JP5165515B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5165515B2
JP5165515B2 JP2008240427A JP2008240427A JP5165515B2 JP 5165515 B2 JP5165515 B2 JP 5165515B2 JP 2008240427 A JP2008240427 A JP 2008240427A JP 2008240427 A JP2008240427 A JP 2008240427A JP 5165515 B2 JP5165515 B2 JP 5165515B2
Authority
JP
Japan
Prior art keywords
positive electrode
plane
particles
active material
limnpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008240427A
Other languages
Japanese (ja)
Other versions
JP2010073520A (en
Inventor
一重 河野
達哉 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008240427A priority Critical patent/JP5165515B2/en
Publication of JP2010073520A publication Critical patent/JP2010073520A/en
Application granted granted Critical
Publication of JP5165515B2 publication Critical patent/JP5165515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery.

電子機器の電源に用いられ、小型化・軽量化が期待される二次電池としてリチウムイオン二次電池がある。これらのリチウムイオン二次電池の正極活物質としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)等のLiを含有する金属酸化物が検討され、実用化されている。 There is a lithium ion secondary battery as a secondary battery that is used as a power source for electronic devices and is expected to be reduced in size and weight. As the positive electrode active material of these lithium ion secondary batteries, metal oxides containing Li such as lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) have been studied and put into practical use.

しかしながら、近年、電池の高容量化への要求が高まってきたことに伴い、力を加えるなど、信頼性や安全性の許容範囲を超える使用条件、すなわち濫用時における電池の発熱を抑制するための技術開発が要求されている。   However, in recent years, with increasing demand for higher capacity of batteries, such as adding force, the usage conditions that exceed the allowable range of reliability and safety, that is, to suppress the heat generation of the battery at the time of abuse Technology development is required.

そのため、正極材料としては、P−O結合力が強く、熱的に安定であるという特長を有していることから、Feを含むLiFePOで表される燐酸塩化合物などが提案されている。 For this reason, as a positive electrode material, a phosphate compound represented by LiFePO 4 containing Fe has been proposed because it has a feature that it has a strong PO bond and is thermally stable.

Feを含有する燐酸塩化合物は、コバルト酸リチウムなどと比較して電子伝導性が低く、且つLi金属に対して電位が3.3Vと低いため、高エネルギー密度化に関して課題があった。   The phosphate compound containing Fe has a problem in terms of increasing the energy density because it has a low electronic conductivity compared to lithium cobaltate and the like, and has a low potential of 3.3 V with respect to Li metal.

これに対して、Feの替わりにMnを用いたLiMnPOで表される化合物は、Li金属に対する電位が4.2V付近であり、電池の動作電位をコバルト酸リチウムと同等にすることが可能であるが、Feを用いた燐酸塩化合物より更に電子伝導性が低いという問題があった。 On the other hand, the compound represented by LiMnPO 4 using Mn instead of Fe has a potential with respect to Li metal of around 4.2 V, and the operating potential of the battery can be made equivalent to that of lithium cobalt oxide. However, there is a problem that the electron conductivity is lower than that of the phosphate compound using Fe.

LiMnPOの充放電特性を改善させるために、これまでさまざまな検討がなされている。 In order to improve the charge / discharge characteristics of LiMnPO 4 , various studies have been made so far.

特許文献1及び特許文献2においては、Mnの一部を異種元素で置換し、更に350℃以下の温度で水熱合成する手法が提案されている。   In Patent Document 1 and Patent Document 2, a method is proposed in which a part of Mn is substituted with a different element and then hydrothermal synthesis is performed at a temperature of 350 ° C. or lower.

特許文献1には、安価で資源的に豊富な元素を用い、高い放電容量、安定した充放電サイクル特性、高い充填性及び高い出力を実現することを目的として、LiPO(但し、AはCo、Ni、Mn、Fe、Cu、Crから選択された1種、DはMg、Ca、Fe、Ni、Co、Mn、Zn、Ge、Cu、Cr、Ti、Sr、Ba、Sc、Y、Al、Ga、In、Si、B、希土類元素から選択された1種又は2種以上かつ前記Aと異なる)にて表されるリチウム電池用正極活物質の製造方法であって、水を主成分とする溶媒に、リチウム成分、リン成分、前記A成分、前記D成分及び水に可溶な有機酸を加え、ついで、この溶液を加圧下にて加熱することにより、前記LiPOを生成するリチウム電池用正極活物質の製造方法、並びに、この製造方法により得られたリチウム電池用正極活物質が開示されている。 In Patent Document 1, Li x A y D z PO 4 is used for the purpose of realizing high discharge capacity, stable charge / discharge cycle characteristics, high fillability and high output by using inexpensive and resource-rich elements. (However, A is one selected from Co, Ni, Mn, Fe, Cu, Cr, D is Mg, Ca, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr, Ti, Sr, Ba , Sc, Y, Al, Ga, In, Si, B, one or more selected from rare earth elements and different from the above A). Then, a lithium component, a phosphorus component, the A component, the D component, and an organic acid soluble in water are added to a solvent containing water as a main component, and then the solution is heated under pressure so that the Li lithium battery that generates x a y D z PO 4 Method of manufacturing an active material, and a positive electrode active material for a lithium battery obtained was disclosed by this production method.

特許文献2には、安価で資源的に豊富な元素を用い、高い放電容量、安定した充放電サイクル特性、高い充填性及び高い出力を実現することを目的として、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種又は2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料の製造方法であって、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種又は2種以上)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させることを特徴とする電極材料の製造方法が開示されている。 Patent Document 2, for the purpose of using in abundance as a resource element at a low cost, high discharge capacity, stable charge and discharge cycle characteristics, to achieve high filling property and high output, Li x Al y A z PO 4 (Where A is one or more selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr, x + 3y + 2z = 3, x, y, and z are positive numbers). A method for producing an electrode material comprising: a Li source, an A source (where A is one or two selected from the group of Co, Mn, Ni, Fe, Cu, Cr) A method for producing an electrode material is disclosed, in which an Al source, a PO 4 source and an organic acid are added to form a solution, and then the solution is reacted under high temperature and high pressure.

