JPH1050292A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1050292A
JPH1050292A JP9117821A JP11782197A JPH1050292A JP H1050292 A JPH1050292 A JP H1050292A JP 9117821 A JP9117821 A JP 9117821A JP 11782197 A JP11782197 A JP 11782197A JP H1050292 A JPH1050292 A JP H1050292A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
separator
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9117821A
Other languages
Japanese (ja)
Other versions
JP3508464B2 (en
Inventor
Takafumi Oura
孝文 尾浦
Masaki Kitagawa
雅規 北川
Hajime Nishino
肇 西野
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11782197A priority Critical patent/JP3508464B2/en
Publication of JPH1050292A publication Critical patent/JPH1050292A/en
Application granted granted Critical
Publication of JP3508464B2 publication Critical patent/JP3508464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the rise of battery internal pressure due to the sudden rise of battery temperature at the time of a short circuit or overcharge, or the leakage of an electrolyte due to the rise of the battery internal pressure, by constituting the separator of a specific microporous film, in this secondary battery equipped with positive and negative electrodes, the separator arranged between these electrodes, and a nonaqueous electrolyte. SOLUTION: A separator 1 is constituted of a polyolefine fine porous film which is a microporous film wherein heat absorbing quantity to a unit area at 70-150 deg.C is 0.07cal/cm<2> or more, a thickness of 15-30μm, preferably PE alone, or a composite film where a PE microporous coat and a PP microporous film and a PP microporous coat are made multilayer. In this secondary battery, it is preferable to use an Li containing transition metal oxide to a positive electrode 2, carbon capable of storing and emitting Li to a positive electrode 3, one or more selected from ethylene, propylene, dimethyl, diethyl, and ethyl- methyl-carbonate, etc., to the solvent of a nonaqueous electrolyte, and lithium phosphate hexafluoride to the solvent of the nonaqueous electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の、特にそのセパレータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a separator thereof.

【0002】[0002]

【従来の技術】近年、パソコンおよび携帯電話等の電子
機器の小型軽量化、コードレス化が急速に進んでおり、
これらの駆動用電源として、高エネルギー密度を有する
二次電池の開発が要求されている。このような要求に応
える電池として、正極に活物質としてLiCoO2やL
iNiO2、LiMn24等のリチウムに対して4V級
の電圧を示すリチウム含有遷移金属酸化物、負極に活物
質としてリチウムがインターカレート、デインターカレ
ート可能な炭素材料等が用いられるリチウム二次電池は
とりわけ高電圧、高エネルギー密度を有する電池として
期待されている。
2. Description of the Related Art In recent years, electronic devices such as personal computers and mobile phones have been rapidly reduced in size and weight and become cordless.
Development of a secondary battery having a high energy density has been required for these driving power supplies. As a battery meeting such a demand, LiCoO 2 or L
Lithium-containing transition metal oxides exhibiting a 4V-class voltage with respect to lithium such as iNiO 2 and LiMn 2 O 4 , and lithium in which lithium is used as an active material for a carbon material capable of intercalating and deintercalating lithium. Secondary batteries are particularly expected as batteries having high voltage and high energy density.

【0003】リチウム二次電池に用いられるセパレータ
は、電解液に用いられるエーテルやエステルなどの有機
溶媒に対して難溶性であり、かつ電解液が十分に浸透し
てリチウムイオンが速やかに移動できる多孔質膜である
必要がある。他方で電池の高エネルギー密度化を達成す
るため、電池活物質をケース内にできるだけ多く詰め込
む必要があり、セパレータの薄肉化が要求される。しか
し、電池の極低温充電時には、リチウムイオンの移動が
速やかにおこらず負極表面上に樹枝状のリチウムが発生
してセパレータを貫通し、内部短絡を引き起こす可能性
があるため、セパレータの厚みを厚くしたり、セパレー
タの孔の径をある程度小さくする必要がある。このた
め、リチウム二次電池用のセパレータとしては、厚み20
〜50μmで、空孔率40〜70%のポリエチレン樹脂や、ポリ
プロピレン樹脂、もしくはポリエチレン樹脂とポリプロ
ピレン樹脂の複合膜等が用いられてきた。
[0003] A separator used in a lithium secondary battery is poorly soluble in organic solvents such as ethers and esters used in an electrolytic solution, and is a porous material through which an electrolytic solution can sufficiently penetrate and lithium ions can move quickly. It must be a membrane. On the other hand, in order to achieve a high energy density of the battery, it is necessary to pack the battery active material as much as possible in the case, and it is required to reduce the thickness of the separator. However, when the battery is charged at a very low temperature, lithium ions do not move quickly and dendritic lithium is generated on the surface of the negative electrode, which may penetrate the separator and cause an internal short circuit. And it is necessary to reduce the diameter of the holes in the separator to some extent. Therefore, as a separator for a lithium secondary battery, a thickness of 20
A polyethylene resin having a porosity of 〜50 μm and a porosity of 40 to 70%, a polypropylene resin, or a composite film of a polyethylene resin and a polypropylene resin has been used.

【0004】[0004]

【発明が解決しようとする課題】リチウム二次電池は、
非常に高エネルギーであるため、短絡や過充電等の際、
電極活物質と電解液との反応が起こり、その反応熱によ
り電池内の温度が非常に上昇する。この温度上昇にとも
なって、電解液中の有機溶媒の揮発および電池活物質と
電解液との反応によるガス発生が助長され、電池内圧が
上昇する。この結果、電池内圧が所定値以上になると、
封口板の安全弁が作動してガス放出に伴って電解液も漏
出していた。
SUMMARY OF THE INVENTION A lithium secondary battery is
Due to its very high energy,
The reaction between the electrode active material and the electrolytic solution occurs, and the heat inside the battery greatly increases the temperature inside the battery. As the temperature rises, the volatilization of the organic solvent in the electrolytic solution and the generation of gas due to the reaction between the battery active material and the electrolytic solution are promoted, and the internal pressure of the battery rises. As a result, when the battery internal pressure exceeds a predetermined value,
The safety valve on the sealing plate was activated and the electrolyte leaked with the release of gas.

【0005】本発明はこのような課題を解決するもので
あり、短絡や過充電時等に電池温度が急激に上昇するこ
とを防止して、電池の安全性を向上させるものである。
The present invention has been made to solve such a problem, and it is an object of the present invention to prevent a sudden rise in the battery temperature in the event of a short circuit or overcharging, thereby improving the safety of the battery.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に、本発明はセパレータに70〜150℃の温度範囲におい
て、融解熱による単位面積あたりの吸熱量が少なくとも
0.07cal/cm2で、厚さ15〜30μmのポリオレフィン系微孔
性膜を用いるものである。
In order to solve this problem, the present invention provides a separator in which the heat absorption per unit area due to heat of fusion is at least 70-150 ° C.
A polyolefin-based microporous membrane of 0.07 cal / cm 2 and a thickness of 15 to 30 μm is used.

