JP5709134B2 - Method for producing positive electrode active material for lithium ion battery - Google Patents

Method for producing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP5709134B2
JP5709134B2 JP2011139047A JP2011139047A JP5709134B2 JP 5709134 B2 JP5709134 B2 JP 5709134B2 JP 2011139047 A JP2011139047 A JP 2011139047A JP 2011139047 A JP2011139047 A JP 2011139047A JP 5709134 B2 JP5709134 B2 JP 5709134B2
Authority
JP
Japan
Prior art keywords
solvent
lithium
positive electrode
organic compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011139047A
Other languages
Japanese (ja)
Other versions
JP2013008483A (en
Inventor
四穂 石原
四穂 石原
弘樹 山下
弘樹 山下
鈴木 務
務 鈴木
聖志 金村
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan University
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan University filed Critical Taiheiyo Cement Corp
Priority to JP2011139047A priority Critical patent/JP5709134B2/en
Publication of JP2013008483A publication Critical patent/JP2013008483A/en
Application granted granted Critical
Publication of JP5709134B2 publication Critical patent/JP5709134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン電池用正極活物質の製造法に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium ion battery.

リチウムイオン電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   Lithium ion batteries are a type of non-aqueous electrolyte battery and are used in a wide range of fields such as mobile phones, digital cameras, notebook PCs, hybrid cars, and electric cars. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、LiFePO4やLi2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用である。 As this positive electrode material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeSiO 4 ) and the like are known. Among these, LiFePO 4 and Li 2 FeSiO 4 have an olivine structure and are useful as a positive electrode material for a high capacity lithium ion battery.

Li2FeSiO4等のケイ酸鉄リチウム系正極材料の製造法としては、Li源、鉄源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成するという固相法が一般的である(特許文献1、2)。しかし、固相法では、不活性ガス雰囲気での焼成と粉砕を行う必要があり、複雑な操作が必要であるとともに、粒径や結晶度を制御することが困難である。
これに対し、非特許文献1及び2には、Li2Mn1-yFeySiO4(y=0〜1)を水熱合成で得られる旨の記載がある。
As a method for producing a lithium iron silicate-based positive electrode material such as Li 2 FeSiO 4, a solid phase method in which a mixture of a Li source, an iron source and a silicate source is pulverized and fired at 500 to 900 ° C. is common. (Patent Documents 1 and 2). However, in the solid phase method, it is necessary to perform firing and pulverization in an inert gas atmosphere, which requires complicated operations and it is difficult to control the particle size and crystallinity.
In contrast, Non-Patent Documents 1 and 2 have a description that Li 2 Mn 1-y Fe y SiO 4 (y = 0 to 1) can be obtained by hydrothermal synthesis.

特開2001−266882号公報JP 2001-266882 A 特開2002−198050号公報JP 2002-198050 A

GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26 R.Dominiko et al,Journal of Power Sources 184(2008),p462−468R. Dominiko et al, Journal of Power Sources 184 (2008), p462-468.

水熱合成で得られるケイ酸鉄リチウムやリン酸鉄リチウムは、粒径が小さく、かつ均一であることから、正極材料として極めて有用である。しかし、正極活物質とするには、これらの化合物をカーボンブラック等の導電性材料で被覆する必要がある。リン酸鉄リチウムの場合には、水熱合成反応系に炭素源を添加することにより炭素被覆を行うことができるが、ケイ酸鉄リチウムの場合には水熱合成反応系に炭素源を添加すると、副生成物が生成するという問題が発生することが判明した。
従って、本発明の課題は、炭素被覆されたケイ酸鉄リチウムを含有する正極活物質の新たな製造法を提供することにある。
Lithium iron silicate and lithium iron phosphate obtained by hydrothermal synthesis are extremely useful as positive electrode materials because of their small particle size and uniformity. However, in order to obtain a positive electrode active material, it is necessary to coat these compounds with a conductive material such as carbon black. In the case of lithium iron phosphate, carbon coating can be performed by adding a carbon source to the hydrothermal synthesis reaction system, but in the case of lithium iron silicate, if a carbon source is added to the hydrothermal synthesis reaction system, It has been found that the problem of generating by-products occurs.
Therefore, an object of the present invention is to provide a new method for producing a positive electrode active material containing carbon-coated lithium iron silicate.