特許文献3には、カーボン被覆Li含有粉末及びその製造方法を提供することを目的として、所定の工程によりLi含有橄欖石又はNASICON結晶相を形成するカーボン被覆Li含有橄欖石又はNASICON粉末の製造方法が開示されている。さらに、特許文献4には、前記結晶相がLi(XO[式中、u=1、2又は3、v=1又は2、w=1又は3、Mは、TiCrMnFeCoNiScNb(式中、a+b+c+d+e+f+g+h+i=1)を表わし、Xは、Px−1(0≦x≦1)を表わす。]である製造方法が開示されている。 Patent Document 3 discloses a method for producing a carbon-coated Li-containing meteorite or NASICON powder that forms a Li-containing meteorite or NASICON crystal phase by a predetermined process for the purpose of providing a carbon-coated Li-containing powder and a method for producing the same. Is disclosed. Further, in Patent Document 4, the crystal phase is Li u M v (XO 4 ) w [wherein u = 1, 2, or 3, v = 1 or 2, w = 1 or 3, M is Ti a V b Cr c Mn d Fe e Co f Ni g Sc h Nb i ( where, a + b + c + d + e + f + g + h + i = 1) represents, X represents a P x-1 S x (0 ≦ x ≦ 1). ] Is disclosed.

特許文献4には、安価なLiOHを用いても、均一な組成かつ高純度のナノ粒子を容易かつ安価に製造することができる電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池を提供することを目的として、LiPO(ただし、AはFe、Co、Mn、Ni、Cr、Cuの群から選択された1種または2種以上、BはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択された1種または2種以上)からなる化合物を主成分とする電極材料粉体の製造方法であって、水酸化リチウムと、A源および/またはB源と、リン酸および/またはリン酸塩と、前記水酸化リチウムと前記リン酸および/またはリン酸塩のリン酸基との反応を阻害する反応阻害剤と、前記A源と前記リン酸および/またはリン酸塩のリン酸基との反応を遅延する反応遅延剤とを含有する溶液、分散液または懸濁液を、高温雰囲気中に噴霧して前駆体とし、この前駆体を熱処理することを特徴とする電極材料粉体の製造方法が開示されている。 Patent Document 4 discloses a method for producing electrode material powder, an electrode material powder and an electrode, and a lithium battery that can easily and inexpensively produce nanoparticles having a uniform composition and high purity even when inexpensive LiOH is used. Li x A y B z PO 4 (where A is one or more selected from the group consisting of Fe, Co, Mn, Ni, Cr, and Cu, and B is Mg, Ca , Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and one or more selected from the group of rare earth elements) A method for producing a powder, comprising lithium hydroxide, A source and / or B source, phosphoric acid and / or phosphate, lithium hydroxide and phosphoric acid and / or phosphate phosphoric acid Reaction inhibition that inhibits reaction with groups And a precursor containing a solution, dispersion or suspension containing the A source and a reaction retarder that retards the reaction between the phosphoric acid and / or the phosphate group of the phosphate in a high-temperature atmosphere. A method for producing electrode material powder is disclosed, characterized in that the precursor is heat treated.

しかしながら、特許文献1および3の実施例には、LiFePOが記載されているだけであり、特許文献2には、LiAlFePO又はLiAlFez1Mgz2POと表し得る物質が記載されているだけであり、特許文献1〜3のいずれにもLiMnPOの実施例は開示されていない。 However, the examples of Patent Documents 1 and 3 only describe LiFePO 4 , and Patent Document 2 describes Li x Al y Fe z PO 4 or Li x Al y Fe z1 Mg z2 PO 4 and Only the substances that can be represented are described, and none of Patent Documents 1 to 3 discloses an example of LiMnPO 4 .

ただし、特許文献4の実施例には、LiMnPOが記載されている。この実施例におけるLiMnPOは、2次粒子の平均粒子径が0.5〜3μmの球状であり、粉末X線回折(XRD)の結果、LiMnPO単相からなる均一組成を有すると記載されている。 However, LiMnPO 4 is described in the example of Patent Document 4. LiMnPO 4 in this example is described as having a uniform composition composed of a single phase of LiMnPO 4 as a result of powder X-ray diffraction (XRD) as a spherical shape with an average particle size of secondary particles of 0.5 to 3 μm. Yes.

これらの手法によれば、低温で合成されるため、得られる化合物の粒子サイズが小さくなり、反応表面積が増加してLiの挿入・脱離が容易になるものと考えられる。しかしながら、異種元素が含まれる場合、放電時の電位カーブが多段階のプラトーが生じ、電池の充放電における制御システムなどが複雑になる危険性があった。   According to these methods, since the synthesis is performed at a low temperature, the particle size of the obtained compound is reduced, the reaction surface area is increased, and Li insertion / extraction is facilitated. However, when different kinds of elements are included, there is a risk that the potential curve at the time of discharge will have a multi-stage plateau, and the control system for charging and discharging the battery will be complicated.

また、非特許文献1では、エチレングリコール様な有機溶媒中で合成することにより、結晶粒子の微細化を試みている。   In Non-Patent Document 1, attempts are made to refine crystal grains by synthesizing in an organic solvent such as ethylene glycol.

非特許文献1によれば、Fe、Ce、Niを用いた燐酸塩化合物は微細で均一な粒子を形成できることが論じられている。しかしながら、Mnを用いた燐酸塩化合物は、結晶粒子が針状結晶となり、電極の高密度化が困難であった。   Non-Patent Document 1 discusses that phosphate compounds using Fe, Ce, and Ni can form fine and uniform particles. However, in the phosphate compound using Mn, the crystal particles become needle-like crystals, and it is difficult to increase the density of the electrodes.

特開2005−276474号公報JP 2005-276474 A 特開2006−261060号公報JP 2006-261060 A 特表2005−530676号公報JP 2005-530676 Gazette 特開2005−116393号公報JP 2005-116393 A J.Yang:J.Electrochem.Soc.、153(4)A716−723(2006)J. et al. Yang: J.A. Electrochem. Soc. 153 (4) A716-723 (2006)

本発明は、Li金属に対する電位が4.2V付近であり、電池の動作電位をコバルト酸リチウムと同等にすることが可能であるLiMnPOをリチウムイオン二次電池の正極活物質として適用するために、電子伝導性を向上させるとともに、リチウムイオン二次電池としての高エネルギー密度と高い安全性とを両立させることを目的とする。 In order to apply LiMnPO 4 as a positive electrode active material of a lithium ion secondary battery, the present invention has a potential with respect to Li metal of around 4.2 V, and the operating potential of the battery can be equivalent to that of lithium cobalt oxide. An object of the present invention is to improve the electron conductivity and achieve both high energy density and high safety as a lithium ion secondary battery.

本発明の正極活物質は、LiMnPOで形成された正極活物質であって、このLiMnPOは、一次粒子が密着し、二次粒子が一次粒子によって形成された微細な凹凸を有することを特徴とする。 The positive electrode active material of the present invention is a positive electrode active material formed of LiMnPO 4 , and this LiMnPO 4 is characterized in that the primary particles are in close contact and the secondary particles have fine irregularities formed by the primary particles. And

本発明によれば、リチウムイオン二次電池の正極活物質であるLiMnPOの電子伝導性を向上させるとともに、リチウムイオン二次電池としての高エネルギー密度と高い安全性とを両立させることができる。 According to the present invention, it is possible to improves the positive electrode active material in which the electron conductivity of LiMnPO 4 of the lithium ion secondary batteries, satisfying both high energy density and high safety as a lithium ion secondary battery.

また、本発明によれば、濫用時においても熱的に安定であり、且つ高エネルギー密度化を実現できるリチウムイオン二次電池を提供することが可能となる。   In addition, according to the present invention, it is possible to provide a lithium ion secondary battery that is thermally stable even during abuse and can realize high energy density.

本発明は、安全性に優れたリチウムイオン二次電池の正極活物質に関するものである。   The present invention relates to a positive electrode active material for a lithium ion secondary battery excellent in safety.

以下に、本発明の実施例を示す。本発明は、これらの実施例に限定されるものではない。   Examples of the present invention are shown below. The present invention is not limited to these examples.

酢酸リチウム二水和物(0.025モル)を25mlの蒸留水に添加、攪拌しながら水溶液(酢酸リチウム水溶液)を作製する。その後、酢酸マンガン四水和物(0.025モル)を添加する。その後、燐酸二水素アンモニウム(0.025モル)を添加した。ここまでの工程を、リチウム、マンガン及び燐酸を混合する工程、すなわち、リチウム・マンガン・燐酸混合工程又は原料物質混合工程と呼ぶことにする。   Lithium acetate dihydrate (0.025 mol) is added to 25 ml of distilled water, and an aqueous solution (lithium acetate aqueous solution) is prepared while stirring. Thereafter, manganese acetate tetrahydrate (0.025 mol) is added. Thereafter, ammonium dihydrogen phosphate (0.025 mol) was added. The steps so far are referred to as a step of mixing lithium, manganese and phosphoric acid, that is, a lithium / manganese / phosphoric acid mixing step or a raw material mixing step.

その後、キレート化剤として、クエン酸(0.075モル)を添加して混合する。その後、加熱・攪拌しながら水分を蒸発させる。水分蒸発後、残った物質を回収して先駆体とし、この先駆体を雰囲気炉(アルゴンガス気流)を用いて800℃(これを焼成雰囲気と呼ぶ)で4時間熱処理を行い、LiMnPOを作製した。ここで行う熱処理を、一般に、所定の焼成雰囲気での熱処理と呼んでもよい。 Thereafter, citric acid (0.075 mol) is added and mixed as a chelating agent. Thereafter, the water is evaporated while heating and stirring. After evaporating the water, the remaining material was recovered and used as a precursor, and this precursor was heat-treated at 800 ° C. (called a firing atmosphere) using an atmosphere furnace (argon gas stream) to produce LiMnPO 4 . did. The heat treatment performed here may generally be called heat treatment in a predetermined firing atmosphere.

本実施例においては、上記の通り、クエン酸を添加したが、クエン酸の代わりに、他の有機酸、例えば、リンゴ酸、酒石酸、コハク酸等を用いることもできる。また、この有機酸は、クエン酸、リンゴ酸、酒石酸、コハク酸等のうち、複数種の有機酸を混合したものでもよい。   In this example, citric acid was added as described above, but other organic acids such as malic acid, tartaric acid, succinic acid, and the like can be used instead of citric acid. The organic acid may be a mixture of a plurality of organic acids among citric acid, malic acid, tartaric acid, succinic acid, and the like.

焼成後の試料は、流星型ボールミル(FRITSCH製:Planetary micro mill pulverisette 7)を用いて1時間粉砕し、ふるいにより45μm以上の粗粒を除去した。抵抗率の評価は、サンプルを1g秤量し、粉体抵抗評価装置(三菱化学製:ロレスターGP)を用いて計測を行った。今回の評価では油圧で40MPaの荷重を印加した際の抵抗率を標準として用いた。   The calcined sample was pulverized for 1 hour using a meteor type ball mill (manufactured by FRITSCH: Planetary micro mill pulse set 7), and coarse particles of 45 μm or more were removed by sieving. The resistivity was measured by weighing 1 g of the sample and using a powder resistance evaluation apparatus (Mitsubishi Chemical: Lorester GP). In this evaluation, the resistivity when a load of 40 MPa was applied by hydraulic pressure was used as a standard.

XRD評価方法を以下に示す。自動X線回折装置(リガク社製:RINT−UltimaIII)を用い、いわゆる2θ/θ測定において、X線源:CuKα、出力:40kV×40mAで2θ=15〜80°の範囲をサンプリング角度0.01°、スキャン速度0.1°/secの発散スリット0.5°、散乱スリット0.5°、受光スリット0.15mmの条件でX線回折プロファイルを測定した。得られた回折プロファイルは平滑化、バックグラウンド除去、Kα2除去の順に処理した後、ICDD(International Centre for Diffraction Data)カード(PDF−2)と照合し、回折角2θ=20.5°付近のI(011)と2θ=35.1°付近のI(131)ピーク強度を計測した。   The XRD evaluation method is shown below. In so-called 2θ / θ measurement using an automatic X-ray diffractometer (manufactured by Rigaku Corporation: RINT-UltimaIII), X-ray source: CuKα, output: 40 kV × 40 mA, 2θ = 15-80 ° sampling angle 0.01 The X-ray diffraction profile was measured under the conditions of a divergence slit of 0.5 °, a scanning slit of 0.5 °, and a light receiving slit of 0.15 mm at a scan rate of 0.1 ° / sec. The obtained diffraction profile is processed in the order of smoothing, background removal, and Kα2 removal, and then collated with an ICDD (International Center for Diffraction Data) card (PDF-2), and the diffraction angle 2θ is around 20.5 °. (011) and I (131) peak intensity around 2θ = 35.1 ° were measured.

リチウム二次電池の作製方法の一例を示すと以下のとおりである。   An example of a method for producing a lithium secondary battery is as follows.

正極活物質を炭素材料粉末の導電材及びポリフッ化ビニリデン等の結着剤と共に混合してスラリーを作製する。正極活物質に対する導電材の混合比は3〜10重量%が望ましい。また、正極活物質に対する結着剤の混合比は2〜10重量%が望ましい。このとき、正極活物質をスラリー中で均一に分散させるため、混練機を用いて充分な混練を行うことが好ましい。得られたスラリーは、例えばロール転写機などによって、厚み15〜25μmのアルミ箔上に塗布する。塗布した後、乾燥・プレスすることによって正極板を形成する。正極活物質、導電材、結着剤を混合した合剤部分の厚さは200〜250μmが望ましい。   A positive electrode active material is mixed with a conductive material of carbon material powder and a binder such as polyvinylidene fluoride to prepare a slurry. The mixing ratio of the conductive material to the positive electrode active material is preferably 3 to 10% by weight. The mixing ratio of the binder to the positive electrode active material is preferably 2 to 10% by weight. At this time, in order to uniformly disperse the positive electrode active material in the slurry, it is preferable to perform sufficient kneading using a kneader. The obtained slurry is applied onto an aluminum foil having a thickness of 15 to 25 μm by, for example, a roll transfer machine. After coating, the positive electrode plate is formed by drying and pressing. As for the thickness of the mixture part which mixed the positive electrode active material, the electrically conductive material, and the binder, 200-250 micrometers is desirable.

以下、正極の作製について説明する。   Hereinafter, preparation of the positive electrode will be described.

得られた正極活物質を用いて正極を作製した。正極活物質、炭素系の導電材、及び、あらかじめ溶媒N−メチル−2−ピロリドン(NMP)に溶解させた結着剤を、質量%で表して、それぞれ89.0:5.5:5.5の割合で混合し、混合されたスラリーを厚み20μmのアルミニウム集電体に塗布した。   A positive electrode was produced using the obtained positive electrode active material. The positive electrode active material, the carbon-based conductive material, and the binder previously dissolved in the solvent N-methyl-2-pyrrolidone (NMP) are expressed in mass% and are 89.0: 5.5: 5. 5 was mixed, and the mixed slurry was applied to an aluminum current collector having a thickness of 20 μm.

その後、120℃で乾燥し、プレスにて電極密度が約1g/cmになるよう圧縮成形した。圧縮成形した後、直径15mmの円盤状に打ち抜き金具を用いて打ち抜き、正極を作製した。 Then, it dried at 120 degreeC and compression-molded so that the electrode density might be set to about 1 g / cm < 3 > with the press. After compression molding, a positive electrode was produced by punching into a disk shape having a diameter of 15 mm using a punched metal fitting.

以下、試験電池の作製について説明する。   Hereinafter, production of a test battery will be described.

作製された正極を用い、金属リチウムを負極、そして正極と負極との間に微多孔質膜、例えば、ポリエチレン(PE)やポリプロピレン(PP)などからなるセパレータを挟んで短絡を抑制した。電解液としては、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)との混合溶媒に1.0molのLiPFを溶解したものを用いた。 Using the produced positive electrode, a metal lithium was used as a negative electrode, and a microporous film such as a separator made of polyethylene (PE) or polypropylene (PP) was interposed between the positive electrode and the negative electrode to suppress short circuit. As the electrolytic solution, a solution obtained by dissolving 1.0 mol of LiPF 6 in a mixed solvent of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.

以下、正極の特性評価について説明する。   Hereinafter, characteristic evaluation of the positive electrode will be described.

ここで、正極の放電容量特性を以下の手順で評価した。試験電池を用い、充電レートを1/50Cとして4.2Vまで定電流/定電圧で充電した後、放電レート1/50Cで2.7Vまで放電した。これを1サイクルとして、3サイクル繰り返した。3サイクル目の放電容量を、本発明の放電容量として評価した。   Here, the discharge capacity characteristics of the positive electrode were evaluated by the following procedure. Using a test battery, the battery was charged at a constant current / constant voltage to 4.2 V at a charge rate of 1/50 C, and then discharged to 2.7 V at a discharge rate of 1/50 C. This was taken as one cycle and repeated three cycles. The discharge capacity at the third cycle was evaluated as the discharge capacity of the present invention.

焼成雰囲気を、3%の水素ガスを混合したアルゴンガス気流としたこと以外は、実施例1と同じ条件で行った。   The firing was performed under the same conditions as in Example 1 except that the firing atmosphere was an argon gas stream mixed with 3% hydrogen gas.

原料物質混合工程において、酢酸リチウム二水和物及び燐酸二水素アンモニウムの替わりに、燐酸二水素リチウムを用いたこと以外は、実施例1と同じ条件で行った。この場合、燐酸二水素リチウム水溶液に酢酸マンガン四水和物を添加してもよいし、酢酸マンガン四水和物を蒸留水に溶解した酢酸マンガン水溶液に燐酸二水素リチウムを添加してもよい。この工程を、燐酸二水素リチウムと酢酸マンガン四水和物とを混合する工程と呼んでもよい。   In the raw material mixing step, the same conditions as in Example 1 were used except that lithium dihydrogen phosphate was used instead of lithium acetate dihydrate and ammonium dihydrogen phosphate. In this case, manganese acetate tetrahydrate may be added to the lithium dihydrogen phosphate aqueous solution, or lithium dihydrogen phosphate may be added to the manganese acetate aqueous solution in which manganese acetate tetrahydrate is dissolved in distilled water. This step may be called a step of mixing lithium dihydrogen phosphate and manganese acetate tetrahydrate.

実施例2と同様に、焼成雰囲気を、3%の水素ガスを混合したアルゴンガス気流とし、実施例3と同様に、原料物質混合工程において酢酸リチウム二水和物及び燐酸二水素アンモニウムの替わりに、燐酸二水素リチウムを用いたこと以外は、実施例1と同じ条件で行った。   As in Example 2, the firing atmosphere was an argon gas stream mixed with 3% hydrogen gas, and in the same manner as in Example 3, instead of lithium acetate dihydrate and ammonium dihydrogen phosphate in the raw material mixing step. The same conditions as in Example 1 were used except that lithium dihydrogen phosphate was used.

(比較例1)
炭酸リチウム(0.025モル)、炭酸マンガン(0.025モル)及び燐酸二水素アンモニウム(0.025モル)をジルコニア製のポットに入れ、カルボキシメチルセルロース(CMC)0.9gを添加し、流星型ボールミルを用いて1h(1時間)混合する。回収した混合材を雰囲気炉(アルゴンガス気流)を用いて800℃で4時間熱処理を行った。
(Comparative Example 1)
Lithium carbonate (0.025 mol), manganese carbonate (0.025 mol) and ammonium dihydrogen phosphate (0.025 mol) are put in a zirconia pot, 0.9 g of carboxymethylcellulose (CMC) is added, and a meteor type Mix for 1 h (1 hour) using a ball mill. The recovered mixed material was heat-treated at 800 ° C. for 4 hours using an atmosphere furnace (argon gas stream).

焼成後のサンプル評価は、実施例1に記述する条件で行った。   Sample evaluation after firing was performed under the conditions described in Example 1.

(比較例2)
カルボキシメチルセルロースの替わりに、カーボンブラックを0.3g添加した以外は、比較例1に準じて行った。
(Comparative Example 2)
It carried out according to the comparative example 1 except having added 0.3g of carbon black instead of carboxymethylcellulose.

(比較例3)
酢酸リチウム二水和物(0.025モル)を25mlのエチレングリコールに添加、攪拌しながら溶液を作製する。その後、酢酸マンガン四水和物(0.025モル)を添加する。その後無水燐酸(0.025モル)を添加した。その後、ろ過して回収した先駆体を雰囲気炉(アルゴンガス気流)を用いて800℃で4時間熱処理を行った。
(Comparative Example 3)
Lithium acetate dihydrate (0.025 mol) is added to 25 ml of ethylene glycol and a solution is prepared with stirring. Thereafter, manganese acetate tetrahydrate (0.025 mol) is added. Then phosphoric anhydride (0.025 mol) was added. Thereafter, the precursor recovered by filtration was heat-treated at 800 ° C. for 4 hours using an atmosphere furnace (argon gas stream).

この比較例は、非特許文献1の作製方法に準拠したものである。   This comparative example is based on the manufacturing method of Non-Patent Document 1.

焼成後のサンプル評価は、実施例1に記述する条件で行った。   Sample evaluation after firing was performed under the conditions described in Example 1.

(比較例4)
エチレングリコール溶液に、ジエタノールアミンを2.5g添加した以外は、比較例3に準じて行った。
(Comparative Example 4)
It carried out according to the comparative example 3 except having added 2.5g of diethanolamines to the ethylene glycol solution.

「抵抗率及びXRDピーク強度の評価結果」
実施例1〜4及び比較例1〜4の抵抗率の評価結果を図1に示す。横軸に(011)面と(131)面との強度比{I(011)/I(131)}、縦軸に抵抗率をとっている。
"Evaluation results of resistivity and XRD peak intensity"
The resistivity evaluation results of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in FIG. The horizontal axis represents the strength ratio {I (011) / I (131)} between the (011) plane and the (131) plane, and the vertical axis represents the resistivity.

本図から、(011)面と(131)面との強度比{I(011)/I(131)}の値が0.713〜0.762となる実施例1〜4の材料は、抵抗率が10Ω・cm以下であり、電気伝導性が優れていることがわかる。一方、比較例1〜4の材料は、抵抗率が100〜600kΩ・cmであり、導電性があまり高くない材料であることがわかる。   From this figure, the materials of Examples 1 to 4 in which the value of the intensity ratio {I (011) / I (131)} between the (011) plane and the (131) plane is 0.713 to 0.762 are The rate is 10 Ω · cm or less, indicating that the electrical conductivity is excellent. On the other hand, it can be seen that the materials of Comparative Examples 1 to 4 have a resistivity of 100 to 600 kΩ · cm and are not so high in conductivity.

実施例1、比較例1及び3で得た材料の電子顕微鏡写真及びその電子顕微鏡写真に表れた結晶の模式図を図2A〜4Bにそれぞれ示す。   2A to 4B respectively show electron micrographs of the materials obtained in Example 1 and Comparative Examples 1 and 3, and schematic diagrams of crystals appearing in the electron micrographs.

図2A及び2Bに示すように、実施例1で得た材料は、数十nmの球形の一次粒子(図2Bの微小結晶粒子1)が集合して二次粒子又は三次粒子を形成した状態である。ここで、一次粒子は、最小単位の微小結晶粒子1であり、この一次粒子が密着した状態で集合して二次粒子を形成している。また、二次粒子の粒径を数百nm〜1μmとみなすならば、その二次粒子が密着した状態で集合して三次粒子を形成していると見ることもできる。図2Aの電子顕微鏡写真から、一次粒子の粒界が観察できないほど密着していることがわかる。これにより、一次粒子同士の接触抵抗が低くなり、全体の抵抗率が低くなるものと考える。図2Bの符号51は、三次粒子の表面の凹部を示すものである。   As shown in FIGS. 2A and 2B, the material obtained in Example 1 is in a state where secondary particles or tertiary particles are formed by aggregation of spherical primary particles of several tens of nm (microcrystalline particles 1 in FIG. 2B). is there. Here, the primary particles are the fine crystal particles 1 of the smallest unit, and the primary particles are aggregated in close contact to form secondary particles. Further, if the particle size of the secondary particles is regarded as several hundred nm to 1 μm, it can be considered that the secondary particles are aggregated in close contact to form tertiary particles. From the electron micrograph of FIG. 2A, it can be seen that the grain boundaries of the primary particles are so close that they cannot be observed. As a result, the contact resistance between the primary particles is lowered, and the overall resistivity is considered to be lowered. Reference numeral 51 in FIG. 2B indicates a concave portion on the surface of the tertiary particle.

図3A及び3Bに示すように、比較例1で得た材料は、数μmの大きな一次粒子(図3Bの結晶粒子2)が集合した状態であることがわかる。また、図3Aの電子顕微鏡写真において、一次粒子の粒界が鮮明である。これは、この粒界における接触抵抗が比較的高い可能性を示唆していると思われる。   As shown in FIGS. 3A and 3B, it can be seen that the material obtained in Comparative Example 1 is in a state where large primary particles (crystal particles 2 in FIG. 3B) of several μm are aggregated. Further, in the electron micrograph of FIG. 3A, the grain boundaries of the primary particles are clear. This seems to suggest that the contact resistance at this grain boundary may be relatively high.

図4A及び4Bに示すように、比較例3で得た材料は、短径が数十nmで、長径が数百nmの針状一次粒子(図4Bでは針状結晶3)の集合体であることがわかる。この形状は、非特許文献1で示されている粒子構造と非常に類似している。   As shown in FIGS. 4A and 4B, the material obtained in Comparative Example 3 is an aggregate of acicular primary particles (acicular crystals 3 in FIG. 4B) having a minor axis of several tens of nanometers and a major axis of several hundreds of nanometers. I understand that. This shape is very similar to the particle structure shown in Non-Patent Document 1.

また、実施例1と比較例1又は3とを比較した場合、二次粒子同士の接触においても、実施例1の方が有利である。すなわち、実施例1の二次粒子は、微細な球形一次粒子によって形成された微細な凹凸を有し、隣接する二次粒子との接触面積が大きくなると考える。ここで、微細な凹凸とは、数十nmの球形の一次粒子が集合して形成された二次粒子の表面の凹凸であり、隣り合って密着している一次粒子同士によって二次粒子の表面に形成される凸部(山)及び凹部(谷)の集合体である。この凸部と凸部との間隔(凹凸の周期)は、一次粒子の粒子間距離に等しい。この微細な凹凸を有する二次粒子の凸部が隣の二次粒子の凹部に埋まることにより、良好に噛み合った歯車のように、二次粒子同士が多くの接触点(広い接触面積)を持つようになると考える。   Further, when Example 1 is compared with Comparative Example 1 or 3, Example 1 is more advantageous in contact between secondary particles. That is, it is considered that the secondary particles of Example 1 have fine unevenness formed by fine spherical primary particles, and the contact area with the adjacent secondary particles is increased. Here, the fine irregularities are irregularities on the surface of secondary particles formed by agglomeration of spherical primary particles of several tens of nanometers, and the surface of the secondary particles is formed by adjacent primary particles adhering to each other. It is the aggregate | assembly of the convex part (mountain) and recessed part (valley) formed in this. The interval between the protrusions and the protrusions (period of unevenness) is equal to the interparticle distance of the primary particles. When the convex part of the secondary particle having fine irregularities is buried in the concave part of the adjacent secondary particle, the secondary particles have many contact points (wide contact area) like a gear meshing well. I think so.

これに対して、比較例1の場合、一次粒子が比較的大きいため、隣接粒子との単位寸法(単位長さ又は単位面積)当たりの接触点数が実施例1に比べて少なくなる。比較例3の場合、針状結晶が二次粒子表面において様々な方向に突き出しているため、隣接する二次粒子との接触確率が低くなると考える。   On the other hand, in the case of the comparative example 1, since the primary particles are relatively large, the number of contact points per unit dimension (unit length or unit area) with the adjacent particles is smaller than in the first example. In the case of the comparative example 3, since the needle-like crystal protrudes in various directions on the surface of the secondary particle, it is considered that the contact probability with the adjacent secondary particle is lowered.

以上の結果から、本発明の特徴であるX線回折のピーク強度比{I(011)/I(131)}を適切な範囲に制御することにより、結晶粒子の異方性が無くなり、電気伝導性が向上しているものと推察される。   From the above results, by controlling the X-ray diffraction peak intensity ratio {I (011) / I (131)}, which is a feature of the present invention, to an appropriate range, the anisotropy of the crystal grains is eliminated, and the electric conduction It is inferred that the performance has improved.

「放電容量の評価結果」
実施例1〜4及び比較例1〜4の放電容量の評価結果を図5に示す。横軸に(011)面と(131)面との強度比{I(011)/I(131)}、縦軸に放電容量をとっている。
"Evaluation results of discharge capacity"
The evaluation result of the discharge capacity of Examples 1-4 and Comparative Examples 1-4 is shown in FIG. The horizontal axis represents the intensity ratio {I (011) / I (131)} between the (011) plane and the (131) plane, and the vertical axis represents the discharge capacity.

モデル電池の放電容量においても、図1と同様に、(011)面と(131)面とのピーク強度比{I(011)/I(131)}の値が0.713〜0.762である実施例1〜4の材料は、放電容量が20mAh/g以上であり、比較例1〜4に比べて高い値を示した。   Also in the discharge capacity of the model battery, the value of the peak intensity ratio {I (011) / I (131)} between the (011) plane and the (131) plane is 0.713 to 0.762, as in FIG. The materials of certain Examples 1 to 4 had a discharge capacity of 20 mAh / g or more, which was higher than those of Comparative Examples 1 to 4.

以上のように、本発明による実施例で得た材料は、一次粒子が密着して材料の電気伝導性が高くなったことにより、エネルギーロスが小さくなったこと、及び図2A〜2Bに示すように、微細な一次粒子の集合体を形成していることにより、結晶粒子の異方性が無くなり、Liイオンの拡散が改善された効果によるものと推察される。   As described above, the material obtained in the example according to the present invention has a reduced energy loss due to the close contact of the primary particles and the increased electrical conductivity of the material, and as shown in FIGS. In addition, it is presumed that the formation of fine primary particles aggregates eliminates the anisotropy of the crystal particles and improves the diffusion of Li ions.

図5で示す曲線の立ち上がり又は実施例の材料のバラツキを考慮して、(011)面と(131)面とのピーク強度比{I(011)/I(131)}の値は、0.705〜0.780の範囲であれば、本発明の効果である高い放電容量が得られる。また、実施例のうち、特に放電容量が高い範囲は、実施例3及び4を含む領域、すなわち、(011)面と(131)面とのピーク強度比{I(011)/I(131)}の値が0.725〜0.760の範囲である。最も望ましい範囲は、実施例3を含む領域、すなわち、(011)面と(131)面とのピーク強度比{I(011)/I(131)}の値が0.730〜0.750の範囲である。   Considering the rise of the curve shown in FIG. 5 or the variation of the material of the example, the value of the peak intensity ratio {I (011) / I (131)} between the (011) plane and the (131) plane is 0. If it is the range of 705-0.780, the high discharge capacity which is the effect of this invention will be obtained. Further, among the examples, the range where the discharge capacity is particularly high is a region including Examples 3 and 4, that is, the peak intensity ratio {I (011) / I (131) between the (011) plane and the (131) plane. } Is in the range of 0.725 to 0.760. The most desirable range is a region including Example 3, that is, the value of the peak intensity ratio {I (011) / I (131)} between the (011) plane and the (131) plane is 0.730 to 0.750. It is a range.

本発明で得られた正極活物質は、従来から用いられているコバルト酸リチウム(LiCoO)などと比較して熱的に安定であることから、安全性に優れた大型リチウムイオン二次電池を必要とされる、移動体や定置型電力貯蔵の電源へ適用できる。 Since the positive electrode active material obtained in the present invention is thermally stable as compared with lithium cobalt oxide (LiCoO 2 ) and the like that have been conventionally used, a large-sized lithium ion secondary battery excellent in safety can be obtained. It can be applied to the power sources for mobiles and stationary power storage that are required.

本発明による実施例の抵抗率及びXRDピーク強度の評価結果を示すグラフである。It is a graph which shows the evaluation result of the resistivity and XRD peak intensity of the Example by this invention. 本発明による実施例1の正極活物質の電子顕微鏡写真である。It is an electron micrograph of the positive electrode active material of Example 1 by this invention. 本発明による実施例1の正極活物質の微小結晶粒子を示す模式図である。It is a schematic diagram which shows the microcrystal particle | grains of the positive electrode active material of Example 1 by this invention. 比較例1の正極活物質の電子顕微鏡写真である。2 is an electron micrograph of a positive electrode active material of Comparative Example 1. 比較例1の正極活物質の結晶粒子を示す模式図である。3 is a schematic diagram showing crystal particles of a positive electrode active material of Comparative Example 1. FIG. 比較例3の正極活物質の電子顕微鏡写真である。4 is an electron micrograph of a positive electrode active material of Comparative Example 3. 比較例3の正極活物質の結晶粒子を示す模式図である。6 is a schematic diagram showing crystal particles of a positive electrode active material of Comparative Example 3. FIG. 本発明による実施例の放電容量及びXRDピーク強度の評価結果を示すグラフである。It is a graph which shows the evaluation result of the discharge capacity and XRD peak intensity of the Example by this invention.

符号の説明Explanation of symbols

1:微小結晶粒子、2:結晶粒子、3:針状結晶。   1: fine crystal particles, 2: crystal particles, 3: acicular crystals.

Claims (4)

LiMnPOで形成された正極活物質であって、このLiMnPOは、最小単位の結晶粒子である一次粒子が密着した状態で集合して二次粒子を形成し、この二次粒子が前記一次粒子によって形成された微細な凹凸を有し、X線回折法で計測される(011)面と(131)面とのピーク強度比(I(011)/I(131))が0.705〜0.780であることを特徴とする正極活物質。 A positive electrode active material formed of LiMnPO 4 , wherein the LiMnPO 4 aggregates in a state where primary particles, which are the smallest unit crystal particles, are in close contact with each other to form secondary particles, and the secondary particles are the primary particles. have a fine unevenness formed by, measured by X-ray diffraction method (011) plane and the (131) plane and the peak intensity ratio of (I (011) / I (131)) is from 0.705 to 0 780, A positive electrode active material. X線回折法で計測される(011)面と(131)面とのピーク強度比(I(011)/I(131))が0.713〜0.762であることを特徴とする請求項1記載の正極活物質。   The peak intensity ratio (I (011) / I (131)) between the (011) plane and the (131) plane measured by the X-ray diffraction method is 0.713 to 0.762. The positive electrode active material according to 1. LiMnPOで形成された正極活物質を内蔵したリチウムイオン二次電池であって、このLiMnPOは、最小単位の結晶粒子である一次粒子が密着した状態で集合して二次粒子を形成し、この二次粒子が前記一次粒子によって形成された微細な凹凸を有し、前記LiMnPO が、X線回折法で計測される(011)面と(131)面とのピーク強度比(I(011)/I(131))が0.705〜0.780であることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery including a positive electrode active material formed of LiMnPO 4 , wherein the LiMnPO 4 aggregates in a state where primary particles that are crystal units of the smallest unit are in close contact to form secondary particles, the secondary particles have a fine unevenness formed by the primary particles, the LiMnPO 4 is measured by X-ray diffraction method (011) plane and the (131) plane and the peak intensity ratio of (I (011 ) / I (131)) is 0.705 to 0.780 . 前記LiMnPOが、X線回折法で計測される(011)面と(131)面とのピーク強度比(I(011)/I(131))が0.713〜0.762であることを特徴とする請求項記載のリチウムイオン二次電池。 In the LiMnPO 4 , the peak intensity ratio (I (011) / I (131)) between the (011) plane and the (131) plane measured by the X-ray diffraction method is 0.713 to 0.762. The lithium ion secondary battery according to claim 3 .
JP2008240427A 2008-09-19 2008-09-19 Lithium ion secondary battery Expired - Fee Related JP5165515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240427A JP5165515B2 (en) 2008-09-19 2008-09-19 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240427A JP5165515B2 (en) 2008-09-19 2008-09-19 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010073520A JP2010073520A (en) 2010-04-02
JP5165515B2 true JP5165515B2 (en) 2013-03-21

Family

ID=42205109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240427A Expired - Fee Related JP5165515B2 (en) 2008-09-19 2008-09-19 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5165515B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133616B2 (en) * 2006-02-14 2012-03-13 Dow Global Technologies Llc Lithium manganese phosphate positive material for lithium secondary battery
KR101118008B1 (en) 2008-10-22 2012-03-13 주식회사 엘지화학 Lithium Iron Phosphate Having Olivine Structure and Method for Preparing the Same
JP5557715B2 (en) * 2010-12-06 2014-07-23 株式会社日立製作所 Positive electrode material for lithium ion secondary battery and manufacturing method thereof, positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2014221690A (en) * 2011-09-05 2014-11-27 国立大学法人 東京大学 Method for producing lithium-containing acid salt compound
JP5921930B2 (en) * 2012-03-28 2016-05-24 日本ケミコン株式会社 Manufacturing method of electrode material for secondary battery
JP6119123B2 (en) * 2012-06-15 2017-04-26 トヨタ自動車株式会社 Active material, battery, and method for producing active material
KR101614185B1 (en) * 2012-09-07 2016-04-20 주식회사 엘지화학 Positive electrode material for improved safety, and lithium secondary battery comprising the same
JP6729369B2 (en) * 2015-03-31 2020-07-22 東レ株式会社 Lithium manganese phosphate nanoparticles and method for producing the same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticles, and lithium ion battery
WO2018029745A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery
JP6288341B1 (en) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6288342B1 (en) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery
WO2024045174A1 (en) * 2022-09-02 2024-03-07 宁德时代新能源科技股份有限公司 Ammonium manganese iron phosphate precursor and preparation method therefor, lithium manganese iron phosphate positive electrode active material, and secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324731B2 (en) * 2001-07-31 2013-10-23 三井造船株式会社 Method for producing secondary battery positive electrode material and secondary battery
JP4190912B2 (en) * 2003-02-24 2008-12-03 住友大阪セメント株式会社 Positive electrode active material for lithium ion battery and lithium ion battery having the same
JP4522683B2 (en) * 2003-10-09 2010-08-11 住友大阪セメント株式会社 Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP4525474B2 (en) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 Active material for lithium secondary battery and method for producing the same, lithium secondary battery
JP4956738B2 (en) * 2005-08-10 2012-06-20 国立大学法人佐賀大学 Active materials for lithium batteries
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery
CN100563047C (en) * 2006-04-25 2009-11-25 立凯电能科技股份有限公司 Be applicable to the composite material and the prepared battery thereof of the positive pole of making secondary cell
JP2010503606A (en) * 2006-09-13 2010-02-04 ヴァレンス テクノロジー インコーポレーテッド Method for treating active materials for use in secondary electrochemical cells
JP5245084B2 (en) * 2007-01-29 2013-07-24 国立大学法人九州大学 Olivine-type compound ultrafine particles and method for producing the same
JP4959648B2 (en) * 2008-08-04 2012-06-27 株式会社日立製作所 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2010073520A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5165515B2 (en) Lithium ion secondary battery
JP5509918B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5472099B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery obtained by the production method, electrode for lithium ion battery, and lithium ion battery
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5544934B2 (en) Method for producing positive electrode active material for lithium ion battery
JP4926607B2 (en) Electrode material manufacturing method, positive electrode material, and battery
JP5245084B2 (en) Olivine-type compound ultrafine particles and method for producing the same
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JPWO2013038516A1 (en) Ammonium manganese iron phosphate and production method thereof, positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate, production method thereof, and lithium secondary battery using the positive electrode active material
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP2013080709A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2011071018A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP4252331B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
KR101384197B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP2010168230A (en) Lithium phosphate powder, slurry containing lithium phosphate, method for producing electrode active material and lithium ion battery
TW201803803A (en) Method for manufacturing vanadium lithium phosphate
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
JP2014232569A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing the same
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6064309B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees