JP5544934B2 - Method for producing positive electrode active material for lithium ion battery - Google Patents

Method for producing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP5544934B2
JP5544934B2 JP2010046820A JP2010046820A JP5544934B2 JP 5544934 B2 JP5544934 B2 JP 5544934B2 JP 2010046820 A JP2010046820 A JP 2010046820A JP 2010046820 A JP2010046820 A JP 2010046820A JP 5544934 B2 JP5544934 B2 JP 5544934B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
lithium ion
pressure
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010046820A
Other languages
Japanese (ja)
Other versions
JP2011181452A (en
Inventor
晃範 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2010046820A priority Critical patent/JP5544934B2/en
Publication of JP2011181452A publication Critical patent/JP2011181452A/en
Application granted granted Critical
Publication of JP5544934B2 publication Critical patent/JP5544934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用正極活物質の製造方法に関し、さらに詳しくは、ナノメートルサイズの大きさが揃ったLiFePO4微粒子を容易かつ効率良く生成させることが可能なリチウムイオン電池用正極活物質の製造方法に関するものである。 The present invention relates to a method for producing a positive electrode active material for a lithium ion battery . More specifically, the present invention relates to a positive electrode active material for a lithium ion battery capable of easily and efficiently generating LiFePO4 fine particles having a nanometer size . It relates to a manufacturing method .

近年、環境負荷の低減が叫ばれ、ゼロエミッション、脱石油社会の流れが国を挙げて取り組まれている。特に脚光を浴びているのが電気自動車や携帯用電子機器等の二次電池であり、クリーンエネルギー社会の実現を担う分野の一つと位置づけられている。
現在用いられている代表的な二次電池としては、例えば、鉛蓄電池、アルカリ蓄電池、リチウムイオン電池等が知られている。これらの二次電池のなかでも、特にリチウムイオン電池は、小型化、軽量化、高容量化が可能で、しかも、高出力、高エネルギー密度であるという優れた特性を有していることから、次世代のリチウムイオン電池に用いられる材料についても研究・開発が活発化している。
In recent years, the reduction of environmental impact has been screamed, and the flow of zero emission and oil-free society has been addressed nationwide. In particular, secondary batteries such as electric cars and portable electronic devices are in the limelight and are positioned as one of the fields responsible for realizing a clean energy society.
As typical secondary batteries currently used, for example, lead storage batteries, alkaline storage batteries, lithium ion batteries, and the like are known. Among these secondary batteries, in particular, lithium ion batteries can be reduced in size, weight and capacity, and have excellent characteristics such as high output and high energy density. Research and development of materials used in next-generation lithium-ion batteries are also active.

現在実用化されているリチウムイオン電池の正極活物質としては、LiCoOが一般的である。しかしながら、Coは地球上に偏在し、かつ稀少な資源であり、しかも正極活物質として大量に使用することを考慮すると、安定供給が難しく、したがって、製品の製造コストが高くなるという問題点がある。
そこで、LiCoOに代わる正極活物質として、スピネル系のLiMn、三元系のLiNi1/3Mn1/3Co1/3や鉄酸リチウム(LiFeO)、リン酸鉄リチウム(LiFePO)等の正極活物質の研究開発が盛んに進められている。
これらのなかでも、オリビン構造を有するLiFePOは、リンを構成元素に含みかつ酸素と強く共有結合しているので、LiCoO等の正極材料と比較して高温時に酸素を放出することもなく、電解液の酸化分解による発火の危険性もなく、安全性に優れた材料であることはもちろん、資源的及びコスト的にも問題がない正極材料として注目されている(例えば、特許文献1、非特許文献1等参照)。
LiCoO 2 is generally used as a positive electrode active material for lithium ion batteries currently in practical use. However, Co is unevenly distributed on the earth and is a scarce resource, and considering that it is used in large quantities as a positive electrode active material, there is a problem that stable supply is difficult, and thus the manufacturing cost of the product becomes high. .
Therefore, as a positive electrode active material replacing LiCoO 2 , spinel-based LiMn 2 O 4 , ternary LiNi 1/3 Mn 1/3 Co 1/3 O 2 , lithium ferrate (LiFeO 2 ), lithium iron phosphate Research and development of positive electrode active materials such as (LiFePO 4 ) has been actively promoted.
Among these, LiFePO 4 having an olivine structure contains phosphorus as a constituent element and is strongly covalently bonded to oxygen, so that it does not release oxygen at a high temperature as compared with a positive electrode material such as LiCoO 2 . It has attracted attention as a positive electrode material that has no risk of ignition due to oxidative decomposition of the electrolyte and is excellent in safety as well as in terms of resources and costs (for example, Patent Document 1, Non-Patent Document 1) (See Patent Document 1).

しかしながら、このような利点を有するLiFePOにおいても、特性面で容量低下という難点があり、この容量低下の原因は、LiFePO特有のオリビン構造に由来する活物質内部のリチウムイオン拡散の遅さと電子導電性の低さにあると考えられている。
そこで、改善策として、Liの拡散距離を短縮させるためにナノメートル程度まで微粒子化し、電子導電性を向上させるために粒子の表面を厚み1〜2nmのカーボン被膜で被覆する手法が一般的である。
However, even in LiFePO 4 having such advantages, there is a problem that the capacity is reduced in terms of characteristics. The cause of this capacity reduction is the slow diffusion of lithium ions inside the active material derived from the olivine structure peculiar to LiFePO 4 and the electron. It is considered to have low conductivity.
Therefore, as a measure for improvement, a method is generally used in which the particle size is reduced to about nanometers in order to shorten the Li diffusion distance, and the surface of the particles is coated with a carbon film having a thickness of 1 to 2 nm in order to improve electronic conductivity. .

従来、LiFePOの合成法としては固相法が用いられてきており、この固相法では、LiFePOの原料を化学量論比で混合して焼成前駆体を作製し、この焼成前駆体を不活性雰囲気中にて焼成し、得られた焼結体を機械的に粉砕することにより粒子径を調整している。
しかしながら、この固相法では、焼結体を機械的に粉砕していることから、粒子径の制御が難しく、製造プロセスの操作の難易度が非常に高い。また、粗大な焼結体を機械的に粉砕するために、形状異方性の大きな粒子が生じ易く、粒子径の揃ったLiFePO微粒子を得ることは難しい。
そこで、LiFePOからなる均一かつ微小な粒子を作製する方法として、水熱反応を利用した液相合成法が着目されている。
Conventionally, a solid phase method has been used as a method for synthesizing LiFePO 4 , and in this solid phase method, a raw material of LiFePO 4 is mixed at a stoichiometric ratio to produce a calcined precursor, The particle diameter is adjusted by firing in an inert atmosphere and mechanically pulverizing the obtained sintered body.
However, in this solid phase method, since the sintered body is mechanically pulverized, it is difficult to control the particle size, and the operation process is very difficult. In addition, since a coarse sintered body is mechanically pulverized, particles having large shape anisotropy are easily generated, and it is difficult to obtain LiFePO 4 fine particles having a uniform particle diameter.
Therefore, as a method for producing uniform and minute particles made of LiFePO 4 , a liquid phase synthesis method utilizing a hydrothermal reaction has attracted attention.

水熱反応の利点は、固相反応と比べてはるかに低温で純度が高い生成物が得られることである。しかしながら、この水熱反応においても、粒径の制御は反応温度や時間等の反応条件に係わる因子に因るところが大きい。また、これらの因子で制御した場合には、製造装置自体の性能に左右される部分が多く、再現性には難がある。
そこで、水熱反応によりLiFePO微粒子を生成する方法として、CHCOO、SO 2−、Cl等の有機酸やイオンを、溶媒に同時に含有させて合成する方法や、この水熱反応の際に過剰のLiを添加することにより、単相のLiFePO微粒子を得る方法が提案されている(例えば、特許文献2、非特許文献2等参照)。また、反応中間体を機械的に粉砕することにより、小粒径のLiFePO微粒子を得る方法も提案されている(特許文献3)。
The advantage of a hydrothermal reaction is that a product with a much higher purity is obtained at a much lower temperature compared to a solid phase reaction. However, also in this hydrothermal reaction, the particle size is largely controlled by factors relating to reaction conditions such as reaction temperature and time. In addition, when controlled by these factors, there are many parts that depend on the performance of the manufacturing apparatus itself, and reproducibility is difficult.
Therefore, as a method for producing LiFePO 4 fine particles by a hydrothermal reaction, a method of synthesizing organic acids and ions such as CH 3 COO , SO 4 2− , Cl − and the like by simultaneously containing them in a solvent, and this hydrothermal reaction There has been proposed a method of obtaining single-phase LiFePO 4 fine particles by adding excess Li at the time (for example, see Patent Document 2, Non-Patent Document 2, etc.). A method of obtaining LiFePO 4 fine particles having a small particle diameter by mechanically pulverizing a reaction intermediate has also been proposed (Patent Document 3).

特許第3484003号公報Japanese Patent No. 3484003 特開2008−66019号公報JP 2008-66019 A 特表2007−511458号公報Special table 2007-511458 gazette

A.K.パデイ他、「フォスフォ−オリビン アズ ポジティブ−エレクトロード マテリアル フォー リチャージャブル リシウム バッテリーズ」、ジャーナル オブ ザ エレクトロケミカル ソサエテイ、1997年発行、第144巻、第4号、第1188頁(A.K.Padhi et al.,"Phosph0-olivine as Positive-Electrode Material for Rechargeable Lithium Batteries",J.Electrochem.Soc.,144,4,1188(1997))A. K. Padi et al., “Phospho-Olibin as Positive-Electrode Material for Rechargeable Lithium Batteries”, Journal of the Electrochemical Society, 1997, Vol. 144, No. 4, p. 1188 (AKPadhi et al., “ Phosph0-olivine as Positive-Electrode Material for Rechargeable Lithium Batteries ", J. Electrochem. Soc., 144, 4, 1188 (1997)) ケイスケ シライシ、ユン ホ ロ、キヨシ カナムラ、「シンチェシス オブ LiFePO4 カソード アクティブ マテリアル フォー リチャージャブル リシウムバッテリーズ バイ ヒドロサーマル リアクション」、ジャーナル オブ ザ セラミック ソサエテイ オブ ジャパン、2004年発行、第112巻、第1305号、第S58−S62頁(Keisuke Shiraishi, Young Ho Rho and Kiyoshi Kanamura, "Synthesis of LiFePO4 cathode active material for Rechargeable Lithium Batteries by Hydrothermal Reaction",J. Ceram. Soc. Jpn., Suppl. 112, S58-S62 (2004)Keisuke Shiraishi, Yoon Holo, Kiyoshi Kanamura, “Synthesis of LiFePO4 Cathode Active Material for Rechargeable Lithium Battery by Hydrothermal Reaction”, Journal of the Ceramic Society of Japan, 2004, Vol. 112, No. 1305, No. 1 S58-S62 (Keisuke Shiraishi, Young Ho Rho and Kiyoshi Kanamura, "Synthesis of LiFePO4 cathode active material for Rechargeable Lithium Batteries by Hydrothermal Reaction", J. Ceram. Soc. Jpn., Suppl. 112, S58-S62 (2004)

ところで、従来の水熱反応によりLiFePO微粒子を生成する方法では、確かに、LiFePO合成時の反応温度や原料の化学量論比を調整することで、粒子の微細化が可能ではあるが、粒子が微細化され過ぎると、粒子の表面に非晶質層(アモルファス層)が多く存在することとなり、その結果、粒子の結晶性が低下することにより粒子内部のLi拡散性が悪化し、充放電特性が低下するという問題点があった。
また、LiFePO微粒子は、空気中に存在する酸素により酸化され易く、したがって、酸化されたLiFePO微粒子が電池特性に悪影響を及ぼす虞があった。
By the way, in the method of producing LiFePO 4 fine particles by a conventional hydrothermal reaction, it is possible to make particles finer by adjusting the reaction temperature at the time of LiFePO 4 synthesis and the stoichiometric ratio of raw materials. If the particles are too fine, many amorphous layers (amorphous layers) are present on the surface of the particles. As a result, the Li diffusibility inside the particles deteriorates due to a decrease in the crystallinity of the particles, and the charge is reduced. There was a problem that the discharge characteristics deteriorated.
Further, the LiFePO 4 fine particles are easily oxidized by oxygen present in the air, and thus the oxidized LiFePO 4 fine particles may adversely affect the battery characteristics.

本発明は、上記事情に鑑みてなされたものであって、粒子の大きさが均一なLiFePO微粒子を作製することができるリチウムイオン電池用正極活物質の製造方法を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object thereof is to provide a method for producing a cathode active material for a lithium ion battery that can be the size of the particles to produce a homogeneous LiFePO 4 particles .

本発明者等は、上記の課題を解決するために鋭意研究を行った結果、LiFePO微粒子を合成するにあたって、近年ナノ粒子の合成方法として注目されているソルボサーマル法に着目し、この方法をLiFePOの水熱合成反応へ取り入れるとともに、LiFePO微粒子の原料となる混合物を、不活性ガスまたは還元性ガスの雰囲気中、120℃以上かつ250℃以下の温度及び0.1MPa以上かつ2.0MPa以下のゲージ圧の下にて反応させ、さらに、混合物に含まれる水溶性有機溶媒の含有量を、この混合物全質量の5質量%以上かつ60質量%以下とすれば、原料の水及び水溶性有機溶媒に対する溶解度を上昇させるとともに、生成する粒子の表面酸化を抑制することができ、その結果、平均一次粒子径が30nm以上かつ100nm以下の範囲でありしかも粒子の大きさが揃ったLiFePO微粒子を容易に生成させることができ、さらには、この方法により得られたLiFePO微粒子をリチウムイオン電池の正極活物質に適用することにより、リチウムイオン電池の充放電特性を向上させることができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have focused on the solvothermal method, which has recently attracted attention as a method for synthesizing nanoparticles when synthesizing LiFePO 4 fine particles. with incorporated into the hydrothermal synthesis reaction of LiFePO 4, a mixture of a raw material of LiFePO 4 particles, in an atmosphere of an inert gas or reducing gas, 120 ° C. or higher and 250 ° C. or more below the temperature and 0.1MPa and 2.0MPa If the reaction is carried out under the following gauge pressure and the content of the water-soluble organic solvent contained in the mixture is 5 mass% or more and 60 mass% or less of the total mass of the mixture, the raw material water and water solubility The solubility in organic solvents can be increased and the surface oxidation of the generated particles can be suppressed. As a result, the average primary particle size is 30 nm or less. And it is the size of the is moreover particles in the range of 100nm is to produce easily uniform LiFePO 4 particles, further applies the LiFePO 4 particles obtained by this method in the positive electrode active material of the lithium ion battery Thus, it was found that the charge / discharge characteristics of the lithium ion battery can be improved, and the present invention has been completed.

すなわち、本発明のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源と、水及び沸点が150℃以上の水溶性有機溶媒とを含有する混合物を、不活性ガスまたは還元性ガスの雰囲気中、120℃以上かつ250℃以下の温度及び0.1MPa以上かつ2.0MPa以下のゲージ圧の下にて反応させ、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を生成するリチウムイオン電池用正極活物質の製造方法であって、前記水溶性有機溶媒の含有量は、前記混合物全質量の5質量%以上かつ60質量%以下であることを特徴とする。 That is, the method for producing a positive electrode active material for a lithium ion battery according to the present invention includes Li 3 PO 4 , or a Li source and a phosphoric acid source, an Fe source, water, and a water-soluble organic solvent having a boiling point of 150 ° C. or higher. The mixture to be reacted in an atmosphere of an inert gas or a reducing gas under a temperature of 120 ° C. or more and 250 ° C. or less and a gauge pressure of 0.1 MPa or more and 2.0 MPa or less, and the average primary particle size is 30 nm. The method for producing a positive electrode active material for a lithium ion battery that produces LiFePO 4 fine particles of 100 nm or less, wherein the content of the water-soluble organic solvent is 5% by mass or more and 60% by mass or less of the total mass of the mixture. It is characterized by being.

前記水溶性有機溶媒は、多価アルコール類、アミド類、エステル類及びエーテル類の群から選択される1種または2種以上であることが好ましい
前記不活性ガスは、窒素ガス、アルゴンガス、ヘリウムガス及び炭酸ガスの群から選択される1種であり、前記還元性ガスは、一酸化炭素ガスであり、前記高圧は、0.1MPa以上かつ2.0MPa以下であることが好ましい。
The water-soluble organic solvent is preferably one or more selected from the group consisting of polyhydric alcohols, amides, esters and ethers .
The inert gas is one selected from the group of nitrogen gas, argon gas, helium gas and carbon dioxide gas, the reducing gas is carbon monoxide gas, and the high pressure is 0.1 MPa or more and It is preferable that it is 2.0 MPa or less.

本発明のリチウムイオン電池用正極活物質の製造方法によれば、LiPO、またはLi源及びリン酸源と、Fe源と、水及び沸点が150℃以上の水溶性有機溶媒とを含有する混合物を、不活性ガスまたは還元性ガスの雰囲気中、120℃以上かつ250℃以下の温度及び0.1MPa以上かつ2.0MPa以下のゲージ圧の下にて反応させ、かつ水溶性有機溶媒の含有量を混合物全質量の5質量%以上かつ60質量%以下としたので、原料の水または水溶性有機溶媒に対する溶解度を上昇させるとともに、生成する粒子の表面酸化を抑制することができる。その結果、平均一次粒子径が30nm以上かつ100nm以下の範囲でありしかも粒子の大きさが揃ったLiFePO微粒子を容易かつ効率良く生成させることができる。 According to the method for producing a positive electrode active material for a lithium ion battery of the present invention, Li 3 PO 4 , or a Li source and a phosphoric acid source, an Fe source, water, and a water-soluble organic solvent having a boiling point of 150 ° C. or more are contained. The mixture to be reacted in an atmosphere of an inert gas or a reducing gas under a temperature of 120 ° C. or higher and 250 ° C. or lower and a gauge pressure of 0.1 MPa or higher and 2.0 MPa or lower, and a water-soluble organic solvent Since the content is 5% by mass or more and 60% by mass or less of the total mass of the mixture, it is possible to increase the solubility of the raw material in water or a water-soluble organic solvent and to suppress surface oxidation of the generated particles. As a result, it is possible to easily and efficiently produce LiFePO 4 fine particles having an average primary particle diameter in the range of 30 nm or more and 100 nm or less and having a uniform particle size.

本発明の実施例1の正極活物質を示す電界効果型走査型電子顕微鏡(FE−SEM)像である。It is a field effect type | mold scanning electron microscope (FE-SEM) image which shows the positive electrode active material of Example 1 of this invention. 比較例1の正極活物質を示す電界効果型走査型電子顕微鏡(FE−SEM)像である。3 is a field effect scanning electron microscope (FE-SEM) image showing a positive electrode active material of Comparative Example 1.

本発明のリチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池を実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The manufacturing method of the positive electrode active material for lithium ion batteries of this invention, the electrode for lithium ion batteries, and the form for implementing a lithium ion battery are demonstrated.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

「リチウムイオン電池用正極活物質の製造方法」
本実施形態のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源と、水及び沸点が150℃以上の水溶性有機溶媒とを含有する混合物を、不活性ガスまたは還元性ガスの雰囲気中、高温及び高圧下にて反応させ、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を生成する方法である。
"Method for producing positive electrode active material for lithium ion battery"
The method for producing a positive electrode active material for a lithium ion battery according to this embodiment includes Li 3 PO 4 , or a Li source and a phosphoric acid source, an Fe source, water, and a water-soluble organic solvent having a boiling point of 150 ° C. or higher. In this method, the mixture is reacted in an atmosphere of an inert gas or a reducing gas at high temperature and high pressure to produce LiFePO 4 fine particles having an average primary particle size of 30 nm or more and 100 nm or less.

ここで、LiPO、またはLi源及びリン酸源と、Fe源と、水または水溶性有機溶媒とを含有する混合物を、単に、常圧の不活性ガス雰囲気中にて反応させた場合、生成するLiFePO微粒子は粗大化してしまい、平均一次粒子径が30nm以上かつ100nm以下の範囲の大きさが揃ったLiFePO微粒子を得ることができない。それ故、上記の混合物を、不活性ガスまたは還元性ガスの雰囲気中、高温及び高圧下にて反応させることが、LiFePO微粒子の粒径を制御する際の重要なパラメーターとなる。
そこで、上記の混合物を、不活性ガスまたは還元性ガスの雰囲気中にて反応させる際に、高温及び高圧下にて反応させると、反応物の溶解度が上昇するために、生成する粒子の核生成頻度が増大し、極く小さい粒子径のLiFePO微粒子が多数得られることとなる。
Here, when Li 3 PO 4 , or a mixture containing a Li source and a phosphoric acid source, an Fe source, and water or a water-soluble organic solvent is simply reacted in an inert gas atmosphere at normal pressure , resulting LiFePO 4 particles can cause coarsened, it is impossible to average primary particle size obtain LiFePO 4 particles having a uniform size of and 100nm following range of 30 nm. Therefore, reacting the above mixture in an atmosphere of an inert gas or a reducing gas at a high temperature and a high pressure is an important parameter in controlling the particle size of the LiFePO 4 fine particles.
Therefore, when the above mixture is reacted in an atmosphere of an inert gas or a reducing gas, if the reaction is performed at a high temperature and a high pressure, the solubility of the reactant increases, so that the nucleation of the generated particles The frequency increases, and a large number of LiFePO 4 fine particles having an extremely small particle diameter are obtained.

このLiFePO微粒子を水熱反応で合成する場合、合成原料として、Li塩等のLi源、Fe(II)塩等のFe源、PO塩等のリン酸源を用いる方法、Li源とリン酸源とを反応させたLiPOを用いる方法、Fe源とリン酸源とを反応させたFe(POを用いる方法がある。
ただし、Fe(POは酸化され易く、取り扱いが難しいので、LiPOとFe(II)塩を原料とすることが好ましい。
なお、Li源、Fe源及びリン酸源を用いる方法では、反応初期でLiPOを生成するので、LiPOを用いる方法と同等となる。したがって、初めにLiPOを合成し、その後、このLiPOとFe源とを水熱反応させてLiFePO微粒子を合成する方法が好ましい。
When the LiFePO 4 fine particles are synthesized by hydrothermal reaction, a method using a Li source such as a Li salt, a Fe source such as a Fe (II) salt, a phosphoric acid source such as a PO 4 salt as a synthesis raw material, a Li source and phosphorus There are a method using Li 3 PO 4 reacted with an acid source, and a method using Fe 3 (PO 4 ) 2 reacted with an Fe source and a phosphate source.
However, since Fe 3 (PO 4 ) 2 is easily oxidized and difficult to handle, it is preferable to use Li 3 PO 4 and an Fe (II) salt as raw materials.
Note that the method using Li source, Fe source and phosphoric acid source is equivalent to the method using Li 3 PO 4 because Li 3 PO 4 is generated at the initial stage of the reaction. Therefore, a method is preferred in which Li 3 PO 4 is first synthesized, and then Li 3 PO 4 and Fe source are hydrothermally reacted to synthesize LiFePO 4 fine particles.

次に、このLiFePO微粒子の製造方法について詳細に説明する。
1.リン酸リチウム(LiPO)の作製
まず、水に、Li源及びリン酸源を投入し、これらLi源及びリン酸源を反応させて溶液中にリン酸リチウム(LiPO)を生成させ、次いで、この溶液にアルカリ溶液を添加してリン酸リチウム(LiPO)を析出させ、次いで、洗浄を行って未反応物を除去し、純度の高いリン酸リチウム(LiPO)を回収する。
Next, a method for producing the LiFePO 4 fine particles will be described in detail.
1. Production of Lithium Phosphate (Li 3 PO 4 ) First, a Li source and a phosphoric acid source are introduced into water, and the Li source and the phosphoric acid source are reacted to form lithium phosphate (Li 3 PO 4 ) in the solution. is generated, then this solution was added an alkaline solution to precipitate lithium phosphate (Li 3 PO 4), the then unreacted substances were removed by performing cleaning, lithium high purity phosphoric acid (Li 3 PO 4 ) Collect.

Li源としては、Liの水酸化物あるいはLi塩が好ましく、例えば、Liの水酸化物としては水酸化リチウム(LiOH)が挙げられ、また、Li塩としては、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、硝酸リチウム(LiNO)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、蓚酸リチウム((COOLi))等のリチウム有機酸塩及びこれらの水和物が挙げられ、これらの群から選択された1種または2種以上が好適に用いられる。 The Li source is preferably Li hydroxide or Li salt. For example, Li hydroxide is lithium hydroxide (LiOH), and Li salt is lithium carbonate (Li 2 CO 3 ). , Lithium inorganic acid salts such as lithium chloride (LiCl) and lithium nitrate (LiNO 3 ), lithium organic acid salts such as lithium acetate (LiCH 3 COO) and lithium oxalate ((COOLi) 2 ), and hydrates thereof 1 type or 2 types or more selected from these groups are used suitably.

リン酸源としては、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、リン酸アンモニウム((NHPO)及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。中でも、比較的純度が高く、組成制御が行い易いことから、オルトリン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウムが好適である。 Examples of phosphoric acid sources include phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and diammonium hydrogen phosphate ((NH 4 )). 2 HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ) and one or more selected from the group of these hydrates are preferably used. Among them, orthophosphoric acid, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate are preferable because of their relatively high purity and easy composition control.

2.リン酸リチウム(LiPO)とFe源との混合物の作製
上記の高純度のリン酸リチウム(LiPO)を水及び沸点が150℃以上の水溶性有機溶媒を含む溶液中に投入し、撹拌して、リン酸リチウム(LiPO)スラリーとする。次いで、このリン酸リチウム(LiPO)スラリーにFe源を添加し、混合物とする。
Fe源としては、Fe塩が好ましく、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。
2. Preparation of mixture of lithium phosphate (Li 3 PO 4 ) and Fe source The above-described high purity lithium phosphate (Li 3 PO 4 ) is charged into a solution containing water and a water-soluble organic solvent having a boiling point of 150 ° C. or higher. And stirring to obtain a lithium phosphate (Li 3 PO 4 ) slurry. Next, an Fe source is added to the lithium phosphate (Li 3 PO 4 ) slurry to obtain a mixture.
The Fe source is preferably an Fe salt, such as iron chloride (II) (FeCl 2 ), iron sulfate (II) (FeSO 4 ), iron acetate (II) (Fe (CH 3 COO) 2 ), and water thereof. One or more selected from the group of Japanese products are preferably used.

反応濃度、すなわち、この混合物中のLiPOとFe源とをLiFePOに換算したときの濃度は、0.5mol/L以上かつ2.0mol/L以下が好ましい。
その理由は、反応濃度が0.5mol/L未満では、大粒径のLiFePOが生成し易く、容量が低下する虞があるからであり、一方、反応濃度が2.0mol/Lを超えると、原料の粘性が高くなってしまうために、撹拌を十分に行うことができず、したがって、反応が十分に進行せず、未反応物が残ってしまい、単相のLiFePOが得られ難くなり、電池材料として使用できないからである。
The reaction concentration, that is, the concentration when Li 3 PO 4 and the Fe source in this mixture are converted to LiFePO 4 is preferably 0.5 mol / L or more and 2.0 mol / L or less.
The reason is that when the reaction concentration is less than 0.5 mol / L, LiFePO 4 having a large particle size is likely to be produced, and the capacity may be reduced. On the other hand, when the reaction concentration exceeds 2.0 mol / L, Since the viscosity of the raw material becomes high, the stirring cannot be sufficiently performed, and therefore the reaction does not proceed sufficiently and unreacted substances remain, making it difficult to obtain single-phase LiFePO 4. This is because it cannot be used as a battery material.

この混合物の溶媒としては、水と沸点150℃以上の水溶性有機溶媒との混合溶媒を用いる必要がある。
この水溶性有機溶媒としては、エチレングリコール、プロピレングリコール、ヘキシレングリコール、グリセリン等の多価アルコール類、ホルムアミド、N−メチルホルムアミド、2−ピロリドン、N−メチル−2−ピロリジノン等のアミド類、γ−ブチロラクトン等のエステル類、ジエチレングリコール、エチレングリコールモノブチルエーテル(ブチルセロソルブ)等のエーテル類、の群から選択される1種のみを、または2種以上を混合して用いることができる。
中でも、多価アルコールが好適であり、特にエチレングリコールが好適である。
As a solvent for this mixture, it is necessary to use a mixed solvent of water and a water-soluble organic solvent having a boiling point of 150 ° C. or higher.
Examples of the water-soluble organic solvent include polyhydric alcohols such as ethylene glycol, propylene glycol, hexylene glycol and glycerin, amides such as formamide, N-methylformamide, 2-pyrrolidone and N-methyl-2-pyrrolidinone, γ -Only 1 type selected from the group of esters, such as butyrolactone, ethers, such as diethylene glycol and ethylene glycol monobutyl ether (butyl cellosolve), or 2 or more types can be mixed and used.
Of these, polyhydric alcohols are preferable, and ethylene glycol is particularly preferable.

この混合溶媒は、水の一部を水溶性有機溶媒で、この水溶性有機溶媒の含有量が水熱反応仕込み全質量、すなわち混合物全質量の5質量%以上かつ80質量%以下、好ましくは20質量%以上かつ30質量%以下となるように置換することで得られる。
ここで、置換量が5質量%未満では、生成するLiFePO微粒子及び電池特性が、溶媒が水のみの場合とほぼ同等の性能となり、置換する効果が得られないからであり、一方、置換量が80質量%を超えると、水の含有量が少なすぎるために、合成の際に副生成物の塩が析出してしまい、この塩が不純物となって電池特性を悪化させる要因となる。
このように、水溶性有機溶媒の置換量は、水熱反応仕込み全質量、すなわち混合物全質量に対して定義される。例えば、5質量%とは、水熱反応の全仕込み質量の5質量%を反応系中の水と置換するという意味である。
In this mixed solvent, a part of water is a water-soluble organic solvent, and the content of the water-soluble organic solvent is 5% by mass or more and 80% by mass or less, preferably 20% by mass of the total mass of the hydrothermal reaction. It can be obtained by substitution so as to be not less than 30% by mass and not more than 30% by mass.
Here, if the substitution amount is less than 5% by mass, the generated LiFePO 4 fine particles and the battery characteristics are almost the same as when the solvent is only water, and the substitution effect cannot be obtained. If the amount exceeds 80% by mass, the content of water is too small, so that a salt of a by-product is precipitated during the synthesis, and this salt becomes an impurity and deteriorates battery characteristics.
Thus, the substitution amount of the water-soluble organic solvent is defined with respect to the total mass of the hydrothermal reaction charged, that is, the total mass of the mixture. For example, 5% by mass means that 5% by mass of the total charged mass of the hydrothermal reaction is replaced with water in the reaction system.

3.混合物の水熱合成
上記の混合物を、耐圧反応容器内に投入し、この耐圧反応容器内に、不活性ガスまたは還元性ガスを0.1MPa以上かつ2.0MPa以下、好ましくは0.5MPa以上かつ1.0MPa以下の圧力となるように加圧して封入し、この不活性ガスまたは還元性ガスの雰囲気中、高温及び高圧下にて反応(水熱合成)させ、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を生成させる。
3. Hydrothermal synthesis of the mixture The above mixture is put into a pressure resistant reaction vessel, and an inert gas or a reducing gas is 0.1 MPa or more and 2.0 MPa or less, preferably 0.5 MPa or more and in the pressure resistant reaction vessel. Pressurized and sealed to a pressure of 1.0 MPa or less, reacted (hydrothermal synthesis) in an atmosphere of this inert gas or reducing gas under high temperature and high pressure, and an average primary particle size of 30 nm or more and LiFePO 4 fine particles of 100 nm or less are generated.

不活性ガスとしては、反応(水熱合成)の際に生じる極く小さい粒子径のLiFePO微粒子の表面の酸化を防止することができればよく、特に限定されるものではないが、窒素ガス、アルゴンガス、ヘリウムガス及び二酸化炭素ガス(炭酸ガス)の群から選択される1種が好適に用いられる。
また、還元性ガスとしては、一酸化炭素ガス、水素ガスのいずれか1種が好適に用いられる。この還元性ガスは、不活性ガスと混合した混合ガスとして用いることもできる。この混合ガスとしては、例えば、95v/v%窒素ガス−5v/v%一酸化炭素ガス等の混合ガスが挙げられる。
The inert gas is not particularly limited as long as it can prevent the oxidation of the surface of LiFePO 4 fine particles having a very small particle diameter generated during the reaction (hydrothermal synthesis). One selected from the group of gas, helium gas, and carbon dioxide gas (carbon dioxide gas) is preferably used.
As the reducing gas, any one of carbon monoxide gas and hydrogen gas is preferably used. This reducing gas can also be used as a mixed gas mixed with an inert gas. Examples of the mixed gas include mixed gases such as 95 v / v% nitrogen gas-5 v / v% carbon monoxide gas.

この高温及び高圧の条件は、粒子の大きさが揃ったLiFePO微粒子を生成する温度、圧力及び時間の範囲であれば特に限定されるものではないが、反応温度は、置換する水溶性有機溶媒の沸点を超えないことが必要であり、例えば、120℃以上かつ250℃以下が好ましく、より好ましくは150℃以上かつ220℃以下である。
ここで、反応温度が置換する水溶性有機溶媒の沸点を超えないこととした理由は、水溶性有機溶媒が圧力容器内で沸点を大きく超えた高温条件下に曝されると、分解して反応容器内の内圧を急激に上昇させてしまい、安全上の問題が生じる虞があるからである。
The high temperature and high pressure conditions are not particularly limited as long as the temperature, pressure, and time are within the range of producing LiFePO 4 fine particles with uniform particle sizes, but the reaction temperature is the water-soluble organic solvent to be substituted. For example, the temperature is preferably 120 ° C. or higher and 250 ° C. or lower, more preferably 150 ° C. or higher and 220 ° C. or lower.
Here, the reason why the reaction temperature does not exceed the boiling point of the water-soluble organic solvent to be substituted is that the water-soluble organic solvent decomposes and reacts when exposed to high temperature conditions that greatly exceed the boiling point in the pressure vessel. This is because the internal pressure in the container is suddenly increased, which may cause a safety problem.

また、反応時の圧力は、耐圧反応容器内のゲージ圧で知ることができ、1.5MPa以上かつ3.5MPa以下が好ましく、より好ましくは2.0MPa以上かつ3.0MPa以下である。
特に、不活性ガスまたは還元性ガスを耐圧反応容器内に加圧して封入する場合に、高温時の混合物の蒸気圧と不活性ガスまたは還元性ガスにより加圧した圧力とを考慮し、耐圧反応容器内の耐圧を超えないように不活性ガスまたは還元性ガスの加圧を調整する必要がある。
反応時間は、反応温度にもよるが、例えば、1時間以上かつ24時間以下が好ましく、3時間以上かつ12時間以下がより好ましい。
Moreover, the pressure at the time of reaction can be known by the gauge pressure in a pressure-resistant reaction container, 1.5 MPa or more and 3.5 MPa or less are preferable, More preferably, it is 2.0 MPa or more and 3.0 MPa or less.
In particular, when an inert gas or a reducing gas is pressurized and sealed in a pressure-resistant reaction vessel, the pressure resistance reaction takes into account the vapor pressure of the mixture at high temperature and the pressure pressurized by the inert gas or reducing gas. It is necessary to adjust the pressurization of the inert gas or the reducing gas so as not to exceed the pressure resistance in the container.
Although depending on the reaction temperature, the reaction time is preferably, for example, 1 hour to 24 hours, more preferably 3 hours to 12 hours.

4.LiFePO微粒子の分離
上記のLiFePO微粒子を含む反応物を、デカンテーション、遠心分離、フィルター濾過等により、LiFePO微粒子とLi含有廃液(未反応のLiを含む溶液)とに分離する。
分離されたLiFePO微粒子は、乾燥器等を用いて40℃以上にて3時間以上乾燥し、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を得る。
以上により、平均一次粒子径が小さくかつ粒度分布の狭いLiFePO微粒子を効率良く得ることができる。
4). The reactions containing LiFePO 4 particles separated above LiFePO 4 particles, decantation, centrifugation, by filtration or the like, is separated into LiFePO 4 particles and Li-containing waste solution (solution containing Li unreacted).
The separated LiFePO 4 fine particles are dried at 40 ° C. or more for 3 hours or more using a drier or the like to obtain LiFePO 4 fine particles having an average primary particle diameter of 30 nm or more and 100 nm or less.
As described above, LiFePO 4 fine particles having a small average primary particle size and a narrow particle size distribution can be obtained efficiently.

このようにして得られたLiFePO微粒子は、リチウムイオン電池用正極活物質として用いることで、Liの拡散距離が短くなり、このリチウムイオン電池用正極活物質を備えたリチウムイオン電池用電極及びリチウムイオン電池においては、高速充放電特性の向上を図ることができる。 The LiFePO 4 fine particles obtained in this way are used as a positive electrode active material for a lithium ion battery, so that the Li diffusion distance is shortened, and the lithium ion battery electrode and lithium provided with this positive electrode active material for a lithium ion battery In the ion battery, high-speed charge / discharge characteristics can be improved.

ここで、このLiFePO微粒子の平均一次粒子径が30nm未満であると、結晶性が低下することにより、Liの挿入・脱離の効果が低下し、その結果、充放電容量が低下するので、好ましくなく、一方、平均一次粒子径が100nmを越えると、正極活物質の内部抵抗が高くなり、Liイオンの移動も遅延し、その結果、放電容量が低下する等の問題が生じる虞があるので、好ましくない。 Here, when the average primary particle diameter of the LiFePO 4 fine particles is less than 30 nm, the crystallinity is lowered, so that the effect of insertion / desorption of Li is lowered, and as a result, the charge / discharge capacity is lowered. On the other hand, if the average primary particle diameter exceeds 100 nm, the internal resistance of the positive electrode active material is increased, the movement of Li ions is also delayed, and as a result, problems such as a decrease in discharge capacity may occur. It is not preferable.

「リチウムイオン電池用電極及びリチウムイオン電池」
上記のLiFePO微粒子は電気伝導性が低いので、リチウムイオン電池、特にリチウムイオン2次電池の正電極の正極活物質として用いるためには、LiFePO微粒子の表面を炭素により被覆して電気伝導性を高める必要がある。
このLiFePO微粒子の表面を炭素により被覆することで、電気伝導性を高めることができ、充放電特性を飛躍的に向上させることができる。
"Electrode for lithium ion battery and lithium ion battery"
Since the above-mentioned LiFePO 4 fine particles have low electric conductivity, the surface of LiFePO 4 fine particles is coated with carbon to be used as a positive electrode active material of a positive electrode of a lithium ion battery, particularly a lithium ion secondary battery. Need to be increased.
By covering the surface of the LiFePO 4 fine particles with carbon, the electrical conductivity can be increased, and the charge / discharge characteristics can be remarkably improved.

炭素被覆の方法としては、例えば、LiFePO微粒子を、カーボン源である水溶性の単糖類、多糖類、もしくは水溶性の高分子化合物と混合し、蒸発乾固法、真空乾燥法、スプレードライ法、フリーズドライ法等の乾燥方法を用いて、LiFePO微粒子の表面に均質に膜を形成し、次いで、不活性雰囲気中、カーボン源が分解して炭素を生成する温度で焼成する。この焼成過程でカーボン源が分解し、LiFePO微粒子の表面に導電性のカーボン膜が形成されることとなる。よって、炭素被覆LiFePO微粒子を生成することができる。 As a carbon coating method, for example, LiFePO 4 fine particles are mixed with a water-soluble monosaccharide, polysaccharide, or water-soluble polymer compound that is a carbon source, followed by evaporation to dryness, vacuum drying, or spray drying. Using a drying method such as freeze drying, a film is uniformly formed on the surface of the LiFePO 4 fine particles, and then baked in an inert atmosphere at a temperature at which the carbon source decomposes to generate carbon. During this firing process, the carbon source is decomposed, and a conductive carbon film is formed on the surface of the LiFePO 4 fine particles. Therefore, carbon-coated LiFePO 4 fine particles can be generated.

焼成温度は、カーボン源の種類にもよるが、500℃〜1000℃が好ましく、より好ましくは700℃〜800℃の範囲である。
500℃未満の低い温度では、カーボン源の分解が不十分かつ導電性のカーボン膜の生成が不十分となり、電池内での抵抗要因となり、電池特性に悪影響を及ぼす。一方、1000℃を超える高い温度では、LiFePO微粒子の粒成長が進行して粗大化してしまい、LiFePO粒子の問題点であるLi拡散速度に起因する高速充放電特性が著しく悪化する。
The firing temperature depends on the type of carbon source, but is preferably 500 ° C to 1000 ° C, more preferably 700 ° C to 800 ° C.
At a low temperature of less than 500 ° C., the carbon source is not sufficiently decomposed and a conductive carbon film is not sufficiently formed, which becomes a resistance factor in the battery and adversely affects battery characteristics. On the other hand, at a high temperature exceeding 1000 ° C., the growth of LiFePO 4 fine particles progresses and becomes coarse, and the high-speed charge / discharge characteristics due to the Li diffusion rate, which is a problem of LiFePO 4 particles, are remarkably deteriorated.

このように、上記のLiFePO微粒子を炭素により被覆することで、電気伝導性が高く、充放電特性が飛躍的に向上したリチウムイオン電池、特にリチウムイオン2次電池の正電極の正極活物質として用いることができる。
この炭素被覆LiFePO微粒子を用いて形成された電極を正極とし、さらに、負電極、電解質、セパレータを備えることで、リチウムイオン電池を得ることができる。
Thus, by covering the above LiFePO 4 fine particles with carbon, the positive electrode active material of a positive electrode of a lithium ion battery, particularly a lithium ion secondary battery, which has a high electrical conductivity and dramatically improved charge / discharge characteristics. Can be used.
A lithium ion battery can be obtained by using the electrode formed using the carbon-coated LiFePO 4 fine particles as a positive electrode, and further including a negative electrode, an electrolyte, and a separator.

このリチウムイオン電池は、その正電極が、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子の表面を導電性のカーボン膜で被覆した炭素被覆LiFePO微粒子を用いて形成されたものであるから、充放電特性が向上しており、ハイレートでの電池特性も向上している。 In this lithium ion battery, the positive electrode is formed using carbon-coated LiFePO 4 fine particles in which the surface of LiFePO 4 fine particles having an average primary particle diameter of 30 nm or more and 100 nm or less is coated with a conductive carbon film. Therefore, the charge / discharge characteristics are improved, and the battery characteristics at a high rate are also improved.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「実施例1」
純水1Lに3molの塩化リチウム(LiCl)と、1molのリン酸(HPO)を加えて攪拌し、リン酸リチウム(LiPO)スラリーを得た。
次いで、このスラリーに1molの硫酸鉄(II)(FeSO)を添加し、このスラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して20質量%となるように置換し、このスラリーの反応濃度をLiFePO換算で1.5mol/Lとした。
"Example 1"
To 1 L of pure water, 3 mol of lithium chloride (LiCl) and 1 mol of phosphoric acid (H 3 PO 4 ) were added and stirred to obtain a lithium phosphate (Li 3 PO 4 ) slurry.
Next, 1 mol of iron (II) sulfate (FeSO 4 ) is added to the slurry, and a part of the water in the slurry is replaced with ethylene glycol so that the mass becomes 20% by mass with respect to the total charged mass of the hydrothermal reaction. The reaction concentration of this slurry was 1.5 mol / L in terms of LiFePO 4 .

次いで、このスラリーを耐圧反応容器内に投入し、不活性ガスとして窒素ガスを用い、この窒素ガスを耐圧反応容器内に加圧して封入した。この封入時の耐圧反応容器内の圧力をゲージ圧が0.5MPaとなるように調整して反応を開始させた。
次いで、この耐圧反応容器内の温度を180℃まで2時間で昇温させ、180℃にて6時間、恒温加熱し、LiFePO微粒子を生成させた。この恒温加熱時のゲージ圧は1.5MPaであった。その後、濾過し、固液分離した。
Next, this slurry was put into a pressure resistant reactor, nitrogen gas was used as an inert gas, and this nitrogen gas was pressurized and sealed in the pressure resistant reactor. The reaction was started by adjusting the pressure in the pressure-resistant reaction vessel at the time of sealing so that the gauge pressure was 0.5 MPa.
Next, the temperature in the pressure-resistant reaction vessel was raised to 180 ° C. over 2 hours, and heated at 180 ° C. for 6 hours to generate LiFePO 4 fine particles. The gauge pressure during this constant temperature heating was 1.5 MPa. Then, it filtered and separated into solid and liquid.

得られたケーキ状のLiFePOを固形分換算で150gに対し、ポリエチレングリコール5g、純水150gを加えて5mm径のジルコニアビーズをメディアとしたボールミルにて12時間粉砕・分散処理を行い、均一なスラリーを調製した。
次いで、このスラリーを180℃の大気雰囲気中に噴霧して乾燥させ、平均粒径が約6μmの造粒体を得た。この造粒体を不活性雰囲気下、750℃にて1時間焼成し、実施例1のリチウムイオン電池用正極活物質を作製した。
The obtained cake-like LiFePO 4 is pulverized and dispersed for 12 hours in a ball mill using 5 mm diameter zirconia beads as a medium after adding 5 g of polyethylene glycol and 150 g of pure water to 150 g in terms of solid content. A slurry was prepared.
Next, the slurry was sprayed into an air atmosphere at 180 ° C. and dried to obtain a granulated body having an average particle size of about 6 μm. This granulated body was fired at 750 ° C. for 1 hour under an inert atmosphere to prepare a positive electrode active material for a lithium ion battery of Example 1.

「実施例2」
窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が1.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例2のリチウムイオン電池用正極活物質を作製した。
"Example 2"
The positive electrode active material for a lithium ion battery of Example 2 according to Example 1 except that the reaction was started by adjusting the pressure in the pressure resistant reactor at the time of nitrogen gas filling so that the gauge pressure was 1.0 MPa. Was made.

「実施例3」
窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例3のリチウムイオン電池用正極活物質を作製した。
"Example 3"
The positive electrode active material for a lithium ion battery of Example 3 according to Example 1 except that the reaction was started by adjusting the pressure in the pressure resistant reactor at the time of nitrogen gas filling so that the gauge pressure was 2.0 MPa. Was made.

「実施例4」
リン酸リチウム(LiPO)スラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して10質量%となるように置換し、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例4のリチウムイオン電池用正極活物質を作製した。
Example 4
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry is replaced with ethylene glycol so that the amount becomes 10% by mass with respect to the total charged mass of the hydrothermal reaction. A positive electrode active material for a lithium ion battery of Example 4 was prepared according to Example 1 except that the reaction was started by adjusting the pressure so that the gauge pressure was 2.0 MPa.

「実施例5」
リン酸リチウム(LiPO)スラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して40質量%となるように置換し、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例5のリチウムイオン電池用正極活物質を作製した。
"Example 5"
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry is replaced with ethylene glycol so that the amount becomes 40% by mass with respect to the total charged mass of the hydrothermal reaction. A positive electrode active material for a lithium ion battery of Example 5 was prepared according to Example 1 except that the reaction was started by adjusting the pressure so that the gauge pressure was 2.0 MPa.

「実施例6」
リン酸リチウム(LiPO)スラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して60質量%となるように置換し、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例6のリチウムイオン電池用正極活物質を作製した。
"Example 6"
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry is replaced with ethylene glycol so that the amount becomes 60% by mass with respect to the total charged mass of the hydrothermal reaction. A positive electrode active material for a lithium ion battery of Example 6 was produced according to Example 1 except that the reaction was started by adjusting the pressure so that the gauge pressure was 2.0 MPa.

参考例1
リン酸リチウム(LiPO)スラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して80質量%となるように置換し、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて参考例1のリチウムイオン電池用正極活物質を作製した。
" Reference Example 1 "
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry was replaced with ethylene glycol so that the amount was 80% by mass with respect to the total charged mass of the hydrothermal reaction, A positive electrode active material for a lithium ion battery of Reference Example 1 was prepared according to Example 1 except that the reaction was started by adjusting the pressure so that the gauge pressure was 2.0 MPa.

実施例7
不活性ガスとしてアルゴンガスを用い、このアルゴンガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例7のリチウムイオン電池用正極活物質を作製した。
" Example 7 "
Argon gas is used as inert gas, except that the gauge pressure the pressure in the pressure-resistant reaction vessel when the argon gas filled has to initiate the reaction adjusted to 2.0MPa is carried out in accordance with Example 1 The positive electrode active material for lithium ion batteries of Example 7 was produced.

実施例8
不活性ガスとしてヘリウムガスを用い、このヘリウムガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例8のリチウムイオン電池用正極活物質を作製した。
" Example 8 "
Helium gas used as the inert gas, except that the gauge pressure of the pressure in the pressure-resistant reaction vessel when the helium gas sealing is to initiate the reaction adjusted to 2.0MPa is carried out in accordance with Example 1 The positive electrode active material for lithium ion batteries of Example 8 was produced.

実施例9
不活性ガスとして一酸化炭素ガスを用い、この一酸化炭素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例9のリチウムイオン電池用正極活物質を作製した。
" Example 9 "
Example 1 except that carbon monoxide gas was used as the inert gas, and the reaction was started by adjusting the pressure in the pressure-resistant reaction vessel at the time of filling the carbon monoxide gas so that the gauge pressure was 2.0 MPa. The positive electrode active material for a lithium ion battery of Example 9 was produced according to the above.

実施例10
不活性ガスとして二酸化炭素ガスを用い、この二酸化炭素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例10のリチウムイオン電池用正極活物質を作製した。
" Example 10 "
According to Example 1, except that carbon dioxide gas was used as the inert gas, and the reaction was started by adjusting the pressure in the pressure-resistant reaction vessel at the time of carbon dioxide gas filling so that the gauge pressure was 2.0 MPa. Thus, a positive electrode active material for a lithium ion battery of Example 10 was produced.

実施例11
リン酸リチウム(LiPO)スラリー中の水の一部をグリセリンで、水熱反応全仕込み質量に対して20質量%となるように置換して、このスラリーの反応濃度をLiFePO換算で1.5mol/Lとし、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例11のリチウムイオン電池用正極活物質を作製した。
" Example 11 "
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry is replaced with glycerin so that the amount is 20% by mass with respect to the total mass of the hydrothermal reaction, and the reaction concentration of this slurry is converted to LiFePO 4 . Example 11 was carried out in accordance with Example 1 except that the reaction was started by adjusting the pressure in the pressure-resistant reaction vessel at the time of nitrogen gas filling to 1.5 mol / L so that the gauge pressure was 2.0 MPa. A positive electrode active material for a lithium ion battery was prepared.

実施例12
リン酸リチウム(LiPO)スラリー中の水の一部をホルムアミドで、水熱反応全仕込み質量に対して20質量%となるように置換して、このスラリーの反応濃度をLiFePO換算で1.5mol/Lとし、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例12のリチウムイオン電池用正極活物質を作製した。
" Example 12 "
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry was replaced with formamide so that it would be 20% by mass with respect to the total hydrothermal reaction charge mass, and the reaction concentration of this slurry was converted to LiFePO 4 Except that the reaction was started by adjusting the pressure in the pressure-resistant reaction vessel at the time of nitrogen gas filling to 1.5 mol / L so that the gauge pressure was 2.0 MPa, the reaction of Example 12 was performed according to Example 1. A positive electrode active material for a lithium ion battery was prepared.

実施例13
リン酸リチウム(LiPO)スラリー中の水の一部をγ−ブチロラクトンで、水熱反応全仕込み質量に対して20質量%となるように置換して、このスラリーの反応濃度をLiFePO換算で1.5mol/Lとし、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて実施例13のリチウムイオン電池用正極活物質を作製した。
" Example 13 "
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry was replaced with γ-butyrolactone so as to be 20 mass% with respect to the total hydrothermal reaction charge mass, and the reaction concentration of this slurry was changed to LiFePO 4. and 1.5 mol / L in terms, except that the pressure in the pressure-resistant reaction vessel during nitrogen gas sealed gauge pressure was initiated adjusted to react so as to 2.0 MPa, carried out in accordance with example 1 example Thirteen positive electrode active materials for lithium ion batteries were produced.

「比較例1」
リン酸リチウム(LiPO)スラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して20質量%となるように置換し、窒素ガス封入時の耐圧反応容器内の圧力をゲージ圧が0.0MPa(=大気圧)となるように調整して反応を開始させた以外は、実施例1に準じて比較例1のリチウムイオン電池用正極活物質を作製した。
"Comparative Example 1"
A part of the water in the lithium phosphate (Li 3 PO 4 ) slurry is replaced with ethylene glycol so that the amount becomes 20% by mass with respect to the total charged mass of the hydrothermal reaction. A positive electrode active material for a lithium ion battery of Comparative Example 1 was produced according to Example 1 except that the reaction was started by adjusting the pressure so that the gauge pressure was 0.0 MPa (= atmospheric pressure).

「比較例2」
リン酸リチウム(LiPO)スラリーを、その水の一部をエチレングリコールで置換することなく、そのまま耐圧反応容器内に投入し、不活性ガスの替わりに大気を用い、この大気封入時の耐圧反応容器内の圧力をゲージ圧が0.0MPa(=大気圧)となるように調整して反応を開始させた以外は、実施例1に準じて比較例2のリチウムイオン電池用正極活物質を作製した。
"Comparative Example 2"
The lithium phosphate (Li 3 PO 4 ) slurry was put into a pressure-resistant reaction vessel as it was without replacing part of the water with ethylene glycol, and air was used instead of inert gas. The positive electrode active material for the lithium ion battery of Comparative Example 2 according to Example 1 except that the reaction was started by adjusting the pressure in the pressure resistant reactor so that the gauge pressure was 0.0 MPa (= atmospheric pressure). Was made.

「比較例3」
リン酸リチウム(LiPO)スラリーを、その水の一部をエチレングリコールで置換することなく、そのまま耐圧反応容器内に投入し、不活性ガスの替わりに大気を用い、この大気を加圧して封入した時の耐圧反応容器内の圧力をゲージ圧が0.5MPaとなるように調整して反応を開始させた以外は、実施例1に準じて比較例3のリチウムイオン電池用正極活物質を作製した。
“Comparative Example 3”
Lithium phosphate (Li 3 PO 4 ) slurry is put into a pressure-resistant reaction vessel as it is without replacing a part of the water with ethylene glycol, and the atmosphere is pressurized instead of the inert gas. The positive electrode active material for the lithium ion battery of Comparative Example 3 according to Example 1 except that the reaction was started by adjusting the pressure in the pressure resistant reaction vessel when sealed so that the gauge pressure was 0.5 MPa. Was made.

「比較例4」
リン酸リチウム(LiPO)スラリーを、その水の一部をエチレングリコールで置換することなく、そのまま耐圧反応容器内に投入し、不活性ガスの替わりに大気を用い、この大気を加圧して封入した時の耐圧反応容器内の圧力をゲージ圧が2.0MPaとなるように調整して反応を開始させた以外は、実施例1に準じて比較例4のリチウムイオン電池用正極活物質を作製した。
“Comparative Example 4”
Lithium phosphate (Li 3 PO 4 ) slurry is put into a pressure-resistant reaction vessel as it is without replacing a part of the water with ethylene glycol, and the atmosphere is pressurized instead of the inert gas. The positive electrode active material for the lithium ion battery of Comparative Example 4 according to Example 1 except that the reaction was started by adjusting the pressure in the pressure resistant reaction vessel when sealed so that the gauge pressure was 2.0 MPa. Was made.

「リチウムイオン電池用正極活物質の評価」
実施例1〜13、参考例1及び比較例1〜4各々の正極活物質について、平均一次粒子径及び比表面積を下記の方法にて測定した。
(1)平均一次粒子径
電界効果型走査型電子顕微鏡(FE−SEM)により5万倍の電界効果型走査型電子顕微鏡(FE−SEM)像を撮影し、このFE−SEM像の一視野から無作為に微粒子を20点選び、これらの微粒子の粒子径の測定値の平均値を平均一次粒子径とした。
"Evaluation of positive electrode active materials for lithium-ion batteries"
About each positive electrode active material of Examples 1-13, Reference example 1, and Comparative Examples 1-4, the average primary particle diameter and specific surface area were measured with the following method.
(1) Average primary particle diameter A 50,000-fold field effect scanning electron microscope (FE-SEM) image was taken with a field effect scanning electron microscope (FE-SEM), and from one field of view of this FE-SEM image. Twenty fine particles were randomly selected, and the average value of the measured particle sizes of these fine particles was defined as the average primary particle size.

(2)比表面積
比表面積計 BelsorpII(日本ベル社製)を用いて正極活物質の比表面積(m2/g)を測定した。
実施例1〜13、参考例1及び比較例1〜4各々の正極活物質の特性を表1に示す。
また、実施例1の正極活物質の電界効果型走査型電子顕微鏡(FE−SEM)像を図1に、比較例1の正極活物質の電界効果型走査型電子顕微鏡(FE−SEM)像を図2に、それぞれ示す。
(2) Specific surface area Specific surface area meter The specific surface area (m2 / g) of the positive electrode active material was measured using Belsorb II (manufactured by Nippon Bell Co., Ltd.).
Table 1 shows the characteristics of the positive electrode active materials of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 4.
Moreover, the field effect scanning electron microscope (FE-SEM) image of the positive electrode active material of Example 1 is shown in FIG. 1, and the field effect scanning electron microscope (FE-SEM) image of the positive electrode active material of Comparative Example 1 is shown in FIG. Each is shown in FIG.

「リチウムイオン2次電池の作製」
実施例1〜13、参考例1及び比較例1〜4各々の正極活物質について、以下の処理を行い、実施例1〜13、参考例1及び比較例1〜4各々のリチウムイオン2次電池を作製した。
まず、正極活物質を90質量部、導電助剤としてアセチレンブラックを5質量部、バインダーとしてポリフッ化ビニリデン(PVDF)を5質量部、及び溶媒としてN−メチル−2−ピロリジノン(NMP)を混合した。
次いで、3本ロールミルを用いてこれらを混練し、正極活物質ペーストを作製した。
"Production of lithium ion secondary battery"
About the positive electrode active material of each of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 4, the following treatment was performed, and each of the lithium ion secondary batteries of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 4 was performed. Was made.
First, 90 parts by mass of the positive electrode active material, 5 parts by mass of acetylene black as a conductive auxiliary agent, 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-2-pyrrolidinone (NMP) as a solvent were mixed. .
Next, these were kneaded using a three-roll mill to produce a positive electrode active material paste.

次いで、この正極活物質ペーストを、厚み30μmのアルミニウム集電体箔上に塗布し、その後、100℃にて減圧乾燥を行い、厚みが30μmの正極を作製した。
次いで、この正極を2cmの円板状に打ち抜き、減圧乾燥後、乾燥アルゴン雰囲気下にてステンレススチール製の2016型コイン型セルを用いてリチウムイオン2次電池を作製した。
ここでは、負極に金属リチウムを、セパレーターに多孔質ポリプロピレン膜を、電解液に1モルのLiPFを炭酸エチレン(EC)と炭酸ジエチル(DEC)とを3:7にて混合した溶液に混合した混合物を、用いた。
Next, this positive electrode active material paste was applied onto an aluminum current collector foil having a thickness of 30 μm, and then dried under reduced pressure at 100 ° C. to produce a positive electrode having a thickness of 30 μm.
Next, this positive electrode was punched into a 2 cm 2 disk shape, dried under reduced pressure, and then a lithium ion secondary battery was produced using a stainless steel 2016 type coin cell in a dry argon atmosphere.
Here, metallic lithium was mixed in the negative electrode, a porous polypropylene film was mixed in the separator, and 1 mol of LiPF 6 was mixed in the electrolyte with a solution of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at 3: 7. The mixture was used.

「電池充放電試験」
実施例1〜13、参考例1及び比較例1〜4各々のリチウムイオン2次電池を用いて、電池充放電試験を行った。
ここでは、カットオフ電圧を2.0V〜4.0Vとし、初期放電容量の測定は、0.1Cで充電を行い、0.1Cで放電した。その他の放電容量の測定は、0.2Cで充電し、0.2C、5C、8C、12C各々における放電容量を測定した。
また、5Cにおける放電容量と0.2Cにおける放電容量との比(%)を放電維持率(5C/0.2C維持率)とした。
実施例1〜13、参考例1及び比較例1〜4各々の放電容量及び放電維持率(5C/0.2C維持率)を表2に示す。
"Battery charge / discharge test"
A battery charge / discharge test was performed using each of the lithium ion secondary batteries of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 4.
Here, the cutoff voltage was 2.0 V to 4.0 V, and the initial discharge capacity was measured by charging at 0.1 C and discharging at 0.1 C. The other discharge capacities were measured by charging at 0.2C and measuring the discharge capacities at 0.2C, 5C, 8C, and 12C.
The ratio (%) between the discharge capacity at 5C and the discharge capacity at 0.2C was defined as the discharge maintenance ratio (5C / 0.2C maintenance ratio).
Table 2 shows the discharge capacities and discharge maintenance rates (5C / 0.2C maintenance rates) of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 4.

表1、2及び図1、2によれば、次のことが分かった。
(1)スラリー中の水の一部を水溶性有機溶媒で置換し、得られたスラリーを耐圧反応容器内に投入し、この耐圧反応容器内に、不活性ガスまたは還元性ガスを0.1MPa以上かつ2.0MPa以下にて加圧して封入し、その後、高温及び高圧下にて反応(水熱合成)させることにより、高温かつ加圧封入しない場合と比べて圧力がより高い不活性ガスまたは還元性ガス雰囲気下にて反応(水熱合成)させることが可能となり、正極活物質の平均一次粒子径を30nm〜100nmの範囲で制御することができることが確認された。
According to Tables 1 and 2 and FIGS.
(1) A portion of the water in the slurry is replaced with a water-soluble organic solvent, and the resulting slurry is put into a pressure-resistant reaction vessel, and an inert gas or a reducing gas is added to the pressure-resistant reaction vessel at 0.1 MPa. The inert gas having a higher pressure than the case of high temperature and no pressure encapsulation is performed by pressurizing and encapsulating at a pressure of 2.0 MPa or less and then reacting (hydrothermal synthesis) at high temperature and high pressure. It was confirmed that the reaction (hydrothermal synthesis) can be performed in a reducing gas atmosphere, and the average primary particle diameter of the positive electrode active material can be controlled in the range of 30 nm to 100 nm.

一方、不活性ガスを耐圧反応容器内に充填し、この不活性ガスの圧力を大気圧と同等とした状態で合成を開始すると、粗大な粒子が生成してしまい、平均一次粒子径が100nm以下の微小粒子が得られないことがわかった。
したがって、少なくとも大気より高い圧力下になるように不活性ガスまたは還元性ガスを加圧して封入し、耐圧反応容器内の圧力を高い状態に維持し、合成を開始することで、平均一次粒子径が30nm〜100nmの範囲の正極活物質を容易に生成させることができることが確認された。
On the other hand, when an inert gas is filled in a pressure-resistant reaction vessel and synthesis is started in a state where the pressure of the inert gas is equal to atmospheric pressure, coarse particles are generated, and the average primary particle size is 100 nm or less. It was found that no microparticles could be obtained.
Therefore, pressurize and seal the inert gas or reducing gas so that it is at least under a pressure higher than the atmosphere, maintain the pressure in the pressure-resistant reaction vessel at a high level, and start synthesis, the average primary particle size It was confirmed that a positive electrode active material having a thickness of 30 nm to 100 nm can be easily generated.

(2)実施例1〜3の正極活物質では、リン酸リチウム(LiPO)スラリー中の水溶性有機溶媒の含有率を20質量%とし、かつ高い圧力下で合成することで、比較例1の正極活物質と比べて比表面積が増加しており、比較例1のリチウムイオン2次電池と比べて放電容量及び放電維持率(5C/0.2C維持率)が向上している。これにより、放充電特性の向上及び初期放電容量の確保を確認することができた。 (2) In the positive electrode active materials of Examples 1 to 3, the content of the water-soluble organic solvent in the lithium phosphate (Li 3 PO 4 ) slurry was 20% by mass, and the synthesis was performed under high pressure. The specific surface area is increased as compared with the positive electrode active material of Example 1, and the discharge capacity and the discharge maintenance ratio (5C / 0.2C maintenance ratio) are improved as compared with the lithium ion secondary battery of Comparative Example 1. Thereby, it was confirmed that the charge / discharge characteristics were improved and the initial discharge capacity was ensured.

本発明のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源と、水及び沸点が150℃以上の水溶性有機溶媒とを含有する混合物を、不活性ガスまたは還元性ガスの雰囲気中、高温及び高圧下にて反応させ、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を生成する方法であるから、得られたリチウムイオン電池用正極活物質をリチウムイオン電池、特にリチウムイオン2次電池の正電極に適用することで、放充電特性の向上及びハイレートでの特性向上を図ることができ、その結果、負荷特性が要求される電動工具やハイブリッド自動車へ搭載可能なリチウムイオン二次電池を実用化することが期待でき、産業上の意義は極めて大きいものである。 The method for producing a positive electrode active material for a lithium ion battery according to the present invention includes Li 3 PO 4 , or a mixture containing a Li source and a phosphoric acid source, an Fe source, water, and a water-soluble organic solvent having a boiling point of 150 ° C. or higher. In the atmosphere of an inert gas or a reducing gas at high temperature and high pressure to produce LiFePO 4 fine particles having an average primary particle size of 30 nm or more and 100 nm or less. By applying the positive electrode active material for a lithium ion battery, in particular, to the positive electrode of a lithium ion secondary battery, it is possible to improve the charge / discharge characteristics and the characteristics at a high rate. As a result, load characteristics are required. It can be expected that a lithium ion secondary battery that can be mounted on a power tool or a hybrid vehicle will be put to practical use, and its industrial significance is extremely large.

Claims (3)

LiPO、またはLi源及びリン酸源と、Fe源と、水及び沸点が150℃以上の水溶性有機溶媒とを含有する混合物を、不活性ガスまたは還元性ガスの雰囲気中、120℃以上かつ250℃以下の温度及び0.1MPa以上かつ2.0MPa以下のゲージ圧の下にて反応させ、平均一次粒子径が30nm以上かつ100nm以下のLiFePO微粒子を生成するリチウムイオン電池用正極活物質の製造方法であって、
前記水溶性有機溶媒の含有量は、前記混合物全質量の5質量%以上かつ60質量%以下であることを特徴とするリチウムイオン電池用正極活物質の製造方法。
Li 3 PO 4 , or a mixture containing a Li source and a phosphoric acid source, an Fe source, water, and a water-soluble organic solvent having a boiling point of 150 ° C. or higher, in an inert gas or reducing gas atmosphere at 120 ° C. The positive electrode active for a lithium ion battery which produces LiFePO 4 fine particles having an average primary particle diameter of 30 nm or more and 100 nm or less by reacting at a temperature of 250 ° C. or less and a gauge pressure of 0.1 MPa or more and 2.0 MPa or less. A method for producing a substance , comprising:
Content of the said water-soluble organic solvent is 5 mass% or more and 60 mass% or less of the said mixture total mass, The manufacturing method of the positive electrode active material for lithium ion batteries characterized by the above-mentioned.
前記水溶性有機溶媒は、多価アルコール類、アミド類、エステル類及びエーテル類の群から選択される1種または2種以上であることを特徴とする請求項1記載のリチウムイオン電池用正極活物質の製造方法。   2. The positive electrode active for lithium ion battery according to claim 1, wherein the water-soluble organic solvent is one or more selected from the group consisting of polyhydric alcohols, amides, esters and ethers. A method for producing a substance. 前記不活性ガスは、窒素ガス、アルゴンガス、ヘリウムガス及び炭酸ガスの群から選択される1種であり、前記還元性ガスは、一酸化炭素ガスであることを特徴とする請求項1または2記載のリチウム電池用正極活物質の製造方法。   3. The inert gas is one selected from the group consisting of nitrogen gas, argon gas, helium gas and carbon dioxide gas, and the reducing gas is carbon monoxide gas. The manufacturing method of the positive electrode active material for lithium batteries of description.
JP2010046820A 2010-03-03 2010-03-03 Method for producing positive electrode active material for lithium ion battery Active JP5544934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046820A JP5544934B2 (en) 2010-03-03 2010-03-03 Method for producing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046820A JP5544934B2 (en) 2010-03-03 2010-03-03 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2011181452A JP2011181452A (en) 2011-09-15
JP5544934B2 true JP5544934B2 (en) 2014-07-09

Family

ID=44692740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046820A Active JP5544934B2 (en) 2010-03-03 2010-03-03 Method for producing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5544934B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180070B2 (en) * 2011-03-01 2017-08-16 太平洋セメント株式会社 Method for producing lithium iron phosphate
US8945498B2 (en) * 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP5364865B2 (en) * 2011-09-30 2013-12-11 昭和電工株式会社 Method for producing positive electrode active material for lithium secondary battery
JP5725456B2 (en) * 2011-12-19 2015-05-27 太平洋セメント株式会社 Method for producing positive electrode active material for lithium ion secondary battery
WO2013099409A1 (en) * 2011-12-26 2013-07-04 株式会社村田製作所 Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
JP2013175374A (en) * 2012-02-27 2013-09-05 Gs Yuasa Corp Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those
KR101973052B1 (en) 2012-08-10 2019-04-26 삼성에스디아이 주식회사 Method for Preparation of Lithium Metal Phosphate
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
KR101561376B1 (en) 2013-01-10 2015-10-19 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
KR101586556B1 (en) 2013-01-10 2016-01-20 주식회사 엘지화학 Method for preparing lithium iron phospate nanopowder coated with carbon
KR101542317B1 (en) * 2013-01-10 2015-08-05 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
CN103346315B (en) * 2013-06-26 2015-12-09 湖北大学 A kind of take mesoporous carbon CMK-3 as the preparation method of the carbon-coated LiFePO 4 for lithium ion batteries material of carbon source
CN103400983B (en) * 2013-07-29 2015-07-08 海门容汇通用锂业有限公司 Method for synthesizing nano lithium iron phosphate without water of crystallization through atmospheric water phase
JPWO2015170561A1 (en) * 2014-05-07 2017-04-20 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5820521B1 (en) * 2014-09-29 2015-11-24 太平洋セメント株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP5999240B1 (en) 2015-09-30 2016-09-28 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
US20180013151A1 (en) 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
JP6307133B2 (en) * 2016-09-27 2018-04-04 太平洋セメント株式会社 Polyanionic positive electrode active material and method for producing the same
JP6535063B2 (en) * 2017-09-08 2019-06-26 太平洋セメント株式会社 Method of manufacturing positive electrode active material complex for lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10353266B4 (en) * 2003-11-14 2013-02-21 Süd-Chemie Ip Gmbh & Co. Kg Lithium iron phosphate, process for its preparation and its use as electrode material
JP4651960B2 (en) * 2004-03-23 2011-03-16 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, positive electrode material for lithium battery, and lithium battery
JP5216960B2 (en) * 2006-12-26 2013-06-19 日立マクセル株式会社 Positive electrode active material for lithium ion secondary battery
US8460573B2 (en) * 2008-04-25 2013-06-11 Sumitomo Osaka Cement Co., Ltd. Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
JP5509918B2 (en) * 2009-03-27 2014-06-04 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery

Also Published As

Publication number Publication date
JP2011181452A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5544934B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5509918B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
KR101840541B1 (en) Positive electrode material for lithium secondary battery, method for preparing the same and secondary battery comprising the same
JP5472099B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery obtained by the production method, electrode for lithium ion battery, and lithium ion battery
JP5463561B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP5531532B2 (en) Method for producing lithium ion battery positive electrode active material
JP5165515B2 (en) Lithium ion secondary battery
KR20150047477A (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries using same, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US20160130145A1 (en) Method for making cathode material of lithium ion battery
KR100940979B1 (en) Method of manufacturing lithium iron phosphate
JP2011071019A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
KR101736558B1 (en) Method for preparing porous lithium iron phosphate particle
JP2011251873A (en) Method for producing lithium-containing composite oxide
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
KR101384197B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
JP5901492B2 (en) Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP2015056223A (en) Positive electrode active material for nonaqueous secondary batteries, method for manufacturing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
KR101768755B1 (en) Method for Preparing Lithium Manganese Phosphate and Product Obtained from the Same
JP2015049997A (en) Electrode material for lithium ion batteries, manufacturing method thereof, electrode for lithium ion batteries and lithium ion battery
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
JP2015049995A (en) Method for manufacturing positive electrode active material for lithium ion batteries, and positive electrode active material for lithium ion batteries
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350