【0007】これにより、過充電時や短絡時等の電池温
度が上昇する際に、正、負極の熱や極板の活物質と電解
液との反応による発熱を、セパレータによって効率的に
吸熱することができ、電池温度の上昇に伴う電解液中の
溶媒の揮発や、活物質と電解液との反応によるガスの急
激な発生を抑え、電池内圧の急激な上昇による電解液の
電池からの漏液を防止することができる。
Thus, when the battery temperature rises during overcharge or short circuit, the separator efficiently absorbs heat generated by the heat of the positive and negative electrodes and the reaction between the active material of the electrode plate and the electrolyte. This suppresses the volatilization of the solvent in the electrolyte due to the rise in battery temperature and the rapid generation of gas due to the reaction between the active material and the electrolyte, and the leakage of the electrolyte from the battery due to the rapid rise in battery internal pressure. Liquid can be prevented.

【0008】[0008]

【発明の実施の形態】本発明は、セパレータに70〜150
℃の温度領域で0.07cal/cm2以上の吸熱を示し、かつ厚
みが15μm以上30μm以下であるポリオレフィン系微孔膜
からなるセパレータを用いるものであり、好ましくはポ
リエチレン膜単独、またはポリエチレン膜とポリプロピ
レン膜を多層化した複合膜を用いるものである。このよ
うな構成をすることにより、電池温度上昇の原因である
正、負極の発熱を効果的に吸収し、電池内圧の上昇を抑
制することができる。よって、封口板の安全弁が作動せ
ず、電解液の漏液を防止することが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION
It shows a heat absorption of 0.07 cal / cm 2 or more in a temperature range of ° C., and uses a separator made of a polyolefin-based microporous membrane having a thickness of 15 μm or more and 30 μm or less, preferably a polyethylene film alone, or a polyethylene film and polypropylene. A composite film having a multilayered film is used. With this configuration, it is possible to effectively absorb the heat generated by the positive electrode and the negative electrode, which cause the battery temperature to rise, and to suppress an increase in the battery internal pressure. Therefore, the safety valve of the sealing plate does not operate, and it is possible to prevent the electrolyte from leaking.

【0009】また、正極にLixy2(式中MはC
o、Ni、Mnからなる群より選ばれる一種以上の金
属;0.5≦x≦1.0;1.0≦y≦2.0)で表されるリチウム
含有遷移金属酸化物、負極にリチウムの吸蔵、放出が可
能でかつ、X線回折による面間隔d(002)が3.38Å未満で
あり、BET方法による比表面積が2.0m2/g以上8.0m2/g
未満の炭素を用い、さらに電解液の溶媒にエチレンカー
ボネート、プロピレンカーボネート、ジメチルカーボネ
ート、ジエチルカーボネート、エチルメチルカーボネー
ト、プロピオン酸メチル、プロピオン酸エチルからなる
群より選ばれる一種以上、溶質に6フッ化リン酸リチウ
ムを用いると、より好ましい。
Moreover, Li x M y O 2 (wherein M in the positive electrode C
at least one metal selected from the group consisting of o, Ni, and Mn; a transition metal oxide containing lithium represented by the following formula: 0.5 ≦ x ≦ 1.0; 1.0 ≦ y ≦ 2.0); The plane distance d (002) by X-ray diffraction is less than 3.38Å, and the specific surface area by the BET method is 2.0 m 2 / g or more and 8.0 m 2 / g.
Less than carbon, and further used as a solvent for the electrolyte solution is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propionate, at least one selected from the group consisting of ethyl propionate, solute phosphorus hexafluoride It is more preferable to use lithium oxide.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】(実施例1)図1に本実施例で用いた非水
電解液二次電池の構成断面図を示す。図1に示すよう
に、正極板2と負極板3はセパレータ1によって隔離さ
れており、これらが複数回渦巻状に巻回されてニッケル
メッキ鉄製電池ケース4内に収納されている。そして、
正極板2からはアルミニウム製正極リード5が引き出さ
れて封口板6に接続され、負極板3からはニッケル製負
極リード7が引き出されて電池ケース4の底部に接続さ
れている。8はポリエチレン製絶縁リングで極板群の上
底部にそれぞれ設けられている。以下正、負極板等につ
いて詳しく説明する。
(Embodiment 1) FIG. 1 is a sectional view showing the structure of a nonaqueous electrolyte secondary battery used in this embodiment. As shown in FIG. 1, a positive electrode plate 2 and a negative electrode plate 3 are separated by a separator 1, and these are spirally wound a plurality of times and housed in a nickel-plated iron battery case 4. And
An aluminum positive electrode lead 5 is drawn out of the positive electrode plate 2 and connected to the sealing plate 6, and a nickel negative electrode lead 7 is drawn out of the negative electrode plate 3 and connected to the bottom of the battery case 4. Reference numeral 8 denotes a polyethylene insulating ring provided at the upper bottom of the electrode plate group. Hereinafter, the positive and negative electrode plates will be described in detail.

【0012】正極板は、Li2CO3とCo34とを混合
し、900℃で10時間焼成して合成したLiCoO2100重
量部に、導電材としてアセチレンブラック3重量部、結
着剤としてフッ素樹脂系結着剤7重量部を混合し、Li
CoO2に対し1%カルボキシメチルセルロ−ス水溶液100
重量部に懸濁させて正極合剤ペ−ストとしており、この
ペーストを厚さ30μmのアルミ箔の両面に塗工した後、
乾燥、圧延ローラーによる圧延を行い、所定の寸法に切
断して正極板とした。
The positive electrode plate is prepared by mixing Li 2 CO 3 and Co 3 O 4 and baking at 900 ° C. for 10 hours to synthesize 100 parts by weight of LiCoO 2 , 3 parts by weight of acetylene black as a conductive material, and a binder. 7 parts by weight of a fluororesin binder as
1% carboxymethylcellulose aqueous solution to CoO 2 100
The paste is suspended in parts by weight as a positive electrode mixture paste, and this paste is applied to both sides of a 30 μm thick aluminum foil,
Drying and rolling by a rolling roller were performed, and cut into predetermined dimensions to obtain a positive electrode plate.

【0013】負極板はメソフェ−ズ小球体を2800℃で黒
鉛化し平均粒径が約3μmになるように粉砕、分級したも
の(d(002)=3.360Å、BET比表面積=4.0m2/g)を用
い、これに結着剤として、スチレン/ブタジエンゴム5
重量部を混合した後、黒鉛に対し1%カルボキシメチルセ
ルロ−ス水溶液100重量部に懸濁させて負極ペ−ストと
した。このペーストを厚さ20μmの銅箔に負極ペースト
を両面に塗工し、乾燥後、圧延ローラーを用いて圧延を
行い、所定の寸法に切断して負極板とした。
The negative electrode plate is obtained by graphitizing mesophase spheres at 2800 ° C., pulverizing and classifying the particles into an average particle size of about 3 μm (d (002) = 3.360 °, BET specific surface area = 4.0 m 2 / g). ) And styrene / butadiene rubber 5 as a binder.
After mixing by weight, the mixture was suspended in 100 parts by weight of a 1% aqueous solution of carboxymethyl cellulose with respect to graphite to prepare a negative electrode paste. This paste was coated on a copper foil having a thickness of 20 μm on both sides with a negative electrode paste, dried, rolled using a rolling roller, and cut into predetermined dimensions to obtain a negative electrode plate.

【0014】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリ−ドをそれぞれ取り付け、DSC
(示差熱分析装置)を用いた測定の結果、70〜150℃の
温度領域で融解熱が0.03cal/cm2で厚みが25μmのポリエ
チレン微孔性膜からなるセパレ−タを渦巻状に巻回し、
直径17mm、高さ50mmの円筒型電池ケ−スに収容した。電
解液にはエチレンカーボネートとエチルメチルカーボネ
ートとを1:3の体積比で混合した溶媒に1.5モル/リ
ットルのLiPF6を溶解したものを用い、これを注液
した後封口した。これを本発明の電池Aとした。
An aluminum lead is attached to the positive electrode plate and a nickel lead is attached to the negative electrode plate.
As a result of measurement using a (differential thermal analyzer), a separator made of a polyethylene microporous film having a heat of fusion of 0.03 cal / cm 2 and a thickness of 25 μm in a temperature range of 70 to 150 ° C. was spirally wound. ,
It was housed in a cylindrical battery case having a diameter of 17 mm and a height of 50 mm. As the electrolytic solution, a solution prepared by dissolving 1.5 mol / l of LiPF 6 in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 was used, injected, and sealed. This was designated as Battery A of the present invention.

【0015】(実施例2)DSCを用いた測定の結果、
70〜150℃の温度領域で融解熱が0.04cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Bとした。
(Example 2) As a result of measurement using DSC,
A battery similar to (Example 1) was produced except that a separator having a heat of fusion of 0.04 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery B of the present invention.

【0016】(実施例3)DSCを用いた測定の結果、
70〜150℃の温度領域で融解熱が0.05cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Cとした。
(Example 3) As a result of measurement using DSC,
A battery similar to (Example 1) was produced except that a separator having a heat of fusion of 0.05 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery C of the present invention.

【0017】(実施例4)DSCを用いた測定の結果、
70〜150℃の温度領域で融解熱が0.06cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Dとした。
(Example 4) As a result of measurement using DSC,
A battery similar to (Example 1) was prepared except that a separator having a heat of fusion of 0.06 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery D of the present invention.

【0018】(実施例5)DSCを用いた測定の結果、
70〜150℃の温度領域で融解熱が0.07cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Eとした。
Example 5 As a result of measurement using DSC,
A battery similar to (Example 1) was prepared except that a separator having a heat of fusion of 0.07 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery E of the present invention.

【0019】(実施例6)DSCを用い、た測定の結果
70〜150℃の温度領域で融解熱が0.08cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Fとした。
(Example 6) Results of measurement using DSC
A battery similar to (Example 1) was prepared except that a separator having a heat of fusion of 0.08 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery F of the present invention.

【0020】(実施例7)DSCを用いた測定の結果、
70〜150℃の温度領域で融解熱が0.09cal/cm2のセパレー
タを用いた以外は(実施例1)と同様の電池を作成し
た。これを本発明の電池Gとした。
(Example 7) As a result of measurement using DSC,
A battery similar to (Example 1) was produced except that a separator having a heat of fusion of 0.09 cal / cm 2 in a temperature range of 70 to 150 ° C. was used. This was designated as Battery G of the present invention.

【0021】次に、本発明の電池A,B,C,D,E,
F,Gを各5セルずつ用意して、環境温度20℃で、上限
電圧を4.2Vに設定して、630mAの定電流で2時間充電を行
った。
Next, the batteries A, B, C, D, E,
F and G were prepared for each 5 cells, and the battery was charged at a constant temperature of 630 mA for 2 hours at an ambient temperature of 20 ° C., an upper limit voltage of 4.2 V.

【0022】放電はこの充電状態の電池を放電電流720m
A、放電終止電位3.0Vの定電流放電を行った。以上の充
放電サイクルを20サイクル繰り返した後、満充電状態で
加熱を行った。加熱試験は、室温から毎分5℃で150℃ま
で昇温し、150℃で10分間維持の条件で行った。電池内
部の温度および漏液率を(表1)に示す。
The discharging is performed by discharging the battery in the charged state with a discharging current of 720 m.
A, constant current discharge at a discharge termination potential of 3.0 V was performed. After repeating the above charge / discharge cycle for 20 cycles, heating was performed in a fully charged state. The heating test was performed under the condition that the temperature was raised from room temperature to 150 ° C. at 5 ° C./min and maintained at 150 ° C. for 10 minutes. The temperature inside the battery and the liquid leakage rate are shown in (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】(表1)より、融解熱の大きいセパレータ
を用いると、電池の温度上昇を抑制し、電解液の漏液を
防止する効果があった。これは、電池活物質と電解液と
の反応による発熱をセパレータの融解熱で効果的に吸収
し、そのことにより、上記反応に伴うガス発生が抑制さ
れるためである。
From Table 1, it can be seen that the use of a separator having a large heat of fusion has the effect of suppressing the temperature rise of the battery and preventing the electrolyte from leaking. This is because the heat generated by the reaction between the battery active material and the electrolytic solution is effectively absorbed by the heat of fusion of the separator, thereby suppressing gas generation accompanying the reaction.

【0025】単位面積当り融解熱が同じであるセパレー
タを用いた場合、セパレータが厚くなるにしたがってセ
パレータの総吸収熱が大きくなり良い効果が得られる
が、厚すぎる場合電池ケースに極板群が入らない等の不
都合が生じる。今回実験を行った結果、セパレータの厚
みは30μm以下が好ましかった。よって、電池のエネル
ギー密度をある程度確保するためにはセパレータの厚み
は30μm以下が良い。
When a separator having the same heat of fusion per unit area is used, the total heat absorbed by the separator increases as the thickness of the separator increases, and a good effect is obtained. There are inconveniences such as the absence. As a result of this experiment, the thickness of the separator was preferably 30 μm or less. Therefore, in order to secure the energy density of the battery to some extent, the thickness of the separator is preferably 30 μm or less.

【0026】また、セパレータの厚みが10μm以下の場
合、電池内に含まれるセパレータの量が非常に少なくセ
パレータに吸収される熱が小さいためガス発生量が多く
なった。さらに、セパレータが薄い場合、内部短絡等の
危険性が生じるため、安全性を考慮すると15μm以上の
厚みが好ましい。
When the thickness of the separator was 10 μm or less, the amount of gas generated increased because the amount of the separator contained in the battery was very small and the heat absorbed by the separator was small. Further, when the separator is thin, there is a risk of internal short circuit or the like. Therefore, in consideration of safety, a thickness of 15 μm or more is preferable.

【0027】なお、本実験例では、セパレータにポリエ
チレン微孔性膜を単独で用いた場合について示したが、
ポリエチレン微孔性膜とポリプロピレン微孔性膜を多層
化したものであっても同様の効果が得られた。
In this experimental example, the case where the polyethylene microporous membrane was used alone for the separator was shown.
The same effect was obtained even with a multilayer of a polyethylene microporous membrane and a polypropylene microporous membrane.

【0028】(実施例8)正極はLiOH・H2OとN
i(0H)2とを混合し、750℃で10時間乾燥空気雰囲気
下で焼成したLiNiO2100重量部に導電材としてアセ
チレンブラック3重量部、結着剤としてポリフッ化ビニ
リデン4重量部をN-メチルピロリドン100重量部に混合し
懸濁させて正極合剤ペ−ストとした。この正極合剤ペー
ストを厚さ30μmのアルミ箔に正極合剤ペーストを両面
に塗工し、乾燥後、圧延ローラーを用いて圧延を行っ
た。これを所定の寸法の正極板とした。
(Embodiment 8) LiOH.H 2 O and N
i (0H) 2 and 100 parts by weight of LiNiO 2 fired at 750 ° C. for 10 hours in a dry air atmosphere, 3 parts by weight of acetylene black as a conductive material, and 4 parts by weight of polyvinylidene fluoride as a binder. The mixture was mixed and suspended in 100 parts by weight of methylpyrrolidone to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied on both sides of a 30 μm-thick aluminum foil, dried, and then rolled using a rolling roller. This was used as a positive electrode plate having a predetermined size.

【0029】負極はメソフェ−ズ小球体を3000℃で黒鉛
化し平均粒径が約3μmになるように粉砕、分級したもの
(d(002)=3.355Å、BET比表面積=4.0m2/g)を用い
た。ここでd(002)はX線回折により求めた。さらに結着
剤として、スチレン/ブタジエンゴム3重量%を混合し
た後、黒鉛に対し1%カルボキシメチルセルロ−ス水溶液
100重量部に懸濁させてペ−スト状にした。この負極ペ
ーストを厚さ15μmの銅箔の両面に塗工し、乾燥後、圧
延を行い負極板を作製した。
The negative electrode was obtained by graphitizing a mesophase spheroid at 3000 ° C. and pulverizing and classifying the sphere to an average particle size of about 3 μm (d (002) = 3.355 °, BET specific surface area = 4.0 m 2 / g). Was used. Here, d (002) was obtained by X-ray diffraction. Further, after mixing 3% by weight of styrene / butadiene rubber as a binder, 1% aqueous solution of carboxymethyl cellulose is added to graphite.
It was suspended in 100 parts by weight to make a paste. This negative electrode paste was applied on both sides of a copper foil having a thickness of 15 μm, dried, and then rolled to prepare a negative electrode plate.

【0030】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリ−ドをそれぞれ取り付け、DSC
を用いた測定の結果、70〜150℃の温度領域で融解熱が
0.07cal/cm2で厚みが25μmのポリエチレン製のセパレ−
タを渦巻状に巻回し、直径17mm、高さ50mmの円筒型電池
ケ−スに納入した。電解液にはエチレンカーボネートと
エチルメチルカーボネートとを1:3の体積比で混合し
た溶媒に1.5モル/リットルのLiPF6を溶解したもの
を用い、これを注液した後封口した。これを本発明の電
池Hとした。
A lead made of aluminum is attached to the positive electrode plate, and a lead made of nickel is attached to the negative electrode plate.
As a result of the measurement using
A polyethylene separator with a thickness of 25 μm at 0.07 cal / cm 2
The coil was spirally wound and delivered to a cylindrical battery case with a diameter of 17 mm and a height of 50 mm. As the electrolytic solution, a solution prepared by dissolving 1.5 mol / l of LiPF 6 in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 was used, injected, and sealed. This was designated as Battery H of the present invention.

【0031】(実施例9)負極にメソフェ−ズ小球体を
2800℃で黒鉛化し平均粒径が約3μmになるように粉砕、
分級したもの(d(002)=3.360Å、BET比表面積=4.0m
2/g)を用いた以外は(実施例8)と同様の電池を作成
した。これを本発明の電池Iとした。
(Example 9) Mesophase small spheres were used for the negative electrode.
Graphitized at 2800 ° C and pulverized so that the average particle size becomes about 3 μm,
Classified (d (002) = 3.360Å, BET specific surface area = 4.0m
2 / g) was prepared in the same manner as in (Example 8), except that 2 / g) was used. This was designated as Battery I of the present invention.

【0032】(実施例10)負極にメソフェ−ズ小球体
を2500℃で黒鉛化し平均粒径が約3μmになるように粉
砕、分級したもの(d(002)=3.370Å、BET比表面積=
4.0m2/g)を用いた以外は(実施例8)と同様の電池を
作成した。これを本発明の電池Jとした。
(Example 10) Mesophase small spheres were graphitized at 2500 ° C on the negative electrode, pulverized and classified so as to have an average particle size of about 3 μm (d (002) = 3.370 °, BET specific surface area =
(Example 8) except that 4.0 m 2 / g) was used. This was designated as Battery J of the present invention.

【0033】(実施例11)負極にメソフェ−ズ小球体
を2300℃で黒鉛化し平均粒径が約3μmになるように粉
砕、分級したもの(d(002)=3.380Å、BET比表面積=
4.0m2/g)を用いた以外は(実施例8)と同様の電池を
作成した。これを本発明の電池Kとした。
(Example 11) Mesophase small spheres were graphitized at 2300 ° C for the negative electrode, pulverized and classified so that the average particle size became about 3 µm (d (002) = 3.380 °, BET specific surface area =
(Example 8) except that 4.0 m 2 / g) was used. This was designated as Battery K of the present invention.

【0034】(実施例12)負極にメソフェ−ズ小球体
を2100℃で黒鉛化し平均粒径が約3μmになるように粉
砕、分級したもの(d(002)=3.390Å、BET比表面積=
4.0m2/g)を用いた以外は(実施例8)と同様の電池を
作成した。これを本発明の電池Lとした。
(Example 12) Mesophase small spheres were graphitized at 2100 ° C on the negative electrode, pulverized and classified so as to have an average particle size of about 3 μm (d (002) = 3.390 °, BET specific surface area =
(Example 8) except that 4.0 m 2 / g) was used. This was designated as Battery L of the present invention.

【0035】以下d(002)が同じでBET比表面積を変え
ることにより異なる負極を用いて試験を行った。
A test was carried out using different negative electrodes having the same d (002) but different BET specific surface areas.

【0036】(実施例13)負極に平均粒径が約50μm
の鱗片状黒鉛(d(002)=3.360Å、BET比表面積=0.5m
2/g)を用いた以外は(実施例8)と同様の電池を作成
した。これを本発明の電池Mとした。
Example 13 The negative electrode had an average particle size of about 50 μm.
Flake graphite (d (002) = 3.360Å, BET specific surface area = 0.5m
2 / g) was prepared in the same manner as in (Example 8), except that 2 / g) was used. This was designated as Battery M of the present invention.

【0037】(実施例14)負極に平均粒径が約30μm
の鱗片状黒鉛(d(002)=3.360Å、BET比表面積=2.0m
2/g)を用いた以外は(実施例8)と同様の電池を作成
した。これを本発明の電池Nとした。
Example 14 A negative electrode having an average particle size of about 30 μm
Flake graphite (d (002) = 3.360Å, BET specific surface area = 2.0m
2 / g) was prepared in the same manner as in (Example 8), except that 2 / g) was used. This was designated as Battery N of the present invention.

【0038】(実施例15)負極に平均粒径が約20μm
の鱗片状黒鉛(d(002)=3.360Å、BET比表面積=6.0m
2/g)を用いた以外は(実施例8)と同様の電池を作成
した。これを本発明の電池Oとした。
Example 15 A negative electrode having an average particle size of about 20 μm
Flake graphite (d (002) = 3.360Å, BET specific surface area = 6.0m
2 / g) was prepared in the same manner as in (Example 8), except that 2 / g) was used. This was designated as Battery O of the present invention.

【0039】(実施例16)負極に平均粒径が約10μm
の鱗片状黒鉛(d(002)=3.360Å、BET比表面積=8.0m
2/g)を用いた以外は(実施例8)と同様の電池を作成
した。これを本発明の電池Pとした。
Example 16 A negative electrode having an average particle size of about 10 μm
Flake graphite (d (002) = 3.360Å, BET specific surface area = 8.0m
2 / g) was prepared in the same manner as in (Example 8), except that 2 / g) was used. This was designated as Battery P of the present invention.

【0040】(実施例17)負極に平均粒径が約5μmの
鱗片状黒鉛(d(002)=3.360Å、BET比表面積=10.0m2
/g)を用いた以外は(実施例8)と同様の電池を作成し
た。これを本発明の電池Qとした。
(Example 17) Scaly graphite having an average particle size of about 5 μm (d (002) = 3.360 °, BET specific surface area = 10.0 m 2)
/ g), except that (g) was used. This was designated as Battery Q of the present invention.

【0041】次に、本発明の電池H,I,J,K,L,
M,N,O,P,Qを各5セルずつ用意して、環境温度
20℃で、上限電圧を4.2Vに設定して、630mAの定電流で2
時間充電を行った。放電はこの充電状態の電池を放電電
流720mA、放電終止電位3.0Vの定電流放電を行った。そ
して、それぞれ20サイクル目の放電容量を初期容量とし
た。以上の充放電サイクルを繰り返した後、100%充電状
態で加熱を行った。加熱試験は、室温から毎分5℃で150
℃まで昇温し、150℃で10分間維持の条件で行った。電
池内部の温度および漏液率を(表2)に示す。
Next, the batteries H, I, J, K, L,
M, N, O, P, Q are prepared for each 5 cells, and environmental temperature
At 20 ° C, set the upper limit voltage to 4.2V, and set
Charged for hours. For discharging, the battery in this charged state was subjected to constant current discharge at a discharge current of 720 mA and a discharge termination potential of 3.0 V. The discharge capacity at the 20th cycle was used as the initial capacity. After repeating the above charge / discharge cycle, heating was performed in a 100% charged state. The heating test is 150 ° C at 5 ° C / min from room temperature.
The temperature was raised to 150 ° C. and the temperature was maintained at 150 ° C. for 10 minutes. The temperature inside the battery and the liquid leakage rate are shown in (Table 2).

【0042】[0042]

【表2】 [Table 2]

【0043】(表2)より、漏液率の点で黒鉛層間の面
間隔は電池HからLの範囲で差はなかった。しかし、電
池の初期容量の点からみると、d(002)が3.38Å以上にな
ると初期容量は著しく低下している。これは、黒鉛の層
間距離が大きくなりすぎるとインターカレートし得るリ
チウム量が減少するためである。また、d(002)が小さい
程電池内温度が上昇しているが、これは黒鉛化度が高い
程電解液との反応性が高くなり発熱量が大きくなるから
である。よって、d(002)は3.350Å以上3.380Å未満が好
ましい。
From Table 2, it can be seen that there was no difference between the graphite layers between the graphite layers in terms of the liquid leakage rate. However, from the viewpoint of the initial capacity of the battery, when d (002) becomes 3.38 ° or more, the initial capacity is significantly reduced. This is because if the interlayer distance of graphite is too large, the amount of lithium that can be intercalated decreases. Also, the smaller the d (002), the higher the temperature in the battery. This is because the higher the degree of graphitization, the higher the reactivity with the electrolytic solution and the larger the calorific value. Therefore, d (002) is preferably not less than 3.350 ° and less than 3.380 °.

【0044】さらに(表2)の電池MからQより、BE
T比表面積が大きくなる程電解液との反応面積が増大
し、発熱量が大きくなり電池内温度が上昇する。ここ
で、BET比表面積が8m2/g以上になると電池内温度の
上昇が大きく、電解液との反応に伴うガス発生も増大し
漏液が起こり始める。よって、BET比表面積は8m2/g
未満でなければならない。そこで、BET比表面積が8m
2/g未満であれば漏液率の点からは良いと考えられる。
しかし上記同様電池の初期容量の点からみると、BET
比表面積が0.5m2/gの時初期容量が著しく低下してい
る。これは、反応面積の減少によるレート特性の低下が
原因である。よって、BET比表面積は小さければよい
わけではなく、2.0m2/g以上でなけばならない。
Further, from the batteries M to Q in (Table 2), BE
As the T specific surface area increases, the reaction area with the electrolyte increases, the calorific value increases, and the battery internal temperature increases. Here, when the BET specific surface area is 8 m 2 / g or more, the temperature inside the battery rises greatly, gas generation accompanying the reaction with the electrolytic solution also increases, and liquid leakage starts to occur. Therefore, the BET specific surface area is 8 m 2 / g
Must be less than. Therefore, the BET specific surface area is 8m
If it is less than 2 / g, it is considered good from the viewpoint of the liquid leakage rate.
However, similar to the above, from the viewpoint of the initial capacity of the battery,
When the specific surface area is 0.5 m 2 / g, the initial capacity is significantly reduced. This is due to a decrease in rate characteristics due to a decrease in the reaction area. Therefore, the BET specific surface area does not have to be small, and it must be 2.0 m 2 / g or more.

【0045】以上のように、X線回折による面間隔d(00
2)が3.35Å以上3.38Å未満であり、またBET法による
比表面積が2.0m2/g以上8.0m2/g未満である炭素の場合、
電池の初期容量を低下させることなく、電池の温度上昇
時にも電池活物質と電解液との反応によるガス発生が少
なく、電池内圧の上昇を抑制することができる。よっ
て、封口板の安全弁が作動せず、電解液の漏液を防止す
ることができる。
As described above, the surface spacing d (00
2) is 3.35Å or more and less than 3.38Å, and the specific surface area by the BET method is 2.0 m 2 / g or more and less than 8.0 m 2 / g,
Without reducing the initial capacity of the battery, gas generation due to the reaction between the battery active material and the electrolytic solution is small even when the temperature of the battery rises, and the rise in battery internal pressure can be suppressed. Therefore, the safety valve of the sealing plate does not operate, and the leakage of the electrolyte can be prevented.

【0046】なお、本実験例では、負極炭素に球状黒鉛
であるメゾフェース小球体を用いた場合について示した
が、塊状黒鉛についても本発明の範囲で同様の効果が得
られた。
In this experimental example, the case where mesophase small spheres, which are spherical graphite, was used as the negative electrode carbon was shown. However, the same effect was obtained for the bulk graphite within the scope of the present invention.

【0047】(実施例18)正極はLi2CO3とMnO
2とを混合し、800℃で30時間乾燥空気雰囲気下で焼成し
たLiMn24100重量部に導電材としてアセチレンブ
ラック3重量部、結着剤としてフッ素樹脂系結着剤7重量
部を混合し、LiMn24に対し1%カルボキシメチルセ
ルロ−ス水溶液100重量部に懸濁させて正極合剤ペ−ス
トとした。この正極合剤ペーストを厚さ30μmのアルミ
箔に正極合剤ペーストを両面に塗工し、乾燥後、圧延ロ
ーラーを用いて圧延を行った。これを所定の寸法の正極
板とした。
Example 18 The positive electrode was made of Li 2 CO 3 and MnO
2 and 100 parts by weight of LiMn 2 O 4 fired at 800 ° C. for 30 hours in a dry air atmosphere, and 3 parts by weight of acetylene black as a conductive material and 7 parts by weight of a fluororesin binder as a binder Then, the mixture was suspended in 100 parts by weight of a 1% aqueous solution of carboxymethyl cellulose with respect to LiMn 2 O 4 to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied on both sides of a 30 μm-thick aluminum foil, dried, and then rolled using a rolling roller. This was used as a positive electrode plate having a predetermined size.

【0048】負極はメソフェ−ズ小球体を2800℃で黒鉛
化し平均粒径が約3μmになるように粉砕、分級したもの
(d(002)=3.360Å、BET比表面積=4.0m2/g)を用い
た。さらに結着剤として、スチレン/ブタジエンゴム5
重量部を混合した後、黒鉛に対し1%カルボキシメチルセ
ルロ−ス水溶液100重量部に懸濁させてペ−スト状にし
た。厚さ20μmの銅箔に負極ペーストを両面に塗工し、
乾燥後、圧延ローラーを用いて圧延を行った。これを所
定の寸法の負極板とした。
The negative electrode was obtained by graphitizing a mesophase spheroid at 2800 ° C. and pulverizing and classifying the sphere to an average particle size of about 3 μm (d (002) = 3.360 °, BET specific surface area = 4.0 m 2 / g). Was used. In addition, styrene / butadiene rubber 5
After mixing by weight, the mixture was suspended in 100% by weight of a 1% aqueous solution of carboxymethyl cellulose with respect to graphite to form a paste. Apply a negative electrode paste on both sides to a copper foil of 20 μm thickness,
After drying, rolling was performed using a rolling roller. This was used as a negative electrode plate having a predetermined size.

【0049】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリ−ドをそれぞれ取り付け、DSC
を用いた測定の結果、70〜150℃の温度領域で融解熱が
0.07cal/cm2で厚みが25μmのポリエチレン製のセパレ−
タを渦巻状に巻回し、直径17mm、高さ50mmの円筒型電池
ケ−スに納入した。電解液にはエチレンカーボネートと
エチルメチルカーボネートとを1:3の体積比で混合し
た溶媒に1.5モル/リットルのLiPF6を溶解したもの
を用い、これを注液した後封口した。これを本発明の電
池Rとした。
A lead made of aluminum is attached to the positive electrode plate, and a lead made of nickel is attached to the negative electrode plate.
As a result of the measurement using
A polyethylene separator with a thickness of 25 μm at 0.07 cal / cm 2
The coil was spirally wound and delivered to a cylindrical battery case with a diameter of 17 mm and a height of 50 mm. As the electrolytic solution, a solution prepared by dissolving 1.5 mol / l of LiPF 6 in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 was used, injected, and sealed. This was designated as Battery R of the present invention.

【0050】(実施例19)エチレンカーボネートとジ
エチルカーボネートとを1:3の体積比で混合した溶媒
を用いた以外は(実施例18)と同様の電池を作成し
た。これを本発明の電池Sとした。
(Example 19) A battery similar to (Example 18) was prepared except that a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 3 was used. This was designated as Battery S of the present invention.

【0051】(実施例20)エチレンカーボネートとジ
メチルチルカーボネートとを1:3の体積比で混合した
溶媒を用いた以外は(実施例18)と同様の電池を作成
した。これを本発明の電池Tとした。
(Example 20) A battery similar to (Example 18) was prepared except that a solvent in which ethylene carbonate and dimethyl tyl carbonate were mixed at a volume ratio of 1: 3 was used. This was designated as Battery T of the present invention.

【0052】(実施例21)エチレンカーボネートとエ
チルメチルカーボネートとプロピレンカーボネートとを
1:2:1の体積比で混合した溶媒を用いた以外は(実
施例18)と同様の電池を作成した。これを本発明の電
池Uとした。
Example 21 A battery similar to (Example 18) was prepared except that a solvent in which ethylene carbonate, ethyl methyl carbonate, and propylene carbonate were mixed at a volume ratio of 1: 2: 1 was used. This was designated as Battery U of the present invention.

【0053】(実施例22)エチレンカーボネートとジ
エチルカーボネートとプロピオン酸メチルとを1:2:
1の体積比で混合した溶媒を用いた以外は(実施例1
8)と同様の電池を作成した。これを本発明の電池Vと
した。
(Example 22) Ethylene carbonate, diethyl carbonate and methyl propionate in a ratio of 1: 2:
Example 1 except that a solvent mixed at a volume ratio of 1 was used.
A battery similar to 8) was prepared. This was designated as Battery V of the present invention.

【0054】(実施例23)エチレンカーボネートとジ
エチルカーボネートとプロピオン酸エチルとを1:2:
1の体積比で混合した溶媒を用いた以外は(実施例1
8)と同様の電池を作成した。これを本発明の電池Wと
した。
Example 23: Ethylene carbonate, diethyl carbonate and ethyl propionate in a ratio of 1: 2:
Example 1 except that a solvent mixed at a volume ratio of 1 was used.
A battery similar to 8) was prepared. This was designated as Battery W of the present invention.

【0055】(実施例24)エチレンカーボネートと1,
2-ジメトキシエタンとを1:3の体積比で混合した溶媒
を用いた以外は(実施例18)と同様の電池を作成し
た。これを本発明の電池Xとした。
Example 24 Ethylene carbonate and 1,
A battery similar to (Example 18) was made except that a solvent in which 2-dimethoxyethane was mixed at a volume ratio of 1: 3 was used. This was designated as Battery X of the present invention.

【0056】(実施例25)エチレンカーボネートとテ
トラヒドロフランとを1:3の体積比で混合した溶媒を
用いた以外は(実施例18)と同様の電池を作成した。
これを本発明の電池Yとした。
(Example 25) A battery similar to (Example 18) was prepared except that a solvent in which ethylene carbonate and tetrahydrofuran were mixed at a volume ratio of 1: 3 was used.
This was designated as Battery Y of the present invention.

【0057】次に、本発明の電池R、S、T、U、V、
W、X、Yを各5セルずつ用意して、環境温度20℃で、
上限電圧を4.2Vに設定して、630mAの定電流で2時間充電
を行った。放電はこの充電状態の電池を放電電流720m
A、放電終止電位3.0Vの定電流放電を行った。以上の充
放電サイクルを20サイクル繰り返した後、100%充電状態
で加熱を行った。加熱試験は、室温から毎分5℃で150℃
まで昇温し、150℃で10分間維持の条件で行った。電池
内部の温度および漏液率を(表3)に示す。
Next, the batteries R, S, T, U, V,
W, X, Y are prepared for each 5 cells, at an ambient temperature of 20 ° C.,
The upper limit voltage was set to 4.2 V, and charging was performed at a constant current of 630 mA for 2 hours. Discharge the battery in this charged state with a discharge current of 720m
A, constant current discharge at a discharge termination potential of 3.0 V was performed. After repeating the above charge / discharge cycle for 20 cycles, heating was performed in a 100% charged state. Heating test: 150 ° C at 5 ° C / min from room temperature
The temperature was raised to 150 ° C. for 10 minutes. Table 3 shows the temperature inside the battery and the liquid leakage rate.

【0058】[0058]

【表3】 [Table 3]

【0059】電解液の溶媒としてエチレンカーボネート
は熱的安定性に優れているが、融点が34℃と高く、また
粘性が高いため含有率を大きくするとリチウムイオンの
導電性が低下する。このため、この実験においてはエチ
レンカーボネートの含有率を25%で一定にして行った。
As a solvent for the electrolytic solution, ethylene carbonate is excellent in thermal stability, but has a high melting point of 34 ° C. and a high viscosity, so that when the content is increased, the conductivity of lithium ions decreases. Therefore, in this experiment, the content of ethylene carbonate was kept constant at 25%.

【0060】(表3)より、電解液の溶媒としてテトラ
ヒドロフランなどの環状エーテルを用いた場合、エチレ
ンカーボネート、エチルメチルカーボネートなどの環状
および鎖状カーボネートを用いた場合と比べて電池内温
度の上昇が大きかった。これは、電解液の溶媒として環
状エーテルを用いた場合、環状および鎖状カーボネート
と比べて電池活物質と電解液の溶媒との反応による発熱
が大きく、その温度上昇によりガス発生が起こりやすく
なるためである。また、電解液の溶媒として1,2-ジメト
キシエタンなどの鎖状エーテルを用いた場合、環状エー
テルと比べて電池内温度の上昇は抑制された。しかし、
このような温度でも環状および鎖状カーボネートを用い
た場合と比べて電池活物質と電解液の溶媒との反応によ
るガス発生量が多いため電池内圧が上昇し、電解液の漏
液が起こった。さらに、環状および鎖状エーテルは酸化
電位がエステル系と比べて低く、このため充電時に電解
液の分解反応が起こり、電池容量が小さい。このような
理由から電解液の溶媒に環状および鎖状エーテルを用い
ることは電池性能を低下させるため不適切である。
As shown in Table 3, when the cyclic ether such as tetrahydrofuran was used as the solvent for the electrolytic solution, the temperature in the battery increased more than when the cyclic and chain carbonates such as ethylene carbonate and ethyl methyl carbonate were used. It was big. This is because, when a cyclic ether is used as the solvent of the electrolytic solution, heat generation due to the reaction between the battery active material and the solvent of the electrolytic solution is larger than that of the cyclic and chain carbonates, and gas generation easily occurs due to the temperature rise. It is. Also, when a chain ether such as 1,2-dimethoxyethane was used as the solvent for the electrolytic solution, the rise in the temperature inside the battery was suppressed as compared with the cyclic ether. But,
Even at such a temperature, the amount of gas generated by the reaction between the battery active material and the solvent of the electrolytic solution is larger than in the case of using cyclic and chain carbonates, so that the internal pressure of the battery rises and the electrolyte leaks. Furthermore, the oxidation potential of cyclic and chain ethers is lower than that of ester-based ethers, so that a decomposition reaction of the electrolyte occurs during charging, and the battery capacity is small. For these reasons, the use of cyclic and chain ethers as the solvent of the electrolytic solution is inappropriate because it lowers battery performance.

【0061】以上のように、電解液の溶媒として、エチ
レンカーボネート、プロピレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネート、プロピオン酸メチル、プロピオン酸エチル
からなる群より選ばれる一種以上であることが好まし
い。
As described above, the solvent for the electrolytic solution is preferably at least one selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propionate, and ethyl propionate. .

【0062】また、本実施例では、正極にLiCo
2、LiNiO2、LiMn24を用いたが、Feを用
いても良く、MがCo、Ni、Fe、Mnからなる群よ
り選ばれる一種以上の遷移金属で0.5≦x≦1.0,1.0≦y
≦2.0であるLixy2であれば同様の効果が得られ
た。
In this embodiment, the positive electrode is LiCo.
Although O 2 , LiNiO 2 , and LiMn 2 O 4 were used, Fe may be used, and M is one or more transition metals selected from the group consisting of Co, Ni, Fe, and Mn and 0.5 ≦ x ≦ 1.0, 1.0 ≤y
Similar effects if a Li x M y O 2 ≦ 2.0 was obtained.

【0063】[0063]

【発明の効果】以上のように本発明では、セパレータに
70〜150℃の温度範囲において、融解熱による単位面積
あたりの吸熱量が少なくとも0.07cal/cm2で、厚さ15〜3
0μmのポリオレフィン系微孔性膜を用いているので、電
池温度上昇時の発熱をセパレータで効率的に吸収するこ
とができ、電池内圧の急激な上昇やこれに起因する漏液
を防止することができる。
As described above, in the present invention, the separator
In the temperature range of 70 to 150 ° C., an endothermic amount per unit area by heat of fusion of at least 0.07cal / cm 2, thickness 15 to 3
Since the microporous polyolefin membrane of 0 μm is used, the heat generated when the battery temperature rises can be efficiently absorbed by the separator, preventing a sudden increase in battery internal pressure and liquid leakage caused by this. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における非水電解液二次電池の
構成図
FIG. 1 is a configuration diagram of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 正極板 3 負極板 4 電池ケース 5 正極リ−ド 6 封口板 7 負極リ−ド 8 絶縁リング DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode plate 3 Negative electrode plate 4 Battery case 5 Positive electrode lead 6 Sealing plate 7 Negative electrode lead 8 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/40 H01M 10/40 Z A (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01M 10/40 H01M 10/40 Z A (72) Inventor Hideshi Koshina 1006 Odakadoma, Kadoma City, Osaka Prefecture Address Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正、負極とこれらの間に配されるセパレ
ータと非水電解液を備え、前記セパレータは、70〜150
℃の温度範囲において単位面積あたりの吸熱量が0.07ca
l/cm2以上であり、厚みが15μm以上30μm以下であるポ
リオレフィン系微孔性膜からなるセパレータを用いた非
水電解液二次電池。
A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte.
Endotherm per unit area is 0.07ca in the temperature range of ℃
l / cm 2 or more, a non-aqueous electrolyte secondary battery using the separator thickness is a polyolefin microporous film is 15μm or more 30μm or less.
【請求項2】 ポリオレフィン系微孔性膜からなるセパ
レータが、ポリエチレン単独の微孔性膜もしくはポリエ
チレン微孔性膜とポリプロピレン微孔性膜を多層化した
複合膜である請求項1記載の非水電解液二次電池。
2. The non-aqueous solution according to claim 1, wherein the separator comprising the polyolefin-based microporous membrane is a polyethylene-only microporous membrane or a composite membrane obtained by multilayering a polyethylene microporous membrane and a polypropylene microporous membrane. Electrolyte secondary battery.
【請求項3】 正極にリチウム含有遷移金属酸化物、負
極にリチウムを吸蔵、放出が可能な炭素を用いた請求項
1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a lithium-containing transition metal oxide is used for a positive electrode, and carbon capable of occluding and releasing lithium is used for a negative electrode.
【請求項4】 リチウム含有遷移金属複合酸化物が化学
式Lixy2(式中MはCo、Ni、Fe、Mnから
なる群より選ばれる一種以上の遷移金属;0.5≦x≦1.
0,1.0≦y≦2.0)で表される請求項3記載の非水電解液
二次電池。
4. The lithium-containing transition metal composite oxide has a chemical formula of Li x MyO 2 (where M is one or more transition metals selected from the group consisting of Co, Ni, Fe, and Mn; 0.5 ≦ x ≦ 1.
4. The non-aqueous electrolyte secondary battery according to claim 3, represented by the following formula: (0, 1.0 ≦ y ≦ 2.0).
【請求項5】 炭素がX線回折による面間隔d(002)が3.
38Å未満であり、またBET法による比表面積が2.0m2/
g以上8.0m2/g未満である請求項3記載の非水電解液二次
電池。
5. The method according to claim 1, wherein the carbon has an interplanar spacing d (002) of 3.
Less than 38Å and specific surface area by BET method of 2.0 m 2 /
Non-aqueous electrolyte secondary battery according to claim 3, wherein g or more 8.0m is less than 2 / g.
【請求項6】 非水電解液の溶媒がエチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、プ
ロピオン酸メチル、プロピオン酸エチルからなる群より
選ばれる一種以上である請求項1または3記載の非水電
解液二次電池。
6. The solvent of the non-aqueous electrolyte is ethylene carbonate, propylene carbonate, dimethyl carbonate,
4. The non-aqueous electrolyte secondary battery according to claim 1, which is at least one selected from the group consisting of diethyl carbonate, ethyl methyl carbonate, methyl propionate, and ethyl propionate.
【請求項7】 非水電解液の溶質が主に6フッ化リン酸
リチウムからなる請求項1または3記載の非水電解液二
次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the solute of the non-aqueous electrolyte mainly comprises lithium hexafluorophosphate.
JP11782197A 1996-05-09 1997-05-08 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3508464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11782197A JP3508464B2 (en) 1996-05-09 1997-05-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-114538 1996-05-09
JP11453896 1996-05-09
JP11782197A JP3508464B2 (en) 1996-05-09 1997-05-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1050292A true JPH1050292A (en) 1998-02-20
JP3508464B2 JP3508464B2 (en) 2004-03-22

Family

ID=26453284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11782197A Expired - Lifetime JP3508464B2 (en) 1996-05-09 1997-05-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3508464B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313323A (en) * 2001-04-13 2002-10-25 Toyota Central Res & Dev Lab Inc Negative electrode for use in lithium secondary battery and lithium secondary battery using it
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
US7214450B2 (en) 1999-05-26 2007-05-08 Sony Corporation Solid electrolyte battery
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134988A (en) * 1993-11-10 1995-05-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH07307146A (en) * 1994-05-12 1995-11-21 Ube Ind Ltd Battery separator and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134988A (en) * 1993-11-10 1995-05-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH07307146A (en) * 1994-05-12 1995-11-21 Ube Ind Ltd Battery separator and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087958A (en) * 1999-05-26 2007-04-05 Sony Corp Solid electrolyte battery
US7214450B2 (en) 1999-05-26 2007-05-08 Sony Corporation Solid electrolyte battery
US7432019B2 (en) 1999-05-26 2008-10-07 Sony Corporation Solid electrolyte battery
JP2002313323A (en) * 2001-04-13 2002-10-25 Toyota Central Res & Dev Lab Inc Negative electrode for use in lithium secondary battery and lithium secondary battery using it
JP2007157734A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007157735A (en) * 2007-02-08 2007-06-21 Hitachi Maxell Ltd Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP3508464B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
JP2007250198A (en) Nonaqueous electrolyte secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP7166265B2 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
CA3040031C (en) Battery module for starting a power equipment
JP3885227B2 (en) Non-aqueous secondary battery
CN101110477A (en) Electro-chemistry energy storing and converting device
JP2009134970A (en) Nonaqueous electrolytic battery
JP5793411B2 (en) Lithium secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2003297354A (en) Lithium secondary battery
JP2009146811A (en) Positive electrode body for lithium-ion secondary battery and lithium-ion secondary battery
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2002237331A (en) Lithium secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP3508464B2 (en) Non-aqueous electrolyte secondary battery
CN111725555B (en) Lithium ion secondary battery
JP2007220455A (en) Nonaqueous electrolyte secondary battery
KR101438696B1 (en) Electrode Assembly and Secondary Battery having the Same
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP2004235068A (en) Manufacturing method for positive electrode and nonaqueous electrolyte secondary battery using the positive electrode obtained by the method
JP7491303B2 (en) Current collector, conductive layer forming paste, electrode, and storage element

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 11

EXPY Cancellation because of completion of term