JP5725456B2 - Method for producing positive electrode active material for lithium ion secondary battery - Google Patents

Method for producing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP5725456B2
JP5725456B2 JP2011276703A JP2011276703A JP5725456B2 JP 5725456 B2 JP5725456 B2 JP 5725456B2 JP 2011276703 A JP2011276703 A JP 2011276703A JP 2011276703 A JP2011276703 A JP 2011276703A JP 5725456 B2 JP5725456 B2 JP 5725456B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
iron phosphate
ferrous sulfate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011276703A
Other languages
Japanese (ja)
Other versions
JP2013127898A (en
Inventor
晶子 花田
晶子 花田
大神 剛章
剛章 大神
鈴木 務
務 鈴木
聖志 金村
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan University
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan University filed Critical Taiheiyo Cement Corp
Priority to JP2011276703A priority Critical patent/JP5725456B2/en
Publication of JP2013127898A publication Critical patent/JP2013127898A/en
Application granted granted Critical
Publication of JP5725456B2 publication Critical patent/JP5725456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池の正極材料として有用なリン酸鉄リチウム系正極活物質の製造法に関する。   The present invention relates to a method for producing a lithium iron phosphate-based positive electrode active material useful as a positive electrode material for a lithium ion secondary battery.

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池が広く知られている。当該リチウムイオン電池は、基本的に正極、負極、非水電解質及びセパレータからなり、正極材料としてはLiCoO2が広く用いられ、さらにLiNiO2、LiMn24などが開発されている。しかし、これらのリチウム系金属酸化物は、高電圧ではあるが容量が低いという問題がある。 Secondary batteries used for portable electronic devices, hybrid cars, electric cars, and the like have been developed, and lithium ion secondary batteries are particularly widely known. The lithium ion battery basically includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. LiCoO 2 is widely used as a positive electrode material, and LiNiO 2 , LiMn 2 O 4 and the like have been developed. However, these lithium metal oxides have a problem that the capacity is low although the voltage is high.

これらに対し、最近になって、オリビン構造を有するリン酸鉄リチウム等のリン酸化合物を正極に用いることが提案されている(特許文献1)。しかしながら、このリン酸鉄リチウムの合成法は固相法であり、不活性ガス雰囲気下で焼成と粉砕を行う必要があり、操作が複雑であった。   On the other hand, recently, it has been proposed to use a phosphate compound such as lithium iron phosphate having an olivine structure for the positive electrode (Patent Document 1). However, this method of synthesizing lithium iron phosphate is a solid phase method, which requires firing and pulverization in an inert gas atmosphere, and the operation is complicated.

そこで、リン酸鉄リチウムを水熱反応で製造する試みがなされている(特許文献2及び3、非特許文献1)。これらの方法は、リチウム化合物、鉄化合物、リン酸化合物を耐圧容器内で水熱反応させるというものである。   Therefore, attempts have been made to produce lithium iron phosphate by a hydrothermal reaction (Patent Documents 2 and 3, Non-Patent Document 1). In these methods, a lithium compound, an iron compound, and a phosphoric acid compound are hydrothermally reacted in a pressure resistant vessel.

特開平9−171827号公報Japanese Patent Laid-Open No. 9-171827 特開2002−151082号公報JP 2002-151082 A 特開2004−95385号公報JP 2004-95385 A

Electrochemistry Communications 3(2001)505−508Electrochemistry Communications 3 (2001) 505-508

これら水熱反応によるリン酸鉄リチウムの製造法における鉄化合物としては、塩化鉄、シュウ酸鉄、リン酸第一鉄等が用いられており、硫酸鉄も使用できる旨記載されている。
しかしながら、硫酸鉄として酸化チタンの副生物として得られる安価な副生硫酸第一鉄を原料として使用した場合、得られるリン酸鉄リチウム結晶が均一にならず、それが原因で得られたリチウムイオン二次電池の放電特性が低下することが判明した。
従って、本発明の課題は、安価な副生硫酸第一鉄を用いて、リチウムイオン二次電池用正極活物質として有用なリン酸鉄リチウムの新たな製造法を提供するものである。
As the iron compound in the method for producing lithium iron phosphate by hydrothermal reaction, iron chloride, iron oxalate, ferrous phosphate, and the like are used, and it is described that iron sulfate can also be used.
However, when cheap by-product ferrous sulfate obtained as a by-product of titanium oxide as iron sulfate is used as a raw material, the obtained lithium iron phosphate crystals are not uniform, and lithium ions obtained due to that It was found that the discharge characteristics of the secondary battery deteriorate.
Therefore, the subject of this invention is providing the new manufacturing method of lithium iron phosphate useful as a positive electrode active material for lithium ion secondary batteries using cheap byproduct ferrous sulfate.

そこで本発明者は、副生硫酸第一鉄を原料として用いて種々の条件でリン酸鉄リチウムの水熱合成を試みたところ、副生硫酸第一鉄中の不純物であるTi濃度及びCa濃度を調整することにより、得られるリン酸鉄リチウムの粒子が微細化し、かつ均一なものとなること、さらには当該リン酸鉄リチウムを用いたリチウムイオン二次電池の放電特性が向上することを見出し、本発明を完成した。   Therefore, the present inventor tried hydrothermal synthesis of lithium iron phosphate under various conditions using by-product ferrous sulfate as a raw material. Ti concentration and Ca concentration as impurities in by-product ferrous sulfate It is found that the particles of lithium iron phosphate obtained can be made fine and uniform by adjusting the discharge characteristics of lithium ion secondary batteries using the lithium iron phosphate. The present invention has been completed.

すなわち、本発明は、リチウム化合物、リン酸化合物及び水を混合後、Ti含有量1000mg/kg未満かつCa含有量500mg/kg未満の副生硫酸第一鉄を添加して水熱反応することを特徴とするリン酸鉄リチウムの製造法を提供するものである。
また、本発明は、リチウム化合物、リン酸化合物及び水を混合後、Ti含有量1000mg/kg未満かつCa含有量500mg/kg未満の副生硫酸第一鉄塩、及び炭素源を添加して水熱反応を行い、次いで不活性ガス又は還元雰囲気下に焼成することを特徴とするリン酸鉄リチウム系正極活物質の製造法を提供するものである。
また、本発明は、上記の製造法により得られたリン酸鉄リチウムを正極材料として含有するリチウムイオン二次電池を提供するものである。
That is, in the present invention, after mixing a lithium compound, a phosphoric acid compound and water, a hydrothermal reaction is performed by adding by-product ferrous sulfate having a Ti content of less than 1000 mg / kg and a Ca content of less than 500 mg / kg. A feature of the present invention is to provide a method for producing lithium iron phosphate.
In the present invention, after mixing a lithium compound, a phosphoric acid compound and water, a by-product ferrous sulfate salt having a Ti content of less than 1000 mg / kg and a Ca content of less than 500 mg / kg, and a carbon source are added to the water. The present invention provides a method for producing a lithium iron phosphate-based positive electrode active material, characterized by performing a thermal reaction and then firing in an inert gas or a reducing atmosphere.
Moreover, this invention provides the lithium ion secondary battery which contains the lithium iron phosphate obtained by said manufacturing method as a positive electrode material.

本発明方法によれば、安価な副生硫酸第一鉄を用いて、微細で均一な粒径を有する高純度のリン酸鉄リチウムが高収率で得られる。本発明方法により得られたリン酸鉄リチウムを正極材料として用いれば、高容量で充放電特性に優れたリチウムイオン二次電池が得られる。   According to the method of the present invention, high-purity lithium iron phosphate having a fine and uniform particle size can be obtained in high yield by using inexpensive by-product ferrous sulfate. When lithium iron phosphate obtained by the method of the present invention is used as a positive electrode material, a lithium ion secondary battery having a high capacity and excellent charge / discharge characteristics can be obtained.

実施例1で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Example 1. 実施例2で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Example 2. 比較例1で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Comparative Example 1. 比較例2で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Comparative Example 2. 比較例3で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Comparative Example 3. 参考例で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Reference Example. 実施例3で作製した電池の充放電特性を示す。The charging / discharging characteristic of the battery produced in Example 3 is shown.

本発明のリン酸鉄リチウムの製造法においては、まず、リチウム化合物、リン酸化合物及び水を混合する。   In the method for producing lithium iron phosphate of the present invention, first, a lithium compound, a phosphate compound and water are mixed.

リン酸鉄リチウムの合成原料は、基本的に2価の鉄化合物とリチウム化合物とリン酸化合物であるが、本発明においては、最初にリチウム化合物、リン酸化合物及び水の混合物を調製しておき、最後に2価の鉄化合物としての副生硫酸第一鉄を添加することが、副反応を防止し、反応を容易に進行させるうえで重要である。副生硫酸第一鉄とリン酸化合物と水を最初に混合しておき、これに炭素源を加え、窒素ガスを導入した後にリチウム化合物を加えると、反応中に凝結を生じ、撹拌できなくなり、特殊な撹拌装置を必要とする。一方、副生硫酸第一鉄とリチウム化合物と水を最初に混合し、炭素源を加え、窒素ガスを導入した後にリン酸化合物を加えると、過度の発泡により撹拌が困難になり、凝結が生じる。これに対し、本発明のような順序で原料を添加すると、凝結が生じることなく、撹拌も容易であり、反応がスムーズに進行する。   The synthetic raw material of lithium iron phosphate is basically a divalent iron compound, a lithium compound and a phosphate compound. In the present invention, a mixture of a lithium compound, a phosphate compound and water is prepared first. Finally, adding by-product ferrous sulfate as a divalent iron compound is important for preventing side reactions and allowing the reaction to proceed easily. When the by-product ferrous sulfate, phosphate compound and water are mixed first, a carbon source is added to this, and a lithium compound is added after introducing nitrogen gas, condensation occurs during the reaction, which makes stirring impossible. A special stirring device is required. On the other hand, when by-product ferrous sulfate, lithium compound and water are mixed first, carbon source is added, and nitrogen gas is introduced and then phosphoric acid compound is added, stirring becomes difficult due to excessive foaming and condensation occurs . In contrast, when the raw materials are added in the order as in the present invention, no agglomeration occurs, stirring is easy, and the reaction proceeds smoothly.

原料として用いられるリチウム化合物としては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のリチウム金属塩、水酸化リチウム、炭酸リチウム等が挙げられるが、炭酸リチウムを使用するのが安価である点で好ましい。   Examples of the lithium compound used as a raw material include lithium metal salts such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide, lithium hydroxide, lithium carbonate, etc., but it is inexpensive to use lithium carbonate. It is preferable in a certain point.

リン酸化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が用いられる。   As the phosphoric acid compound, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, ammonium hydrogen phosphate and the like are used.

リチウム化合物及びリン酸化合物の使用量はリチウムイオン及びリン酸イオンのモル比換算で1.5:1〜3.7:1が好ましく、略2.5:1〜3.3:1とするのがより好ましい。   The amount of the lithium compound and phosphate compound used is preferably 1.5: 1 to 3.7: 1 in terms of a molar ratio of lithium ion and phosphate ion, and is approximately 2.5: 1 to 3.3: 1. Is more preferable.

水の使用量は、原料化合物の溶解性、撹拌の容易性、合成の効率等の点から、リン酸化合物のリンイオン1モルに対して10〜50モルが好ましく、さらに13〜30モルが好ましく、特に15〜20モルが好ましい。   The amount of water used is preferably 10 to 50 mol, more preferably 13 to 30 mol with respect to 1 mol of phosphorus ion of the phosphoric acid compound, from the viewpoints of solubility of the raw material compound, easiness of stirring, synthesis efficiency, and the like. 15-20 mol is particularly preferable.

リチウム化合物とリン酸化合物と水の添加順序は特に限定されず、またこれらの原料の混合時間も限定されない。これらの原料の混合は、室温、例えば10〜35℃で行えばよい。   The order of addition of the lithium compound, phosphate compound and water is not particularly limited, and the mixing time of these raw materials is not limited. These raw materials may be mixed at room temperature, for example, 10 to 35 ° C.

本発明方法においては、副生硫酸第一鉄を添加する前に、リチウム化合物、リン酸化合物及び水の混合物に、塩基を添加して2価の鉄化合物添加後のpHを3〜6に調整することもできる。当該塩基添加によるpHの調整により、原料として用いるリチウム化合物の量が大過剰でなくとも、高純度のリン酸鉄リチウムが効率良く得られる。   In the method of the present invention, before adding the by-product ferrous sulfate, a base is added to the mixture of lithium compound, phosphate compound and water to adjust the pH after addition of the divalent iron compound to 3-6. You can also By adjusting the pH by the addition of the base, high-purity lithium iron phosphate can be obtained efficiently even if the amount of the lithium compound used as a raw material is not excessively large.

用いられる塩基としては、2価の鉄化合物添加後の混合物のpHを3〜6に調整できる塩基であればよいが、非金属系であることが必要であり、アンモニア又は有機アミンが好ましい。有機アミンとしては、アルキルアミン、ジアルキルアミン、トリアルキルアミン、アルカノールアミン、ジアルカノールアミン、トリアルカノールアミン、ピペリジン、ピロリジン、モルホリン等の環状アミン、ピリジン等の芳香族アミン等が挙げられる。これらの塩基のうち、アンモニアが特に好ましい。
これらの塩基の使用量は、2価の鉄化合物添加後の混合物のpHを3〜6にする量が好ましく、さらにpH3〜5にする量であるのがより好ましい。
The base to be used may be any base that can adjust the pH of the mixture after addition of the divalent iron compound to 3 to 6, but is required to be non-metallic and is preferably ammonia or organic amine. Examples of organic amines include alkylamines, dialkylamines, trialkylamines, alkanolamines, dialkanolamines, trialkanolamines, cyclic amines such as piperidine, pyrrolidine, and morpholine, and aromatic amines such as pyridine. Of these bases, ammonia is particularly preferred.
The amount of these bases used is preferably such that the pH of the mixture after addition of the divalent iron compound is 3 to 6, more preferably 3 to 5.

本発明方法においては、副生硫酸第一鉄を添加する前に、混合物に窒素ガスを導入するのが好ましい。窒素ガスの導入は、反応液中の溶存酸素量を低下させ、後に添加する副生硫酸第一鉄の酸化を防止する点、酸化防止剤の添加量を低減する点から好ましい。窒素ガスの導入量は、溶液中の溶存酸素濃度が1.0mg/L以下になるまで行うのが好ましく、特に0.5mg/L以下となるまで行うのがさらに好ましい。窒素ガスの導入手段としては、溶液中に窒素ガスをバブリングすることにより行うのが好ましい。   In the method of the present invention, it is preferable to introduce nitrogen gas into the mixture before adding the by-product ferrous sulfate. The introduction of nitrogen gas is preferable from the viewpoint of reducing the amount of dissolved oxygen in the reaction solution, preventing oxidation of by-product ferrous sulfate added later, and reducing the amount of antioxidant added. The amount of nitrogen gas introduced is preferably carried out until the dissolved oxygen concentration in the solution is 1.0 mg / L or less, more preferably 0.5 mg / L or less. Nitrogen gas is preferably introduced by bubbling nitrogen gas into the solution.

また、本発明方法においては、後に添加する副生硫酸第一鉄の酸化を防止するために、この時点で酸化防止剤を添加してもよい。酸化防止剤の添加時期は、窒素ガスの導入と当時でもよいし、これらの操作の前でも中間でも後でもよい。酸化防止剤としては、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、イソアスコルビン酸、アルデヒド類、水素ガス、亜硫酸塩等が挙げられる。これらの酸化防止剤の使用量は、2価の鉄化合物の鉄イオン1モルに対して0.001モル〜0.1モルが好ましく、0.005モル〜0.05モルがさらに好ましい。   In the method of the present invention, an antioxidant may be added at this point in order to prevent oxidation of by-product ferrous sulfate added later. The antioxidant may be added at the time of introduction of nitrogen gas and at that time, or before, during or after these operations. Examples of the antioxidant include ascorbic acid, ascorbic acid ester, ascorbate, isoascorbic acid, aldehydes, hydrogen gas, sulfite and the like. The amount of these antioxidants to be used is preferably 0.001 mol to 0.1 mol, and more preferably 0.005 mol to 0.05 mol, per 1 mol of iron ions of the divalent iron compound.

また、本発明方法においては、炭素源の添加は、水熱反応後でもよいが、水熱反応前に添加しておくのが、均一な正極活物質を得る点で好ましい。ここで炭素源としては、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸が挙げられるが、安価である点から、デンプン、グルコースが特に好ましい。炭素源の使用量は、得られるリン酸鉄リチウムを正極材料として使用した場合の充放電特性の点から、リチウム化合物とリン酸化合物、副生硫酸第一鉄及び水の混合物重量に対して0.1重量%〜15重量%が好ましく、さらに0.5重量%〜10重量%が好ましく、特に1.5重量%〜5重量%が好ましい。   In the method of the present invention, the carbon source may be added after the hydrothermal reaction, but it is preferable to add it before the hydrothermal reaction from the viewpoint of obtaining a uniform positive electrode active material. Here, examples of the carbon source include glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, and citric acid, and starch and glucose are particularly preferable from the viewpoint of low cost. The amount of carbon source used is 0 with respect to the weight of the mixture of lithium compound and phosphate compound, by-product ferrous sulfate and water, from the viewpoint of charge / discharge characteristics when the obtained lithium iron phosphate is used as the positive electrode material. 0.1 wt% to 15 wt% is preferable, 0.5 wt% to 10 wt% is more preferable, and 1.5 wt% to 5 wt% is particularly preferable.

なお、塩基の添加、窒素ガスの導入及び炭素源の添加の順序は問わず、同時でもよい。   The order of adding the base, introducing nitrogen gas, and adding the carbon source is not limited and may be simultaneous.

本発明方法においては、前記混合物に、Ti含有量1000mg/kg未満かつCa含有量500mg/kg未満の副生硫酸第一鉄を添加して水熱反応する。用いられる副生硫酸第一鉄は、酸化チタン製造時に副生する硫酸第一鉄であって、かつTi含有量及びCa含有量が上記の範囲に調整されたものである。ここで、Ti含有量が1000mg/kg以上、又はCa含有量が500mg/kg以上の副生硫酸第一鉄を用いた場合には、いずれの場合にも得られるリン酸鉄リチウムの結晶が均一でなく、かつ粒子径も大きくなってしまう。また、Ti含有量及びCa含有量のいずれかが、上記数値を超える場合も同様である。副生硫酸第一鉄の使用量は、Li/Fe=1.5〜4.0とするのが、高純度のリン酸鉄リチウムを得る点で好ましく、より好ましくは、Li/Fe=2.5〜3.3である。当該2価の鉄化合物添加後の混合物のpHは、前記塩基の添加により3〜6になっているのが望ましい。   In the method of the present invention, by-product ferrous sulfate having a Ti content of less than 1000 mg / kg and a Ca content of less than 500 mg / kg is added to the mixture and subjected to a hydrothermal reaction. The by-product ferrous sulfate used is ferrous sulfate by-produced during the production of titanium oxide, and the Ti content and Ca content are adjusted to the above ranges. Here, when using by-product ferrous sulfate having a Ti content of 1000 mg / kg or more or a Ca content of 500 mg / kg or more, the crystals of lithium iron phosphate obtained in any case are uniform. In addition, the particle size becomes large. The same applies when either the Ti content or the Ca content exceeds the above numerical value. The amount of by-product ferrous sulfate used is preferably Li / Fe = 1.5 to 4.0 in terms of obtaining high-purity lithium iron phosphate, and more preferably Li / Fe = 2. 5 to 3.3. The pH of the mixture after the addition of the divalent iron compound is desirably 3 to 6 due to the addition of the base.

本発明方法においては、次に前記混合物を微細で均一な粒径を有するリン酸鉄リチウムを得る点から撹拌することが好ましく、さらに30分以上混合することがより好ましい。混合に際しては、撹拌することが好ましい。この撹拌時間は30分以上、さらに30〜120分が好ましく、さらにまた60〜120分が好ましい。撹拌反応は、室温で行えばよく、10〜35℃で行うのが好ましい。撹拌は、通常の撹拌手段、例えばプロペラ撹拌、ポンプ循環撹拌により行うことができる。   In the method of the present invention, the mixture is preferably stirred from the viewpoint of obtaining lithium iron phosphate having a fine and uniform particle size, and more preferably mixed for 30 minutes or more. In mixing, it is preferable to stir. The stirring time is 30 minutes or more, preferably 30 to 120 minutes, and more preferably 60 to 120 minutes. The stirring reaction may be performed at room temperature, and is preferably performed at 10 to 35 ° C. Stirring can be performed by ordinary stirring means such as propeller stirring and pump circulation stirring.

次に前記混合物を水熱反応に付す。水熱反応は、反応混合物中に水が存在するので、耐圧容器中で密封して150℃以上に加熱すればよい。より好ましい反応温度は150〜200℃であり、さらに好ましくは180〜200℃である。圧力は、耐圧容器中密封して加熱するのみでよく、理論上1.0〜1.5MPa程度になる。加熱時間は1〜10時間が好ましく、さらに2〜5時間が好ましい。なお、水熱反応中は、反応液を撹拌しておくのが好ましい。   The mixture is then subjected to a hydrothermal reaction. In the hydrothermal reaction, since water is present in the reaction mixture, the reaction mixture may be sealed in a pressure vessel and heated to 150 ° C or higher. A more preferable reaction temperature is 150 to 200 ° C, and further preferably 180 to 200 ° C. The pressure only needs to be sealed and heated in a pressure-resistant container, and is theoretically about 1.0 to 1.5 MPa. The heating time is preferably 1 to 10 hours, more preferably 2 to 5 hours. In addition, it is preferable to stir the reaction liquid during the hydrothermal reaction.

水熱反応終了後、生成したリン酸鉄リチウムをろ過により採取し、洗浄するのが好ましい。洗浄は、ケーキ洗浄機能を有したろ過装置を用いて水で行うのが好ましい。得られた結晶は、必要により乾燥する。乾燥手段は、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。   After completion of the hydrothermal reaction, the produced lithium iron phosphate is preferably collected by filtration and washed. Washing is preferably performed with water using a filtration device having a cake washing function. The obtained crystals are dried if necessary. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.

得られたリン酸鉄リチウムは、不活性ガス又は還元雰囲気下で焼成することにより、正極材料として有用なリン酸鉄リチウムとなる。水熱反応前に炭素源を添加しなかった場合は、ここで炭素源を添加する。不活性ガスとしては、Ar、N2等が挙げられる。また還元雰囲気下とするには水素ガスを導入すればよい。焼成条件は600℃以上が好ましく、さらに600〜900℃が好ましく、特に600〜800℃が好ましい。焼成時間は0.5時間〜5時間が好ましく、さらに1時間〜3時間が好ましい。 The obtained lithium iron phosphate becomes a lithium iron phosphate useful as a positive electrode material by firing in an inert gas or a reducing atmosphere. If the carbon source is not added before the hydrothermal reaction, the carbon source is added here. Examples of the inert gas include Ar and N 2 . In addition, hydrogen gas may be introduced to obtain a reducing atmosphere. Firing conditions are preferably 600 ° C. or higher, more preferably 600 to 900 ° C., and particularly preferably 600 to 800 ° C. The firing time is preferably 0.5 hours to 5 hours, more preferably 1 hour to 3 hours.

本発明方法により得られるリン酸鉄リチウムは、化学組成がLiFePO4で示されるものであり、炭素によりコーティングされていることから正極活物質として有用である。得られるリン酸鉄リチウムは、平均粒子径が1μm以下と微細であり、かつその粒度分布がせまいという特徴がある。SEM像から計算された平均粒子径は1000nm以下であり、粒度分布は100〜800nmが好ましく、さらに200〜600nmが好ましく、特に300〜500nmが好ましい。平均粒子径は、600nm以下が好ましく、特に500nm以下が好ましい。 The lithium iron phosphate obtained by the method of the present invention has a chemical composition represented by LiFePO 4 and is useful as a positive electrode active material because it is coated with carbon. The obtained lithium iron phosphate has a feature that the average particle size is as fine as 1 μm or less and the particle size distribution is narrow. The average particle size calculated from the SEM image is 1000 nm or less, and the particle size distribution is preferably 100 to 800 nm, more preferably 200 to 600 nm, and particularly preferably 300 to 500 nm. The average particle size is preferably 600 nm or less, and particularly preferably 500 nm or less.

本発明方法により得られるリン酸鉄リチウム系正極活物質は、粒径が微細で均一であることから、リチウムイオン二次電池の正極材料として有用である。次に本発明方法で得られたリン酸鉄リチウム系正極活物質を正極材料として含有するリチウムイオン二次電池について説明する。   The lithium iron phosphate-based positive electrode active material obtained by the method of the present invention is useful as a positive electrode material for lithium ion secondary batteries because the particle size is fine and uniform. Next, a lithium ion secondary battery containing the lithium iron phosphate positive electrode active material obtained by the method of the present invention as a positive electrode material will be described.

本発明の正極材料を適用できるリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The lithium ion secondary battery to which the positive electrode material of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 sort of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this.

実施例1
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに副生硫酸第一鉄(Ti含有量500mg/kg、Ca含有量50mg/kg)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図1に示す。得られたリン酸鉄リチウムの粒子径は300〜500nmの範囲であり、高純度のリン酸鉄リチウムが得られたことが確認できた。
Example 1
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with by-product ferrous sulfate (Ti content 500 mg / kg, Ca content 50 mg / kg) (FeSO 4 .7H 2 O) 50.0 g and mixed with a propeller stirrer at 23 ± 2 ° C. for 60 minutes. Stir.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. The SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 300 to 500 nm, and it was confirmed that high purity lithium iron phosphate was obtained.

実施例2
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに副生硫酸第一鉄(Ti含有量200mg/kg、Ca含有量100mg/kg)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図2に示す。得られたリン酸鉄リチウムの粒子径は300〜1000nmの範囲であり、高純度のリン酸鉄リチウムが得られたことが確認できた。
Example 2
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with by-product ferrous sulfate (Ti content 200 mg / kg, Ca content 100 mg / kg) (FeSO 4 .7H 2 O) 50.0 g, and a propeller type stirring device at 23 ± 2 ° C. for 60 minutes. Stir.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. The SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 300 to 1000 nm, and it was confirmed that high purity lithium iron phosphate was obtained.

比較例1
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに副生硫酸第一鉄(Ti含有量1500mg/kg、Ca含有量50mg/kg)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図3に示す。得られたリン酸鉄リチウムの粒子径は1000〜5000nmの範囲であり、粒子径が大きく、不均一なリン酸鉄リチウムが得られた。
Comparative Example 1
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with by-product ferrous sulfate (Ti content 1500 mg / kg, Ca content 50 mg / kg) (FeSO 4 .7H 2 O) 50.0 g and mixed with a propeller-type stirrer at 23 ± 2 ° C. for 60 minutes. Stir.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. The SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 1000 to 5000 nm, the particle diameter was large, and non-uniform lithium iron phosphate was obtained.

比較例2
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに副生硫酸第一鉄(Ti含有量200mg/kg、Ca含有量1000mg/kg)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図4に示す。得られたリン酸鉄リチウムの粒子径は300〜1000nmの範囲であり、粒子径が大きく、不均一なリン酸鉄リチウムが得られた。
Comparative Example 2
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with by-product ferrous sulfate (Ti content 200 mg / kg, Ca content 1000 mg / kg) (FeSO 4 .7H 2 O) 50.0 g, and the propeller type stirring device at 23 ± 2 ° C. for 60 minutes. Stir.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. The SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 300 to 1000 nm, the particle diameter was large, and non-uniform lithium iron phosphate was obtained.

比較例3
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに副生硫酸第一鉄(Ti含有量1500mg/kg、Ca含有量1000mg/kg)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図5に示す。得られたリン酸鉄リチウムの粒子径は1000〜5000nmの範囲であり、粒子径が大きく、不均一なリン酸鉄リチウムが得られた。
Comparative Example 3
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with 50.0 g of by-product ferrous sulfate (Ti content 1500 mg / kg, Ca content 1000 mg / kg) (FeSO 4 .7H 2 O), and the propeller type stirring device at 23 ± 2 ° C. for 60 minutes. Stir.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. An SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 1000 to 5000 nm, the particle diameter was large, and non-uniform lithium iron phosphate was obtained.

参考例
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これにグルコース5.1gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これに実験用試薬の硫酸第一鉄(和光純薬製)(FeSO4・7H2O)50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図6に示す。得られたリン酸鉄リチウムの粒子径は300〜500nmの範囲であり、高純度のリン酸鉄リチウムが得られたことが確認できた。
Reference Example 19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 5.1 g of glucose was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. To this, 50.0 g of ferrous sulfate as an experimental reagent (manufactured by Wako Pure Chemical Industries, Ltd.) (FeSO 4 .7H 2 O) was mixed and stirred at 23 ± 2 ° C. with a propeller type stirring device for 60 minutes.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. The SEM image of the obtained powder is shown in FIG. The particle diameter of the obtained lithium iron phosphate was in the range of 300 to 500 nm, and it was confirmed that high purity lithium iron phosphate was obtained.

実施例3
実施例1、2、比較例1〜3及び参考例で得られた材料を正極材料に用いて電池を作製した。
実施例1、2、及び比較例1〜3及び参考例で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電試験を行った。このときの充電条件は電流0.1CA(17mA/g)、電圧4.2Vの定電流充電とし、放電条件は電流0.1CA、終止電圧2.0Vの定電流放電とした。温度は全て30℃とした。
充放電試験の結果の中から放電特性を図7に示す。その結果、実施例1、2及び参考例の正極材料を用いた電池は優れた充放電容量を示したが、比較例1〜3の材料を用い電池の充放電容量は十分でなかった。
以上の結果より、本発明方法によれば、2価の鉄化合物として安価な副生硫酸第一鉄を用い、微細で均一なリン酸鉄リチウムが得られる。また、得られたリン酸鉄リチウムを用いれば優れた充放電容量を示すリチウムイオン二次電池が得られる。
Example 3
Batteries were produced using the materials obtained in Examples 1 and 2, Comparative Examples 1 to 3 and Reference Example as positive electrode materials.
The fired products, ketjen black (conductive agent), and polyvinylidene fluoride (binder) obtained in Examples 1 and 2 and Comparative Examples 1 to 3 and Reference Example were mixed at a weight ratio of 75:15:10. After mixing, N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
A charge / discharge test at a constant current density was performed using the manufactured lithium ion secondary battery. Charging conditions at this time were constant current charging with a current of 0.1 CA (17 mA / g) and a voltage of 4.2 V, and discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 2.0 V. All temperatures were 30 ° C.
FIG. 7 shows the discharge characteristics from the results of the charge / discharge test. As a result, the batteries using the positive electrode materials of Examples 1 and 2 and the reference example showed excellent charge / discharge capacities, but the charge / discharge capacities of the batteries using the materials of Comparative Examples 1 to 3 were not sufficient.
From the above results, according to the method of the present invention, fine and uniform lithium iron phosphate can be obtained by using inexpensive by-product ferrous sulfate as the divalent iron compound. Moreover, if the obtained lithium iron phosphate is used, the lithium ion secondary battery which shows the outstanding charging / discharging capacity | capacitance will be obtained.

Claims (7)

リチウム化合物、リン酸化合物及び水を混合後、Ti含有量1000mg/kg未満かつCa含有量500mg/kg未満の副生硫酸第一鉄を添加して水熱反応することを特徴とするリン酸鉄リチウムの製造法。   An iron phosphate characterized by mixing a lithium compound, a phosphate compound and water and then adding a by-product ferrous sulfate having a Ti content of less than 1000 mg / kg and a Ca content of less than 500 mg / kg to cause a hydrothermal reaction. Lithium production method. リチウム化合物、リン酸化合物及び水を混合後、Ti含有量1000mg/kg未満かつCa含有量500mg/kg未満の副生硫酸第一鉄塩、及び炭素源を添加して水熱反応を行い、次いで不活性ガス又は還元雰囲気下に焼成することを特徴とするリン酸鉄リチウム系正極活物質の製造法。   After mixing the lithium compound, phosphate compound and water, a by-product ferrous sulfate salt with a Ti content of less than 1000 mg / kg and a Ca content of less than 500 mg / kg is added, and a hydrothermal reaction is carried out. A method for producing a lithium iron phosphate-based positive electrode active material, characterized by firing in an inert gas or a reducing atmosphere. 前記副生硫酸第一鉄の添加前に、反応系に窒素ガスを導入する請求項1又は2記載の製造法。   The method according to claim 1 or 2, wherein nitrogen gas is introduced into the reaction system before the addition of the by-product ferrous sulfate. 副生硫酸第一鉄が、酸化チタン製造時の副生硫酸第一鉄である請求項1〜3のいずれか1項記載の製造法。   The production method according to any one of claims 1 to 3, wherein the by-product ferrous sulfate is by-product ferrous sulfate at the time of producing titanium oxide. 水熱反応が、耐圧容器中で150〜200℃の条件で行われるものある請求項1〜4のいずれか1項記載の製造法。 Hydrothermal reaction, preparation of any of claims 1-4 are intended to be carried out under the condition of 150 to 200 ° C. in a pressure vessel. 焼成条件が、600〜800℃である請求項2〜5のいずれか1項記載の製造法。   Firing conditions are 600-800 degreeC, The manufacturing method of any one of Claims 2-5. 請求項2〜6のいずれか1項記載の製造法により得られたリン酸鉄リチウム系正極活物質を正極材料として含有するリチウムイオン二次電池。   A lithium ion secondary battery containing, as a positive electrode material, a lithium iron phosphate-based positive electrode active material obtained by the production method according to claim 2.
JP2011276703A 2011-12-19 2011-12-19 Method for producing positive electrode active material for lithium ion secondary battery Active JP5725456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276703A JP5725456B2 (en) 2011-12-19 2011-12-19 Method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276703A JP5725456B2 (en) 2011-12-19 2011-12-19 Method for producing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013127898A JP2013127898A (en) 2013-06-27
JP5725456B2 true JP5725456B2 (en) 2015-05-27

Family

ID=48778324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276703A Active JP5725456B2 (en) 2011-12-19 2011-12-19 Method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5725456B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127782B (en) * 2014-12-02 2019-02-15 Keliber Oy Method of Producing Lithium Metal Phosphates
CN104944400B (en) * 2015-07-20 2016-09-14 河北工业大学 The technique that Hydrolyze method prepares iron phosphate
CN115707650A (en) * 2021-08-18 2023-02-21 深圳市长隆科技有限公司 Production process of iron phosphate with phosphorus-containing polymeric ferric sulfate as precursor
CN114538404B (en) * 2022-03-15 2023-07-07 深圳市沃伦特新能源有限公司 Method for preparing lithium iron phosphate from titanium white byproduct ferrous sulfate
CN115403021A (en) * 2022-09-08 2022-11-29 云南纳诺电子新材料有限公司 Method for preparing lithium iron phosphate from titanium dioxide byproduct ferrous sulfate
CN116177510B (en) * 2022-12-14 2024-04-09 核工业北京化工冶金研究院 Method for preparing battery-grade ferric phosphate by utilizing waste lithium iron phosphate battery anode powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620378B2 (en) * 2003-05-09 2011-01-26 日本化学工業株式会社 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4641375B2 (en) * 2003-10-20 2011-03-02 日立マクセル株式会社 Method for producing composite of olivine type lithium phosphate and carbon material
JP4767798B2 (en) * 2006-09-05 2011-09-07 住友大阪セメント株式会社 Electrode material manufacturing method, lithium recovery method, positive electrode material, electrode and battery
JP5040010B2 (en) * 2010-01-15 2012-10-03 トヨタ自動車株式会社 Method for producing composite positive electrode active material
JP5544934B2 (en) * 2010-03-03 2014-07-09 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium ion battery
EP2562859B1 (en) * 2010-04-21 2018-12-12 LG Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using same

Also Published As

Publication number Publication date
JP2013127898A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5463561B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
US20160130145A1 (en) Method for making cathode material of lithium ion battery
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5765811B2 (en) Method for producing lithium iron phosphate positive electrode active material
JP5709136B2 (en) Method for producing lithium iron phosphate and method for producing lithium iron phosphate-based positive electrode active material
JP6180070B2 (en) Method for producing lithium iron phosphate
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5521180B2 (en) Method for producing lithium iron phosphate or lithium iron silicate
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5754808B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5673953B2 (en) Cathode active material
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5928954B2 (en) Process for producing olivine-type silicate compounds containing transition metals
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5531247B2 (en) Method for producing lithium iron phosphate or lithium iron silicate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140815

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140815

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5725456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250