第2図に示す。
First, discharge curves were drawn for Example 1 and Comparative Example 2. The results are shown in Figure 2.

この第2図からも、酸素含有率が高い方が容量の点で大
幅に優れたものであることがわかる。
It can also be seen from FIG. 2 that the higher the oxygen content, the greater the capacity.

次に各実施例、比較例について、負極炭素質材料1g当
たり320 mAh充電時のサイクル特性を調べた。充
放電試験に際して、電流密度は充電・放電ともに0.5
3mA/dの定電流で行い、放電のカットオフ電圧は1
.5■に設定した。結果を第3図に示す。
Next, for each example and comparative example, the cycle characteristics when charged at 320 mAh per gram of negative electrode carbonaceous material were investigated. During the charge/discharge test, the current density was 0.5 for both charging and discharging.
The discharge was performed at a constant current of 3 mA/d, and the discharge cutoff voltage was 1.
.. It was set to 5■. The results are shown in Figure 3.

炭素前駆体の酸素含有率が10重量%以上である各実施
例は良好なサイクル特性を示すが、酸素含有率が小さく
なるにしたがってサイクル数の増加に伴う放電容量の低
下が目立ち、酸素含有率が6.7重置%である比較例1
においてもサイクル数が20を超えると次第に放電容量
が小さくなって、40〜50サイクルを超えると急激に
低下している。
Each example in which the oxygen content of the carbon precursor is 10% by weight or more exhibits good cycle characteristics, but as the oxygen content decreases, the discharge capacity decreases as the number of cycles increases. Comparative Example 1 where is 6.7%
Also, when the number of cycles exceeds 20, the discharge capacity gradually decreases, and when the number of cycles exceeds 40 to 50, it rapidly decreases.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においては、
負極に石油ピッチを炭素化し、形態的パラメータを所定
の範囲に規定した炭素質材料を用いているので、放電容
量が大きく、しかもサイクル寿命が長い非水電解液二次
電池を提供することが可能である。
As is clear from the above description, in the present invention,
Since the negative electrode is made of carbonized petroleum pitch and a carbonaceous material with morphological parameters defined within a predetermined range is used, it is possible to provide a non-aqueous electrolyte secondary battery with a large discharge capacity and a long cycle life. It is.

また、本発明の非水電解液二次電池においては、炭素質
材料を負極としていることから充電時間が短いという利
点も維持され、実用性に冨んだ非水電解液二次電池の提
供が可能である。
Furthermore, since the non-aqueous electrolyte secondary battery of the present invention uses a carbonaceous material as the negative electrode, the advantage of short charging time is maintained, making it possible to provide a highly practical non-aqueous electrolyte secondary battery. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素前駆体の酸素含有率と真密度の関係を示す
特性図である。 第2図は本発明を適用した実施例の放電カーブを比較例
のそれと比べて示す特性図である。 第3図は炭素前駆体の酸素含有率を変えた電池のサイク
ル特性を示す特性図である。 酸素含有率 (聾!”/、) 第1図
FIG. 1 is a characteristic diagram showing the relationship between the oxygen content and true density of a carbon precursor. FIG. 2 is a characteristic diagram showing a discharge curve of an example to which the present invention is applied in comparison with that of a comparative example. FIG. 3 is a characteristic diagram showing the cycle characteristics of batteries in which the oxygen content of the carbon precursor is changed. Oxygen content (Deaf!”/,) Figure 1

Claims (1)

【特許請求の範囲】 石油ピッチを炭素化して得られ、(002)面の面間隔
が3.70Å以上、真密度が1.70g/cm^3未満
であり、且つ空気気流中における示差熱分析で700℃
以上に発熱ピークを有しない炭素質材料よりなる負極と
、 上記負極にドープ・脱ドープされるLiを含んだ正極と
、 非水電解液とを有してなる非水電解液二次電池。
[Claims] A product obtained by carbonizing petroleum pitch, having a spacing of (002) planes of 3.70 Å or more, a true density of less than 1.70 g/cm^3, and differential thermal analysis in an air stream. at 700℃
A nonaqueous electrolyte secondary battery comprising: a negative electrode made of a carbonaceous material that does not have an exothermic peak; a positive electrode containing Li that is doped and dedoped into the negative electrode; and a nonaqueous electrolyte.
JP02048185A 1990-02-28 1990-02-28 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3136594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02048185A JP3136594B2 (en) 1990-02-28 1990-02-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02048185A JP3136594B2 (en) 1990-02-28 1990-02-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03252053A true JPH03252053A (en) 1991-11-11
JP3136594B2 JP3136594B2 (en) 2001-02-19

Family

ID=12796327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02048185A Expired - Fee Related JP3136594B2 (en) 1990-02-28 1990-02-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3136594B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280068A (en) * 1991-01-14 1992-10-06 Toshiba Corp Lithium secondary battery
EP0627777A2 (en) * 1993-06-03 1994-12-07 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
US5482797A (en) * 1993-02-16 1996-01-09 Sharp Kabushiki Kaisha Nonaqueous secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US5919589A (en) * 1996-03-05 1999-07-06 Canon Kabushiki Kaisha Rechargeable battery
EP0547794B1 (en) * 1991-12-17 2000-08-23 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery using a non-aqueous solvent and anode material therefor
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003092150A (en) * 2001-09-17 2003-03-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7150941B2 (en) 1999-09-20 2006-12-19 Sony Corporation Secondary battery
US7906237B2 (en) 2003-06-11 2011-03-15 Sony Corporation Battery
US8329340B2 (en) 2006-09-01 2012-12-11 Sony Corporation Negative electrode, and non-aqueous electrolyte secondary battery using the same
WO2013088712A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088711A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013111595A1 (en) 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013187061A1 (en) 2012-06-13 2013-12-19 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2017110796A1 (en) * 2015-12-21 2017-06-29 住友ベークライト株式会社 Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery
JP2018098215A (en) * 2014-08-08 2018-06-21 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery anode
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
JP2021116198A (en) * 2020-01-23 2021-08-10 国立大学法人広島大学 Spherical carbon particle having nitrogen element, production method thereof, electrode, and battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280068A (en) * 1991-01-14 1992-10-06 Toshiba Corp Lithium secondary battery
EP0547794B1 (en) * 1991-12-17 2000-08-23 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery using a non-aqueous solvent and anode material therefor
US5482797A (en) * 1993-02-16 1996-01-09 Sharp Kabushiki Kaisha Nonaqueous secondary battery
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
US5451477A (en) * 1993-06-03 1995-09-19 Sony Corporation Non-aqueous liquid electrolyte secondary battery
EP0627777A3 (en) * 1993-06-03 1994-12-28 Sony Corp Non-aqueous liquid electrolyte secondary battery.
EP0627777A2 (en) * 1993-06-03 1994-12-07 Sony Corporation Non-aqueous liquid electrolyte secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US5919589A (en) * 1996-03-05 1999-07-06 Canon Kabushiki Kaisha Rechargeable battery
US7150941B2 (en) 1999-09-20 2006-12-19 Sony Corporation Secondary battery
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003092150A (en) * 2001-09-17 2003-03-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US7906237B2 (en) 2003-06-11 2011-03-15 Sony Corporation Battery
US8329340B2 (en) 2006-09-01 2012-12-11 Sony Corporation Negative electrode, and non-aqueous electrolyte secondary battery using the same
WO2013088711A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088712A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20140093987A (en) 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20140093986A (en) 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9327978B2 (en) 2012-01-27 2016-05-03 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, non-graphitizable carbon material, negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013111595A1 (en) 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013187061A1 (en) 2012-06-13 2013-12-19 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US10170752B2 (en) 2012-06-13 2019-01-01 Jfe Chemical Corporation Method for producing amorphous carbon particle, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2018098215A (en) * 2014-08-08 2018-06-21 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery anode
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
WO2017110796A1 (en) * 2015-12-21 2017-06-29 住友ベークライト株式会社 Carbon material for secondary battery negative electrodes, active material for secondary battery negative electrodes, secondary battery negative electrode and secondary battery
JP2021116198A (en) * 2020-01-23 2021-08-10 国立大学法人広島大学 Spherical carbon particle having nitrogen element, production method thereof, electrode, and battery

Also Published As

Publication number Publication date
JP3136594B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US5093216A (en) Carbonaceous material and a non aqueous electrolyte cell using the same
JP3136594B2 (en) Non-aqueous electrolyte secondary battery
JP3060474B2 (en) Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
WO1992016026A1 (en) Negative electrode material, manufacturing thereof, and nonaqueous electrolyte battery made therefrom
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JPH11199211A (en) Graphite particle, its production, lithium secondary battery and negative pole thereof
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JPH05325967A (en) Lithium secondary battery negative electrode material and manufacture thereof
JP3276183B2 (en) Non-aqueous solvent secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JPH09204918A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
JPH0785888A (en) Lithium secondary battery
JP3318767B2 (en) Negative electrode material, method for producing the same, and nonaqueous electrolyte battery using the same
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JPH07302595A (en) Manufacture of carbon particle and negative electrode containing this carbon particle
JP3552377B2 (en) Rechargeable battery
JPH10152311A (en) Surface graphitized carbon material, its production and lithium ion secondary battery using the same
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
TW465132B (en) Non-aqueous electrolytic cell
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees