JP5531298B2 - Method for producing positive electrode active material for lithium ion battery - Google Patents

Method for producing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP5531298B2
JP5531298B2 JP2011059523A JP2011059523A JP5531298B2 JP 5531298 B2 JP5531298 B2 JP 5531298B2 JP 2011059523 A JP2011059523 A JP 2011059523A JP 2011059523 A JP2011059523 A JP 2011059523A JP 5531298 B2 JP5531298 B2 JP 5531298B2
Authority
JP
Japan
Prior art keywords
lithium
silicate compound
olivine
positive electrode
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011059523A
Other languages
Japanese (ja)
Other versions
JP2012193087A (en
Inventor
弘樹 山下
四穂 石原
務 鈴木
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan University
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan University filed Critical Taiheiyo Cement Corp
Priority to JP2011059523A priority Critical patent/JP5531298B2/en
Publication of JP2012193087A publication Critical patent/JP2012193087A/en
Application granted granted Critical
Publication of JP5531298B2 publication Critical patent/JP5531298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン電池用正極活物質の製造法に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium ion battery.

リチウムイオン電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   Lithium ion batteries are a type of non-aqueous electrolyte battery and are used in a wide range of fields such as mobile phones, digital cameras, notebook PCs, hybrid cars, and electric cars. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、LiFePO4やLi2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用である。 As this positive electrode material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeSiO 4 ) and the like are known. Among these, LiFePO 4 and Li 2 FeSiO 4 have an olivine structure and are useful as a positive electrode material for a high capacity lithium ion battery.

Li2FeSiO4等のケイ酸鉄リチウム系正極材料の製造法としては、Li源、鉄源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成するという固相法が一般的である(特許文献1、2)。しかし、固相法では、不活性ガス雰囲気での焼成と粉砕を行う必要があり、複雑な操作が必要であるとともに、粒径や結晶度を制御することが困難である。
これに対し、非特許文献1及び2には、Li2Mn1-yFeySiO4(y=0〜1)を水熱合成で得られる旨の記載がある。
As a method for producing a lithium iron silicate-based positive electrode material such as Li 2 FeSiO 4, a solid phase method in which a mixture of a Li source, an iron source and a silicate source is pulverized and fired at 500 to 900 ° C. is common. (Patent Documents 1 and 2). However, in the solid phase method, it is necessary to perform firing and pulverization in an inert gas atmosphere, which requires complicated operations and it is difficult to control the particle size and crystallinity.
In contrast, Non-Patent Documents 1 and 2 have a description that Li 2 Mn 1-y Fe y SiO 4 (y = 0 to 1) can be obtained by hydrothermal synthesis.

特開2001−266882号公報JP 2001-266882 A 特開2002−198050号公報JP 2002-198050 A

GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26 R.Dominiko et al,Journal of Power Sources 184(2008),p462−468R. Dominiko et al, Journal of Power Sources 184 (2008), p462-468.

しかしながら、リチウム源、鉄源及びシリケート源の3者を水に混合し、その混合液をそのまま水熱反応に付してもLi2FeSiO4の単一相は得られず、Fe3Si24(OH)4等が副生することが判明した。
また、非特許文献2にいては、Fe源としてFeCl2を用いており、反応装置の腐食等の問題がある。
従って、本発明の課題は、原料として塩化物を使用することなく、水熱反応により、リチウムイオン電池用正極活物質として有用なLi2FeSiO4等のオリビン型シリケート化合物を製造する方法を提供することにある。
However, even if a lithium source, an iron source, and a silicate source are mixed with water and the mixture is subjected to a hydrothermal reaction as it is, a single phase of Li 2 FeSiO 4 cannot be obtained, and Fe 3 Si 2 O 4 (OH) 4 etc. were found to be by-produced.
In Non-Patent Document 2, FeCl 2 is used as the Fe source, which causes problems such as corrosion of the reactor.
Accordingly, an object of the present invention is to provide a method for producing an olivine-type silicate compound such as Li 2 FeSiO 4 useful as a positive electrode active material for a lithium ion battery by a hydrothermal reaction without using chloride as a raw material. There is.

そこで本発明者は、Fe源等の遷移金属源として硫酸塩を採用し、当該遷移金属硫酸塩をリチウム源やケイ酸源と一緒に水中に添加するのではなく、まずリチウム源、ケイ酸源と酸化防止剤とを塩基性水分散液としておき、これに遷移金属硫酸塩を添加し、次いで水熱反応を行えば、副反応が生じることなく、純度の高い粒径の小さい均一なオリビン型シリケート化合物が得られることを見出した。さらに、得られたオリビン型シリケート化合物をカーボン担持して焼成して得られた材料を正極材料として用いたリチウムイオン電池は優れた電池特性を有することを見出した。   Therefore, the present inventor adopts sulfate as a transition metal source such as an Fe source, and does not add the transition metal sulfate to water together with a lithium source or a silicate source. And an antioxidant are added as a basic aqueous dispersion, transition metal sulfate is added thereto, and then a hydrothermal reaction is performed. It was found that a silicate compound was obtained. Furthermore, it has been found that a lithium ion battery using as a positive electrode material a material obtained by carrying and baking the obtained olivine-type silicate compound on carbon has excellent battery characteristics.

すなわち、本発明は、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液と、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩の1種又は2種以上とを混合し、得られた混合物を水熱反応させることを特徴とする、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物の製造法を提供するものである。 That is, the present invention relates to a basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant, and a transition metal represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn). Li 2 MSiO 4 (wherein M is selected from Fe, Ni, Co or Mn), characterized in that one or more sulfates are mixed and the resulting mixture is hydrothermally reacted. A method for producing an olivine-type silicate compound represented by a species or two or more species).

また、本発明は、上記の水熱反応で得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、Li2MSiO4(Mは前記と同じ)で表されるオリビン型シリケート化合物を含有するリチウムイオン電池用正極活物質の製造法を提供するものである。 The present invention also relates to an olivine type represented by Li 2 MSiO 4 (M is the same as described above), wherein carbon is supported on the olivine type silicate compound obtained by the above hydrothermal reaction, and then calcined. The present invention provides a method for producing a positive electrode active material for a lithium ion battery containing a silicate compound.

さらに本発明は、上記の正極活物質を含む正極を有するリチウムイオン電池を提供するものである。   Furthermore, this invention provides the lithium ion battery which has a positive electrode containing said positive electrode active material.

本発明方法によれば、水熱反応により微細なオリビン型シリケート化合物が高純度で効率良く得られる。得られたオリビン型シリケート化合物を用いれば、優れた電池特性を有するリチウムイオン電池が得られる。   According to the method of the present invention, a fine olivine-type silicate compound can be efficiently obtained with high purity by a hydrothermal reaction. By using the obtained olivine type silicate compound, a lithium ion battery having excellent battery characteristics can be obtained.

実施例1及び比較例1で得られた凍結乾燥粉末のX線回析図を示す。The X-ray diffraction pattern of the lyophilized powder obtained in Example 1 and Comparative Example 1 is shown. 実施例1及び比較例1で得られた正極活物質を用いた電池の4サイクル目の放電容量を示す。The discharge capacity of the 4th cycle of the battery using the positive electrode active material obtained in Example 1 and Comparative Example 1 is shown. 実施例1で得られた正極活物質を用いた電池の充放電曲線を示す。The charging / discharging curve of the battery using the positive electrode active material obtained in Example 1 is shown.

本発明は、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物の製造法である。当該オリビン型シリケート化合物の具体例としては、Li2FeSiO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2(Fe)m(Mn)1-mSiO4(0<m<1である)等が挙げられる。このうち、原料コストの点からLi2FeSiO4、Li2MnSiO4が好ましく、Li2FeSiO4が特に好ましい。 The present invention is a method for producing an olivine type silicate compound represented by Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co, or Mn). Specific examples of the olivine silicate compound include Li 2 FeSiO 4 , Li 2 NiSiO 4 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 (Fe) m (Mn) 1-m SiO 4 (0 <m < 1). Among these, Li 2 FeSiO 4 and Li 2 MnSiO 4 are preferable from the viewpoint of raw material cost, and Li 2 FeSiO 4 is particularly preferable.

本発明においては、副反応を抑制する点から、遷移金属硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を調製しておくのが好ましい。リチウム化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。 In the present invention, it is preferable to prepare a basic aqueous dispersion containing a lithium compound, a silicic acid compound and an antioxidant separately from the transition metal sulfate from the viewpoint of suppressing side reactions. Examples of the lithium compound include lithium hydroxide (for example, LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium sulfate, and lithium acetate, and lithium hydroxide and lithium carbonate are particularly preferable.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、水分散液が塩基性になるので、より好ましい。 The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica and Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) are preferable. Of these, the use of Na 4 SiO 4 is more preferable because the aqueous dispersion becomes basic.

酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビン型シリケート化合物の生成を抑制してしまうため、遷移金属に対して等モル量以下が好ましく、遷移金属に対してモル比で0.5以下がさらに好ましい。 As the antioxidant, sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the transition metal in terms of a molar ratio with respect to the transition metal because it suppresses the formation of the olivine-type silicate compound when added in a large amount. 0.5 or less is more preferable.

リチウム化合物、ケイ酸化合物及び酸化防止剤は、遷移金属硫酸塩とは別に、塩基性水分散液とするのが、副反応を防止し、ケイ酸化合物を溶解するうえで重要である。水分散液のpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(Fe34の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 In order to prevent side reactions and dissolve the silicate compound, it is important that the lithium compound, the silicate compound, and the antioxidant be a basic aqueous dispersion separately from the transition metal sulfate. The pH of the aqueous dispersion may be basic, but it is 12.0 to 13.5 to prevent side reaction (formation of Fe 3 O 4 ), solubility of the silicate compound, and progress of the reaction. Particularly preferred in terms. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

該水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。また、ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。該水分散液の調製にあたって、リチウム化合物、ケイ酸化合物及び酸化防止剤の添加順序は特に限定されず、これらの3成分を水に添加してもよい。   The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l. The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l. In preparing the aqueous dispersion, the order of addition of the lithium compound, the silicate compound and the antioxidant is not particularly limited, and these three components may be added to water.

本発明に用いられる遷移金属硫酸塩MSO4(式中、MはFe、Ni、Co又はMnを示す)の具体例としては、FeSO4、NiSO4、CoSO4又はMnSO4が挙げられ、これらは1種でも2種以上を混合して用いてもよい。これらのうち、FeSO4、MnSO4がより好ましく、FeSO4が特に好ましい。遷移金属硫酸塩の添加量は、反応混合液中0.15〜1.50mol/lとなる量が好ましく、さらに0.50〜0.75mol/lとなる量が好ましい。 Specific examples of the transition metal sulfate MSO 4 (wherein M represents Fe, Ni, Co, or Mn) used in the present invention include FeSO 4 , NiSO 4 , CoSO 4, or MnSO 4. You may use 1 type or in mixture of 2 or more types. Of these, FeSO 4 and MnSO 4 are more preferable, and FeSO 4 is particularly preferable. The amount of transition metal sulfate added is preferably 0.15 to 1.50 mol / l in the reaction mixture, and more preferably 0.50 to 0.75 mol / l.

また、反応混合液中のSi及びLiの含有量は、Mに対して2モル以上が好ましい。   Further, the content of Si and Li in the reaction mixture is preferably 2 mol or more with respect to M.

本発明においては、次に前記水分散液と遷移金属硫酸塩とを混合し、水熱反応に付す。水熱反応は、100℃以上であればよく、130〜180℃が好ましく、さらに140〜160℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合この時の圧力は0.3〜0.9MPaとなり、140〜160℃で反応を行う場合の圧力は0.3〜0.4MPaとなる。水熱反応時間は1〜24時間が好ましく、さらに3〜12時間が好ましい。   In the present invention, the aqueous dispersion and the transition metal sulfate are then mixed and subjected to a hydrothermal reaction. The hydrothermal reaction should just be 100 degreeC or more, 130-180 degreeC is preferable and 140-160 degreeC is more preferable. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 180 ° C, the pressure at this time is 0.3 to 0.9 MPa, and the pressure when the reaction is performed at 140 to 160 ° C is 0. 3 to 0.4 MPa. The hydrothermal reaction time is preferably 1 to 24 hours, more preferably 3 to 12 hours.

当該水熱反応により、Li2MSiO4(Mは前記と同じ)が高収率で得られる。また、得られたLiMSiO4の平均粒径は10〜100nmとなり、その結晶度も高い。 By the hydrothermal reaction, Li 2 MSiO 4 (M is the same as above) is obtained in high yield. The obtained LiMSiO 4 has an average particle size of 10 to 100 nm and a high crystallinity.

得られたLi2MSiO4は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。 The obtained Li 2 MSiO 4 can be isolated by drying after filtration. As the drying means, freeze drying or vacuum drying is used.

得られたLi2MSiO4は、カーボン担持し、次いで焼成することにより、リチウムイオン電池用正極活物質とすることができる。カーボン担持は、Li2MSiO4に常法により、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等の炭素源及び水を添加し、次いで焼成すればよい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理によりLi2MSiO4表面にカーボンが担持された正極活物質とすることができる。炭素源の使用量は、Li2MSiO4 100質量部に対し、炭素源に含まれる炭素として3〜15質量部が好ましく、炭素源に含まれる炭素として5〜10質量部がさらに好ましい。 The obtained Li 2 MSiO 4 can be used as a positive electrode active material for a lithium ion battery by carrying carbon and then firing. Carbon support may be obtained by adding a carbon source such as glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose, saccharose, starch, dextrin, citric acid and water to Li 2 MSiO 4 by a conventional method, and then baking. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions. By such treatment, a positive electrode active material in which carbon is supported on the surface of Li 2 MSiO 4 can be obtained. The amount of carbon source used is preferably 3 to 15 parts by mass as carbon contained in the carbon source and more preferably 5 to 10 parts by mass as carbon contained in the carbon source with respect to 100 parts by mass of Li 2 MSiO 4 .

得られた正極活物質は、放電容量の点で優れており、リチウムイオン電池の正極材料として有用である。本発明の正極活物質を適用できるリチウムイオン電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained positive electrode active material is excellent in terms of discharge capacity, and is useful as a positive electrode material for lithium ion batteries. The lithium ion battery to which the positive electrode active material of the present invention can be applied is not particularly limited as long as it is a lithium ion secondary battery and has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウム二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて本発明を詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated in detail.

実施例1
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 6.99g(0.025mol)、Na224 4.35g(0.025mol)に超純水75cm3を加えて混合した(この時のpHは約12.5)。この水分散液にFeSO4・7H2O 6.95g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥した。凍結乾燥(約12時間)して得られた粉末4.2gにポリビニルアルコール(炭素濃度として3%)及び超純水10cm3を加え、還元雰囲気下で700℃で1hr焼成した。
Example 1
LiOH.H 2 O 4.20 g (0.1 mol), Na 4 SiO 4 .nH 2 O 6.99 g (0.025 mol), Na 2 S 2 O 4 4.35 g (0.025 mol) and ultrapure water 75 cm 3 was added and mixed (the pH at this time was about 12.5). To this aqueous dispersion, 6.95 g (0.025 mol) of FeSO 4 .7H 2 O was added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and then lyophilized. Polyvinyl alcohol (carbon concentration: 3%) and 10 cm 3 of ultrapure water were added to 4.2 g of the powder obtained by freeze-drying (about 12 hours), and calcined at 700 ° C. for 1 hr in a reducing atmosphere.

比較例1
LiOH・H2O 8.20g(0.2mol)、非晶質シリカ3.00g(0.05mol)及び超純水100cm3を混合した。一方、FeCl2・4H2O 3.98g(0.2mol)、アスコルビン酸0.59g(0.0033mol)及び超純水50cm3を混合した。両混合液を混合し、実施例1と同じ条件で水熱反応を行い、得られた反応液をろ過し、凍結乾燥(12時間)した。得られた粉末を実施例1と同様にカーボン担持焼成した。
Comparative Example 1
8.20 g (0.2 mol) of LiOH.H 2 O, 3.00 g (0.05 mol) of amorphous silica, and 100 cm 3 of ultrapure water were mixed. Meanwhile, 3.98 g (0.2 mol) of FeCl 2 .4H 2 O, 0.59 g (0.0033 mol) of ascorbic acid and 50 cm 3 of ultrapure water were mixed. Both liquid mixtures were mixed, hydrothermal reaction was performed under the same conditions as in Example 1, and the resulting reaction liquid was filtered and freeze-dried (12 hours). The obtained powder was calcined with carbon in the same manner as in Example 1.

試験例1
実施例1及び比較例1で得られた凍結乾燥粉末のX線回折を行った。得られたX線回折図を図1に示す。図1から明らかなように、比較例1で得られた粉末は、Fe3Si25(OH)4を副生していた。これに対し、実施例1で得られた粉末はLi2FeSiO4の単一相であり、高純度であることが判明した。
Test example 1
X-ray diffraction of the lyophilized powder obtained in Example 1 and Comparative Example 1 was performed. The obtained X-ray diffraction pattern is shown in FIG. As is clear from FIG. 1, the powder obtained in Comparative Example 1 produced Fe 3 Si 2 O 5 (OH) 4 as a by-product. On the other hand, it was found that the powder obtained in Example 1 was a single phase of Li 2 FeSiO 4 and had high purity.

試験例2
実施例1及び比較例1で得られた焼成物を用い、リチウムイオン二次電池の正極を作製した。実施例1及び比較例1で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電を4サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
得られた4サイクル目の放電容量を図2に示す。また、実施例1の正極材で構築した電池の充放電曲線を図2に示す。
図2及び図3より、本発明の正極材料を用いたリチウムイオン電池は優れた電池特性を有することがわかる。
Test example 2
Using the fired product obtained in Example 1 and Comparative Example 1, a positive electrode of a lithium ion secondary battery was produced. The fired product obtained in Example 1 and Comparative Example 1, ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a mixing ratio of 75:15:10, and this was mixed with N-methyl. -2-Pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
Charging / discharging at a constant current density was performed for 4 cycles using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The obtained discharge capacity at the fourth cycle is shown in FIG. Moreover, the charging / discharging curve of the battery constructed | assembled with the positive electrode material of Example 1 is shown in FIG.
2 and 3, it can be seen that the lithium ion battery using the positive electrode material of the present invention has excellent battery characteristics.

Claims (6)

リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液と、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩の1種又は2種以上とを混合し、得られた混合物を水熱反応させることを特徴とする、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物の製造法。 A basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant, and one of transition metal sulfates represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or Li 2 MSiO 4 (wherein, M is one or more selected from Fe, Ni, Co or Mn), characterized in that two or more are mixed and the resulting mixture is hydrothermally reacted. A method for producing an olivine-type silicate compound represented by: リチウム化合物が、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、硫酸リチウムから選ばれるものである請求項1記載のオリビン型シリケート化合物の製造法。   The method for producing an olivine-type silicate compound according to claim 1, wherein the lithium compound is selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, and lithium sulfate. ケイ酸化合物が、非晶質シリカ及びNa4SiO4から選ばれるものである請求項1又は2記載のオリビン型シリケート化合物の製造法。 The method for producing an olivine-type silicate compound according to claim 1 or 2, wherein the silicate compound is selected from amorphous silica and Na 4 SiO 4 . 酸化防止剤が、アンモニア、ハイドロサルファイトナトリウム、亜硫酸ナトリウムから選ばれるものである請求項1〜3のいずれか1項記載のオリビン型シリケート化合物の製造法。   The method for producing an olivine type silicate compound according to any one of claims 1 to 3, wherein the antioxidant is selected from ammonia, sodium hydrosulfite, and sodium sulfite. 塩基性水分散液のpHが、12.0〜13.5である請求項1〜4のいずれか1項記載のオリビン型シリケート化合物の製造法。   The method for producing an olivine silicate compound according to any one of claims 1 to 4, wherein the pH of the basic aqueous dispersion is 12.0 to 13.5. 請求項1〜5のいずれか1項記載の水熱反応終了後、得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、Li2MSiO4(Mは前記と同じ)で表されるオリビン型シリケート化合物を含有するリチウムイオン電池用正極活物質の製造法。 Li 2 MSiO 4 (M is the same as above), characterized in that after completion of the hydrothermal reaction according to any one of claims 1 to 5, carbon is supported on the obtained olivine-type silicate compound and then fired. The manufacturing method of the positive electrode active material for lithium ion batteries containing the olivine type | mold silicate compound represented by these.
JP2011059523A 2011-03-17 2011-03-17 Method for producing positive electrode active material for lithium ion battery Active JP5531298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059523A JP5531298B2 (en) 2011-03-17 2011-03-17 Method for producing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059523A JP5531298B2 (en) 2011-03-17 2011-03-17 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2012193087A JP2012193087A (en) 2012-10-11
JP5531298B2 true JP5531298B2 (en) 2014-06-25

Family

ID=47085370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059523A Active JP5531298B2 (en) 2011-03-17 2011-03-17 Method for producing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5531298B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754808B2 (en) * 2011-10-13 2015-07-29 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP5611167B2 (en) * 2011-10-13 2014-10-22 太平洋セメント株式会社 Cathode active material for lithium ion battery and method for producing the same
JP5665788B2 (en) * 2012-03-28 2015-02-04 太平洋セメント株式会社 Method for producing positive electrode active material precursor for secondary battery
JP5901492B2 (en) * 2012-10-16 2016-04-13 住友金属鉱山株式会社 Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP5842792B2 (en) * 2012-11-06 2016-01-13 太平洋セメント株式会社 Method for producing secondary battery positive electrode active material precursor
JP5928954B2 (en) * 2012-12-18 2016-06-01 太平洋セメント株式会社 Process for producing olivine-type silicate compounds containing transition metals
JP5928953B2 (en) * 2012-12-18 2016-06-01 太平洋セメント株式会社 Process for producing olivine-type silicate compounds containing transition metals
JP5854521B2 (en) * 2013-05-29 2016-02-09 太平洋セメント株式会社 Method for producing olivine-type silicate compound

Also Published As

Publication number Publication date
JP2012193087A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP5804422B2 (en) Method for producing secondary battery positive electrode active material
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5765811B2 (en) Method for producing lithium iron phosphate positive electrode active material
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JP2013054922A (en) Positive electrode active material for secondary battery
JP5754808B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6180070B2 (en) Method for producing lithium iron phosphate
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5557220B2 (en) Method for producing positive electrode material for secondary battery
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5665788B2 (en) Method for producing positive electrode active material precursor for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5531298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250