WO2018029745A1 - Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery - Google Patents

Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery Download PDF

Info

Publication number
WO2018029745A1
WO2018029745A1 PCT/JP2016/073278 JP2016073278W WO2018029745A1 WO 2018029745 A1 WO2018029745 A1 WO 2018029745A1 JP 2016073278 W JP2016073278 W JP 2016073278W WO 2018029745 A1 WO2018029745 A1 WO 2018029745A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese phosphate
lithium manganese
carbon
lithium
phosphate nanoparticles
Prior art date
Application number
PCT/JP2016/073278
Other languages
French (fr)
Japanese (ja)
Inventor
辻洋悦
久保田泰生
川村博昭
玉木栄一郎
田林未幸
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to PCT/JP2016/073278 priority Critical patent/WO2018029745A1/en
Publication of WO2018029745A1 publication Critical patent/WO2018029745A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium manganese phosphate nanoparticles and a method for producing the same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granules, and a lithium ion battery.
  • Lithium-ion secondary batteries are widely used in information-related mobile communication electronic devices such as mobile phones and laptop computers as batteries that provide higher voltage and higher energy density than conventional nickel cadmium batteries and nickel metal hydride batteries. ing. In the future, as one means to solve environmental problems, it is expected that the use will be expanded to in-vehicle applications mounted on electric vehicles / hybrid electric vehicles and industrial applications such as electric tools.
  • the positive electrode active material and the negative electrode active material play an important role in determining the capacity and output.
  • lithium cobaltate (LiCoO 2 ) is often used as the positive electrode active material
  • carbon is often used as the negative electrode active material.
  • LiCoO 2 lithium cobaltate
  • the use of lithium-ion batteries such as hybrid cars and electric cars has expanded in recent years, not only the capacity of batteries is improved, but also the output of how much capacity can be taken out in a short time will be increasingly required. It is becoming.
  • next-generation active materials have been actively pursued for higher capacity and higher output of lithium ion secondary batteries.
  • active materials such as olivine-based materials, that is, lithium iron phosphate (LiFePO 4 ) and lithium manganese phosphate (LiMnPO 4 ) are attracting attention as next-generation active materials.
  • the capacity of lithium iron phosphate and lithium manganese phosphate is limited to about 20% of that of lithium cobaltate, so the effect on increasing the capacity is limited, but it does not contain cobalt, which is a rare metal, so it can be supplied stably.
  • the olivine-based active material is covalently bonded to phosphorus, oxygen is not easily released and has a high safety feature.
  • lithium manganese phosphate has a high discharge potential when used as a positive electrode active material of a lithium ion secondary battery, and can be expected to contribute to higher output.
  • the olivine-based positive electrode active material has a large change in crystal lattice due to charge / discharge, and has low electron conductivity and low ionic conductivity. That is, there is a problem that it is difficult to extract the theoretical capacity.
  • Lithium manganese phosphate which has extremely low ionic and electronic conductivity, is required to have a smaller particle size than that of lithium iron phosphate, but it also improves Li ion conductivity. A shape that reduces the influence of strain associated with the charge / discharge reaction is required.
  • lithium manganese phosphate since lithium ions can move only in the b-axis direction, the movement distance of lithium ions in the particles is made as short as possible, and the surface from which lithium ions are desorbed and inserted is wide. is there.
  • Patent Document 1 and Non-Patent Document 1 lithium manganese phosphate having a thickness of about 20 to 30 nm oriented in the b-axis in a diethylene glycol aqueous solution is obtained.
  • Patent Document 2 also discloses the effect of lithium manganese phosphate oriented in the b-axis direction.
  • Patent Document 2 also produces plate-like particles of lithium manganese phosphate oriented in the b-axis direction, but the discharge capacity that the particles develop is less than half of the theoretical capacity. Therefore, the crystal orientation of the particles disclosed in Patent Document 2 cannot sufficiently exhibit the performance of lithium manganese phosphate.
  • lithium manganese phosphate As described above, in order to increase the capacity of lithium manganese phosphate, it is necessary to optimize the shape and crystallinity of lithium manganese phosphate particles. However, focusing only on the movement of lithium ions and producing particles oriented in the b-axis, it was difficult to express the original high capacity of lithium manganese phosphate.
  • An object of the present invention is to clarify the orientation of crystals capable of realizing a high capacity for lithium manganese phosphate, and to provide an electrode using lithium manganese phosphate, and further to lithium ion secondary using the electrode.
  • the next battery is to provide.
  • the inventors of the present invention have made extensive studies on the orientation of primary particles indicated by the peak intensity ratio by powder X-ray diffraction so that lithium manganese phosphate exhibits a high capacity close to the theoretical capacity.
  • the present invention for solving the above-mentioned problem is that the ratio I 20 / I 29 of the peak intensity at 20 ° and the peak intensity at 29 ° obtained by X-ray diffraction is 0.88 or more and 1.05 or less. Lithium manganese phosphate nanoparticles having a crystallite size determined by diffraction of 10 nm to 50 nm.
  • the present invention it is possible to increase the capacity by controlling the crystallite size and crystal orientation of the primary particles in lithium manganese phosphate having low electron conductivity and ion conductivity. Moreover, a high capacity
  • FIG. 2 is a scanning electron micrograph of lithium manganese phosphate nanoparticles obtained in Example 1.
  • the lithium manganese phosphate in the present invention is an olivine crystal structure compound represented by the chemical formula LiMnPO 4 , but may contain a trace amount of other elements as doping elements within the range in which the olivine crystal structure can be maintained. May be slightly increased or decreased.
  • the doping element is added for the purpose of improving the electronic conductivity and ionic conductivity of lithium manganese phosphate and alleviating the change in crystal lattice size.
  • doping elements Na, Mg, K, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, etc. can be used.
  • the doping element content may be up to 10 mol% with respect to the phosphorus element for doping elements other than Fe.
  • Fe can substitute Mn in the olivine crystal structure and can easily maintain the olivine crystal structure, so it may be contained up to 30 mol% with respect to the phosphorus element.
  • As the doping element Fe is preferable because it can improve the electron conductivity and ion conductivity in the crystal. If the doping amount of Fe is too large, the voltage drops during discharge and the energy density decreases, so that the doping amount is preferably small.
  • the doping amount of Fe is preferably 20 mol% or less, more preferably 15 mol% or less, still more preferably 10 mol% or less, and most preferably 5% or less.
  • the lithium manganese phosphate nanoparticles in the present invention are lithium manganese phosphate particles having an average primary particle size of 100 nm or less.
  • the average particle diameter is an average value of the particle diameters of 100 particles
  • the particle diameter of each particle is a two-dimensional image obtained by observing 10 to 20 particles in one field of view with a field emission scanning electron microscope. From the average of the diameters of the inscribed circle and circumscribed circle obtained from
  • the crystallite size obtained from the X-ray diffraction peak of lithium manganese phosphate in the present invention is 10 nm or more and 50 nm or less. Since lithium manganese phosphate nanoparticles are generally obtained as a single crystal, the crystallite size directly corresponds to the particle size. Therefore, the crystallite size of 50 nm or less means that the particle size is atomized to about 50 nm or less. Lithium manganese phosphate has a large change in the crystal lattice size during charge and discharge, so it is necessary to reduce the strain generated during charge and discharge by making the particles fine. For this purpose, the crystallite size must be 50 nm or less.
  • the crystallite size exceeds 50 nm, an excessive voltage is required to desorb lithium ions from lithium manganese phosphate during charging.
  • the crystallite size of less than 10 nm means that there is almost no crystallinity, and reversible lithium desorption is difficult with such lithium manganese phosphate nanoparticles.
  • the X-ray diffraction peak in the present invention can be measured using an X-ray diffraction apparatus using Cu as an X-ray source.
  • the crystallite size can be obtained by Rietveld analysis of the spectrum of the X-ray diffraction peak. In Rietveld analysis, it is necessary to verify the validity of the analysis, and when a GOF (Goodness-of-fit) value is used as an index, it may be 2.0 or less.
  • D8ADVANCE manufactured by Bruker, Inc. can be used as the X-ray diffractometer, and TOPAS can be used as analysis software for Rietveld analysis.
  • the lithium manganese phosphate in the present invention has clear peaks around 20 °, 25 °, 29 °, and 35 ° obtained by X-ray diffraction (hereinafter simply referred to as 20 ° peak, 25 ° peak, 29 ° peak, and 35 °). It is called a peak) and has the characteristics described later.
  • 20 ° peak, 25 ° peak, 29 ° peak, and 35 ° peak obtained by powder X-ray diffraction are indexed to the (101), (201), (020), and (311) planes
  • the intensity of each peak Represents the strength of the orientation to the crystal plane.
  • the 29 ° peak indicates the (020) plane and indicates the intensity of grain growth orientation in the b-axis direction.
  • values obtained by dividing the intensity of the 20 ° peak, 25 ° peak, and 35 ° peak by the 29 ° peak intensity are expressed as I 20 / I 29 , I 25 / I 29 , and I 35 / I 29 , respectively. .
  • the crystallinity and particle shape of lithium manganese phosphate in the present invention are defined by the peak intensity ratios I 20 / I 29 , I 25 / I 29 , and I 35 / I 29 measured by the three X-ray diffractions. According to the study by the present inventors, the crystallinity necessary for the lithium manganese phosphate to exhibit a high capacity is not to be oriented on the b axis but only focusing on the conductivity of lithium ions. Rather, it has become clear that the crystal orientation in a specific direction is reduced as much as possible, and the crystal is preferably grown uniformly.
  • the uniform growth of crystals is close to a sphere as the shape of the nanoparticles, but this is due to the change in the crystal lattice size during the charge / discharge reaction due to the reduction in the surface area of the particles.
  • the strain is not absorbed in a specific direction but absorbed by the whole particle. It is considered that lithium manganese phosphate nanoparticles, which are less susceptible to strain, have reduced energy required for lithium insertion and removal, and as a result, contributed to higher capacity.
  • the lithium manganese phosphate nanoparticles of the present invention have an I 20 / I 29 of 0.88 to 1.05, preferably 0.90 to 1.05.
  • I 20 / I 29 is the ratio of the b-axis plane (020) to the (101) plane. (020) and (101) are orthogonal to each other, and the value of I 20 / I 29 is 0.88 or more and 1.05 or less, indicating that the lithium manganese phosphate nanoparticles are extremely oriented in the b-axis direction.
  • This means that the shape of the particles is not plate-like but close to a sphere. When the particles approach a spherical shape, it becomes possible to alleviate distortion of the crystal lattice due to lithium ion desorption during charging and discharging, and as a result, it is possible to contribute to an increase in capacity.
  • the lithium manganese phosphate nanoparticles in the present invention preferably have an I 25 / I 29 of 0.95 or more and 1.15 or less.
  • I 25 / I 29 is the ratio of the b-axis plane (020) to the (201) plane. (020) and (201) are orthogonal to each other.
  • I 20 / I 29 being 0.88 or more and 1.05 or less
  • I 25 / I 29 being 0.95 or less and 1.15 or less further reduces the crystal orientation of the particles, It means that the crystal orientation becomes more homogeneous and the particle shape is closer to a sphere. Therefore, the effect of alleviating distortion of the crystal lattice due to lithium ion desorption / insertion during charge / discharge is enhanced, and as a result, it is possible to contribute to the improvement of capacity.
  • the lithium manganese phosphate nanoparticles in the present invention preferably have an I 35 / I 29 of 1.05 or more and 1.20 or less.
  • I 35 / I 29 is the ratio of the (311) plane to the b-axis plane (020).
  • I 35 / I 29 is 1.05 or more and 1.20 or less, the crystal orientation of the lithium manganese phosphate nanoparticles is further reduced, resulting in a more uniform crystal orientation, and the particle shape is further spherical. It means approaching. Therefore, the effect of alleviating distortion of the crystal lattice due to lithium ion desorption / insertion during charge / discharge is enhanced, and as a result, it is possible to contribute to the improvement of capacity.
  • the lithium manganese phosphate nanoparticles in the present invention preferably have a crystallinity of 45% or more.
  • the crystallinity in the present invention is a ratio obtained by Rietveld analysis when X-ray diffraction is measured by mixing cerium oxide as a standard substance and the same weight as lithium manganese phosphate.
  • a degree of crystallinity of 45% or more means that the amorphous part in the lithium manganese phosphate nanoparticles is sufficiently small, which enables reversible desorption of lithium ions and contributes to an increase in capacity. Therefore, it is preferable.
  • the measurement of crystallinity in the present invention shall be in accordance with Example A below.
  • the lithium manganese phosphate nanoparticles of the present invention can also be carbon-coated lithium manganese phosphate nanoparticles that have been subjected to a conductive treatment by coating the particle surface with carbon.
  • the powder resistance value of the particles is preferably 1 ⁇ ⁇ cm to 10 8 ⁇ ⁇ cm. If it is 10 8 ⁇ ⁇ cm or more, the electron resistance from the current collector to the particle surface when it is used as an electrode increases, which may significantly inhibit the expression of capacity.
  • such carbon-coated lithium manganese phosphate nanoparticles contain 1% by weight or more and less than 10% by weight of carbon relative to the lithium manganese phosphate nanoparticles. Preferably it is.
  • the electron conductivity in the electrode when used as an electrode is improved, and the lithium manganese phosphate nanoparticles contribute to the development of capacity.
  • the amount of carbon contained is more preferably less than 5% by weight.
  • the form of secondary particles in which carbon-coated lithium manganese phosphate nanoparticles are assembled that is, carbon-coated lithium manganese phosphate nanoparticles. It is preferable to use a particle granulated body.
  • the carbon-coated lithium manganese phosphate nanoparticle granules are preferably granulated in a spherical shape.
  • the spherical shape refers to the circumscribed circle with respect to the inscribed circle of the granulated body in a two-dimensional image observed with a field emission scanning electron microscope so that 3 to 10 granulated bodies are contained within one field of view. It means that the ratio of diameters is 0.7 or more and 1 or less. In the present invention, if the average ratio of the diameter of the circumscribed circle to the inscribed circle when 100 carbon-coated lithium manganese phosphate nanoparticle granules are observed is 0.7 or more and 1 or less, it is granulated into a spherical shape. It shall be judged that In the present invention, when 100 carbon-coated lithium manganese phosphate nanoparticle granules are observed, it is preferable that 80 or more are spherical.
  • the average particle diameter of the carbon-coated lithium manganese phosphate nanoparticle granules is preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size is 0.1 ⁇ m or less, the solid content of the electrode paste decreases, and the amount of solvent necessary for coating tends to increase.
  • the average particle size is 30 ⁇ m or more, the electrode surface is uneven when the electrode is applied, and the battery reaction tends not to proceed uniformly in the electrode.
  • the method for producing the lithium manganese phosphate nanoparticles of the present invention is not particularly limited, and is produced by appropriately controlling the solvent species, the moisture content in the solvent, the stirring rate, the synthesis temperature, and the raw material using liquid phase synthesis. It is preferable.
  • a method for producing the lithium manganese phosphate nanoparticles of the present invention by liquid phase synthesis will be described.
  • manganese sulfate, manganese chloride, manganese nitrate, manganese formate, manganese acetate, and hydrates thereof may be used as the manganese raw material. it can.
  • phosphoric acid raw material phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate and hydrates thereof can be used.
  • lithium raw material lithium hydroxide, lithium carbonate, lithium chloride, lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate, and hydrates thereof can be used.
  • the lithium manganese phosphate nanoparticles of the present invention can be suitably produced without by-products by using manganese sulfate, phosphoric acid, and lithium hydroxide in a molar ratio of 1: 1: 3.
  • a coordinating organic solvent is preferable from the viewpoint of controlling particle growth and crystal orientation, and among the coordinating solvents, alcohol solvents are preferable.
  • alcohol solvents are preferable.
  • Specific examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 2-propanol, 1,3-propanediol, and 1,4-butanediol.
  • polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, N, N-dimethylformamide, and acetic acid can be used.
  • a plurality of kinds of solvents may be mixed and used as the solvent.
  • the solvent is required to have strong coordination with lithium manganese phosphate.
  • these solvents diethylene glycol, triethylene glycol, and tetraethylene glycol having particularly strong coordination are preferable, and among them, diethylene glycol is preferable.
  • an organic solvent as the solvent for the liquid phase synthesis, but in order to uniformly dissolve the lithium raw material, the manganese raw material, and the phosphoric acid raw material and to control the coordination property to the lithium manganese phosphate nanoparticles, Is more preferably a mixture of an organic solvent and water.
  • the proportion of water in the total solvent at the end of the synthesis is preferably 15% by weight or more and 50% by weight or less. When the water content is 15% by weight or less, it is difficult to dissolve all the raw materials. When the water content is 50% by weight or more, the coordination effect of the organic solvent is reduced, and lithium manganese phosphate is a nanoparticle having a crystallite size of 50 nm or less. Difficult to do.
  • the manganese manganese phosphate nanoparticles of the present invention are prepared by adding a solution of a manganese raw material and a phosphoric acid raw material while stirring the lithium raw material solution at a high speed, and then stirring under normal pressure or a pressure close to normal pressure of 0.13 MPa or less. It can be obtained by heating to the synthesis temperature. By adding phosphoric acid and manganese sulfate while stirring the lithium raw material solution at high speed, a fine precursor dispersion with a weak orientation in a specific crystal direction can be obtained. It becomes possible to obtain lithium manganese phosphate particles having a size.
  • the high-speed stirring in the present invention is stirring at a peripheral speed of 1 m / second or more.
  • a precursor solution is prepared by adding an aqueous solution in which phosphoric acid and manganese sulfate are dissolved at a room temperature of about 25 ° C. under high-speed stirring, and then up to the synthesis temperature. It is preferable to heat.
  • the synthesis temperature is preferably 100 ° C or higher and 150 ° C or lower.
  • the chemical reaction to change the raw material to lithium manganese phosphate proceeds, it is necessary to supply a certain amount of thermal energy, and the production of lithium manganese phosphate nanoparticles is promoted at a high temperature of 100 ° C. or higher.
  • the size of the generated particles greatly depends on the synthesis temperature, and when synthesized at a temperature higher than 150 ° C., the particles tend to grow coarsely and it is difficult to obtain nanoparticles having a crystallite size of 50 nm or less.
  • the liquid phase synthesis needs to be carried out under a pressure close to a normal pressure of 0.13 MPa or less, and is preferably 0.12 MPa or less, more preferably 0, in order to weaken the crystal growth orientation. .11 MPa or less, more preferably at normal pressure.
  • particles with high crystallinity can be obtained when synthesized under pressure using an autoclave or the like, but when synthesized under pressure, the crystal orientation in a specific direction tends to be strong.
  • the lithium manganese phosphate nanoparticles of the present invention In order to convert the lithium manganese phosphate nanoparticles of the present invention into carbon-coated lithium manganese phosphate nanoparticles, the lithium manganese phosphate nanoparticles and saccharides such as glucose are mixed and fired at about 700 ° C. in an inert atmosphere. Thus, a method of forming a carbon layer on the particle surface is preferable.
  • the amount of carbon contained in the carbon-coated lithium manganese phosphate nanoparticles is preferably controlled by the amount of sugars to be mixed.
  • the carbon-coated lithium manganese phosphate nanoparticles of the present invention into a carbon-coated lithium manganese phosphate nanoparticle granulated body, it is preferable to granulate using spray drying in the process of carbon coating. Specifically, it is preferable that lithium manganese phosphate nanoparticles, saccharides and water are mixed to prepare a dispersion, which is dried and granulated by spray drying and then fired at about 700 ° C. in an inert atmosphere.
  • the lithium ion battery of the present invention uses the manganese manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticles, or carbon-coated lithium manganese phosphate particle granules of the present invention as the positive electrode material.
  • the crystallinity was measured by powder X-ray diffraction using D8 ADVANCE manufactured by Bruker ASX. 50 mg each of lithium manganese phosphate particles and cerium oxide (Sigma Aldrich) were weighed with a balance, and powder X-ray diffraction was performed with a sample mixed in a mortar. Using a powder X-ray diffraction analysis software TOPAS manufactured by Bruker ASX, the ratio of lithium manganese phosphate and cerium oxide was calculated by performing a Rietveld analysis, and the ratio of lithium manganese phosphate was defined as the crystallinity. .
  • an electrode was produced as follows. 900 parts by weight of lithium manganese phosphate nanoparticles, 50 parts by weight of acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, 50 parts by weight of polyvinylidene fluoride (Arkema Kynar HSV900) as a binder, As a solvent, 1200 weight of N-methylpyrrolidone was mixed with a planetary mixer to obtain an electrode paste.
  • acetylene black Denki Kagaku Kogyo Co., Ltd.
  • polyvinylidene fluoride Arkema Kynar HSV900
  • the electrode paste was applied to an aluminum foil (thickness: 18 ⁇ m) using a doctor blade (300 ⁇ m) and dried at 80 ° C. for 30 minutes to obtain an electrode plate.
  • Cell guard (registered trademark) # 2400 manufactured by Celgard Co., Ltd. obtained by cutting out the produced electrode plate to a diameter of 15.9 mm to make a positive electrode, lithium foil cut to a diameter of 16.1 mm and a thickness of 0.2 mm as a negative electrode, and cutting to a diameter of 20 mm
  • Example 1 After dissolving 60 mmol of lithium hydroxide monohydrate in 16 g of pure water, 104 g of diethylene glycol was added to prepare a lithium hydroxide / diethylene glycol aqueous solution. The obtained lithium hydroxide / diethylene glycol aqueous solution was stirred at 2000 rpm using a homodisper (Homodisper 2.5 type manufactured by Primics), and 20 mmol of phosphoric acid (85% aqueous solution) and manganese sulfate monohydrate were added. An aqueous solution obtained by dissolving 20 mmol of the product in 10 g of pure water was added to obtain a lithium manganese phosphate nanoparticle precursor. The obtained precursor solution was heated to 110 ° C.
  • a homodisper Homodisper 2.5 type manufactured by Primics
  • the obtained nanoparticles were washed by adding pure water and repeating solvent removal with a centrifuge.
  • the obtained lithium manganese phosphate nanoparticles were nanoparticles having a shape close to an elliptical rotating body, as shown in FIG. The synthesis was repeated until the lithium manganese phosphate particles obtained by washing reached 10 g.
  • lithium manganese phosphate nanoparticles To 10 g of the obtained lithium manganese phosphate nanoparticles, 2.5 g of glucose and 40 g of pure water were added and mixed. Using a spray drying device (ADL-311-A manufactured by Yamato Kagaku), the nozzle diameter was 400 ⁇ m, the drying temperature was 150 ° C., and atomization. Granulation was performed at a pressure of 0.2 MPa. The obtained granulated particles were fired in a firing furnace at 700 ° C. for 1 hour in a nitrogen atmosphere to obtain carbon-coated lithium manganese phosphate nanoparticle granules.
  • ADL-311-A manufactured by Yamato Kagaku
  • the crystallinity was calculated to be 49%.
  • the resistivity was measured and found to be 89 k ⁇ ⁇ cm.
  • the average particle size was 9.2 ⁇ m.
  • the discharge capacity was measured under the conditions of an upper limit voltage of 4.4 V and a lower limit voltage of 3.0 V, and it was 142 mAh / g at a rate of 0.1 C and 109 mAh / g at a rate of 3 C.
  • Example 2 A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 1 except that the synthesis temperature was 125 ° C. Table 1 shows the results of evaluating the carbon-coated lithium manganese phosphate nanoparticle granules obtained in the same manner as in Example 1.
  • Example 3 A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the synthesis temperature was 140 ° C. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 4 Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was set to 3000 rpm. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 5 Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was 4000 rpm. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 6 Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the solvent used in the synthesis was changed from diethylene glycol to triethylene glycol. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 7 A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the solvent used in the synthesis was changed from 104 g of diethylene glycol to 48 g of tetraethylene glycol. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 8 A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the solvent used for the synthesis was changed from 104 g of diethylene glycol to 104 g of tetraethylene glycol. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticles in the same manner as in Example 1.
  • Example 9 10 g of lithium manganese phosphate nanoparticles were synthesized in the same manner as in Example 1 except that the synthesis temperature was 160 ° C. Next, after the obtained particles were crushed by a planetary ball mill, glucose 2.5 and 40 g of pure water were added and spray-dried in the same manner as in Example 1, followed by firing. The planetary ball mill treatment was performed under the conditions of a rotation speed of 300 rpm and a treatment time of 6 hours using a P5 made by Fritsch as the main body of the apparatus, a 45 ml container made of zirconia as the container, and 18 10 mm beads made of zirconia as the beads. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 10 Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that 16 mmol of manganese sulfate monohydrate and 4 mmol of iron sulfate heptahydrate were dissolved. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 11 Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that 17 mmol of manganese sulfate monohydrate and 3 mmol of iron sulfate heptahydrate were dissolved. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 1 A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was 500 rpm.
  • Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 3 In Example 1, instead of heating the precursor solution of lithium manganese phosphate nanoparticles to 110 ° C. at normal pressure and holding for 2 hours, the precursor solution was placed in a pressure-resistant sealed container and heated to 110 ° C. A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner except that it was held for 4 hours. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
  • Example 5 A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 9 except that crushing using a planetary ball mill was not performed. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.

Abstract

The present invention achieves high capacity when lithium manganese phosphate is used as an active material for lithium ion batteries. The present invention provides lithium manganese phosphate nanoparticles which are characterized by having: a ratio, I20/I29, of a peak intensity at 20º to a peak intensity at 29º obtained by X-ray diffraction of 0.88 to 1.05; and a crystallite size obtained by X-ray diffraction of 10 to 50 nm.

Description

リン酸マンガンリチウムナノ粒子およびその製造方法、炭素被覆リン酸マンガンリチウムナノ粒子、炭素被覆リン酸マンガンリチウムナノ粒子造粒体、リチウムイオン電池Lithium manganese phosphate nanoparticles and production method thereof, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated manganese manganese phosphate nanoparticle granules, lithium ion battery
 本発明は、リン酸マンガンリチウムナノ粒子およびその製造方法、炭素被覆リン酸マンガンリチウムナノ粒子、炭素被覆リン酸マンガンリチウムナノ粒子造粒体、リチウムイオン電池に関する。 The present invention relates to lithium manganese phosphate nanoparticles and a method for producing the same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granules, and a lithium ion battery.
 リチウムイオン二次電池は、従来のニッケルカドミウム電池やニッケル水素電池に比べて、高電圧・高エネルギー密度が得られる電池として、携帯電話やラップトップパソコンなど情報関連のモバイル通信電子機器に広く用いられている。今後環境問題を解決する一つの手段として電気自動車・ハイブリッド電気自動車などに搭載する車載用途あるいは電動工具などの産業用途に利用拡大が進むと期待される。 Lithium-ion secondary batteries are widely used in information-related mobile communication electronic devices such as mobile phones and laptop computers as batteries that provide higher voltage and higher energy density than conventional nickel cadmium batteries and nickel metal hydride batteries. ing. In the future, as one means to solve environmental problems, it is expected that the use will be expanded to in-vehicle applications mounted on electric vehicles / hybrid electric vehicles and industrial applications such as electric tools.
 リチウムイオン二次電池において、容量と出力を決める重要な役割を果たすのが正極活物質と負極活物質である。従来のリチウムイオン二次電池では正極活物質としてコバルト酸リチウム(LiCoO)、負極活物質としては炭素が用いられることが多かった。しかし近年のハイブリット自動車や電気自動車といったリチウムイオン電池の用途拡大に伴い、電池には容量の向上だけではなく、短時間にどれだけの容量が取り出せるかという出力の向上も合わせてますます求められるようになってきている。電池の高出力化、すなわち大電流を電池から効率よく取り出すためには、電子伝導性を高めると同時に、リチウムイオンのイオン伝導性も高める必要がある。 In the lithium ion secondary battery, the positive electrode active material and the negative electrode active material play an important role in determining the capacity and output. In conventional lithium ion secondary batteries, lithium cobaltate (LiCoO 2 ) is often used as the positive electrode active material, and carbon is often used as the negative electrode active material. However, as the use of lithium-ion batteries such as hybrid cars and electric cars has expanded in recent years, not only the capacity of batteries is improved, but also the output of how much capacity can be taken out in a short time will be increasingly required. It is becoming. In order to increase the output of the battery, that is, to efficiently extract a large current from the battery, it is necessary to increase the ionic conductivity of lithium ions as well as the electron conductivity.
 一方でリチウムイオン二次電池の高容量化と高出力化に向けて次世代の活物質の探索も盛んに行われている。正極活物質においてはオリビン系材料、すなわちリン酸鉄リチウム(LiFePO)やリン酸マンガンリチウム(LiMnPO)といった活物質が次世代活物質として注目されている。リン酸鉄リチウムやリン酸マンガンリチウムの容量はコバルト酸リチウムに対して2割程度の増加にとどまるため高容量化への効果は限定的であるが、レアメタルであるコバルトを含有しないため、安定供給の面で大きなメリットを有する。さらに、オリビン系活物質では酸素がリンと共有結合しているため、酸素が放出されにくく、安全性が高いという特徴も併せ持つ。その中でもリン酸マンガンリチウムについてはリチウムイオン二次電池の正極活物質として用いた場合に放電電位が高いため、高出力化にも寄与することが期待できる。しかしながら、オリビン系の正極活物質はコバルト酸リチウム(LiCoO)などと異なり、充放電に伴う結晶格子の変化が大きい上、電子伝導性や、イオン伝導性が低いため、活物質本来の容量、すなわち理論容量を取り出すことが難しいという課題がある。 On the other hand, search for next-generation active materials has been actively pursued for higher capacity and higher output of lithium ion secondary batteries. In the positive electrode active material, active materials such as olivine-based materials, that is, lithium iron phosphate (LiFePO 4 ) and lithium manganese phosphate (LiMnPO 4 ) are attracting attention as next-generation active materials. The capacity of lithium iron phosphate and lithium manganese phosphate is limited to about 20% of that of lithium cobaltate, so the effect on increasing the capacity is limited, but it does not contain cobalt, which is a rare metal, so it can be supplied stably. It has a great merit in terms of Furthermore, since the olivine-based active material is covalently bonded to phosphorus, oxygen is not easily released and has a high safety feature. Among them, lithium manganese phosphate has a high discharge potential when used as a positive electrode active material of a lithium ion secondary battery, and can be expected to contribute to higher output. However, unlike the lithium cobaltate (LiCoO 2 ) and the like, the olivine-based positive electrode active material has a large change in crystal lattice due to charge / discharge, and has low electron conductivity and low ionic conductivity. That is, there is a problem that it is difficult to extract the theoretical capacity.
 そこで、オリビン系正極材料の結晶子サイズを200nm程度まで微粒子化し、さらに粒子表面にカーボンを被覆することにより、結晶格子サイズの変化に伴う歪みの影響の低減と、イオン伝導と電子伝導の向上がはかられている。しかしながら、リン酸鉄リチウムについてはこの方法でほぼ理論容量の発現がなされているものの、リン酸マンガンリチウムについてはそれだけでは高容量化を実現することが難しく、そのために理論容量の発現を目指した様々な試みが報告されている。 Therefore, by reducing the crystallite size of the olivine-based positive electrode material to about 200 nm and further coating the particle surface with carbon, the effect of strain accompanying changes in the crystal lattice size can be reduced, and ion conduction and electron conduction can be improved. It is offended. However, although the theoretical capacity of lithium iron phosphate is almost expressed by this method, it is difficult to achieve high capacity for lithium manganese phosphate alone. Attempts have been reported.
 リン酸マンガンリチウムの高容量化にむけて、粒子の形状が重要であることはよく知られている。イオン伝導性と電子伝導性が極めて低いリン酸マンガンリチウムにあっては、リン酸鉄リチウムの場合よりもさらに小粒径であることが求められるが、それだけではなく、Liイオン伝導性を向上させ、充放電反応に伴う歪みの影響を低減させるような形状が求められる。 It is well known that the shape of the particles is important for increasing the capacity of lithium manganese phosphate. Lithium manganese phosphate, which has extremely low ionic and electronic conductivity, is required to have a smaller particle size than that of lithium iron phosphate, but it also improves Li ion conductivity. A shape that reduces the influence of strain associated with the charge / discharge reaction is required.
 そのような形状を実現するために、b軸方向に配向した板状粒子が提案されている。これは、リン酸マンガンリチウムにおいては、リチウムイオンがb軸方向にのみ移動できるため、粒子内でのリチウムイオンの移動距離をできるだけ短くし、かつリチウムイオンが脱挿入する面は広くとるという発想である。例えば特許文献1及び非特許文献1において開示される製造方法では、ジエチレングリコール水溶液中でb軸に配向した厚さ20~30nm程度のリン酸マンガンリチウムを得ている。また特許文献2においてもb軸方向に配向したリン酸マンガンリチウムの効果を開示している。 In order to realize such a shape, plate-like particles oriented in the b-axis direction have been proposed. In lithium manganese phosphate, since lithium ions can move only in the b-axis direction, the movement distance of lithium ions in the particles is made as short as possible, and the surface from which lithium ions are desorbed and inserted is wide. is there. For example, in the production methods disclosed in Patent Document 1 and Non-Patent Document 1, lithium manganese phosphate having a thickness of about 20 to 30 nm oriented in the b-axis in a diethylene glycol aqueous solution is obtained. Patent Document 2 also discloses the effect of lithium manganese phosphate oriented in the b-axis direction.
特許5174803号明細書Japanese Patent No. 5174803 specification 特開2012-204015号公報JP 2012-204015 A
 特許文献1や非特許文献1の方法においては、b軸方法へ配向したリン酸マンガンリチウムを得られているが、得られたb軸配向リン酸マンガンリチウム粒子は活物質として用いる前にボールミルで破砕しているため、最終的に配向性が十分に維持されていない。また、活物質以外の材料、すなわちバインダーや導電助剤といった添加剤は直接的には電池容量に寄与しないため、電極への添加量は極力少なくすることが求められているが、非特許文献1においては電池化の際にカーボンブラックをリン酸マンガンリチウムに対して20重量%添加しているため、電極全体として見た場合の容量が低下しているという問題がある。 In the methods of Patent Document 1 and Non-Patent Document 1, lithium manganese phosphate oriented to the b-axis method is obtained, but the obtained b-axis oriented lithium manganese phosphate particles are obtained by a ball mill before use as an active material. Since it is crushed, finally the orientation is not sufficiently maintained. Further, since materials other than the active material, that is, additives such as binders and conductive assistants do not directly contribute to the battery capacity, it is required to reduce the amount added to the electrode as much as possible. However, since 20% by weight of carbon black is added to lithium manganese phosphate at the time of battery formation, there is a problem that the capacity when viewed as the whole electrode is lowered.
 特許文献2においてもb軸方向に配向した板状粒子のリン酸マンガンリチウムを製造しているが、その粒子が発現する放電容量は理論容量の半分以下である。従って特許文献2で開示される粒子の結晶配向性ではリン酸マンガンリチウムの性能を十分に発揮させことはできていない。 Patent Document 2 also produces plate-like particles of lithium manganese phosphate oriented in the b-axis direction, but the discharge capacity that the particles develop is less than half of the theoretical capacity. Therefore, the crystal orientation of the particles disclosed in Patent Document 2 cannot sufficiently exhibit the performance of lithium manganese phosphate.
 上述のように、リン酸マンガンリチウムの高容量化をはかるには、リン酸マンガンリチウムの粒子の形状、結晶性の最適化が必要である。しかしながら、リチウムイオンの移動だけに着目し、b軸に配向した粒子を製造するだけでは、リン酸マンガンリチウムのもつ本来の高容量を発現することは困難であった。 As described above, in order to increase the capacity of lithium manganese phosphate, it is necessary to optimize the shape and crystallinity of lithium manganese phosphate particles. However, focusing only on the movement of lithium ions and producing particles oriented in the b-axis, it was difficult to express the original high capacity of lithium manganese phosphate.
 本発明の目的は、リン酸マンガンリチウムについて、高容量化を実現しうる結晶の配向性を明らかにすると共に、リン酸マンガンリチウムを用いてなる電極、更には当該電極を用いてなるリチウムイオン二次電池を提供することである。 An object of the present invention is to clarify the orientation of crystals capable of realizing a high capacity for lithium manganese phosphate, and to provide an electrode using lithium manganese phosphate, and further to lithium ion secondary using the electrode. The next battery is to provide.
 本発明者らはリン酸マンガンリチウムが理論容量に近い高容量を発現するために、粉末X線回折によるピーク強度比が示す一次粒子の配向について鋭意検討を重ねたものである。 The inventors of the present invention have made extensive studies on the orientation of primary particles indicated by the peak intensity ratio by powder X-ray diffraction so that lithium manganese phosphate exhibits a high capacity close to the theoretical capacity.
 上記の課題を解決するための本発明は、X線回折によって得られる20°におけるピーク強度と29°におけるピーク強度の比I20/I29が0.88以上1.05以下であり、X線回折より求められる結晶子サイズが10nm以上50nm以下であるリン酸マンガンリチウムナノ粒子。 The present invention for solving the above-mentioned problem is that the ratio I 20 / I 29 of the peak intensity at 20 ° and the peak intensity at 29 ° obtained by X-ray diffraction is 0.88 or more and 1.05 or less. Lithium manganese phosphate nanoparticles having a crystallite size determined by diffraction of 10 nm to 50 nm.
 本発明によれば、電子伝導性とイオン伝導性の低いリン酸マンガンリチウムにおいて結晶子サイズと一次粒子の結晶の配向を制御することで、高容量化を可能にする。また、本発明の正極活物質を用いることで高容量・高出力のリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to increase the capacity by controlling the crystallite size and crystal orientation of the primary particles in lithium manganese phosphate having low electron conductivity and ion conductivity. Moreover, a high capacity | capacitance and a high output lithium ion secondary battery can be provided by using the positive electrode active material of this invention.
実施例1にて得られたリン酸マンガンリチウムナノ粒子の走査型電子顕微鏡写真。2 is a scanning electron micrograph of lithium manganese phosphate nanoparticles obtained in Example 1. FIG.
 本発明におけるリン酸マンガンリチウムとは、化学式LiMnPOで表されるオリビン結晶構造化合物であるが、オリビン結晶構造が維持できる範囲内でドーピング元素として他の元素を微量含んでいても良く、組成比率がわずかに増減していても良い。ドーピング元素はリン酸マンガンリチウムの電子伝導性やイオン伝導性の向上、結晶格子サイズ変化の緩和などを目的として添加される。ドーピング元素としてはNa,Mg,K,Ca,Sc,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Rb,Sr,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn,Cs,Baなどを用いることができる。ドーピング元素の含有割合は、Fe以外のドーピング元素についてはリン元素に対し10モル%まで入っていて良い。Feはオリビン結晶構造中でMnを置換でき、オリビン結晶構造を維持しやすいため、リン元素に対し30モル%まで入っていて良い。ドーピング元素としては結晶中の電子伝導性やイオン伝導性を向上できる点でFeが好ましい。Feのドーピング量が多すぎると放電中に電圧降下し、エネルギー密度が下がるためドーピング量は少ないことが好ましい。Feのドーピング量は好ましくは20モル%以下、より好ましくは15モル%以下、更に好ましくは10モル%以下、最も好ましくは5%以下である。 The lithium manganese phosphate in the present invention is an olivine crystal structure compound represented by the chemical formula LiMnPO 4 , but may contain a trace amount of other elements as doping elements within the range in which the olivine crystal structure can be maintained. May be slightly increased or decreased. The doping element is added for the purpose of improving the electronic conductivity and ionic conductivity of lithium manganese phosphate and alleviating the change in crystal lattice size. As doping elements, Na, Mg, K, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, etc. can be used. The doping element content may be up to 10 mol% with respect to the phosphorus element for doping elements other than Fe. Fe can substitute Mn in the olivine crystal structure and can easily maintain the olivine crystal structure, so it may be contained up to 30 mol% with respect to the phosphorus element. As the doping element, Fe is preferable because it can improve the electron conductivity and ion conductivity in the crystal. If the doping amount of Fe is too large, the voltage drops during discharge and the energy density decreases, so that the doping amount is preferably small. The doping amount of Fe is preferably 20 mol% or less, more preferably 15 mol% or less, still more preferably 10 mol% or less, and most preferably 5% or less.
 本発明におけるリン酸マンガンリチウムナノ粒子とは、一次粒子の平均粒子径が100nm以下であるリン酸マンガンリチウム粒子である。ここで、平均粒子径は100粒子の粒径の平均値であり、各粒子の粒径は電界放射型走査電子顕微鏡で1視野内に10~20粒子が収まるように観察したときの二次元像から求められる内接円と外接円の直径の平均から求めるものとする。 The lithium manganese phosphate nanoparticles in the present invention are lithium manganese phosphate particles having an average primary particle size of 100 nm or less. Here, the average particle diameter is an average value of the particle diameters of 100 particles, and the particle diameter of each particle is a two-dimensional image obtained by observing 10 to 20 particles in one field of view with a field emission scanning electron microscope. From the average of the diameters of the inscribed circle and circumscribed circle obtained from
 本発明におけるリン酸マンガンリチウムのX線回折ピークから得られる結晶子サイズは10nm以上50nm以下である。リン酸マンガンリチウムナノ粒子は一般に単結晶で得られるため、結晶子サイズはそのまま粒径に相当する。そのため、結晶子サイズが50nm以下とは粒径が50nm以下程度まで微粒化されていることを意味する。リン酸マンガンリチウムは充放電時の結晶格子サイズの変化が大きいため、微粒子化して充放電時に生じる歪みを低減させる必要があり、そのためには結晶子サイズが50nm以下でなくてはならない。結晶子サイズが50nmを越えると、充電時のリン酸マンガンリチウムからのリチウムイオンの脱離に過大な電圧が必要になってくる。また、結晶子サイズが10nm未満とは、結晶性がほぼない状態であり、そのようなリン酸マンガンリチウムナノ粒子ではリチウムの可逆的な脱挿入が困難である。 The crystallite size obtained from the X-ray diffraction peak of lithium manganese phosphate in the present invention is 10 nm or more and 50 nm or less. Since lithium manganese phosphate nanoparticles are generally obtained as a single crystal, the crystallite size directly corresponds to the particle size. Therefore, the crystallite size of 50 nm or less means that the particle size is atomized to about 50 nm or less. Lithium manganese phosphate has a large change in the crystal lattice size during charge and discharge, so it is necessary to reduce the strain generated during charge and discharge by making the particles fine. For this purpose, the crystallite size must be 50 nm or less. When the crystallite size exceeds 50 nm, an excessive voltage is required to desorb lithium ions from lithium manganese phosphate during charging. In addition, the crystallite size of less than 10 nm means that there is almost no crystallinity, and reversible lithium desorption is difficult with such lithium manganese phosphate nanoparticles.
 また、本発明におけるX線回折ピークは、CuをX線源として使用しているX線回折装置を用いて測定できる。結晶子サイズは、X線回折ピークのスペクトルをリートベルト解析することで求めることができる。リートベルト解析においては、解析の妥当性を検証することが必要であり、指標としてGOF(Goodness-of-fit)値を用いる場合には2.0以下であればよい。例えば、X線回折装置としては、ブルカー社製D8ADVANCE、リートベルト解析の解析ソフトとしてはTOPASを用いることができる。 Moreover, the X-ray diffraction peak in the present invention can be measured using an X-ray diffraction apparatus using Cu as an X-ray source. The crystallite size can be obtained by Rietveld analysis of the spectrum of the X-ray diffraction peak. In Rietveld analysis, it is necessary to verify the validity of the analysis, and when a GOF (Goodness-of-fit) value is used as an index, it may be 2.0 or less. For example, D8ADVANCE manufactured by Bruker, Inc. can be used as the X-ray diffractometer, and TOPAS can be used as analysis software for Rietveld analysis.
 本発明におけるリン酸マンガンリチウムはX線回折によって得られる20°、25°、29°、35°付近に明確なピークを有し(以下単に20°ピーク、25°ピーク、29°ピーク、35°ピークと言う)、後述する特徴を持つ。粉末X線回折によって得られる20°ピーク、25°ピーク、29°ピーク、35°ピークをそれぞれ(101)、(201)、(020)、(311)面と指数付けした場合、各ピークの強度はその結晶面への配向の強さを表す。特に29°ピークは(020)面を示し、b軸方向の粒子成長の配向の強さを表す。本明細書では20°ピーク、25°ピーク、35°ピークの強度を、29°ピーク強度で除した値をそれぞれI20/I29、I25/I29、I35/I29、と表記する。 The lithium manganese phosphate in the present invention has clear peaks around 20 °, 25 °, 29 °, and 35 ° obtained by X-ray diffraction (hereinafter simply referred to as 20 ° peak, 25 ° peak, 29 ° peak, and 35 °). It is called a peak) and has the characteristics described later. When the 20 ° peak, 25 ° peak, 29 ° peak, and 35 ° peak obtained by powder X-ray diffraction are indexed to the (101), (201), (020), and (311) planes, the intensity of each peak Represents the strength of the orientation to the crystal plane. In particular, the 29 ° peak indicates the (020) plane and indicates the intensity of grain growth orientation in the b-axis direction. In this specification, values obtained by dividing the intensity of the 20 ° peak, 25 ° peak, and 35 ° peak by the 29 ° peak intensity are expressed as I 20 / I 29 , I 25 / I 29 , and I 35 / I 29 , respectively. .
 本発明におけるリン酸マンガンリチウムの結晶性及び粒子形状は該3つのX線回折により測定されるピーク強度比I20/I29、I25/I29、I35/I29によって規定される。本発明者らが検討したところによると、リン酸マンガンリチウムが高容量化を発現するために必要な結晶性としては、リチウムイオンの伝導性にだけに着目してb軸に配向させることではなく、むしろ結晶の特定方向への配向性はできるだけ低下させ、結晶的に均等に成長していることが好ましいことが明らかとなった。結晶的に均等に成長していることは、ナノ粒子の形状としては球に近くなるが、このことは粒子の表面積が減ることによって充放電反応時の結晶格子サイズの変化によって生じる粒子表面での歪みを緩和する効果があると考えられる他、歪みを特定の方向にしわ寄せするのではなく、粒子全体で吸収する効果があると考えられる。歪みの影響を受けにくくなったリン酸マンガンリチウムナノ粒子はリチウムの脱挿入に必要なエネルギーが低下し、結果として高容量化に寄与したと考えられる。 The crystallinity and particle shape of lithium manganese phosphate in the present invention are defined by the peak intensity ratios I 20 / I 29 , I 25 / I 29 , and I 35 / I 29 measured by the three X-ray diffractions. According to the study by the present inventors, the crystallinity necessary for the lithium manganese phosphate to exhibit a high capacity is not to be oriented on the b axis but only focusing on the conductivity of lithium ions. Rather, it has become clear that the crystal orientation in a specific direction is reduced as much as possible, and the crystal is preferably grown uniformly. The uniform growth of crystals is close to a sphere as the shape of the nanoparticles, but this is due to the change in the crystal lattice size during the charge / discharge reaction due to the reduction in the surface area of the particles. In addition to the effect of relaxing the strain, it is considered that the strain is not absorbed in a specific direction but absorbed by the whole particle. It is considered that lithium manganese phosphate nanoparticles, which are less susceptible to strain, have reduced energy required for lithium insertion and removal, and as a result, contributed to higher capacity.
 本発明のリン酸マンガンリチウムナノ粒子はI20/I29が0.88以上1.05以下であり、好ましくは0.90以上1.05以下である。I20/I29は、b軸面(020)と(101)面との比である。(020)と(101)は直交する関係にあり、I20/I29の値が0.88以上1.05以下であることは、リン酸マンガンリチウムナノ粒子がb軸方向へ極度に配向していないことを意味し、粒子の形状としては板状ではなく球に近いことを意味する。粒子が球形に近づくことにより、充放電時のリチウムイオンの脱挿入による結晶格子の歪みを緩和することが可能となり、結果として容量の向上に寄与することができる。 The lithium manganese phosphate nanoparticles of the present invention have an I 20 / I 29 of 0.88 to 1.05, preferably 0.90 to 1.05. I 20 / I 29 is the ratio of the b-axis plane (020) to the (101) plane. (020) and (101) are orthogonal to each other, and the value of I 20 / I 29 is 0.88 or more and 1.05 or less, indicating that the lithium manganese phosphate nanoparticles are extremely oriented in the b-axis direction. This means that the shape of the particles is not plate-like but close to a sphere. When the particles approach a spherical shape, it becomes possible to alleviate distortion of the crystal lattice due to lithium ion desorption during charging and discharging, and as a result, it is possible to contribute to an increase in capacity.
 本発明におけるリン酸マンガンリチウムナノ粒子はI25/I29が0.95以上1.15以下であることが好ましい。I25/I29は、b軸面(020)と(201)面との比である。(020)と(201)は直交する関係にある。I20/I29が0.88以上1.05以下であることに加え、I25/I29が0.95以下1.15以下であることは、粒子の結晶の配向性がさらに低まり、より均質的な結晶配向となり、粒子形状としてはさらに球に近づくことを意味する。そのため、充放電時のリチウムイオンの脱挿入による結晶格子の歪みを緩和する効果が高まり、結果として容量の向上に寄与することができる。 The lithium manganese phosphate nanoparticles in the present invention preferably have an I 25 / I 29 of 0.95 or more and 1.15 or less. I 25 / I 29 is the ratio of the b-axis plane (020) to the (201) plane. (020) and (201) are orthogonal to each other. In addition to I 20 / I 29 being 0.88 or more and 1.05 or less, I 25 / I 29 being 0.95 or less and 1.15 or less further reduces the crystal orientation of the particles, It means that the crystal orientation becomes more homogeneous and the particle shape is closer to a sphere. Therefore, the effect of alleviating distortion of the crystal lattice due to lithium ion desorption / insertion during charge / discharge is enhanced, and as a result, it is possible to contribute to the improvement of capacity.
 本発明におけるリン酸マンガンリチウムナノ粒子はI35/I29が1.05以上1.20以下であることが好ましい。I35/I29は、b軸面(020)に対する(311)面の比である。I35/I29が1.05以上1.20以下であることは、リン酸マンガンリチウムナノ粒子の結晶の配向性がさらに低まり、より均質的な結晶配向となり、粒子形状としてはさらに球に近づくことを意味する。そのため、充放電時のリチウムイオンの脱挿入による結晶格子の歪みを緩和する効果が高まり、結果として容量の向上に寄与することができる。 The lithium manganese phosphate nanoparticles in the present invention preferably have an I 35 / I 29 of 1.05 or more and 1.20 or less. I 35 / I 29 is the ratio of the (311) plane to the b-axis plane (020). When I 35 / I 29 is 1.05 or more and 1.20 or less, the crystal orientation of the lithium manganese phosphate nanoparticles is further reduced, resulting in a more uniform crystal orientation, and the particle shape is further spherical. It means approaching. Therefore, the effect of alleviating distortion of the crystal lattice due to lithium ion desorption / insertion during charge / discharge is enhanced, and as a result, it is possible to contribute to the improvement of capacity.
 本発明におけるリン酸マンガンリチウムナノ粒子は結晶化度が45%以上であることが好ましい。本発明における結晶化度とは、酸化セリウムを標準物質として、リン酸マンガンリチウムと同重量混ぜてX線回折を測定したときにリートベルト解析によって得られる割合である。結晶化度が45%以上であることは、リン酸マンガンリチウムナノ粒子中での非結晶部分が十分に少ないことを意味し、リチウムイオンの可逆的な脱挿入が可能となり、容量向上に寄与するため好ましい。本発明における結晶化度の測定は、下記実施例Aに従うものとする。 The lithium manganese phosphate nanoparticles in the present invention preferably have a crystallinity of 45% or more. The crystallinity in the present invention is a ratio obtained by Rietveld analysis when X-ray diffraction is measured by mixing cerium oxide as a standard substance and the same weight as lithium manganese phosphate. A degree of crystallinity of 45% or more means that the amorphous part in the lithium manganese phosphate nanoparticles is sufficiently small, which enables reversible desorption of lithium ions and contributes to an increase in capacity. Therefore, it is preferable. The measurement of crystallinity in the present invention shall be in accordance with Example A below.
 本発明のリン酸マンガンリチウムナノ粒子は、粒子表面を炭素で被覆することによって導電処理した炭素被覆リン酸マンガンリチウムナノ粒子とすることもできる。この場合、当該粒子の粉体抵抗値は1Ω・cm以上10Ω・cm以下であることが好ましい。10Ω・cm以上であると、電極にした際の集電体から粒子表面に至るまでの電子抵抗が大きくなるため、容量の発現を大きく阻害する場合がある。 The lithium manganese phosphate nanoparticles of the present invention can also be carbon-coated lithium manganese phosphate nanoparticles that have been subjected to a conductive treatment by coating the particle surface with carbon. In this case, the powder resistance value of the particles is preferably 1 Ω · cm to 10 8 Ω · cm. If it is 10 8 Ω · cm or more, the electron resistance from the current collector to the particle surface when it is used as an electrode increases, which may significantly inhibit the expression of capacity.
 リン酸マンガンリチウムの容量を十分に引き出すためには、このような炭素被覆リン酸マンガンリチウムナノ粒子において、リン酸マンガンリチウムナノ粒子に対して1重量%以上10重量%未満の炭素が含まれていることが好ましい。適量の炭素を含むことにより、電極としたときの電極内の電子伝導性が向上し、リン酸マンガンリチウムナノ粒子が容量を発現することに寄与する。一方、多量の炭素を添加すると炭素がリチウムイオン伝導を阻害し、イオン伝導性が低下する傾向にあるため、含まれる炭素量は5重量%未満であることがより好ましい。 In order to sufficiently draw out the capacity of lithium manganese phosphate, such carbon-coated lithium manganese phosphate nanoparticles contain 1% by weight or more and less than 10% by weight of carbon relative to the lithium manganese phosphate nanoparticles. Preferably it is. By containing an appropriate amount of carbon, the electron conductivity in the electrode when used as an electrode is improved, and the lithium manganese phosphate nanoparticles contribute to the development of capacity. On the other hand, when a large amount of carbon is added, carbon tends to inhibit lithium ion conduction and ion conductivity tends to be lowered. Therefore, the amount of carbon contained is more preferably less than 5% by weight.
 本発明におけるリン酸マンガンリチウムナノ粒子をリチウムイオン二次電池の正極活物質として用いるためには、炭素被覆リン酸マンガンリチウムナノ粒子が集合した二次粒子の形態、すなわち炭素被覆リン酸マンガンリチウムナノ粒子造粒体とすることが好ましい。炭素被覆リン酸マンガンリチウムナノ粒子造粒体は、球形に造粒されていることが好ましい。ここで、球形とは、電界放射型走査電子顕微鏡で1視野内に3~10個の造粒体が収まるように観察したときの2次元像において、造粒体の内接円に対する外接円の直径の比が0.7以上1以下であることを意味する。本発明においては、炭素被覆リン酸マンガンリチウムナノ粒子造粒体を100個観察した場合の内接円に対する外接円の直径の比の平均が0.7以上1以下であれば、球形に造粒されていると判断するものとする。また、本発明においては、炭素被覆リン酸マンガンリチウムナノ粒子造粒体を100個観察したときに80個以上が球形であることが好ましい。 In order to use the lithium manganese phosphate nanoparticles in the present invention as a positive electrode active material of a lithium ion secondary battery, the form of secondary particles in which carbon-coated lithium manganese phosphate nanoparticles are assembled, that is, carbon-coated lithium manganese phosphate nanoparticles. It is preferable to use a particle granulated body. The carbon-coated lithium manganese phosphate nanoparticle granules are preferably granulated in a spherical shape. Here, the spherical shape refers to the circumscribed circle with respect to the inscribed circle of the granulated body in a two-dimensional image observed with a field emission scanning electron microscope so that 3 to 10 granulated bodies are contained within one field of view. It means that the ratio of diameters is 0.7 or more and 1 or less. In the present invention, if the average ratio of the diameter of the circumscribed circle to the inscribed circle when 100 carbon-coated lithium manganese phosphate nanoparticle granules are observed is 0.7 or more and 1 or less, it is granulated into a spherical shape. It shall be judged that In the present invention, when 100 carbon-coated lithium manganese phosphate nanoparticle granules are observed, it is preferable that 80 or more are spherical.
 炭素被覆リン酸マンガンリチウムナノ粒子造粒体の平均粒径は0.1μm以上30μm以下であることが好ましい。平均粒子径が0.1μm以下であると電極ペーストの固形分が下がり、塗布に必要な溶媒量が増える傾向がある。また、平均粒径が30μm以上である場合は電極を塗布した際に電極表面に凹凸ができ、電池反応が電極内で均一に進みにくい傾向がある。 The average particle diameter of the carbon-coated lithium manganese phosphate nanoparticle granules is preferably 0.1 μm or more and 30 μm or less. When the average particle size is 0.1 μm or less, the solid content of the electrode paste decreases, and the amount of solvent necessary for coating tends to increase. Further, when the average particle size is 30 μm or more, the electrode surface is uneven when the electrode is applied, and the battery reaction tends not to proceed uniformly in the electrode.
 本発明のリン酸マンガンリチウムナノ粒子を製造する方法は特に限定されないが、液相合成を用いて、溶媒種、溶媒中に占める水分率、攪拌速度、合成温度及び原料を適宜制御して製造することが好ましい。以下、液相合成により本発明のリン酸マンガンリチウムナノ粒子を製造する方法について説明する。 The method for producing the lithium manganese phosphate nanoparticles of the present invention is not particularly limited, and is produced by appropriately controlling the solvent species, the moisture content in the solvent, the stirring rate, the synthesis temperature, and the raw material using liquid phase synthesis. It is preferable. Hereinafter, a method for producing the lithium manganese phosphate nanoparticles of the present invention by liquid phase synthesis will be described.
 本発明のリン酸マンガンリチウムナノ粒子を液相合成にて製造する場合には、マンガン原料として、硫酸マンガン、塩化マンガン、硝酸マンガン、ギ酸マンガン、酢酸マンガン、及びそれらの水和物を用いることができる。またリン酸原料としては、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム及びそれらの水和物を用いることが出来る。また、リチウム原料としては、水酸化リチウム、炭酸リチウム、塩化リチウム、リン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、およびそれらの水和物を用いることが出来る。本発明のリン酸マンガンリチウムナノ粒子は、硫酸マンガン、リン酸、水酸化リチウムをモル比にて1:1:3の割合で用いることで、副生成物無く好適に製造することが出来る。 When the lithium manganese phosphate nanoparticles of the present invention are produced by liquid phase synthesis, manganese sulfate, manganese chloride, manganese nitrate, manganese formate, manganese acetate, and hydrates thereof may be used as the manganese raw material. it can. As the phosphoric acid raw material, phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate and hydrates thereof can be used. Moreover, as a lithium raw material, lithium hydroxide, lithium carbonate, lithium chloride, lithium dihydrogen phosphate, dilithium hydrogen phosphate, trilithium phosphate, and hydrates thereof can be used. The lithium manganese phosphate nanoparticles of the present invention can be suitably produced without by-products by using manganese sulfate, phosphoric acid, and lithium hydroxide in a molar ratio of 1: 1: 3.
 液相合成に用いる溶媒種としては、粒子の成長を制御し、結晶の配向を制御できる点から配位性のある有機溶媒が好ましく、配位性溶媒の中でも好ましい溶媒としてはアルコール系溶媒が挙げられ、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、2-プロパノール、1,3-プロパンジオール、1,4-ブタンジオールが挙げられる。その他にも、N-メチルピロリドン、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリル、N,N-ジメチルホルムアミド、酢酸などの極性溶媒を用いるができる。溶媒には複数の種類の溶媒を混合して用いても構わない。リン酸マンガンリチウムの結晶の配向性を制御し、本発明のリン酸マンガンリチウムナノ粒子を製造するには、溶媒にはリン酸マンガンリチウムへの強い配位性が求められるため、溶媒には上述した溶媒の中でも特に配位性の強いジエチレングリコール、トリエチレングリコール、テトラエチレングリコールが好ましく、その中でもジエチレングリコールが好ましい。 As the solvent species used in the liquid phase synthesis, a coordinating organic solvent is preferable from the viewpoint of controlling particle growth and crystal orientation, and among the coordinating solvents, alcohol solvents are preferable. Specific examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 2-propanol, 1,3-propanediol, and 1,4-butanediol. In addition, polar solvents such as N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran, acetonitrile, N, N-dimethylformamide, and acetic acid can be used. A plurality of kinds of solvents may be mixed and used as the solvent. In order to control the crystal orientation of lithium manganese phosphate and to produce lithium manganese phosphate nanoparticles of the present invention, the solvent is required to have strong coordination with lithium manganese phosphate. Among these solvents, diethylene glycol, triethylene glycol, and tetraethylene glycol having particularly strong coordination are preferable, and among them, diethylene glycol is preferable.
 液相合成の溶媒としては有機溶媒を用いることが好ましいが、リチウム原料、マンガン原料およびリン酸原料を均一に溶解させ、リン酸マンガンリチウムナノ粒子への配位性を制御するためには、溶媒は有機溶媒と水との混合物であることがさらに好ましい。合成終了時の溶媒全体に占める水の割合は、15重量%以上50重量%以下が好ましい。水の割合が15重量%以下となると、原料をすべて溶解させることが困難となり、50重量%以上となると有機溶媒の配位効果が低下し、リン酸マンガンリチウムを結晶子サイズ50nm以下のナノ粒子することが困難となる。 It is preferable to use an organic solvent as the solvent for the liquid phase synthesis, but in order to uniformly dissolve the lithium raw material, the manganese raw material, and the phosphoric acid raw material and to control the coordination property to the lithium manganese phosphate nanoparticles, Is more preferably a mixture of an organic solvent and water. The proportion of water in the total solvent at the end of the synthesis is preferably 15% by weight or more and 50% by weight or less. When the water content is 15% by weight or less, it is difficult to dissolve all the raw materials. When the water content is 50% by weight or more, the coordination effect of the organic solvent is reduced, and lithium manganese phosphate is a nanoparticle having a crystallite size of 50 nm or less. Difficult to do.
 本発明のリン酸マンガンリチウムナノ粒子は、リチウム原料溶液を高速撹拌しながらマンガン原料とリン酸原料の溶液を添加し、その後撹拌しながら常圧もしくは0.13MPa以下の常圧に近い圧力下で合成温度まで加熱することで得ることができる。リチウム原料溶液を高速撹拌しながらリン酸と硫酸マンガンを添加することで、特定の結晶方向への配向が弱い微細な前駆体の分散液が得られ、更にその後、加熱することで最終的にナノサイズのリン酸マンガンリチウム粒子を得ることが可能となる。本発明における高速撹拌とは周速1m/秒以上の速度で攪拌することである。 The manganese manganese phosphate nanoparticles of the present invention are prepared by adding a solution of a manganese raw material and a phosphoric acid raw material while stirring the lithium raw material solution at a high speed, and then stirring under normal pressure or a pressure close to normal pressure of 0.13 MPa or less. It can be obtained by heating to the synthesis temperature. By adding phosphoric acid and manganese sulfate while stirring the lithium raw material solution at high speed, a fine precursor dispersion with a weak orientation in a specific crystal direction can be obtained. It becomes possible to obtain lithium manganese phosphate particles having a size. The high-speed stirring in the present invention is stirring at a peripheral speed of 1 m / second or more.
 例えば、原料として硫酸マンガン、リン酸、水酸化リチウムを用い、さらにその原料比をモル比にてMn:P:Li=1:1:3となるようにして用いた液相合成にて製造する場合、水酸化リチウムをジエチレングリコール水溶液に溶解した後、25℃程度の常温で、高速撹拌状態下でリン酸と硫酸マンガンを溶解させた水溶液を添加して前駆体溶液を作製した後、合成温度まで加熱することが好ましい。 For example, it is manufactured by liquid phase synthesis using manganese sulfate, phosphoric acid, and lithium hydroxide as raw materials and further using a molar ratio of Mn: P: Li = 1: 1: 3. In this case, after dissolving lithium hydroxide in an aqueous solution of diethylene glycol, a precursor solution is prepared by adding an aqueous solution in which phosphoric acid and manganese sulfate are dissolved at a room temperature of about 25 ° C. under high-speed stirring, and then up to the synthesis temperature. It is preferable to heat.
 合成温度は100℃以上150℃以下が好ましい。原料がリン酸マンガンリチウムへと変化する化学反応が進行するためには一定の熱エネルギーが供給される必要があり、100℃以上の高温においてリン酸マンガンリチウムナノ粒子の生成が促進される。また、生成する粒子の大きさは合成温度に大きく依存し、150℃より高い温度で合成すると粒子が粗大に成長しやすく結晶子サイズ50nm以下のナノ粒子を得ることが困難である。 The synthesis temperature is preferably 100 ° C or higher and 150 ° C or lower. In order for the chemical reaction to change the raw material to lithium manganese phosphate proceeds, it is necessary to supply a certain amount of thermal energy, and the production of lithium manganese phosphate nanoparticles is promoted at a high temperature of 100 ° C. or higher. In addition, the size of the generated particles greatly depends on the synthesis temperature, and when synthesized at a temperature higher than 150 ° C., the particles tend to grow coarsely and it is difficult to obtain nanoparticles having a crystallite size of 50 nm or less.
 また、液相合成は0.13MPa以下の常圧に近い圧力下で実施することが必要であり、結晶成長の配向性を弱めるためには0.12MPa以下であることが好ましく、より好ましくは0.11MPa以下であり、更に好ましくは常圧で実施することである。一般にオートクレーブなどを用いて加圧下で合成すると結晶性の高い粒子が得られるとされるが、加圧下で合成すると特定の方向への結晶配向が強くなる傾向がある。 The liquid phase synthesis needs to be carried out under a pressure close to a normal pressure of 0.13 MPa or less, and is preferably 0.12 MPa or less, more preferably 0, in order to weaken the crystal growth orientation. .11 MPa or less, more preferably at normal pressure. In general, particles with high crystallinity can be obtained when synthesized under pressure using an autoclave or the like, but when synthesized under pressure, the crystal orientation in a specific direction tends to be strong.
 本発明のリン酸マンガンリチウムナノ粒子を炭素被覆リン酸マンガンリチウムナノ粒子とするには、リン酸マンガンリチウムナノ粒子とグルコースなどの糖類を混合して、不活性雰囲気下で700℃程度で焼成して、粒子表面にカーボン層を形成する方法が好ましい。炭素被覆リン酸マンガンリチウムナノ粒子が含む炭素量は混合する糖類の量で制御することが好適である。 In order to convert the lithium manganese phosphate nanoparticles of the present invention into carbon-coated lithium manganese phosphate nanoparticles, the lithium manganese phosphate nanoparticles and saccharides such as glucose are mixed and fired at about 700 ° C. in an inert atmosphere. Thus, a method of forming a carbon layer on the particle surface is preferable. The amount of carbon contained in the carbon-coated lithium manganese phosphate nanoparticles is preferably controlled by the amount of sugars to be mixed.
 本発明の炭素被覆リン酸マンガンリチウムナノ粒子を炭素被覆リン酸マンガンリチウムナノ粒子造粒体とするには、炭素被覆の過程でスプレードライを用いて造粒することが好ましい。具体的には、リン酸マンガンリチウムナノ粒子と糖類と水を混合して分散液を作製し、スプレードライによって乾燥・造粒した後に不活性雰囲気下で700℃程度で焼成するのが好ましい。 In order to make the carbon-coated lithium manganese phosphate nanoparticles of the present invention into a carbon-coated lithium manganese phosphate nanoparticle granulated body, it is preferable to granulate using spray drying in the process of carbon coating. Specifically, it is preferable that lithium manganese phosphate nanoparticles, saccharides and water are mixed to prepare a dispersion, which is dried and granulated by spray drying and then fired at about 700 ° C. in an inert atmosphere.
 本発明のリチウムイオン電池は、本発明のリン酸マンガンリチウムナノ粒子、炭素被覆リン酸マンガンリチウムナノ粒子、または炭素被覆リン酸マンガンリチウム粒子造粒体を正極材料に用いたものである。 The lithium ion battery of the present invention uses the manganese manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticles, or carbon-coated lithium manganese phosphate particle granules of the present invention as the positive electrode material.
 以下、実施例により本発明を具体的かつより詳細に説明するが、本発明はこれらの実施例のみに制限されるものではない。また、実施例中の物性値は、下記の方法によって測定した。実施例中の部は特に具体的な記載のない限り重量部を意味する。 Hereinafter, the present invention will be described specifically and in detail with reference to examples. However, the present invention is not limited to these examples. The physical property values in the examples were measured by the following methods. The part in an Example means a weight part unless there is particular description.
 A.結晶子サイズ及び各ピーク強度比の算出
 結晶子サイズと各試料の粉末X線回折パターンはBruker・ASX社製のD8 ADVANCEを用い測定を行った。また、測定条件は2θ=5°~70°、スキャン間隔0.02°、スキャン速度20秒/degで行った。結晶子サイズの算出はBruker・ASX社製の粉末X線回折用解析ソフトTOPASを用い、リートベルト解析をすることで得た。各ピーク強度比はBruker・ASX社製の粉末X線回折用解析ソフトEVAを用いて、バックグランド除去(係数1.77)を行い、ピーク強度を読み取って算出した。20°ピーク、25°ピーク、35°ピークの強度を、29°ピークの強度で除した値はそれぞれI20/I29、I25/I29、I35/I29とした。
A. Calculation of crystallite size and each peak intensity ratio The crystallite size and the powder X-ray diffraction pattern of each sample were measured using D8 ADVANCE manufactured by Bruker ASX. The measurement conditions were 2θ = 5 ° to 70 °, a scan interval of 0.02 °, and a scan speed of 20 seconds / deg. The calculation of the crystallite size was obtained by conducting Rietveld analysis using powder X-ray diffraction analysis software TOPAS manufactured by Bruker ASX. Each peak intensity ratio was calculated by performing background removal (coefficient 1.77) using a powder X-ray diffraction analysis software EVA manufactured by Bruker ASX, and reading the peak intensity. Values obtained by dividing the intensity of the 20 ° peak, 25 ° peak, and 35 ° peak by the intensity of the 29 ° peak were I 20 / I 29 , I 25 / I 29 , and I 35 / I 29 , respectively.
 B.結晶化度の測定
 結晶化度の測定はBruker・ASX社製のD8 ADVANCEを用い粉末X線回折にて行った。リン酸マンガンリチウム粒子と酸化セリウム(シグマアルドリッチ社)を50mgずつ天秤で計り取り、乳鉢で混合した試料で粉末X線回折を行った。Bruker・ASX社製の粉末X線回折用解析ソフトTOPASを用い、リートベルト解析をすることで、リン酸マンガンリチウムと酸化セリウムの割合を算出し、リン酸マンガンリチウムの割合を結晶化度とした。
B. Measurement of crystallinity The crystallinity was measured by powder X-ray diffraction using D8 ADVANCE manufactured by Bruker ASX. 50 mg each of lithium manganese phosphate particles and cerium oxide (Sigma Aldrich) were weighed with a balance, and powder X-ray diffraction was performed with a sample mixed in a mortar. Using a powder X-ray diffraction analysis software TOPAS manufactured by Bruker ASX, the ratio of lithium manganese phosphate and cerium oxide was calculated by performing a Rietveld analysis, and the ratio of lithium manganese phosphate was defined as the crystallinity. .
 C.抵抗率の測定
 抵抗率は三菱化学アナリテック社製のロレスタ(登録商標)GPを用いて測定した。リン酸マンガンリチウム粒子100mgをφ13mmのプレス治具内に入れ、プレス機で8tの圧力を加えてペレットを成型した後、測定した。
C. Measurement of resistivity The resistivity was measured using Loresta (registered trademark) GP manufactured by Mitsubishi Chemical Analytech. Measurement was performed after putting 100 mg of lithium manganese phosphate particles in a φ13 mm press jig and molding a pellet by applying a pressure of 8 t with a press.
 D.炭素割合の測定
 リン酸マンガンリチウムナノ粒子に含まれる炭素の重量割合はHORIBA製の炭素硫黄分析装置EMIA-810Wにて測定した。
D. Measurement of carbon ratio The weight ratio of carbon contained in the lithium manganese phosphate nanoparticles was measured with a carbon sulfur analyzer EMIA-810W manufactured by HORIBA.
 E.粒度分布の測定
 造粒後のリン酸マンガンリチウムナノ粒子の平均二次粒子径はHORIBA製のレーザー回折/散乱式粒度分布測定装置LA-920を用いて測定した。
E. Measurement of Particle Size Distribution The average secondary particle diameter of the lithium manganese phosphate nanoparticles after granulation was measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by HORIBA.
 F.充放電特性の測定
 得られたリン酸マンガンリチウム粒子を用いて電極を以下のように作製した。リン酸マンガンリチウムナノ粒子900重量部、導電助剤としてアセチレンブラック(電気化学工業株式会社製 デンカブラック(登録商標))50重量部、バインダーとしてポリフッ化ビニリデン(アルケマ株式会社 Kynar HSV900)50重量部、溶剤としてN-メチルピロリドン1200重量をプラネタリーミキサーで混合して、電極ペーストを得た。当該電極ペーストをアルミニウム箔(厚さ18μm)にドクターブレード(300μm)を用いて塗布し、80℃30分間乾燥して電極板を得た。作製した電極板を直径15.9mmに切り出して正極とし、直径16.1mm厚さ0.2mmに切り出したリチウム箔を負極とし、直径20mmに切り出したセルガード(登録商標)#2400(セルガード社製)セパレータとして、LiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=3:7(体積比)の溶媒を電解液として、2032型コイン電池を作製し、電気化学評価を行った。測定は、理論容量を171mAh/gとし、充放電測定をレート0.1Cで3回行った後続けて3Cで3回行い、各レートの3回目の放電時の容量を放電容量とした。
F. Measurement of Charging / Discharging Characteristics Using the obtained lithium manganese phosphate particles, an electrode was produced as follows. 900 parts by weight of lithium manganese phosphate nanoparticles, 50 parts by weight of acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, 50 parts by weight of polyvinylidene fluoride (Arkema Kynar HSV900) as a binder, As a solvent, 1200 weight of N-methylpyrrolidone was mixed with a planetary mixer to obtain an electrode paste. The electrode paste was applied to an aluminum foil (thickness: 18 μm) using a doctor blade (300 μm) and dried at 80 ° C. for 30 minutes to obtain an electrode plate. Cell guard (registered trademark) # 2400 (manufactured by Celgard Co., Ltd.) obtained by cutting out the produced electrode plate to a diameter of 15.9 mm to make a positive electrode, lithium foil cut to a diameter of 16.1 mm and a thickness of 0.2 mm as a negative electrode, and cutting to a diameter of 20 mm As a separator, a 2032 type coin battery was produced using a solvent of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio) containing 1 M of LiPF 6 as an electrolytic solution, and electrochemical evaluation was performed. The measurement was performed at a theoretical capacity of 171 mAh / g, charge / discharge measurement was performed 3 times at a rate of 0.1 C, and then 3 times at 3 C, and the capacity at the third discharge of each rate was defined as the discharge capacity.
 [実施例1]
 水酸化リチウム一水和物60ミリモルを純水16gに溶解させた後、ジエチレングリコールを104g添加し、水酸化リチウム/ジエチレングリコール水溶液を作製した。得られた水酸化リチウム/ジエチレングリコール水溶液をホモディスパー(プライミクス社製 ホモディスパー 2.5型)を用いて2000rpmで撹拌させているところへ、リン酸(85%水溶液)20ミリモルと硫酸マンガン1水和物20ミリモルを純水10gに溶解させて得られる水溶液を添加し、リン酸マンガンリチウムナノ粒子前駆体を得た。得られた前駆体溶液を110℃まで加熱し、2時間保持し、固形分としてリン酸マンガンリチウムナノ粒子を得た。得られたナノ粒子は純水を添加して遠心分離機による溶媒除去を繰り返すことにより洗浄した。得られたリン酸マンガンリチウムナノ粒子は図1に示すように、楕円の回転体に近い形状のナノ粒子であった。洗浄して得られるリン酸マンガンリチウム粒子が10gとなるまで合成を繰り返した。
[Example 1]
After dissolving 60 mmol of lithium hydroxide monohydrate in 16 g of pure water, 104 g of diethylene glycol was added to prepare a lithium hydroxide / diethylene glycol aqueous solution. The obtained lithium hydroxide / diethylene glycol aqueous solution was stirred at 2000 rpm using a homodisper (Homodisper 2.5 type manufactured by Primics), and 20 mmol of phosphoric acid (85% aqueous solution) and manganese sulfate monohydrate were added. An aqueous solution obtained by dissolving 20 mmol of the product in 10 g of pure water was added to obtain a lithium manganese phosphate nanoparticle precursor. The obtained precursor solution was heated to 110 ° C. and held for 2 hours to obtain lithium manganese phosphate nanoparticles as a solid content. The obtained nanoparticles were washed by adding pure water and repeating solvent removal with a centrifuge. The obtained lithium manganese phosphate nanoparticles were nanoparticles having a shape close to an elliptical rotating body, as shown in FIG. The synthesis was repeated until the lithium manganese phosphate particles obtained by washing reached 10 g.
 得られたリン酸マンガンリチウムナノ粒子10gにグルコース2.5gと純水40gを加えて混合し、スプレードライ装置(ヤマト科学製ADL-311-A)を用いノズル径400μm、乾燥温度150℃、アトマイズ圧力0.2MPaで造粒した。得られた造粒粒子を焼成炉で700℃1時間窒素雰囲気下焼成を行い、炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。 To 10 g of the obtained lithium manganese phosphate nanoparticles, 2.5 g of glucose and 40 g of pure water were added and mixed. Using a spray drying device (ADL-311-A manufactured by Yamato Kagaku), the nozzle diameter was 400 μm, the drying temperature was 150 ° C., and atomization. Granulation was performed at a pressure of 0.2 MPa. The obtained granulated particles were fired in a firing furnace at 700 ° C. for 1 hour in a nitrogen atmosphere to obtain carbon-coated lithium manganese phosphate nanoparticle granules.
 上記Aに従い、粉末X線回折を測定したところ、各ピーク強度比はI20/I29=1.01、I25/I29=1.07、I35/I29=1.14であり、結晶子サイズは41.2nmであった。 When the powder X-ray diffraction was measured according to the above A, each peak intensity ratio was I 20 / I 29 = 1.01, I 25 / I 29 = 1.07, I 35 / I 29 = 1.14, The crystallite size was 41.2 nm.
 上記Bに従い、結晶化度を求めたところ49%であった。 According to the above B, the crystallinity was calculated to be 49%.
 上記Cに従い、抵抗率を測定したところ89kΩ・cmであった。 According to the above C, the resistivity was measured and found to be 89 kΩ · cm.
 上記Dに従い、炭素割合を測定したところ3.5wt%であった。 When the carbon ratio was measured according to D above, it was 3.5 wt%.
 上記Eに従い、粒度分布を測定したところ平均粒径は9.2μmであった。 When the particle size distribution was measured according to E above, the average particle size was 9.2 μm.
 上記Fに従い、上限電圧4.4V,下限電圧3.0Vの条件で放電容量の測定したところ、レート0.1Cで142mAh/g,レート3Cで、109mAh/gであった。 According to the above F, the discharge capacity was measured under the conditions of an upper limit voltage of 4.4 V and a lower limit voltage of 3.0 V, and it was 142 mAh / g at a rate of 0.1 C and 109 mAh / g at a rate of 3 C.
 上記の結果を表1に示す。表中、DEGはジエチレングリコール、TriEGはトリエチレングリコール、TEG:テトラエチレングリコールである。 The results are shown in Table 1. In the table, DEG is diethylene glycol, TriEG is triethylene glycol, and TEG: tetraethylene glycol.
 [実施例2]
 合成温度を125℃とすること以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。実施例1と同様に得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を評価した結果を表1に示す。
[Example 2]
A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 1 except that the synthesis temperature was 125 ° C. Table 1 shows the results of evaluating the carbon-coated lithium manganese phosphate nanoparticle granules obtained in the same manner as in Example 1.
 [実施例3]
 合成温度を140℃とすること以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 3]
A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the synthesis temperature was 140 ° C. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例4]ホモディスパーの回転数を3000rpmとすること以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。 [Example 4] Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was set to 3000 rpm. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例5]
 ホモディスパーの回転数を4000rpmとすること以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 5]
Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was 4000 rpm. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例6]
 合成に用いる溶媒をジエチレングリコールからトリエチレングリコールに変えたこと以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 6]
Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the solvent used in the synthesis was changed from diethylene glycol to triethylene glycol. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例7]
 合成に用いる溶媒をジエチレングリコール104gからテトラエチレングリコール48gに変えたこと以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 7]
A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the solvent used in the synthesis was changed from 104 g of diethylene glycol to 48 g of tetraethylene glycol. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例8]
 合成に用いる溶媒をジエチレングリコール104gからテトラエチレングリコール104gに変えたこと以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られたリン酸マンガンリチウムナノ粒子を実施例1と同様に評価した結果を表1に示す。
[Example 8]
A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner as in Example 1 except that the solvent used for the synthesis was changed from 104 g of diethylene glycol to 104 g of tetraethylene glycol. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticles in the same manner as in Example 1.
 [実施例9]
 合成温度を160℃とすること以外は実施例1と同様にしてリン酸マンガンリチウムナノ粒子を10g合成した。次いで得られた粒子を遊星ボールミルにて破砕した後に実施例1と同様にグルコース2.5と純水40gを添加してスプレードライ後、焼成した。該遊星ボールミル処理は装置本体にフリッチュ社製P5、容器にジルコニア製45ml容器、ビーズにジルコニア製10mmビーズ18個を用い、回転数300rpm、処理時間6時間の条件にて実施した。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 9]
10 g of lithium manganese phosphate nanoparticles were synthesized in the same manner as in Example 1 except that the synthesis temperature was 160 ° C. Next, after the obtained particles were crushed by a planetary ball mill, glucose 2.5 and 40 g of pure water were added and spray-dried in the same manner as in Example 1, followed by firing. The planetary ball mill treatment was performed under the conditions of a rotation speed of 300 rpm and a treatment time of 6 hours using a P5 made by Fritsch as the main body of the apparatus, a 45 ml container made of zirconia as the container, and 18 10 mm beads made of zirconia as the beads. Table 1 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例10]
 硫酸マンガン一水和物を16ミリモル、硫酸鉄七水和物を4ミリモル溶解させること以外実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られたリン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 10]
Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that 16 mmol of manganese sulfate monohydrate and 4 mmol of iron sulfate heptahydrate were dissolved. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [実施例11]
 硫酸マンガン一水和物を17ミリモル、硫酸鉄七水和物を3ミリモル溶解させること以外実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られたリン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表1に示す。
[Example 11]
Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that 17 mmol of manganese sulfate monohydrate and 3 mmol of iron sulfate heptahydrate were dissolved. Table 1 shows the results of evaluating the obtained lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例1]
 ホモディスパーの回転数を500rpmとすること以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 1]
A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 1 except that the rotation speed of the homodisper was 500 rpm. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例2]
 水酸化リチウムを溶解させる純水を16gから117gに変えたこと以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 2]
Carbon-coated lithium manganese phosphate nanoparticle granules were obtained in the same manner as in Example 1 except that the pure water in which lithium hydroxide was dissolved was changed from 16 g to 117 g. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例3]
 実施例1において、リン酸マンガンリチウムナノ粒子の前駆体溶液を常圧にて110℃に加熱し2時間保持するのに変わり、該前駆体溶液を耐圧密閉容器に入れて110℃に加熱して4時間保持する以外は同様にして炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 3]
In Example 1, instead of heating the precursor solution of lithium manganese phosphate nanoparticles to 110 ° C. at normal pressure and holding for 2 hours, the precursor solution was placed in a pressure-resistant sealed container and heated to 110 ° C. A carbon-coated lithium manganese phosphate nanoparticle granulate was obtained in the same manner except that it was held for 4 hours. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例4]
 水酸化リチウム/ジエチレングリコール水溶液を110℃に加熱してから、リン酸(85%水溶液)20ミリモルと硫酸マンガン4水和物20ミリモルを純水10gに溶解させて得られる水溶液を添加し、2時間保持したこと以外は実施例1と同様に炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 4]
After heating the lithium hydroxide / diethylene glycol aqueous solution to 110 ° C., an aqueous solution obtained by dissolving 20 mmol of phosphoric acid (85% aqueous solution) and 20 mmol of manganese sulfate tetrahydrate in 10 g of pure water was added for 2 hours. A carbon-coated lithium manganese phosphate nanoparticle granulated material was obtained in the same manner as in Example 1 except that it was retained. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例5]
 実施例9において、遊星ボールミルを用いた破砕を行わなかったこと以外は同様にして炭素被覆リン酸マンガンリチウムナノ粒子造粒体を得た。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 5]
A carbon-coated lithium manganese phosphate nanoparticle granule was obtained in the same manner as in Example 9 except that crushing using a planetary ball mill was not performed. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例6]
 酢酸マンガン四水和物20ミリモルを水4.4gに溶解させ、ジエチレングリコールを60g添加した後、110℃にて1時間保持し、茶色の懸濁液を得た。得られた酢酸マンガン懸濁液を110℃に保持したまま、水9.17gにリン酸二水素リチウム20ミリモルを溶解させた水溶液を該マンガン溶液に滴下し4時間保持することで、固形分としてリン酸マンガンリチウムナノ粒子を得た。得られたナノ粒子は実施例1と同様に洗浄した後、スプレードライによる造粒及びグルコースを用いた炭素被覆処理を行った。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 6]
20 mmol of manganese acetate tetrahydrate was dissolved in 4.4 g of water, 60 g of diethylene glycol was added, and the mixture was kept at 110 ° C. for 1 hour to obtain a brown suspension. While maintaining the obtained manganese acetate suspension at 110 ° C., an aqueous solution prepared by dissolving 20 mmol of lithium dihydrogen phosphate in 9.17 g of water was dropped into the manganese solution and held for 4 hours to obtain a solid content. Lithium manganese phosphate nanoparticles were obtained. The obtained nanoparticles were washed in the same manner as in Example 1, followed by granulation by spray drying and carbon coating using glucose. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
 [比較例7]
 純水190gにリン酸三リチウム40ミリモルと硫酸マンガン1水和物40ミリモルを溶解させ、耐圧容器を用いて130℃1時間保持し、固形分としてリン酸マンガンリチウムナノ粒子を得た。得られたナノ粒子に実施例1と同様の洗浄、造粒及び炭素被覆処理を行った。得られた炭素被覆リン酸マンガンリチウムナノ粒子造粒体を実施例1と同様に評価した結果を表2に示す。
[Comparative Example 7]
In 190 g of pure water, 40 mmol of trilithium phosphate and 40 mmol of manganese sulfate monohydrate were dissolved and kept at 130 ° C. for 1 hour using a pressure vessel to obtain lithium manganese phosphate nanoparticles as a solid content. The obtained nanoparticles were subjected to the same washing, granulation and carbon coating treatment as in Example 1. Table 2 shows the results of evaluating the obtained carbon-coated lithium manganese phosphate nanoparticle granules in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Claims (10)

  1. X線回折によって得られる20°におけるピーク強度と29°におけるピーク強度の比I20/I29が0.88以上1.05以下であり、X線回折より求められる結晶子サイズが10nm以上50nm以下であるリン酸マンガンリチウムナノ粒子。 The ratio I 20 / I 29 of the peak intensity at 20 ° and the peak intensity at 29 ° obtained by X-ray diffraction is 0.88 or more and 1.05 or less, and the crystallite size determined by X-ray diffraction is 10 nm or more and 50 nm or less. Lithium manganese phosphate nanoparticles.
  2. 20/I29が0.90以上1.05以下である、請求項1に記載のリン酸マンガンリチウムナノ粒子。 The lithium manganese phosphate nanoparticles according to claim 1, wherein I 20 / I 29 is 0.90 or more and 1.05 or less.
  3. X線回折によって得られる25°におけるピーク強度と29° におけるピーク強度の比I25/I29が0.95以上1.15以下である、請求項1または2に記載のリン酸マンガンリチウムナノ粒子。 3. The lithium manganese phosphate nanoparticles according to claim 1, wherein the ratio I 25 / I 29 of the peak intensity at 25 ° and the peak intensity at 29 ° obtained by X-ray diffraction is 0.95 or more and 1.15 or less. .
  4. X線回折によって得られる35°におけるピーク強度と29° におけるピーク強度の比I35/I29が1.05以上1.20以下である、請求項1~3のいずれかに記載のリン酸マンガンリチウムナノ粒子。 The manganese phosphate according to any one of claims 1 to 3, wherein the ratio I 35 / I 29 of the peak intensity at 35 ° and the peak intensity at 29 ° obtained by X-ray diffraction is 1.05 or more and 1.20 or less. Lithium nanoparticles.
  5. 結晶化度が45%以上である、請求項1~4のいずれかに記載のリン酸マンガンリチウムナノ粒子。 The lithium manganese phosphate nanoparticles according to any one of claims 1 to 4, having a crystallinity of 45% or more.
  6. 請求項1~5のいずれかに記載のリン酸マンガンリチウムナノ粒子を炭素被覆してなる炭素被覆リン酸マンガンリチウムナノ粒子。 Carbon-coated lithium manganese phosphate nanoparticles obtained by coating the lithium manganese phosphate nanoparticles according to any one of claims 1 to 5 with carbon.
  7. リン酸マンガンリチウムナノ粒子に対して1重量%以上10重量%未満の炭素を含む、請求項6に記載の炭素被覆リン酸マンガンリチウムナノ粒子。 The carbon-coated lithium manganese phosphate nanoparticles according to claim 6, comprising 1 wt% or more and less than 10 wt% of carbon with respect to the lithium manganese phosphate nanoparticles.
  8. 請求項6または7に記載の炭素被覆リン酸マンガンリチウムナノ粒子を平均粒径0.1μm以上30μm以下に造粒してなる炭素被覆リン酸マンガンリチウムナノ粒子造粒体。 A carbon-coated lithium manganese phosphate nanoparticle granulated product obtained by granulating the carbon-coated lithium manganese phosphate nanoparticles according to claim 6 or 7 to an average particle size of 0.1 µm to 30 µm.
  9. リチウム原料溶液を高速撹拌しながらマンガン原料とリン酸原料の溶液を添加し、その後0.13MPa以下の圧力下で合成温度まで加熱することを特徴とするリン酸マンガンリチウムナノ粒子の製造方法。 A method for producing lithium manganese phosphate nanoparticles, comprising adding a solution of a manganese raw material and a phosphoric acid raw material while stirring a lithium raw material solution at high speed, and then heating to a synthesis temperature under a pressure of 0.13 MPa or less.
  10. 請求項1~6のいずれかに記載のリン酸マンガンリチウム粒子、請求項7に記載の炭素被覆リン酸マンガンリチウムナノ粒子、または請求項8に記載の炭素被覆リン酸マンガンリチウム粒子造粒体を正極材料に用いたリチウムイオン電池。
     
    The lithium manganese phosphate particles according to any one of claims 1 to 6, the carbon-coated lithium manganese phosphate nanoparticles according to claim 7, or the carbon-coated lithium manganese phosphate particle granules according to claim 8 Lithium ion battery used for positive electrode material.
PCT/JP2016/073278 2016-08-08 2016-08-08 Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery WO2018029745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073278 WO2018029745A1 (en) 2016-08-08 2016-08-08 Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073278 WO2018029745A1 (en) 2016-08-08 2016-08-08 Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2018029745A1 true WO2018029745A1 (en) 2018-02-15

Family

ID=61162019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073278 WO2018029745A1 (en) 2016-08-08 2016-08-08 Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery

Country Status (1)

Country Link
WO (1) WO2018029745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161456A (en) * 2019-03-28 2020-10-01 住友大阪セメント株式会社 Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2023108481A1 (en) * 2021-12-15 2023-06-22 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501454A (en) * 2006-08-21 2010-01-21 エルジー・ケム・リミテッド Method for producing lithium metal phosphate
JP2010073520A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Lithium ion secondary battery
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
JP2013107815A (en) * 2011-10-24 2013-06-06 Kri Inc Carbon-coated manganese lithium phosphate particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501454A (en) * 2006-08-21 2010-01-21 エルジー・ケム・リミテッド Method for producing lithium metal phosphate
JP2010073520A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Lithium ion secondary battery
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
JP2013107815A (en) * 2011-10-24 2013-06-06 Kri Inc Carbon-coated manganese lithium phosphate particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG, BYOUNGWOO ET AL.: "Electrochemical Performance of LiMnPO4 Synthesized with Off- Stoichiometry", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 157, no. 7, 2010, pages A808 - A811, XP055035606 *
ZHU, HUA-JUN ET AL.: "Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in apolyol process", CERAMICS INTERNATIONAL, vol. 40, 2014, pages 6699 - 6704, XP055320327 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161456A (en) * 2019-03-28 2020-10-01 住友大阪セメント株式会社 Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN111755673A (en) * 2019-03-28 2020-10-09 住友大阪水泥股份有限公司 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11158852B2 (en) 2019-03-28 2021-10-26 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
JP6999598B2 (en) 2019-03-28 2022-01-18 住友大阪セメント株式会社 Positive Material for Lithium Ion Secondary Battery, Positive Positive for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery
WO2023108481A1 (en) * 2021-12-15 2023-06-22 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Similar Documents

Publication Publication Date Title
Eftekhari Lithium-ion batteries with high rate capabilities
JP4829557B2 (en) Method for producing lithium iron composite oxide
JP6256337B2 (en) Positive electrode active material-graphene composite particles, positive electrode material for lithium ion battery, and method for producing positive electrode active material-graphene composite particles
US10181601B2 (en) Lithium manganese phosphate nanoparticles and method for manufacturing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granulated body, and lithium ion cell
TWI614211B (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
JP4804045B2 (en) Method for producing lithium iron composite oxide
CN108630910B (en) Electrode material for lithium ion secondary battery and lithium ion secondary battery
Ahsan et al. Recent progress in capacity enhancement of LiFePO4 cathode for Li-ion batteries
KR20110132566A (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JPWO2014115670A1 (en) Positive electrode active material-graphene composite particles and positive electrode material for lithium ion battery
JP6060699B2 (en) Composite particles of positive electrode active material and conductive carbon
CN105470516B (en) Electrode material, electrode and lithium ion battery
CN111668461A (en) Electrode material, method for producing electrode material, electrode, and lithium ion battery
WO2018029745A1 (en) Lithium manganese phosphate nanoparticles and method for producing same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticle granule, and lithium ion battery
JP2015195185A (en) Method of manufacturing lithium-rich type positive electrode active material composite particle
KR102162391B1 (en) Electrode material, method for producing the electrode material, electrode, and lithium ion battery
JP6394391B2 (en) Method for producing polyanionic positive electrode active material composite particles
KR20150078068A (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
CN117769771A (en) Electrode active material precursor, preparation method thereof, electrode active material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP