JP2002151157A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002151157A
JP2002151157A JP2000345685A JP2000345685A JP2002151157A JP 2002151157 A JP2002151157 A JP 2002151157A JP 2000345685 A JP2000345685 A JP 2000345685A JP 2000345685 A JP2000345685 A JP 2000345685A JP 2002151157 A JP2002151157 A JP 2002151157A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
battery
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345685A
Other languages
Japanese (ja)
Inventor
Takahiro Shizuki
隆弘 志築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000345685A priority Critical patent/JP2002151157A/en
Publication of JP2002151157A publication Critical patent/JP2002151157A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve high-rate discharging characteristic, output density, and charge acceptability of a nonaqueous electrolyte secondary battery. SOLUTION: A positive electrode is used, which has lithium cobaltate as positive electrode active material. The weight by which a positive electrode active material mix containing the positive electrode active material is applied to one side of a current collector is not less than 0.6 g/100 cm2 nor more than 1.1 g/100 cm2. A graphitization-resistant carbonaceous material is used as negative electrode active material such that a spacing d002 along the direction of C-axis, obtained through X-ray diffraction, assumes a value of not less than 0.36 nm nor more than 0.40 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高出力を要求される
用途に適した非水電解質二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery suitable for applications requiring high output.

【0002】[0002]

【従来の技術】リチウム二次電池は軽量で高容量密度の
得られる電池であるため、携帯電話、パーソナルコンピ
ューター等のポータブル機器用電池としてその需要が増
大している。また、容量密度が大きいことを利用して、
電気自動車用の電池、UPS用の電池としての開発も盛
んに進められている。
2. Description of the Related Art Since a lithium secondary battery is a lightweight and high-capacity density battery, its demand has been increasing as a battery for portable equipment such as mobile phones and personal computers. Also, taking advantage of the large capacity density,
The development of batteries for electric vehicles and batteries for UPS is also actively pursued.

【0003】このようなリチウム二次電池は、金属箔等
の集電体上に活物質合剤が塗布されてなる正極と負極と
がセパレーターを介して巻回されてなる発電要素を電池
容器に封入した構造を有しており、通常、容量密度をで
きるだけ大きくするために、一定の集電体面積上にでき
るだけ多くの活物質合剤を塗布するようにして作製され
る。
[0003] In such a lithium secondary battery, a power generation element in which a positive electrode and a negative electrode in which an active material mixture is coated on a current collector such as a metal foil is wound through a separator is provided in a battery container. It has a sealed structure and is usually manufactured by applying as much active material mixture as possible on a given current collector area in order to maximize the capacity density.

【0004】[0004]

【発明が解決しようとする課題】近年、モーターとエン
ジンとを併用したハイブリッド電気自動車が注目を集め
るようになり、この用途のためのリチウム二次電池の開
発が盛んに行われるようになってきている。
In recent years, a hybrid electric vehicle using a motor and an engine has attracted attention, and lithium secondary batteries for this purpose have been actively developed. I have.

【0005】しかしながら、リチウム二次電池をハイブ
リッド電気自動車用電池として実用化するに際しては、
非常に困難を極めているのが現状である。これは、ハイ
ブリッド電気自動車用の電池には、これまでの用途にお
いてリチウム二次電池に求められてきたような高容量密
度を有することに加え、特に高出力密度を有するという
ことが求められているためであって、本質的に導電率の
小さい非水系の電解質を用いるリチウム二次電池におい
ては、十分な高率放電特性や大きな出力が得られなかっ
たからである。
However, when a lithium secondary battery is put to practical use as a battery for a hybrid electric vehicle,
At present, it is extremely difficult. This is because batteries for hybrid electric vehicles are required to have a high capacity density, in particular, in addition to having a high capacity density that has been required for lithium secondary batteries in conventional applications. This is because, in a lithium secondary battery using a nonaqueous electrolyte having essentially low conductivity, sufficient high-rate discharge characteristics and a large output were not obtained.

【0006】本発明は、このような問題を解決し、高率
放電特性や出力特性に優れた非水電解質二次電池を提供
することを目的とする。
An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having excellent high-rate discharge characteristics and output characteristics.

【0007】[0007]

【課題を解決するための手段】リチウム二次電池は高容
量密度を有することが特徴であり、この特徴を生かし、
これまではできるだけ多くの活物質を集電体の上に形成
することを目指して開発が進められてきた。このため、
大きな出力を得るために、電極厚さを大きくして電池容
量を大きくし、単位重量あたりの活物質にかかる負荷を
小さくする方法が採用されてきた。しかしながら、発明
者らは、単位面積あたりの集電体上に形成する活物質の
量を少なくすることで、容量密度は低下するが、出力密
度を大きくし、高率放電特性を向上させることができる
ことを見出し本発明に至った。
Means for Solving the Problems A lithium secondary battery is characterized by having a high capacity density.
Until now, development has been pursued with the aim of forming as much active material as possible on the current collector. For this reason,
In order to obtain a large output, a method of increasing the electrode thickness to increase the battery capacity and reducing the load applied to the active material per unit weight has been adopted. However, the inventors have found that by reducing the amount of active material formed on the current collector per unit area, the capacity density is reduced, but the output density is increased and the high-rate discharge characteristics can be improved. The inventors have found out that they can do so and have reached the present invention.

【0008】即ち、本発明は、コバルト酸リチウムを正
極活物質とし、該正極活物質を含んでなる正極活物質合
剤の集電体片面における塗布重量が0.6g/100c
2以上1.1g/100cm2以下となっている正極を
備えたことを特徴とする非水電解質二次電池である。こ
のような正極を用いることによって、非水電解質電池の
高率放電特性を良好にし、出力密度を大きくすることが
できる。なお、塗布重量を0.6g/100cm2未満で
小さくしすぎると、電池の内部抵抗が大きくなるので好
ましくない。
That is, in the present invention, lithium cobalt oxide is used as a positive electrode active material, and the coating weight of the positive electrode active material mixture containing the positive electrode active material on one surface of the current collector is 0.6 g / 100 c.
A nonaqueous electrolyte secondary battery comprising a positive electrode having a m 2 or more and 1.1 g / 100 cm 2 or less. By using such a positive electrode, the high-rate discharge characteristics of the nonaqueous electrolyte battery can be improved, and the output density can be increased. If the coating weight is too small, less than 0.6 g / 100 cm 2 , the internal resistance of the battery increases, which is not preferable.

【0009】さらに、上記本発明においては、負極活物
質として、X線回折法により得られるC軸方向の面間隔
002値が、0.36nm以上0.40nm以下である難
黒鉛化炭素材料を用いるのが好ましく、これにより、本
発明非水電解質電池の充電受入性を、天然黒鉛や人造黒
鉛など他の炭素材料を用いた場合よりも向上させること
ができる。
Further, in the present invention, as the negative electrode active material, a non-graphitizable carbon material having a plane spacing d 002 value in the C-axis direction obtained by an X-ray diffraction method of not less than 0.36 nm and not more than 0.40 nm is used. It is preferable to use it, whereby the charge acceptability of the nonaqueous electrolyte battery of the present invention can be improved as compared with the case where another carbon material such as natural graphite or artificial graphite is used.

【0010】[0010]

【発明の実施の形態】例えば本発明の電池は、コバルト
酸リチウムを正極活物質とする正極と隔離体とリチウム
イオンを吸蔵放出する炭素材料を負極活物質とする負極
と有機電解質を備えてなる有機電解質二次電池である。
DETAILED DESCRIPTION OF THE INVENTION For example, a battery of the present invention comprises a positive electrode using lithium cobalt oxide as a positive electrode active material, a separator, a negative electrode using a carbon material capable of inserting and extracting lithium ions as a negative electrode active material, and an organic electrolyte. It is an organic electrolyte secondary battery.

【0011】本発明におけるコバルト酸リチウムは、骨
格構造としてはLixCoO2で表わされるものであっ
て、xの値は特に0.9≦x≦1.2が好ましい。
The lithium cobaltate in the present invention has a skeletal structure represented by LixCoO 2 , and the value of x is particularly preferably 0.9 ≦ x ≦ 1.2.

【0012】この基本的骨格構造においてCo成分の一
部を置換する場合には、アルカリ金属元素以外の少なく
とも一種の元素で置換するのが良く、例えばNi、V、
Fe、Ti、Cr、Cu等の遷移金属元素、Mg、Ca等
のアルカリ土類金属元素、Al、In、Ga、B、Si等
の元素により置換される。
In the case where a part of the Co component is substituted in the basic skeleton structure, it is preferable to substitute at least one element other than the alkali metal element.
It is replaced by a transition metal element such as Fe, Ti, Cr and Cu, an alkaline earth metal element such as Mg and Ca, and an element such as Al, In, Ga, B and Si.

【0013】正極は、上記コバルト酸リチウムを正極活
物質として含む以外に他の活物質を混合して含んでも良
いし、遷移金属化合物等の添加剤が加えられて構成され
ても良い。なお、本発明として好ましくは、コバルト酸
リチウムを主成分とするのが良い。
The positive electrode may contain other active materials in addition to the above-mentioned lithium cobalt oxide as a positive electrode active material, or may be formed by adding an additive such as a transition metal compound. In the present invention, lithium cobalt oxide is preferably used as a main component.

【0014】本発明において正極活物質合剤とは、正極
活物質と導電助剤と結着剤等を適当な比率で混合したも
のを意味する。この合剤を調整する場合、正極活物質の
二次粒子の平均径は、極板の塗工面の荒れを最小限に抑
えるといった、塗工性の観点から、15μm以下である
ことが望ましい。
In the present invention, the positive electrode active material mixture means a mixture of a positive electrode active material, a conductive auxiliary agent, a binder and the like at an appropriate ratio. When adjusting this mixture, the average diameter of the secondary particles of the positive electrode active material is desirably 15 μm or less from the viewpoint of coatability such as minimizing the roughness of the coated surface of the electrode plate.

【0015】導電剤としては、炭素化合物、例えば、天
然黒鉛、人造黒鉛、チャンネルブラック、アセチレンブ
ラック、ケッチェンブラック、ファーネスブラック等の
カーボンブラック類、炭素繊維等を用いることができ、
結着剤としては、ポリフッ化ビニリデン、ポリイミド樹
脂、PTFE、スチレンブタジエンゴム、フッ素ゴム、
等の電解液に溶解しにくいものを用いることができる。
そして、この合剤をペーストとする場合には、例えば塗
布液の組成は、活物質100重量部に対して、導電剤1
〜10重量部、結着剤2〜20重量部、および溶剤30
〜300重量部とする。
As the conductive agent, carbon compounds, for example, carbon blacks such as natural graphite, artificial graphite, channel black, acetylene black, Ketjen black, furnace black, and carbon fibers can be used.
As the binder, polyvinylidene fluoride, polyimide resin, PTFE, styrene butadiene rubber, fluoro rubber,
Or the like, which is difficult to dissolve in the electrolytic solution.
When the mixture is used as a paste, for example, the composition of the coating solution is such that the conductive agent 1 is added to 100 parts by weight of the active material.
-10 parts by weight, 2-20 parts by weight of binder, and 30 parts of solvent
To 300 parts by weight.

【0016】集電体としては、アルミニウム、銅、ニッ
ケル、ステンレス鋼等の金属箔や、無機酸化物、有機高
分子材料、炭素等の導電性フィルムや金属蒸着フィルム
(例えばベースフィルムとして、ポリエチレンテレフタ
レート、ポリイミド、ポリフェニレンサルファイドが、
蒸着金属として、金、銅、アルミニウム等があげられ
る。)を用いることができる。また、このような導電性
基材の形態は、連続シート、穴あきシート、網状シート
等のいろいろな形態とすることがきるが、特に連続シー
トとすることが好ましい。なお、このような集電体に対
する活物質の塗布は、両面とするのが好ましい。
Examples of the current collector include metal foils such as aluminum, copper, nickel, and stainless steel; conductive films such as inorganic oxides, organic polymer materials, and carbon; and metal-deposited films (for example, polyethylene terephthalate as a base film). , Polyimide, polyphenylene sulfide,
Examples of the metal to be deposited include gold, copper, and aluminum. ) Can be used. In addition, the form of such a conductive substrate can be various forms such as a continuous sheet, a perforated sheet, a mesh sheet, etc., but a continuous sheet is particularly preferable. Note that the active material is preferably applied to such a current collector on both surfaces.

【0017】負極は、正極の全充電電気量を受け入れる
ことのできる量の負極活物質が正極の対向面に配置され
るように作製すれば良く、例えば、正極と同様にして集
電体上に形成する。
The negative electrode may be manufactured such that an amount of the negative electrode active material capable of accepting the total amount of charge of the positive electrode is arranged on the opposite surface of the positive electrode. Form.

【0018】本発明に用いられる負極活物質材料として
は、特に炭素材料が好ましい。炭素材料は、結晶構造が
そろった黒鉛系のものと、結晶構造が乱れた非黒鉛化系
のものとに大別され、前者には、天然黒鉛、人造黒鉛が
あり、後者には結晶構造が乱れているものの、2000
〜3000℃の加熱によって黒鉛になりやすい易黒鉛化
炭素(ソフトカーボン)と、黒鉛になりにくい難黒鉛化
炭素(ハードカーボン)がある。具体的には、例えば、
黒鉛、コークス類(石油系コークス、ピッチコークス,
ニードルコークスなど)、樹脂膜焼成炭素、繊維焼成炭
素、気相成長炭素等を用いることができる。
The negative electrode active material used in the present invention is particularly preferably a carbon material. Carbon materials are roughly classified into graphite materials with a uniform crystal structure and non-graphitized materials with a disordered crystal structure.The former includes natural graphite and artificial graphite, and the latter has a crystal structure. 2000, although disturbed
There are graphitizable carbon (soft carbon) that easily becomes graphite by heating at 33000 ° C. and hardly graphitizable carbon (hard carbon) that hardly becomes graphite. Specifically, for example,
Graphite, coke (petroleum coke, pitch coke,
Needle coke, etc.), resin film fired carbon, fiber fired carbon, vapor grown carbon, and the like can be used.

【0019】特に、炭素材料の中でも、本発明の場合、
結晶構造の乱れた非黒鉛系の炭素材料を用いるのが好ま
しく、非黒鉛系の材料を用いることにより、高温時のサ
イクル寿命特性を良好にすることができる。非黒鉛系の
炭素材料は、例えば、石油ピッチ、ポリアセン、ポリパ
ラフェニレン、ポリフルフリルアルコール、ポリシロキ
サンなどを熱処理することにより製造することが可能で
あり、焼成温度を変えることによって、ハードカーボン
としたり、ソフトカーボンとしたりすることが可能であ
る。例えば、500℃〜800℃程度の焼成温度はハー
ドカーボンの製造に適しており、800℃〜1000℃
程度の焼成温度はソフトカーボンの製造に適している。
Particularly, among carbon materials, in the case of the present invention,
It is preferable to use a non-graphite carbon material having a disordered crystal structure. By using a non-graphite material, the cycle life characteristics at high temperatures can be improved. Non-graphite-based carbon materials can be produced, for example, by heat-treating petroleum pitch, polyacene, polyparaphenylene, polyfurfuryl alcohol, polysiloxane, and the like. Or soft carbon. For example, a firing temperature of about 500 ° C. to 800 ° C. is suitable for producing hard carbon, and a firing temperature of 800 ° C. to 1000 ° C.
A moderate firing temperature is suitable for the production of soft carbon.

【0020】そして、結晶構造の乱れた非黒鉛系の炭素
材料を活物質として用い、これを含んでなる負極活物質
合剤を集電体上に塗布して負極を作製する場合には、集
電体片面における負極活物質合剤塗布重量を、0.25
g/100cm2以上0.5g/100cm2以下とするの
が良い。この場合、負極材料の二次粒子の平均径は、塗
工面の荒れを最小限に抑えるといった、塗工性の観点か
ら15μm以下とすることが好ましい。なお、負極活物
質合剤は、通常主として、炭素材料と結着剤とから作製
され、結着剤としては正極において用いられるのと同様
のものが用いられ、このような合剤をペーストとする場
合には、例えば、炭素材料100重量部に対して、結着
剤2〜20重量部、および溶媒30〜300重量部を混
合する。
When a non-graphite carbon material having a disordered crystal structure is used as an active material, and a negative electrode active material mixture containing the same is applied on a current collector to form a negative electrode, The negative electrode active material mixture application weight on one side of the conductor was 0.25
g / 100 cm 2 or more and 0.5 g / 100 cm 2 or less. In this case, the average diameter of the secondary particles of the negative electrode material is preferably 15 μm or less from the viewpoint of coatability such as minimizing the roughness of the coated surface. The negative electrode active material mixture is usually mainly made of a carbon material and a binder, and the same binder as used in the positive electrode is used as the binder, and such a mixture is used as a paste. In this case, for example, 2 to 20 parts by weight of the binder and 30 to 300 parts by weight of the solvent are mixed with 100 parts by weight of the carbon material.

【0021】さらに、非黒鉛系の炭素材料の中でも、難
黒鉛化炭素材料を用いるのが好ましく、これにより、充
電受入性を良好にすることができる。そして、難黒鉛化
炭素材料を使用する場合には、炭素材料のX線回折法に
より得られるd002値が0.36nm以上0.40nm以
下であるものを用いるのが良い。これは、0.36未満
だと、充電受入性が顕著に低下し、0.40を越えると
炭素材料の真密度が小さくなりすぎ、電池のエネルギー
密度が小さくなるためである。
Further, among the non-graphite-based carbon materials, it is preferable to use a non-graphitizable carbon material, whereby the charge acceptability can be improved. When a non-graphitizable carbon material is used, it is preferable to use a carbon material having a d 002 value obtained by an X-ray diffraction method of 0.36 nm or more and 0.40 nm or less. This is because if it is less than 0.36, the charge acceptability is remarkably reduced, and if it exceeds 0.40, the true density of the carbon material becomes too small, and the energy density of the battery becomes small.

【0022】隔離体としては、微多孔フィルム(例え
ば、材質:ポリエチレン、ポリプロピレン)セパレータ
ー、有機高分子電解質(例えば、PEO等のポリエーテ
ルとアルカリ金属塩との錯体やポリフッ化ビニリデン、
PAN等の有機高分子に電解液を含ませたゲル状のもの
等)、無機固体電解質等を用いることができ、シート状
のものの他に、正極または負極シートの表面に直接形成
されてなる形態のもの等を用いることができる。
Examples of the separator include a microporous film (for example, polyethylene or polypropylene) separator, an organic polymer electrolyte (for example, a complex of a polyether such as PEO and an alkali metal salt, polyvinylidene fluoride,
A gel-like material in which an electrolyte solution is contained in an organic polymer such as PAN), an inorganic solid electrolyte, or the like. In addition to a sheet-like material, a form directly formed on the surface of a positive electrode or a negative electrode sheet And the like can be used.

【0023】非水電解質としては、例えばプロピレンカ
ーボネート、エチレンカーボネート、ジメチルカーボネ
ート、ジエチルカーボネート、γ−ブチロラクトン、
1,2−ジメトキシエタン、テトラヒドロキシフラン等の
非プロトン性有機溶媒の少なくとも1種以上に、種々の
リチウム塩、例えば、LiClO4, LiBF6, LiP
6, LiCF3SO3, LiCF3CO2, LiAsF6
を溶解したものを用いることができる。
Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone,
Various lithium salts, for example, LiClO 4 , LiBF 6 , LiP, are added to at least one or more aprotic organic solvents such as 1,2-dimethoxyethane and tetrahydroxyfuran.
A solution in which F 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 or the like is dissolved can be used.

【0024】本発明の電池は、以上のような構成要素を
備えてなり、例えば、正極、負極をシート状にし、これ
らの電極を隔離体であるセパレーターを介して、例え
ば、ロール状に巻回した渦巻状構造を採用することによ
って好適に構成される。
The battery of the present invention comprises the above-mentioned components. For example, the positive electrode and the negative electrode are formed into a sheet shape, and these electrodes are wound into a roll shape, for example, through a separator as a separator. It is preferably configured by adopting the spiral structure.

【0025】シート状極板は、例えば、ペースト状の電
極合剤をリバースロール式、ドクターブレード方式等に
より、銅、アルミニウム等の金属箔集電体シート上に塗
工することで製造され、電極合剤を塗布したシート状電
極は、熱風乾燥や真空乾燥した後、ロールプレス機によ
り均一に加圧圧縮され、電極多孔度が約25〜50%の
範囲に均一に調整される。そして、これらの方法で製造
されたシート状極板は、円筒形、長円筒形、角形等の電
池一個分の長さに裁断され、正極シート、セパレータ
ー、負極シートを順次積層した極板群が芯材を中心にし
てロール状に巻回されて電池の容器に収納される。
The sheet-shaped electrode plate is produced, for example, by applying a paste-like electrode mixture onto a metal foil current collector sheet made of copper, aluminum or the like by a reverse roll method, a doctor blade method, or the like. The sheet electrode coated with the mixture is hot-air-dried or vacuum-dried, and then uniformly pressed and compressed by a roll press, so that the electrode porosity is uniformly adjusted to a range of about 25 to 50%. Then, the sheet-shaped electrode plate manufactured by these methods is cut into a length of one battery such as a cylinder, a long cylinder, and a square, and an electrode group in which a positive electrode sheet, a separator, and a negative electrode sheet are sequentially laminated is formed. It is wound in a roll around the core material and stored in a battery container.

【0026】例えば以上のようにして製造される本発明
の非水電解質二次電池は、出力が大きく良好な高率放電
特性の要求される用途に、例えば、電動工具用、掃除機
用、電動補助自転車用、HEV用として、好適に用いる
ことができ、特に上記特定の面間隔を有する難黒鉛化炭
素材料を用いて充電受入性を良好としたものは、HEV
用等の充電受入性能の重視される用途に好適に用いるこ
とができる。
For example, the non-aqueous electrolyte secondary battery of the present invention manufactured as described above can be used for applications requiring a large output and good high-rate discharge characteristics, for example, for power tools, vacuum cleaners, HEVs that can be suitably used for assistive bicycles and HEVs, and in particular, those that use the non-graphitizable carbon material having the above-mentioned specific surface spacing to improve charge acceptability,
It can be suitably used for applications in which charge receiving performance is important such as use.

【0027】[0027]

【実施例】電池サイズが同じで、活物質の塗布重量と負
極材料の異なる長円筒形電池を5種類作製した。
EXAMPLES Five types of long cylindrical batteries having the same battery size and different active material coating weights and negative electrode materials were produced.

【0028】まず、正極シートを作製した。活物質とし
て平均粒径13μmのLiCoO2を89重量部、導電剤
としてアセチレンブラックを4重量部の割合でそれぞれ
混合し、さらに、結着剤としてポリフッ化ビニリデンを
7重量部の割合で加え、溶媒としてNメチル−2−ピロ
リドンを添加し、混練して、スラリー状の正極合剤塗布
液を作製した。ついで、この正極合剤塗布液を厚さ15
μmのアルミニウム箔の表裏両面に、同じ塗布重量とな
るように片面すつ塗布した。尚、塗布重量による違いを
比較するために、下記表1に示すような塗布重量の異な
る4種類の正極シートを作製した。
First, a positive electrode sheet was prepared. 89 parts by weight of LiCoO 2 having an average particle size of 13 μm as an active material and 4 parts by weight of acetylene black as a conductive agent were mixed, and polyvinylidene fluoride as a binder was added at a ratio of 7 parts by weight. , N-methyl-2-pyrrolidone was added and kneaded to prepare a slurry-type positive electrode mixture coating solution. Then, apply this positive electrode mixture coating solution to a thickness of 15 μm.
A single-sided coating was applied to both sides of a μm aluminum foil so as to have the same application weight. In addition, in order to compare the differences depending on the application weight, four types of positive electrode sheets having different application weights as shown in Table 1 below were prepared.

【0029】次に、負極シートを作製した。負極活物質
材料として平均粒径11μのハードカーボンを94重量
部、結着剤としてポリフッ化ビニリデンを6重量部の割
合で加え、溶媒としてNメチル−2−ピロリドンを添加
し、混練して、スラリー状の正極合剤塗布液を作製し
た。ついで、この負極合剤塗布液を厚さ10μmの銅箔
の表裏両面に、同じ塗布重量となるように片面ずつ塗布
した。尚、負極の利用率が各電池において同じになるよ
うに、正極の容量に合わせて、下記表1に示すように塗
布重量の異なる4種類の負極シートを作製した。さら
に、負極活物質材料を平均粒径11μmの人造黒鉛に変
えて、上記と同じ手順で1種類の負極シートを作製し
た。
Next, a negative electrode sheet was prepared. 94 parts by weight of hard carbon having an average particle size of 11 μm as a negative electrode active material, 6 parts by weight of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent, kneading, and slurrying A positive electrode mixture coating solution was prepared. Next, this negative electrode mixture coating solution was applied to both sides of a 10-μm-thick copper foil so as to have the same application weight, one surface at a time. In addition, according to the capacity of the positive electrode, four types of negative electrode sheets having different application weights were prepared as shown in Table 1 below so that the utilization rate of the negative electrode was the same in each battery. Further, one type of negative electrode sheet was produced in the same procedure as above, except that the negative electrode active material was changed to artificial graphite having an average particle size of 11 μm.

【0030】これらの正極シートおよび負極シートを熱
風乾燥し、ロールプレスにより圧縮加工した。多孔度は
正極で37%、負極で35%であった。
The positive and negative electrode sheets were dried with hot air and compressed by a roll press. The porosity was 37% for the positive electrode and 35% for the negative electrode.

【0031】ついで、正、負極シートを厚さ30μmの
ポリエチレン製セパレーターを介して、ロール状に巻回
し、長円筒形の発電要素を作製し、これを高さ95m
m、巾60mm、厚み26mm、肉厚0.5mmのステ
ンレス製の長円筒形の容器に収納した後、電解液を封入
した。このようにして、電池A、B、C、D、Eを作製
した。なお、各電池の対向部電極面積は、電池Aで47
19cm2、電池Bで、5564cm2、電池CとEで
6760cm2、電池Dで7800cm2である。また
電解液は、ECとDECとを1:1の割合で混合した溶
媒に1M濃度のLiPF6を溶解したものを用いた。
Next, the positive and negative electrode sheets were wound into a roll through a 30 μm-thick polyethylene separator to produce a long cylindrical power generating element, which was 95 m in height.
m, width 60 mm, thickness 26 mm, and wall thickness 0.5 mm were stored in a stainless steel long cylindrical container, and then the electrolyte was sealed therein. Thus, batteries A, B, C, D, and E were produced. The electrode area of the facing part of each battery was 47 A for Battery A.
19 cm2, 5564 cm2 for battery B, 6760 cm2 for batteries C and E, and 7800 cm2 for battery D. The electrolyte used was a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a solvent in which EC and DEC were mixed at a ratio of 1: 1.

【0032】[0032]

【表1】 [Table 1]

【0033】以上のように作製された電池について、出
力特性を比較するために、満充電状態(開放端子電圧が
4.1V)において25℃にて、5Aで10秒、つい
で、20Aで10秒、さらに50Aで10秒の放電を行
うことにより、電池電圧が2.5Vとなる電流値を外挿
して各電池の出力値を求めた。図1は、このようにして
求められた各電池の出力値と正極の活物質合剤塗布重量
(片面あたり)との関係を示す図である。
In order to compare the output characteristics of the batteries manufactured as described above, in a fully charged state (open terminal voltage is 4.1 V), at 25 ° C., 10 seconds at 5 A, then 10 seconds at 20 A. Further, by discharging the battery at 50 A for 10 seconds, the output value of each battery was obtained by extrapolating the current value at which the battery voltage became 2.5 V. FIG. 1 is a diagram showing the relationship between the output value of each battery thus obtained and the applied weight of the active material mixture of the positive electrode (per one side).

【0034】表1に示されるように、塗布重量の多い電
池程、電池の容量が大きく、電池の体積あたりのエネル
ギー密度も大きい。しかしながら、電池の出力は図1か
ら分るように、塗布重量が少なくなるにつれて大きくな
っている。このことから、出力を大きくするためには、
集電体単位面積当たりの塗布重量を少なくするのが良い
ことが分かり、片面あたり1.1g/100cm2以下と
することにより従来より大きな出力が得られることが分
かる。
As shown in Table 1, as the weight of the applied battery increases, the capacity of the battery increases, and the energy density per volume of the battery increases. However, as can be seen from FIG. 1, the output of the battery increases as the application weight decreases. From this, to increase the output,
It can be seen that it is better to reduce the coating weight per unit area of the current collector, and that it is possible to obtain a larger output than before by setting it to 1.1 g / 100 cm 2 or less per side.

【0035】さらに、高率放電時のWh容量維持率を比
較するために、1,5,10,16,20Cでの連続放電を
行った結果、高率放電時のWh容量維持率も、塗布重量
に対し出力と同様の相関を有していることが分り、塗布
重量を片面あたり0.6g/100cm2以上1.1g
/100cm2以下とするのが良いことが分った。そし
て、このような範囲とすることによって、例えば、これ
まで5C放電時に1C放電時の80%の放電容量も確保
できなかったのが、20C放電時でも1C放電時の80
%以上の放電容量を確保することが可能となった。
Further, in order to compare the Wh capacity retention rate at the time of high-rate discharge, continuous discharge at 1,5,10,16,20C was performed. It can be seen that the weight has the same correlation as the output with respect to the weight, and the coating weight is 0.6 g / 100 cm 2 or more and 1.1 g per side.
/ 100 cm 2 or less was found to be good. By setting such a range, for example, the discharge capacity of 80% of the 1C discharge at the time of the 5C discharge cannot be ensured.
% Of discharge capacity can be secured.

【0036】図2は、満充電状態における交流インピー
ダンスを測定して得られた電池CのCole−Coleプ
ロットを示す図である。また、下記表2は、各電池の電
極対向面積と1kHzにおける交流内部抵抗と直流内部
抵抗を示す表である。なお、SOCは充電状態を示し、
0%は開放端子電圧が2.75Vの状態、100%は開
放端子電圧が4.1Vの状態である。直流抵抗は、5,
20,50Aの電流で放電したときの10秒目の電圧か
ら算出している。また、交流インピーダンスの測定条件
は、印可電圧10mV、周波数0.001〜1000H
z、周囲温度25℃である。
FIG. 2 is a diagram showing a Cole-Cole plot of the battery C obtained by measuring the AC impedance in the fully charged state. Table 2 below shows the electrode facing area of each battery, and the AC internal resistance and DC internal resistance at 1 kHz. Note that SOC indicates the state of charge,
0% is a state where the open terminal voltage is 2.75V, and 100% is a state where the open terminal voltage is 4.1V. DC resistance is 5,
It is calculated from the voltage at the 10th second when discharging at a current of 20, 50 A. The measurement conditions of the AC impedance were an applied voltage of 10 mV and a frequency of 0.001 to 1000 H.
z, ambient temperature 25 ° C.

【0037】[0037]

【表2】 [Table 2]

【0038】Cole−Coleプロットは、電池Cのも
のしか示していないが、各電池の測定から、実数軸との
切片の値は、塗布重量の小さい電池ほど小さくなり、半
円の直径が大きくなっていることが分った。このこと
は、表2の交流抵抗および直流抵抗の変化と対応してお
り、塗布重量が小さくなればなるほど溶液抵抗等の固定
抵抗成分が小さくなり、一方で電極の反応面積の減少に
よる界面抵抗の増大が生じていることを示している。こ
のことからも、塗布重量を少なくすることで出力が増大
し、高率放電特性が改善されることが分り、一方で、塗
布重量が減りすぎた場合に、固定抵抗成分の減少が界面
抵抗の増大によって打ち消されてしまうために、塗布重
量の低減が効果を発揮できる境界線のあることが分か
る。
Although the Cole-Cole plot shows only the battery C, from the measurement of each battery, the value of the intercept with respect to the real axis becomes smaller as the weight of the applied battery becomes smaller, and the diameter of the semicircle becomes larger. I found that. This corresponds to the change in the AC resistance and the DC resistance in Table 2. The smaller the coating weight, the smaller the fixed resistance component such as the solution resistance, while the smaller the reaction area of the electrode. This indicates that an increase has occurred. From this, it can be seen that the output is increased by reducing the coating weight, and the high-rate discharge characteristics are improved. On the other hand, when the coating weight is reduced too much, the decrease in the fixed resistance component decreases the interface resistance. It can be seen that there is a boundary line at which the reduction of the coating weight can exert an effect because it is canceled by the increase.

【0039】さらに、電池の充電受入性を示す入力特性
を比較するために、完全放電(開放端子電圧が2.75
V)において25℃にて、5Aで10秒、ついで、10
Aで10秒、さらに30Aで10秒の充電を行うことに
より、電池電圧が4.2Vとなる電流値を外挿して各電
池の入力値を求めた。表3に、このようにして求められ
た電池Cと電池Eの入力値を示す。
Further, in order to compare the input characteristics indicating the charge acceptability of the battery, the battery was completely discharged (the open terminal voltage was 2.75).
V) at 25 ° C. and 5 A for 10 seconds, then 10
By charging for 10 seconds at A and further for 10 seconds at 30 A, the input value of each battery was determined by extrapolating the current value at which the battery voltage was 4.2 V. Table 3 shows the input values of the battery C and the battery E thus obtained.

【0040】[0040]

【表3】 [Table 3]

【0041】表3から分かるように、負極材料に人造黒
鉛を用いた電池Eにおいては、電極対向面積が同じで負
極材料にハードカーボンを使用した電池Cよりも小さい
入力値を示していることが分かる。これは、結晶構造が
そろった人造黒鉛よりも、結晶構造の乱れたハードカー
ボンの方がリチウムイオンを吸蔵する部位が多いため
に、大電流で充電を行った際にも、速やかにリチウムイ
オンが炭素の結晶構造中に吸蔵されることに起因してい
る。
As can be seen from Table 3, in battery E using artificial graphite as the negative electrode material, the input value was smaller than that in battery C using hard carbon as the negative electrode material with the same electrode facing area. I understand. This is because hard carbon having a disordered crystal structure has more sites for storing lithium ions than artificial graphite having a uniform crystal structure, so even when charged with a large current, lithium ions are quickly absorbed. This is due to occlusion in the crystal structure of carbon.

【0042】[0042]

【発明の効果】本発明によれば、出力が大きく高率放電
特性に優れ、さらに、入力特性の優れた電池を実用化す
ることができる。
According to the present invention, a battery having a large output, excellent high-rate discharge characteristics, and excellent input characteristics can be put to practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電池の出力値と正極活物質合剤塗布重量との
関係を示す図。
FIG. 1 is a diagram showing the relationship between the output value of a battery and the applied weight of a positive electrode active material mixture.

【図2】 電池CのCole−Coleプロットを示す
図。
FIG. 2 is a view showing a Cole-Cole plot of a battery C;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト酸リチウムを正極活物質とし、
該正極活物質を含んでなる正極活物質合剤の集電体片面
における塗布重量が0.6g/100cm2以上1.1g
/100cm2以下となっている正極を備えたことを特徴
とする有機電解質二次電池。
Claims: 1. A lithium cobalt oxide is used as a positive electrode active material,
The coating weight of the positive electrode active material mixture containing the positive electrode active material on one surface of the current collector is 0.6 g / 100 cm 2 or more and 1.1 g.
An organic electrolyte secondary battery comprising a positive electrode having a capacity of / 100 cm 2 or less.
【請求項2】 負極活物質として、X線回折法により得
られるC軸方向の面間隔d002値が、0.36nm以上
0.40nm以下である難黒鉛化炭素材料が用いられて
いることを特徴とする請求項1記載の非水電解質二次電
池。
2. A non-graphitizable carbon material having a plane spacing d 002 value in the C-axis direction obtained by X-ray diffraction of 0.36 nm or more and 0.40 nm or less is used as the negative electrode active material. The non-aqueous electrolyte secondary battery according to claim 1.
JP2000345685A 2000-11-13 2000-11-13 Nonaqueous electrolyte secondary battery Pending JP2002151157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345685A JP2002151157A (en) 2000-11-13 2000-11-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345685A JP2002151157A (en) 2000-11-13 2000-11-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002151157A true JP2002151157A (en) 2002-05-24

Family

ID=18819670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345685A Pending JP2002151157A (en) 2000-11-13 2000-11-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002151157A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
JP2009176448A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US12095095B2 (en) 2017-03-28 2024-09-17 Enevate Corporation Reaction barrier between electrode active material and current collector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252053A (en) * 1990-02-28 1991-11-11 Sony Corp Nonaqueous electrolyte secondary battery
JPH07192724A (en) * 1993-06-03 1995-07-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH08162118A (en) * 1994-12-07 1996-06-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH11329409A (en) * 1998-05-15 1999-11-30 Nissan Motor Co Ltd Lithium ion secondary battery
JP2001176499A (en) * 1999-10-04 2001-06-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001210383A (en) * 2000-01-25 2001-08-03 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2002110254A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252053A (en) * 1990-02-28 1991-11-11 Sony Corp Nonaqueous electrolyte secondary battery
JPH07192724A (en) * 1993-06-03 1995-07-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH08162118A (en) * 1994-12-07 1996-06-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH11329409A (en) * 1998-05-15 1999-11-30 Nissan Motor Co Ltd Lithium ion secondary battery
JP2001176499A (en) * 1999-10-04 2001-06-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001210383A (en) * 2000-01-25 2001-08-03 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolytic solution secondary battery
JP2002110254A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103065A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and evaluation method
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
JP2009064762A (en) * 2007-09-05 2009-03-26 Zenzo Hashimoto Current-collecting member for low-resistance electrochemical cell
JP2009176448A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9997765B2 (en) 2010-12-22 2018-06-12 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
US12095095B2 (en) 2017-03-28 2024-09-17 Enevate Corporation Reaction barrier between electrode active material and current collector
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3823683B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
WO2012011189A1 (en) Lithium ion secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP7460261B2 (en) Secondary battery charging and discharging method
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
JP2003217667A (en) Nonaqueous electrolyte secondary battery
JP2003077476A (en) Lithium ion secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
KR102358446B1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising the same
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP4834299B2 (en) Lithium secondary battery
JP2010272380A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
JP2002151157A (en) Nonaqueous electrolyte secondary battery
JP6988169B2 (en) A method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP2008305688A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2005197073A (en) Positive electrode for lithium secondary battery
JP5234373B2 (en) Lithium ion secondary battery
JP2022513678A (en) Method for manufacturing negative electrode active material for secondary battery, negative electrode for secondary battery and lithium secondary battery containing it
JP4120439B2 (en) Lithium ion secondary battery
CN114361408B (en) Positive electrode active material
JP2000173666A (en) Nonaqueous electrolyte secondary battery
EP4425597A1 (en) Electrochemical device and electronic device comprising same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116