そこで本発明者は、ケイ酸鉄リチウムの炭素被覆手段について種々検討した結果、ケイ酸鉄リチウムと導電性炭素材料等の炭素源とを混合粉砕処理する方法では十分な放電容量を有する正極活物質が得られないにもかかわらず、全く意外にも、ケイ酸鉄リチウムと導電性炭素材料と溶媒可溶性有機化合物とを溶媒中に分散させた液をボールミルを用いて混合した後、乾燥し焼成することにより、高い放電容量を有する正極活物質が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies on the carbon coating means of lithium iron silicate, the present inventor has obtained a positive electrode active material having a sufficient discharge capacity in a method of mixing and grinding lithium iron silicate and a carbon source such as a conductive carbon material. In spite of not being able to obtain, a liquid in which lithium iron silicate, a conductive carbon material, and a solvent-soluble organic compound are dispersed in a solvent is mixed using a ball mill, and then dried and fired. Thus, a positive electrode active material having a high discharge capacity was obtained, and the present invention was completed.

すなわち、本発明は、ケイ酸鉄リチウム微粒子、導電性炭素材料、溶媒可溶性有機化合物及び溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥後焼成することを特徴とするリチウムイオン電池用正極活物質の製造法を提供するものである。
また、本発明は、上記の製造法により得られた正極活物質を含む正極を有するリチウムイオン電池を提供するものである。
That is, the present invention is a lithium ion battery characterized in that a dispersion containing lithium iron silicate fine particles, a conductive carbon material, a solvent-soluble organic compound and a solvent is mixed using a ball mill, dried and fired. A method for producing a positive electrode active material is provided.
Moreover, this invention provides the lithium ion battery which has a positive electrode containing the positive electrode active material obtained by said manufacturing method.

本発明方法により得られる正極活物質は、高い放電容量を有し、リチウムイオン電池用正極活物質として有用である。また、少ない炭素源量で高い放電容量を示す正極活物質が得られるためリチウムイオン電池のコスト削減も可能となる。   The positive electrode active material obtained by the method of the present invention has a high discharge capacity and is useful as a positive electrode active material for lithium ion batteries. In addition, since a positive electrode active material having a high discharge capacity can be obtained with a small amount of carbon source, the cost of the lithium ion battery can be reduced.

実施例1で得られた粉末のX線回折図を示す。The X-ray diffraction pattern of the powder obtained in Example 1 is shown.

本発明のリチウムイオン電池用正極活物質の製造法は、ケイ酸鉄リチウム微粒子、導電性炭素材料、溶媒可溶性有機化合物及び溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥し、次に焼成することを特徴とする。   The method for producing a positive electrode active material for a lithium ion battery according to the present invention comprises mixing a dispersion containing lithium iron silicate fine particles, a conductive carbon material, a solvent-soluble organic compound and a solvent using a ball mill, followed by drying. It is characterized by firing.

ケイ酸鉄リチウム微粒子としては、Li2FeSiO4微粒子が好ましい。Li2FeSiO4は、Li源、鉄源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成する固相法で得られるものでもよいが、ケイ酸源、鉄源及びリチウム源の混合物を水熱反応させて得られるものを用いるのが、粒径が小さく、かつ均一なものが得られる点で好ましい。 As the lithium iron silicate fine particles, Li 2 FeSiO 4 fine particles are preferable. Li 2 FeSiO 4 may be obtained by a solid phase method in which a mixture of a Li source, an iron source and a silicate source is pulverized and fired at 500 to 900 ° C., but a mixture of a silicate source, an iron source and a lithium source It is preferable to use a product obtained by hydrothermal reaction of a material in that a uniform particle size can be obtained.

ケイ酸鉄リチウム微粒子の製造法としては、(A)リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液と、FeSO4とを混合し、得られた混合物を水熱反応させる方法;又は(B)リチウム化合物、ケイ酸化合物及び有機酸鉄塩を含有する塩基性水分散液を水熱反応させる方法が好ましい。 As a method for producing lithium iron silicate fine particles, (A) a basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant and FeSO 4 are mixed, and the resulting mixture is hydrothermally reacted. Method; or (B) A method in which a basic aqueous dispersion containing a lithium compound, a silicate compound and an organic acid iron salt is hydrothermally reacted is preferable.

まず、(A)法について説明する。   First, the method (A) will be described.

(A)法においては、副反応を抑制する点から、FeSO4とは別に、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を調製しておくのが好ましい。リチウム化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム
(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。
In the method (A), it is preferable to prepare a basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant separately from FeSO 4 from the viewpoint of suppressing side reactions. Examples of the lithium compound include lithium hydroxide (for example, LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium sulfate, and lithium acetate, and lithium hydroxide and lithium carbonate are particularly preferable.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、水分散液が塩基性になるので、より好ましい。 The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica and Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) are preferable. Of these, the use of Na 4 SiO 4 is more preferable because the aqueous dispersion becomes basic.

酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加するとLi2FeSiO4の生成を抑制してしまうため、Feに対して等モル量以下が好ましく、Feに対してモル比で0.5以下がさらに好ましい。 As the antioxidant, sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. Since the content of the antioxidant in the aqueous dispersion, which results in suppressing the formation of Li 2 FeSiO 4 when added in a large amount, an equimolar amount or less are preferred with respect to Fe, in a molar ratio with respect to Fe 0. 5 or less is more preferable.

リチウム化合物、ケイ酸化合物及び酸化防止剤は、FeSO4とは別に、塩基性水分散液とするのが、副反応を防止し、ケイ酸化合物を溶解するうえで好ましい。水分散液のpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(Fe34の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 It is preferable that the lithium compound, the silicate compound and the antioxidant be a basic aqueous dispersion separately from FeSO 4 in order to prevent side reactions and dissolve the silicate compound. The pH of the aqueous dispersion may be basic, but it is 12.0 to 13.5 to prevent side reaction (formation of Fe 3 O 4 ), solubility of the silicate compound, and progress of the reaction. Particularly preferred in terms. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

該水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。また、ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。該水分散液の調製にあたって、リチウム化合物、ケイ酸化合物及び酸化防止剤の添加順序は特に限定されず、これらの3成分を水に添加してもよい。   The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l. The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l. In preparing the aqueous dispersion, the order of addition of the lithium compound, the silicate compound and the antioxidant is not particularly limited, and these three components may be added to water.

FeSO4の添加量は、反応混合液中0.15〜1.50mol/lとなる量が好ましく、さらに0.50〜0.75mol/lとなる量が好ましい。 The amount of FeSO 4 added is preferably 0.15 to 1.50 mol / l in the reaction mixture, and more preferably 0.50 to 0.75 mol / l.

また、反応混合液中のSi及びLiの含有量は、Feに対して2モル以上が好ましい。   The content of Si and Li in the reaction mixture is preferably 2 mol or more with respect to Fe.

(A)法においては、次に前記水分散液とFeSO4とを混合し、水熱反応に付す。水熱反応は、100℃以上であればよく、130〜180℃が好ましく、さらに140〜160℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合この時の圧力は0.3〜0.9MPaとなり、140〜160℃で反応を行う場合の圧力は0.3〜0.4MPaとなる。水熱反応時間は1〜24時間が好ましく、さらに3〜12時間が好ましい。 In the method (A), the aqueous dispersion and FeSO 4 are then mixed and subjected to a hydrothermal reaction. The hydrothermal reaction should just be 100 degreeC or more, 130-180 degreeC is preferable and 140-160 degreeC is more preferable. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 180 ° C, the pressure at this time is 0.3 to 0.9 MPa, and the pressure when the reaction is performed at 140 to 160 ° C is 0. 3 to 0.4 MPa. The hydrothermal reaction time is preferably 1 to 24 hours, more preferably 3 to 12 hours.

当該水熱反応により、Li2FeSiO4が高収率で得られる。また、得られたLi2FeSiO4の平均粒径は10〜100nmとなり、その結晶度も高い。 Li 2 FeSiO 4 is obtained in a high yield by the hydrothermal reaction. Moreover, the average particle diameter of the obtained Li 2 FeSiO 4 is 10 to 100 nm and its crystallinity is high.

得られたLi2FeSiO4は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。 The obtained Li 2 FeSiO 4 can be isolated by filtration and then drying. As the drying means, freeze drying or vacuum drying is used.

次に(B)法について説明する。リチウム化合物及びケイ酸化合物としては、(A)法と同様のものが用いられる。   Next, the method (B) will be described. As the lithium compound and silicic acid compound, those similar to the method (A) are used.

(B)法においては、Fe源として、有機酸鉄塩を用いて水熱反応を行う点に特徴がある。通常、有機酸鉄塩は固相法に用いられる原料であり、水熱反応に用いることにより副反応が抑制できることは全く予想外であった。用いられる有機酸としては、炭素数1〜20の有機酸が好ましく、炭素数2〜12の有機酸がより好ましい。より具体的な有機酸としては、シュウ酸、フマル酸等のジカルボン酸、乳酸等のヒドロキシカルボン酸、酢酸等の脂肪酸が挙げられる。   The method (B) is characterized in that a hydrothermal reaction is performed using an organic acid iron salt as the Fe source. Usually, an organic acid iron salt is a raw material used in a solid phase method, and it was completely unexpected that side reactions can be suppressed by using it in a hydrothermal reaction. As an organic acid used, a C1-C20 organic acid is preferable and a C2-C12 organic acid is more preferable. More specific organic acids include dicarboxylic acids such as oxalic acid and fumaric acid, hydroxycarboxylic acids such as lactic acid, and fatty acids such as acetic acid.

(B)法におけるSi及びLiは、Feに対してモル比で2倍以上用いることが好ましく、Si:Li:Feが1:1:2.5〜1:1:3程度がより好ましい。   In the method (B), Si and Li are preferably used in a molar ratio of at least twice with respect to Fe, and Si: Li: Fe is more preferably about 1: 1: 2.5 to 1: 1: 3.

水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。また、ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。また有機酸鉄塩の濃度は0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。   The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l. The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l. The concentration of the organic acid iron salt is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

また、水分散液中には、必要により酸化防止剤を添加してもよく、酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加するとLi2FeSiO4の生成を抑制してしまうため、Feに対して等モル量以下が好ましく、Feに対してモル比で0.5以下がさらに好ましい。 In addition, an antioxidant may be added to the aqueous dispersion as necessary. As the antioxidant, sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. Since the content of the antioxidant in the aqueous dispersion, which results in suppressing the formation of Li 2 FeSiO 4 when added in a large amount, an equimolar amount or less are preferred with respect to Fe, in a molar ratio with respect to Fe 0. 5 or less is more preferable.

これらの成分の水分散液は、塩基性とするのが副反応を防止し、ケイ酸化合物を溶解するうえで好ましい。水分散液のpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(Fe34の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 The aqueous dispersion of these components is preferably basic in order to prevent side reactions and dissolve the silicate compound. The pH of the aqueous dispersion may be basic, but it is 12.0 to 13.5 to prevent side reaction (formation of Fe 3 O 4 ), solubility of the silicate compound, and progress of the reaction. Particularly preferred in terms. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

前記リチウム化合物、ケイ酸化合物及び有機酸鉄塩の添加順序は特に限定されない。また、大気条件下でもよい。   The order of addition of the lithium compound, silicic acid compound and organic acid iron salt is not particularly limited. Moreover, atmospheric conditions may be sufficient.

(B)法においては、次に前記水分散液を水熱反応に付す。水熱反応は、(A)法と同様とするのが好ましい。   In the method (B), the aqueous dispersion is then subjected to a hydrothermal reaction. The hydrothermal reaction is preferably the same as in the method (A).

当該水熱反応により、Li2FeSiO4が高収率で得られる。また、得られたLi2FeSiO4の平均粒径は10〜100nmとなり、その結晶度も高い。 Li 2 FeSiO 4 is obtained in a high yield by the hydrothermal reaction. Moreover, the average particle diameter of the obtained Li 2 FeSiO 4 is 10 to 100 nm and its crystallinity is high.

得られたLi2FeSiO4は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。 The obtained Li 2 FeSiO 4 can be isolated by filtration and then drying. As the drying means, freeze drying or vacuum drying is used.

本発明に用いられるケイ酸鉄リチウム微粒子の平均粒径は10〜1000nmであるのが、リチウムイオン電池としたときの放電容量の点から好ましい。   The average particle size of the lithium iron silicate fine particles used in the present invention is preferably 10 to 1000 nm from the viewpoint of the discharge capacity when a lithium ion battery is used.

本発明に用いられる導電性炭素材料としては、カーボンブラックが好ましく、そのうちアセチレンブラック、ケッチェンブラックがより好ましい。導電性炭素材料の使用量は、良好な放電容量と経済性の点から、ケイ酸鉄リチウム微粒子100質量部に対し、0.01〜20質量部が好ましく、さらに0.1〜10質量部が好ましい。   The conductive carbon material used in the present invention is preferably carbon black, more preferably acetylene black or ketjen black. The amount of the conductive carbon material used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the lithium iron silicate fine particles from the viewpoint of good discharge capacity and economy. preferable.

溶媒可溶性有機化合物としては、水溶性有機化合物又は有機溶媒可溶性有機化合物のいずれでもよく、より好ましくは水溶性有機化合物であり、特に好ましくは水溶性アルコール性有機化合物、水溶性脂肪酸である。具体例としては、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等が挙げられ、グルコース、フルクトース、サッカロース、デキストリン等の糖類がより好ましい。溶媒可溶性有機化合物の使用量は、良好な放電容量及び経済性の点からケイ酸鉄リチウム微粒子100質量部に対し0.01〜20質量部が好ましく、さらに0.1〜10質量部が好ましい。   The solvent-soluble organic compound may be either a water-soluble organic compound or an organic solvent-soluble organic compound, more preferably a water-soluble organic compound, and particularly preferably a water-soluble alcoholic organic compound or a water-soluble fatty acid. Specific examples include glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, citric acid and the like, and sugars such as glucose, fructose, saccharose, dextrin are more preferred. The amount of the solvent-soluble organic compound used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the lithium iron silicate fine particles from the viewpoint of good discharge capacity and economy.

また、本発明においては、導電性炭素材料と溶媒可溶性有機化合物の質量比は、これらの成分の併用による相乗効果を得る点から、1:10〜10:1が好ましく、1:5〜5:1がより好ましく、1:3〜3:1がさらに好ましい。また、導電性炭素材料と溶媒可溶性有機化合物の合計量は、放電容量と経済性の点から、ケイ酸鉄リチウム微粒子100質量部に対して0.02〜30質量部が好ましく、さらに0.2〜20質量部が好ましく、特に0.2〜15質量部が好ましい。   In the present invention, the mass ratio of the conductive carbon material and the solvent-soluble organic compound is preferably 1:10 to 10: 1, and preferably 1: 5 to 5: from the viewpoint of obtaining a synergistic effect by the combined use of these components. 1 is more preferable, and 1: 3 to 3: 1 is more preferable. The total amount of the conductive carbon material and the solvent-soluble organic compound is preferably 0.02 to 30 parts by mass, more preferably 0.2 to 100 parts by mass of lithium iron silicate fine particles, from the viewpoint of discharge capacity and economy. -20 mass parts is preferable, and 0.2-15 mass parts is especially preferable.

溶媒としては、水及び有機溶媒のいずれでもよいが水が好ましい。   The solvent may be either water or an organic solvent, but water is preferred.

ケイ酸鉄リチウム微粒子、導電性炭素材料及び溶媒可溶性有機化合物を溶媒に分散させるが、溶媒の使用量は、ケイ酸鉄リチウム微粒子100質量部に対し200〜500質量部が好ましく、さらに200〜300質量部が好ましい。   The lithium iron silicate fine particles, the conductive carbon material, and the solvent-soluble organic compound are dispersed in a solvent. The amount of the solvent used is preferably 200 to 500 parts by mass, more preferably 200 to 300 parts per 100 parts by mass of the lithium iron silicate fine particles. Part by mass is preferred.

得られた分散液の混合に用いるボールミル装置は、通常のボールミル粉砕に用いられる装置であればよい。用いられる容器としては、鋼、ステンレス、ナイロン製が挙げられ、内壁はアルミナ煉瓦、磁気質、天然ケイ石、ゴム、ウレタン等が挙げられる。ボールとしては、アルミナ球石、天然ケイ石、鉄球、ジルコニアボール等が用いられる。ボールの大きさは、3mm〜20mmが好ましく、ボールの使用量は、容器容量に対して、0.5〜1.0g/cm3が好ましい。 The ball mill apparatus used for mixing the obtained dispersion liquid may be an apparatus used for ordinary ball milling. Examples of the container used include steel, stainless steel, and nylon, and examples of the inner wall include alumina brick, magnetic material, natural silica, rubber, and urethane. As the ball, alumina sphere, natural silica, iron ball, zirconia ball or the like is used. The size of the ball is preferably 3 mm to 20 mm, and the amount of the ball used is preferably 0.5 to 1.0 g / cm 3 with respect to the container capacity.

ボールミル混合は、10〜100回転/分の条件で、好ましくは1分以上、より好ましくは3時間以上、さらに好ましくは6時間以上行う。また経済性の点から、24時間以下が好ましい。   Ball mill mixing is preferably performed for 10 minutes or more, more preferably for 3 hours or more, and even more preferably for 6 hours or more under the condition of 10 to 100 revolutions / minute. Further, from the viewpoint of economy, it is preferably 24 hours or less.

得られた混合物は、必要によりろ過後、乾燥する。乾燥手段は凍結乾燥、真空乾燥が用いられる。次に焼成するが、焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理によりLi2FeSiO4表面にカーボンが担持された正極活物質とすることができる。 The obtained mixture is dried after filtration if necessary. As the drying means, freeze drying or vacuum drying is used. Next, the firing is performed under an inert gas atmosphere or a reducing condition at 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours. preferable. By such treatment, a positive electrode active material in which carbon is supported on the surface of Li 2 FeSiO 4 can be obtained.

得られた正極活物質は、放電容量の点で優れており、リチウムイオン電池の正極材料として有用である。本発明の正極活物質を適用できるリチウムイオン電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained positive electrode active material is excellent in terms of discharge capacity, and is useful as a positive electrode material for lithium ion batteries. The lithium ion battery to which the positive electrode active material of the present invention can be applied is not particularly limited as long as it is a lithium ion secondary battery and has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウム二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて本発明を詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated in detail.

参考例1
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 6.99g(0.025mol)、Na224 4.35g(0.025mol)に超純水75cm3を加えて混合した(この時のpHは約12.5)。この水分散液にFeSO4・7H2O 6.95g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥した。凍結乾燥(約12時間)してLi2FeSiO4粉末4.2gを得た。
Reference example 1
LiOH.H 2 O 4.20 g (0.1 mol), Na 4 SiO 4 .nH 2 O 6.99 g (0.025 mol), Na 2 S 2 O 4 4.35 g (0.025 mol) and ultrapure water 75 cm 3 was added and mixed (the pH at this time was about 12.5). To this aqueous dispersion, 6.95 g (0.025 mol) of FeSO 4 .7H 2 O was added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and then lyophilized. Lyophilized (about 12 hours) to obtain 4.2 g of Li 2 FeSiO 4 powder.

参考例2
LiOH・H2O 4.20g(0.1mol)、非晶質シリカ1.50g(0.025mol)、シュウ酸鉄(FeC24・2H2O)5.00g(0.025mol)に超純水75cm3を加えて混合した(この時のpHは約12)。得られた混合液をオートクレーブに投入し、140℃で48hr水熱反応を行った。反応液をろ過後、凍結乾燥した。凍結乾燥(約12時間)してLi2FeSiO4粉末4.2gを得た。
Reference example 2
LiOH.H 2 O 4.20 g (0.1 mol), amorphous silica 1.50 g (0.025 mol), iron oxalate (FeC 2 O 4 .2H 2 O) 5.00 g (0.025 mol) 75 cm 3 of pure water was added and mixed (the pH at this time was about 12). The obtained liquid mixture was thrown into the autoclave and the hydrothermal reaction was performed at 140 degreeC for 48 hours. The reaction solution was filtered and then lyophilized. Lyophilized (about 12 hours) to obtain 4.2 g of Li 2 FeSiO 4 powder.

実施例1
参考例1で得たLi2FeSiO4粉末3.34g、ケッチェンブラック0.19g、グルコース0.45gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
Example 1
10 g of water was added to 3.34 g of the Li 2 FeSiO 4 powder obtained in Reference Example 1, 0.19 g of ketjen black, and 0.45 g of glucose. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

比較例1
参考例1で得たLi2FeSiO4粉末3.34gおよびグルコース0.9gを、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、還元雰囲気条件下600℃で1時間焼成を行った。
Comparative Example 1
3.34 g of Li 2 FeSiO 4 powder obtained in Reference Example 1 and 0.9 g of glucose were put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) were put into this, under the conditions of 60 rpm. Mix for 12 hours. The obtained mixture was baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

比較例2
参考例1で得たLi2FeSiO4粉末3.34g、ケッチェンブラック0.38gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
Comparative Example 2
10 g of water was added to 3.34 g of Li 2 FeSiO 4 powder obtained in Reference Example 1 and 0.38 g of Ketjen Black. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

試験例1
実施例1で得られた焼成物のX線回折を行った。得られたX線回折図を図1に示す。図1から、実施例1で得られた粉末はLi2FeSiO4の単一相であり、高純度であることがわかる。
Test example 1
The fired product obtained in Example 1 was subjected to X-ray diffraction. The obtained X-ray diffraction pattern is shown in FIG. FIG. 1 shows that the powder obtained in Example 1 is a single phase of Li 2 FeSiO 4 and has high purity.

試験例2
実施例1及び比較例1、2で得られた焼成物を用い、リチウムイオン二次電池の正極を作製した。実施例1及び比較例1、2で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電を4サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
得られた放電容量を表1に示す。
表1より、本発明の正極材料を用いたリチウムイオン電池は、炭素量が少ないにもかかわらず優れた電池特性を有することがわかる。
Test example 2
Using the fired products obtained in Example 1 and Comparative Examples 1 and 2, a positive electrode of a lithium ion secondary battery was produced. The fired product obtained in Example 1 and Comparative Examples 1 and 2, ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 75:15:10. -Methyl-2-pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
Charging / discharging at a constant current density was performed for 4 cycles using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The obtained discharge capacity is shown in Table 1.
From Table 1, it can be seen that the lithium ion battery using the positive electrode material of the present invention has excellent battery characteristics despite a small amount of carbon.

Figure 0005709134
Figure 0005709134

実施例2
グルコースとケッチェンブラック(KB)との比率を変更する以外は実施例1と同様にして得られたLi2FeSiO4粉末を用い、試験例2と同様にして得られたリチウムイオン電池の放電容量を表2に示す。
Example 2
The discharge capacity of a lithium ion battery obtained in the same manner as in Test Example 2 using Li 2 FeSiO 4 powder obtained in the same manner as in Example 1 except that the ratio of glucose and ketjen black (KB) was changed. Is shown in Table 2.

Figure 0005709134
Figure 0005709134

Claims (7)

ケイ酸源、鉄源及びリチウム源の混合物を水熱反応させて得られるケイ酸鉄リチウム粉末、導電性炭素材料、溶媒可溶性有機化合物並びに溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥後焼成することを特徴とするリチウムイオン電池用正極活物質の製造法。 Silicic acid source, an iron source and mixture lithium iron silicate powder obtained by hydrothermal reaction of the lithium source, a conductive carbon material, a dispersion containing the solvent-soluble organic compounds and solvent were mixed using a ball mill, A method for producing a positive electrode active material for a lithium ion battery, characterized by firing after drying. 導電性炭素材料が、カーボンブラックである請求項1記載の製造法。   The method according to claim 1, wherein the conductive carbon material is carbon black. 溶媒可溶性有機化合物が、水溶性アルコール性有機化合物、及び水溶性脂肪酸から選ばれる化合物である請求項1又は2記載の製造法。   The method according to claim 1 or 2, wherein the solvent-soluble organic compound is a compound selected from a water-soluble alcoholic organic compound and a water-soluble fatty acid. 導電性炭素材料がカーボンブラックであり、溶媒可溶性有機化合物が水溶性アルコール性有機化合物であり、溶媒が水である請求項1〜3のいずれか1項記載の製造法。   The method according to any one of claims 1 to 3, wherein the conductive carbon material is carbon black, the solvent-soluble organic compound is a water-soluble alcoholic organic compound, and the solvent is water. 導電性炭素材料と溶媒可溶性有機化合物の質量比が1:10〜10:1である請求項1〜4のいずれか1項記載の製造法。   The manufacturing method according to any one of claims 1 to 4, wherein the mass ratio of the conductive carbon material and the solvent-soluble organic compound is 1:10 to 10: 1. 導電性炭素材料及び溶媒可溶性有機化合物の合計量が、ケイ酸鉄リチウム粉末100質量部に対し0.1〜20質量部である請求項1〜5のいずれか1項記載の製造法。 The manufacturing method according to any one of claims 1 to 5, wherein the total amount of the conductive carbon material and the solvent-soluble organic compound is 0.1 to 20 parts by mass with respect to 100 parts by mass of the lithium iron silicate powder . 焼成条件が不活性ガス雰囲気下又は還元条件下に400℃以上で10分〜3時間である請求項1〜のいずれか1項記載の製造法。 The production method according to any one of claims 1 to 6 , wherein the firing condition is 10 minutes to 3 hours at 400 ° C or higher under an inert gas atmosphere or a reducing condition.
JP2011139047A 2011-06-23 2011-06-23 Method for producing positive electrode active material for lithium ion battery Expired - Fee Related JP5709134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139047A JP5709134B2 (en) 2011-06-23 2011-06-23 Method for producing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139047A JP5709134B2 (en) 2011-06-23 2011-06-23 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2013008483A JP2013008483A (en) 2013-01-10
JP5709134B2 true JP5709134B2 (en) 2015-04-30

Family

ID=47675686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139047A Expired - Fee Related JP5709134B2 (en) 2011-06-23 2011-06-23 Method for producing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5709134B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154317A (en) * 2013-02-07 2014-08-25 Toshiba Corp Electrode, nonaqueous electrolyte battery and battery pack
CN104425819B (en) * 2013-09-09 2016-06-29 国家纳米科学中心 A kind of preparation method of the ferric metasilicate lithium as anode material for lithium-ion batteries
CN103985867B (en) * 2014-05-19 2016-08-24 电子科技大学 A kind of method preparing carbon cladding ferrosilite lithium composite material
CN108910901B (en) * 2018-09-06 2019-11-19 宁夏大学 A kind of preparation method of high-purity ferric metasilicate lithium
CN111446435B (en) * 2020-04-24 2021-04-09 商丘工学院 Carbon-coated ferrous silicate lithium ion battery positive electrode material and preparation method thereof
CN112259716A (en) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 High-specific-capacity carbon-coated lithium iron silicate material and preparation method thereof
CN115472811B (en) * 2022-10-31 2023-06-02 宜宾锂宝新材料有限公司 Positive electrode material precursor, positive electrode material, preparation method of positive electrode material precursor and positive electrode material, and battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470773B2 (en) * 2007-12-19 2014-04-16 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2009302044A (en) * 2008-05-14 2009-12-24 Tokyo Institute Of Technology Method for manufacturing inorganic particles, positive electrode of secondary battery using the same, and secondary battery
KR101241810B1 (en) * 2009-02-04 2013-04-01 가부시키가이샤 도요다 지도숏키 A production process for lithium-silicate-system compound, a positive-electrode active material comprising the lithium-silicate-system compound obtained by the production process for lithium-ion secondary battery, a positive electrode including the lithium-silicate-system compound for lithium-ion secondary battery, and lithium secondary battery
DE102009020832A1 (en) * 2009-05-11 2010-11-25 Süd-Chemie AG Composite material containing a mixed lithium metal oxide
CA2678540A1 (en) * 2009-09-15 2011-03-15 Hydro-Quebec Material made of composite oxide particles, the process for its preparation, and its use as an active electrode material
CN102958837A (en) * 2010-06-25 2013-03-06 旭硝子株式会社 Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
JPWO2012057341A1 (en) * 2010-10-29 2014-05-12 旭硝子株式会社 Silicic acid compound, positive electrode for secondary battery, secondary battery, and production method thereof
JPWO2012067250A1 (en) * 2010-11-19 2014-05-19 旭硝子株式会社 Silicic acid compound, positive electrode for secondary battery, secondary battery, and production method thereof
JPWO2012086722A1 (en) * 2010-12-22 2014-06-05 旭硝子株式会社 Silicic acid-vanadic acid compound, positive electrode for secondary battery, and method for producing secondary battery
WO2012133584A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery

Also Published As

Publication number Publication date
JP2013008483A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP5927449B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP2014007090A (en) Method for producing secondary battery positive electrode active material
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JP5744827B2 (en) Method for producing secondary battery positive electrode active material
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5754808B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5557220B2 (en) Method for producing positive electrode material for secondary battery
JP5688128B2 (en) Lithium manganese phosphate positive electrode active material and method for producing the same
JP5886923B1 (en) Method for producing lithium silicate compound having amorphous structure
JP5665788B2 (en) Method for producing positive electrode active material precursor for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5709134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees