JP2013175374A - Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those - Google Patents

Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those Download PDF

Info

Publication number
JP2013175374A
JP2013175374A JP2012039475A JP2012039475A JP2013175374A JP 2013175374 A JP2013175374 A JP 2013175374A JP 2012039475 A JP2012039475 A JP 2012039475A JP 2012039475 A JP2012039475 A JP 2012039475A JP 2013175374 A JP2013175374 A JP 2013175374A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
secondary battery
vanadium
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012039475A
Other languages
Japanese (ja)
Inventor
Yuta Kashiwa
雄太 柏
Mariko Kawamoto
河本  真理子
Tokuo Inamasu
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012039475A priority Critical patent/JP2013175374A/en
Publication of JP2013175374A publication Critical patent/JP2013175374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a secondary battery, allowing improvement in discharge characteristics of a battery.SOLUTION: A positive electrode active material for a secondary battery comprises elements of lithium, manganese, phosphorus, oxygen and vanadium and contains a compound having an olivine structure, where the ratio of the vanadium atomic number relative to the sum of atomic numbers of manganese and vanadium is 20% or less. With this constitution, the discharge capacity maintenance rate of a battery in high rate discharge can be large compared with the case of not comprising vanadium.

Description

本発明は二次電池用正極活物質に関する。   The present invention relates to a positive electrode active material for a secondary battery.

リチウム二次電池用の正極活物質として、オリビン型の結晶構造を有する活物質(以下単に「オリビン型活物質」という)の開発が進められている。オリビン型活物質は、LiMPO(MはFe,Mn,Ni,Co等の遷移金属)の一般式を有し、酸素がリンとの共有結合によって固定化されるため、高温においても酸素を放出しにくく、優れた熱的安定性を示す。 As a positive electrode active material for a lithium secondary battery, an active material having an olivine type crystal structure (hereinafter simply referred to as “olivine type active material”) is being developed. The olivine-type active material has a general formula of LiMPO 4 (M is a transition metal such as Fe, Mn, Ni, and Co) and releases oxygen even at high temperatures because oxygen is immobilized by a covalent bond with phosphorus. It is difficult to resist and exhibits excellent thermal stability.

オリビン型活物質のうちリン酸鉄リチウム(LiFePO)は、オリビン型活物質としては電子・イオン伝導性が高く、容量密度が大きいという特性を有し、優れた正極材料であることが知られている。しかし、リン酸鉄リチウムは、Liイオンの挿入・脱離に伴うレドックス電位がリチウム電極基準で3.4Vであり、一般的なリチウムイオン電池用正極材料、例えばLiCoOでは約4V、よりもレドックス電位が低いという問題がある。一方、リン酸マンガンリチウム(LiMnPO)は、Liイオンの挿入・脱離に伴うレドックス電位は4.1Vと高いものの、電子伝導性に乏しいなどの理由により、電池に使用したときに十分な放電特性が得られないという問題があった。 Among olivine-type active materials, lithium iron phosphate (LiFePO 4 ) is known as an excellent positive electrode material because of its high electron / ion conductivity and large capacity density as an olivine-type active material. ing. However, the lithium iron phosphate has a redox potential associated with insertion / extraction of Li ions of 3.4 V with respect to the lithium electrode, and is about 4 V for a general positive electrode material for a lithium ion battery such as LiCoO 2. There is a problem that the potential is low. On the other hand, lithium manganese phosphate (LiMnPO 4 ) has a high redox potential of 4.1 V due to insertion / extraction of Li ions, but it is sufficiently discharged when used in a battery due to its poor electronic conductivity. There was a problem that characteristics could not be obtained.

リン酸マンガンリチウムの特性を改良する技術として、特許文献1には、一般式LiMn1−yPO(0<x≦2、0<y<1、AはTi、Zn、Mg、Coから選ばれる一種の金属元素である。)で表される化合物が開示されており、リン酸マンガンリチウムのMnの一部を上記各金属元素で置換することによって、充電状態でのMn3+に起因するヤーン・テラー効果を希釈してMnのレドックス発生が可能となることが記載されている。 As a technique for improving the characteristics of lithium manganese phosphate, Patent Document 1 includes a general formula Li x Mn y A 1-y PO 4 (0 <x ≦ 2, 0 <y <1, A represents Ti, Zn, Mg , A metal element selected from Co.), and by replacing a part of Mn of lithium manganese phosphate with each of the above metal elements, Mn 3+ in a charged state is disclosed. It is described that the redox generation of Mn becomes possible by diluting the yarn-teller effect caused by the above.

特許文献2には、組成式LiMPO中のMとして、Mnを含む種々の金属を混合したものが記載されている。しかし、具体的に2種以上の金属が混合されたものが評価されているわけではない。 Patent Document 2 describes a mixture of various metals including Mn as M in the composition formula LiMPO 4 . However, a mixture of two or more metals is not specifically evaluated.

特許文献3〜5には、LiMnPOのMn(0<x<2)の一部を種々の金属で置換したものが記載されており、具体的には、Mnの一部を、Fe、FeおよびTi、FeおよびCo、CoおよびTi、NiおよびTi、CoおよびNiで置換したものなどが評価されている。 Patent Documents 3 to 5 describe Li x MnPO 4 in which a part of Mn (0 <x <2) is substituted with various metals, and specifically, a part of Mn is converted to Fe. , Fe and Ti, Fe and Co, Co and Ti, Ni and Ti, and those substituted with Co and Ni have been evaluated.

特開2001−307731号公報JP 2001-307731 A 国際公開第07/034821号International Publication No. 07/034821 国際公開第07/034823号International Publication No. 07/034823 国際公開第08/018633号International Publication No. 08/018633 特表2009−532323号公報JP 2009-532323 A

前記各特許文献に記載されたような種々の開発努力にもかかわらず、リン酸マンガンリチウム系の活物質を用いた電池で実用に至ったものはない。本発明は以上の点を考慮してなされたものであり、リチウム二次電池等の二次電池用正極活物質について、電池の放電特性の改善が可能な活物質を提供することを目的とする。また、かかる活物質を用いた正極および電池を提供することを目的とする。   Despite various development efforts as described in each of the above patent documents, no battery using a lithium manganese phosphate-based active material has been put to practical use. The present invention has been made in consideration of the above points, and an object of the present invention is to provide an active material capable of improving the discharge characteristics of a battery for a positive electrode active material for a secondary battery such as a lithium secondary battery. . It is another object of the present invention to provide a positive electrode and a battery using such an active material.

本発明の二次電池用正極活物質は、リチウム、マンガン、リン、酸素およびバナジウムの各元素を含み、かつ、オリビン構造の化合物を含有し、マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が20%以下であることを特徴とする。この構成により、バナジウムを含まない場合と比べて、電池の高率放電時の放電容量維持率を大きくすることができる。   The positive electrode active material for a secondary battery of the present invention contains lithium, manganese, phosphorus, oxygen, and vanadium elements and contains a compound having an olivine structure, and the number of vanadium atoms relative to the sum of the number of manganese and vanadium atoms The ratio is 20% or less. With this configuration, it is possible to increase the discharge capacity maintenance rate at the time of high rate discharge of the battery as compared with the case where vanadium is not included.

好ましくは、前記二次電池用正極活物質において、マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が1%以上15%以下である。これにより、バナジウムを含まない場合と比べて、電池の高率放電時の放電容量および放電容量維持率を大きくすることができる。   Preferably, in the positive electrode active material for a secondary battery, the ratio of the number of vanadium atoms to the sum of the number of manganese and vanadium atoms is 1% or more and 15% or less. Thereby, compared with the case where vanadium is not included, the discharge capacity and discharge capacity maintenance rate at the time of high rate discharge of a battery can be enlarged.

さらに好ましくは、前記二次電池用正極活物質において、マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が5%以上10%以下である。これにより、バナジウムを含まない場合と比べて、電池の0.1CmA放電時の放電容量を同等以上に維持しながら、高率放電時の放電容量および放電容量維持率を大きくすることができる。   More preferably, in the positive electrode active material for a secondary battery, the ratio of the number of vanadium atoms to the sum of the number of manganese and vanadium atoms is 5% or more and 10% or less. Thereby, compared with the case where vanadium is not included, it is possible to increase the discharge capacity and the discharge capacity maintenance ratio at the time of high rate discharge while maintaining the discharge capacity at the time of 0.1 CmA discharge of the battery at the same level or higher.

また、前記二次電池用正極活物質は、Cu−Kα線を使用した粉末X線回折測定において、オリビン型結晶構造に由来する回折ピークの他に、2θ=23.4°、34.2°および36.7°付近に回折ピークが現れることを特徴とする。   Further, the positive electrode active material for a secondary battery has 2θ = 23.4 °, 34.2 ° in addition to a diffraction peak derived from an olivine type crystal structure in powder X-ray diffraction measurement using Cu—Kα ray. And a diffraction peak appears in the vicinity of 36.7 °.

本発明の二次電池用正極活物質粒子は、上記いずれかの二次電池用正極活物質の粒子にさらにカーボンを備えていてもよい。二次電池用正極活物質の粒子とは、前記二次電池用正極活物質の一次粒子、二次粒子、あるいはより高次の粒子を指す。また、カーボンとは、主として元素Cからなる導電性の炭素質化合物をいう。ここでは、前記二次電池用正極活物質の粒子の表面および/または内部にカーボンが付着、被覆等の形態で備えられている。これにより活物質の電子伝導性を補い、充放電に際して活物質の利用率を高めることができる。   The positive electrode active material particles for a secondary battery of the present invention may further include carbon in any of the particles of the positive electrode active material for a secondary battery described above. The particles of the positive electrode active material for secondary batteries refer to primary particles, secondary particles, or higher order particles of the positive electrode active material for secondary batteries. Carbon refers to a conductive carbonaceous compound mainly composed of the element C. Here, carbon is provided on the surface and / or inside of the particles of the positive electrode active material for a secondary battery in the form of adhesion, coating or the like. Thereby, the electron conductivity of the active material can be supplemented, and the utilization factor of the active material can be increased during charging and discharging.

本発明の正極は、上記いずれかの二次電池用正極活物質を用いる。   The positive electrode of the present invention uses any one of the positive electrode active materials for secondary batteries described above.

本発明の二次電池は、上記いずれかの二次電池用正極活物質を用いる。   The secondary battery of the present invention uses any one of the positive electrode active materials for secondary batteries described above.

本発明によれば、高率放電時の放電容量維持率が改善された二次電池が得られる。   According to the present invention, a secondary battery with improved discharge capacity maintenance rate during high rate discharge can be obtained.

実施例および比較例の正極活物質粒子の粉末X線回折プロファイルである。It is a powder X-ray-diffraction profile of the positive electrode active material particle of an Example and a comparative example. 実施例および比較例の正極活物質を用いた簡易セルの初期放電容量を示す図である。It is a figure which shows the initial stage discharge capacity of the simple cell using the positive electrode active material of an Example and a comparative example. 実施例および比較例の正極活物質を用いた簡易セルの高率放電時の放電容量を示す図である。It is a figure which shows the discharge capacity at the time of the high rate discharge of the simple cell using the positive electrode active material of an Example and a comparative example.

まず、本発明の二次電池用正極活物質の一実施形態を、以下に説明する。   First, an embodiment of the positive electrode active material for a secondary battery of the present invention will be described below.

本実施形態の二次電池用正極活物質は、主としてオリビン型構造を有するリン酸塩を含むものである。X線回折(XRD)測定のプロファイルによれば、バナジウムの大部分はLiMnPOのMnサイトに存在するものと考えられ、本実施形態の二次電池用活物質の主成分は平均組成がLiMn1−xPO4(0<w≦1、0<x≦0.20)で表されるものと考えられる。ここで、Liの量(wの値)は電池の充電・放電に伴って増減する。また、本発明の効果が失われることのない範囲であれば、活物質にその性能の向上を目的として、意図的に不純物や異種元素を共存させてもよい。 The positive electrode active material for a secondary battery of this embodiment mainly contains a phosphate having an olivine structure. According to the profile of the X-ray diffraction (XRD) measurement, it is considered that most of vanadium is present at the Mn site of LiMnPO 4 , and the main component of the active material for the secondary battery of this embodiment has an average composition of Li w. It is considered that Mn 1-x V x PO4 (0 <w ≦ 1, 0 <x ≦ 0.20). Here, the amount of Li (value of w) increases or decreases as the battery is charged / discharged. Moreover, as long as the effects of the present invention are not lost, impurities and different elements may be intentionally allowed to coexist in the active material for the purpose of improving its performance.

本実施形態の活物質がリチウム原子、マンガン原子、バナジウム原子およびリン原子等を含んでいること、ならびにその量は、高周波誘導結合プラズマ(ICP)発光分光分析により確認することができる。また、活物質の結晶構造は、粉末X線回折分析(XRD)により確認することができる。他にも、透過型電子顕微鏡観察(TEM)、エネルギー分散X線分光法(EDX)、走査電顕X線分析(EPMA)、高分解能電子顕微鏡分析(HRAEM)および電子エネルギー損失分光法(EELS)などの分析機器を併用することにより、詳細な分析を行うことが可能である。   It can be confirmed that the active material of the present embodiment contains a lithium atom, a manganese atom, a vanadium atom, a phosphorus atom, and the like, and the amount thereof by high frequency inductively coupled plasma (ICP) emission spectroscopy. The crystal structure of the active material can be confirmed by powder X-ray diffraction analysis (XRD). In addition, transmission electron microscope observation (TEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscope X-ray analysis (EPMA), high resolution electron microscope analysis (HRAEM), and electron energy loss spectroscopy (EELS) A detailed analysis can be performed by using an analytical instrument such as the above.

また、本発明においては、二次電池用正極活物質の電子伝導性を補う目的で、粒子の表面および/または内部にカーボンを備えていてもよい。本発明の二次電池用正極活物質の粒子にカーボンを備えることにより、充放電に際して活物質の利用率を高めることができるため好ましい。   In the present invention, carbon may be provided on the surface and / or inside of the particles in order to supplement the electron conductivity of the positive electrode active material for secondary batteries. It is preferable to provide carbon in the particles of the positive electrode active material for a secondary battery of the present invention because the utilization factor of the active material can be increased during charging and discharging.

本実施形態の活物質の合成方法は特に限定されるものではない。具体的には、固相法、液相法、ゾルゲル法、水熱法等が挙げられる。また、活物質粒子表面のカーボン層は、ポリビニルアルコール、ショ糖、アスコルビン酸等の有機物を熱分解することによって形成することができる。特に、活物質合成時にカーボン源を共存させることが好ましい。水熱法の場合には、合成時にカーボン源を共存させることによって、生成したリン酸(マンガン・バナジウム)リチウムの粒子の表面に均一なカーボン前駆体の膜状体が形成される。このとき、カーボン源としてポリビニルアルコールを用いると、熱分解によって粒子表面にカーボンの突状体が形成されるので特に好ましい。熱分解を行う温度は、カーボン源として用いる有機物が熱分解する温度より高いことを要するが、温度が高すぎるとリン酸(マンガン・バナジウム)リチウムの性能が低下することから、300〜900℃であることが好ましく、500〜800℃であることがより好ましい。   The method for synthesizing the active material of the present embodiment is not particularly limited. Specific examples include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method. The carbon layer on the surface of the active material particles can be formed by thermally decomposing organic substances such as polyvinyl alcohol, sucrose, and ascorbic acid. In particular, it is preferable to coexist a carbon source during active material synthesis. In the case of the hydrothermal method, a uniform carbon precursor film is formed on the surface of the generated lithium phosphate (manganese / vanadium) lithium particles by coexisting a carbon source during synthesis. At this time, it is particularly preferable to use polyvinyl alcohol as the carbon source because a carbon protrusion is formed on the particle surface by thermal decomposition. The temperature at which the pyrolysis is performed needs to be higher than the temperature at which the organic substance used as the carbon source is pyrolyzed. However, if the temperature is too high, the performance of lithium phosphate (manganese / vanadium) is lowered. It is preferable that it is 500-800 degreeC.

上記活物質の粉体を所定の形状で得るため、粉砕機や分級機を用いることができる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル、篩等を用いることができる。粉砕時には水、あるいはアルコール、ヘキサン等の有機溶剤を共存させた湿式粉砕を用いてもよい。分級方法としては、特に限定はなく、必要に応じて篩や風力分級機などを乾式あるいは湿式にて用いることができる。   In order to obtain the active material powder in a predetermined shape, a pulverizer or a classifier can be used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used. At the time of pulverization, wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.

本実施形態の活物質粒子の大きさは特に限定されないが、一次粒子の粒径が1〜500nmであることが好ましく、二次粒子の平均粒径が0.1〜50μmであることが好ましい。一次および二次粒子径が大きすぎると、活物質の利用率が低くなる。逆に一次および二次粒子径が小さすぎると、正極ペーストの作製や塗布工程の作業性が悪くなり、電極作製の作業効率が低下する。   The size of the active material particles of the present embodiment is not particularly limited, but the primary particles preferably have a particle size of 1 to 500 nm, and the secondary particles preferably have an average particle size of 0.1 to 50 μm. When the primary and secondary particle sizes are too large, the utilization factor of the active material is lowered. On the other hand, when the primary and secondary particle sizes are too small, the workability of the positive electrode paste preparation and the coating process deteriorates, and the work efficiency of electrode preparation decreases.

本実施形態の活物質粒子の比表面積は特に限定されないが、粉体の流動法窒素ガス吸着法によるBET比表面積が1〜100m/gであることが好ましく、5〜50m/gであることがより好ましく、5〜30m/gであることがさらに好ましい。これは、比表面積が大きい方が高率充放電特性が向上するからであり、一方で比表面積が大きすぎると物理的な強度が小さくなりすぎるからである。 Although the specific surface area of the active material particle of the present embodiment is not particularly limited, it is preferable that the BET specific surface area due to the flow process the nitrogen gas adsorption method of the powder is 1 to 100 m 2 / g, is 5 to 50 m 2 / g Is more preferable, and it is still more preferable that it is 5-30 m < 2 > / g. This is because the higher the specific surface area, the higher rate charge / discharge characteristics are improved. On the other hand, if the specific surface area is too large, the physical strength becomes too small.

本発明の正極および二次電池は、本発明の正極活物質を用い、公知の材料および方法を用いることによって製造することができる。   The positive electrode and secondary battery of the present invention can be produced by using the positive electrode active material of the present invention and using known materials and methods.

次に、本発明におけるバナジウムの効果について説明する。本発明に係る二次電池用正極活物質を用いることにより、実施例の評価結果で後述するように、高率放電時の放電容量が増大する。その作用機構は明らかではないが、以下の機構が推定され、以下の一方または両方の機構が作用しているのではないかと思われる。   Next, the effect of vanadium in the present invention will be described. By using the positive electrode active material for a secondary battery according to the present invention, the discharge capacity during high rate discharge increases as will be described later in the evaluation results of the examples. The mechanism of action is not clear, but the following mechanism is presumed, and one or both of the following mechanisms may be acting.

バナジウムがリン酸マンガンリチウムのマンガンを置換している場合には、マンガンがより伝導性の高いバナジウムで置換されることによって化合物の電子伝導性が改善される、あるいは、イオン半径の異なるバナジウムで置換されることによってリチウムイオン伝導経路が変化してリチウムイオン伝導性が改善されるものと考えられる。   When vanadium replaces manganese in lithium manganese phosphate, the electronic conductivity of the compound is improved by replacing manganese with vanadium, which has higher conductivity, or with vanadium having a different ionic radius. As a result, the lithium ion conduction path is changed and the lithium ion conductivity is considered to be improved.

また、バナジウムがリン酸マンガンリチウムとは別相として存在する場合には、別相として生成した化合物(バナジウム化合物)の電子伝導性が優れており、これが二次粒子内で共存していることによって、リン酸マンガンリチウムの利用率が改善されるものと考えられる。この場合、実施例に後述するように、リン酸マンガンリチウムの原料とバナジウム源とを前駆体水溶液中に共存させて合成することにより、リン酸マンガンリチウムとバナジウム化合物の一次粒子同士が密接に接触しているものとなるので、マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が小さくても大きな効果が得られるものと考えられる。   In addition, when vanadium exists as a phase separate from lithium manganese phosphate, the compound (vanadium compound) produced as a separate phase has excellent electronic conductivity, and this coexists in the secondary particles. It is considered that the utilization rate of lithium manganese phosphate is improved. In this case, as will be described later in Examples, the primary particles of lithium manganese phosphate and the vanadium compound are brought into close contact with each other by synthesizing the lithium manganese phosphate raw material and the vanadium source in the precursor aqueous solution. Therefore, it is considered that a large effect can be obtained even if the ratio of the number of vanadium atoms to the sum of the numbers of manganese and vanadium atoms is small.

(実施例1)
水酸化リチウム一水和物(LiOH・HO)(株式会社ナカライテスク)を6.74gおよびリン酸水素二アンモニウム((NHHPO)(株式会社ナカライテスク)を10.60g量り取り、それぞれ80および20mLのイオン交換水中に溶解した後に、両溶液を攪拌しながら混合し、この混合溶液に対してNガスのバブリングを約3分間行った。その後、バナジン酸アンモニウム(NHVO)(株式会社ナカライテスク)を0.09g量り取り、上記混合溶液に加えて混合した。次に、アスコルビン酸(株式会社ナカライテスク)0.36gを溶解させた60mLのイオン交換水に、硫酸マンガン五水和物(MnSO・5HO)(株式会社ナカライテスク)19.09gを溶解させ、この溶液に対してNガスのバブリングを約3分間行った。この溶液を上記LiOH・HOと(NHHPOおよびNHVOの混合溶液に加えることによって、前駆体水溶液を得た。なお、ここまでの全ての作業は、水溶液中のMn2+のMn3+への酸化を防止するために、十分に窒素置換を行った簡易グローブボックス内で実施した。
Example 1
Weighs 6.74 g of lithium hydroxide monohydrate (LiOH.H 2 O) (Nacalai Tesque, Inc.) and 10.60 g of diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) (Nacalai Tesque, Inc.) After being dissolved in 80 and 20 mL of ion-exchanged water, both solutions were mixed with stirring, and the mixed solution was bubbled with N 2 gas for about 3 minutes. Thereafter, 0.09 g of ammonium vanadate (NH 4 VO 3 ) (Nacalai Tesque, Inc.) was weighed out and added to the above mixed solution and mixed. Next, 19.09 g of manganese sulfate pentahydrate (MnSO 4 .5H 2 O) (Nacalai Tesque) was dissolved in 60 mL of ion exchange water in which 0.36 g of ascorbic acid (Nacalai Tesque, Inc.) was dissolved. The solution was bubbled with N 2 gas for about 3 minutes. This precursor solution was added to the mixed solution of LiOH.H 2 O, (NH 4 ) 2 HPO 4 and NH 4 VO 3 to obtain an aqueous precursor solution. Incidentally, all operations up to this point, in order to prevent oxidation of Mn 3+ in the Mn 2+ in aqueous solution, were carried out in a simple glove box was thoroughly purged with nitrogen.

上記前駆体水溶液をポリテトラフルオロエチレン製容器(内容積500cm)に移し、これを水熱反応容器(耐圧硝子工業株式会社製、TVS−N2)に設置した。反応容器内を窒素ガスで充分に置換して密閉し、前駆体水溶液を170℃まで加熱し、その後、その温度を保持し続けることにより、合成反応を行った。合成反応時間(前駆体水溶液を170℃で保持し続ける時間)は6時間とした。昇温速度は100℃/h、降温は自然放冷とし、昇温開始時から降温が終わるまで、撹拌羽を200rpmで回転させることにより、前駆体水溶液の攪拌を行った。合成反応中の水熱反応容器内の圧力は約1.2気圧であった。合成反応終了後、ポリテトラフルオロエチレン製容器内の水溶液を濾過し、イオン交換水とアセトンによる洗浄を行った後、120℃で5時間の真空乾燥を行うことにより、バナジウムを1原子%含むリン酸マンガンリチウム(LiMn0.990.01PO)を作製した。 The precursor aqueous solution was transferred to a polytetrafluoroethylene container (internal volume 500 cm 3 ), and this was installed in a hydrothermal reaction container (Pressure Glass Industry Co., Ltd., TVS-N2). The inside of the reaction vessel was sufficiently substituted with nitrogen gas and sealed, and the precursor aqueous solution was heated to 170 ° C., and then kept at that temperature to carry out the synthesis reaction. The synthesis reaction time (time for keeping the precursor aqueous solution at 170 ° C.) was 6 hours. The temperature of the precursor aqueous solution was agitated by rotating the stirring blade at 200 rpm from the start of the temperature increase until the temperature decrease was completed. The pressure in the hydrothermal reaction vessel during the synthesis reaction was about 1.2 atmospheres. After completion of the synthesis reaction, the aqueous solution in the polytetrafluoroethylene container is filtered, washed with ion-exchanged water and acetone, and then vacuum-dried at 120 ° C. for 5 hours to obtain phosphorus containing 1 atomic% of vanadium. Lithium manganese oxide (LiMn 0.99 V 0.01 PO 4 ) was produced.

合成したバナジウム含有リン酸マンガンリチウムの粉末2.0gに、ポリビニルアルコール(和光純薬工業株式会社、重合度1500)2.29gを加えて、メノウ乳鉢を用いて混合し、さらに60℃に加温した水を少量加え、再度乳鉢で混合−混練してガム状のペーストとした。前記混合物をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(株式会社デンケン社製卓上真空ガス置換炉KDF−75、内容積2400cm)を用いて、窒素ガスの流通下(流速0.5L/min)で加熱を行った。加熱温度は700℃とし、加熱時間(前記加熱温度を維持する時間)は1時間とした。なお、昇温速度は10℃/min、降温は自然放冷とした。このようにして、粒子の表面にカーボンを備えたバナジウム含有リン酸マンガンリチウムを作製した。 2.29 g of polyvinyl alcohol (Wako Pure Chemical Industries, Ltd., polymerization degree 1500) is added to 2.0 g of the synthesized vanadium-containing lithium manganese phosphate powder, mixed using an agate mortar, and further heated to 60 ° C. A small amount of the water was added and mixed and kneaded again in a mortar to obtain a gum-like paste. The mixture was put in an alumina bowl (outside dimensions 90 × 90 × 50 mm), and the atmosphere-replacement-type firing furnace (a tabletop vacuum gas replacement furnace KDF-75 manufactured by Denken Co., Ltd., internal volume 2400 cm 3 ) was used. Heating was performed under gas flow (flow rate 0.5 L / min). The heating temperature was 700 ° C., and the heating time (time for maintaining the heating temperature) was 1 hour. The rate of temperature rise was 10 ° C./min, and the temperature was naturally cooled. In this way, vanadium-containing lithium manganese phosphate having carbon on the surface of the particles was produced.

(実施例2〜6および比較例)
原料として用いた硫酸マンガン五水和物およびバナジン酸アンモニウムの量が異なる以外は実施例1と同じ方法で、実施例2〜6として粒子表面にカーボンを備えたバナジウム含有リン酸マンガンリチウム、および比較例として粒子表面にカーボンを備えたリン酸マンガンリチウムを作製した。すべての実施例および比較例の作製に用いた原料の量を表1に示す。表1において、V添加量(モル%)とは、MnとVの原子数の和に対するVの原子数の比率である。以後の図表においても同じ意味で用いる。
(Examples 2-6 and comparative examples)
Vanadium-containing lithium manganese phosphate with carbon on the particle surface as Examples 2 to 6 in the same manner as Example 1 except that the amounts of manganese sulfate pentahydrate and ammonium vanadate used as raw materials were different, and comparison As an example, lithium manganese phosphate having carbon on the particle surface was prepared. Table 1 shows the amounts of raw materials used in the production of all examples and comparative examples. In Table 1, V addition amount (mol%) is the ratio of the number of V atoms to the sum of the number of Mn and V atoms. The same meaning is used in the following charts.

Figure 2013175374
Figure 2013175374

(X線回折測定)
表面にカーボンを備えたバナジウム含有および非含有リン酸マンガンリチウムの粉末は、CuKα線源を用いたX線回折装置(Rigaku社製、型名:MiniFlex II)を行いてX線回折(XRD)測定を行った。測定は、管電圧30kV、管電流15mA、スキャン速度4°/s、スキャンステップ0.02°の条件で実施した。
(X-ray diffraction measurement)
The vanadium-containing and non-containing lithium manganese phosphate powder with carbon on the surface is subjected to X-ray diffraction (XRD) measurement by performing an X-ray diffractometer using a CuKα radiation source (manufactured by Rigaku, model name: MiniFlex II). Went. The measurement was performed under the conditions of a tube voltage of 30 kV, a tube current of 15 mA, a scan speed of 4 ° / s, and a scan step of 0.02 °.

図1に実施例および比較例の活物質粒子のXRDプロファイルを示す。図1において、バナジウムを含まない比較例ではオリビン型結晶構造に帰属する回折ピークのみが観測された。これに対して、実施例1〜6においてマンガンの一部をバナジウムで置換した場合でも、V添加量が20モル%に及ぶ実施例6に至るまで、オリビン型結晶構造に由来するXRDプロファイルが維持されている。このことから、実施例1〜6においても、バナジウムのほとんどはLiMnPOのMnサイトに存在し、オリビン型結晶構造を有するLiMn1−xPOが主たる成分であったと考えられる。 FIG. 1 shows XRD profiles of the active material particles of Examples and Comparative Examples. In FIG. 1, in the comparative example not containing vanadium, only the diffraction peak attributed to the olivine type crystal structure was observed. On the other hand, even when a part of manganese was replaced with vanadium in Examples 1 to 6, the XRD profile derived from the olivine type crystal structure was maintained until Example 6 in which the V addition amount reached 20 mol% was maintained. Has been. Therefore, also in Example 1-6, most vanadium present in Mn site of LiMnPO 4, considered LiMn 1-x V x PO 4 having an olivine-type crystal structure was the main component.

一方で、実施例1〜6では、オリビン型結晶構造に帰属されないピークが、2θ=23.4°、34.2°、36.7°付近に観測された。このことからバナジウムの一部は上記オリビン型結晶構造を有する相とは異なる相を形成している可能性もある。しかし、詳細は不明である。   On the other hand, in Examples 1 to 6, peaks not attributed to the olivine type crystal structure were observed in the vicinity of 2θ = 23.4 °, 34.2 °, and 36.7 °. Therefore, a part of vanadium may form a phase different from the phase having the olivine type crystal structure. However, details are unknown.

次に、表面にカーボンを備えたバナジウム含有および非含有リン酸マンガンリチウムからなる実施例1〜6および比較例の正極活物質を用いて簡易セルを作製し、電池性能を評価した。   Next, simple cells were prepared using the positive electrode active materials of Examples 1 to 6 and comparative examples made of vanadium-containing and non-containing lithium manganese phosphate having carbon on the surface, and the battery performance was evaluated.

(正極の作製)
正極活物質と導電助剤であるアセチレンブラックおよび結着剤であるポリフッ化ビニリデンを(80:8:12)の質量比で含有し、N−メチル−2−ピロリドン(NMP)を溶媒とする正極ペーストを調製した。なお、この正極ペーストの固形分濃度は30質量%に調整した。該正極ペーストを、アルミニウム端子を取り付けたアルミニウムメッシュ集電体(6cm×1.5cm)の長辺の半分の両面に塗布し、80℃でNMPを除去した後、塗布部分同士を二重に重ねて塗布部分の投影面積が半分になるように折り曲げ、折り曲げた後の厚みが400μmになるようにプレス加工を行い、正極とした。折り曲げた後の活物質の塗布面積は2.25cm、塗布質量は0.07gであった。上記正極は150℃で5時間以上の減圧乾燥を行い、極板中の水分を除去して使用した。
(Preparation of positive electrode)
A positive electrode containing N-methyl-2-pyrrolidone (NMP) as a solvent, containing a positive electrode active material, acetylene black as a conductive additive, and polyvinylidene fluoride as a binder in a mass ratio of (80: 8: 12). A paste was prepared. The solid content concentration of the positive electrode paste was adjusted to 30% by mass. The positive electrode paste is applied to both sides of the half of the long side of an aluminum mesh current collector (6 cm × 1.5 cm) with an aluminum terminal attached, NMP is removed at 80 ° C., and then the applied portions are overlapped in layers. Then, it was bent so that the projected area of the coated part was halved, and was pressed so that the thickness after bending was 400 μm, to obtain a positive electrode. The application area of the active material after bending was 2.25 cm 2 , and the application mass was 0.07 g. The positive electrode was dried under reduced pressure at 150 ° C. for 5 hours or more to remove moisture in the electrode plate.

(負極の作製)
ステンレス鋼(JIS記号:SUS316)製の端子を取り付けたステンレス鋼(JIS記号:SUS316)製のメッシュ集電体の両面に、厚さ300μmのリチウム金属箔を貼り合わせてプレス加工したものを負極とした。
(Preparation of negative electrode)
A stainless steel (JIS symbol: SUS316) mesh current collector attached with a stainless steel (JIS symbol: SUS316) mesh current collector is bonded to both sides of a 300 μm thick lithium metal foil and pressed. did.

(参照極の作製)
リチウム金属片をステンレス鋼(JIS記号:SUS316)製の集電棒の先端に貼り付けたものを参照極とした。
(Production of reference electrode)
A reference electrode was prepared by attaching a lithium metal piece to the tip of a current collector rod made of stainless steel (JIS symbol: SUS316).

(電解液の調製)
エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを体積比1:1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPFを1.0モル/Lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
(Preparation of electrolyte)
In a mixed solvent in which ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 1, LiPF 6 which is a fluorine-containing electrolyte salt is dissolved at a concentration of 1.0 mol / L, and non-aqueous An electrolyte was prepared. The amount of water in the non-aqueous electrolyte was less than 50 ppm.

(電池の組み立て)
露点−40℃以下のArボックス中においてガラス製のリチウムイオン二次電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに正極と負極と参照極とを各1枚ずつ挟んだ後、正・負極が対向するように固定した。参照極は負極から見て正極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに正極、負極および参照極が完全に浸かるように蓋をすることで電池を組み立てた。
(Battery assembly)
A glass lithium ion secondary battery was assembled in an Ar box having a dew point of −40 ° C. or lower. Each of the positive electrode, the negative electrode, and the reference electrode was sandwiched between gold-plated clips whose conductors were previously fixed to the lid portion of the container, and then fixed so that the positive and negative electrodes were opposed to each other. The reference electrode was fixed at a position on the back side of the positive electrode when viewed from the negative electrode. Next, a polypropylene cup containing a certain amount of electrolyte was placed in a glass container, and a battery was assembled by covering the positive electrode, the negative electrode, and the reference electrode so that they were completely immersed therein.

(充放電試験)
上記のようにして作製された電池を、温度20℃において1サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.1CmA(約10時間率)、電圧4.3V、15時間の定電流定電圧充電とし、放電条件は、電流0.1CmA(約10時間率)、終止電圧2.0Vの定電流放電とした。
(Charge / discharge test)
The battery produced as described above was subjected to a charge / discharge process in which one cycle of charge / discharge was performed at a temperature of 20 ° C. The charging conditions were a current of 0.1 CmA (about 10 hours rate), a voltage of 4.3 V, and a constant current constant voltage charging of 15 hours. The discharging conditions were a current of 0.1 CmA (about 10 hours rate) and a final voltage of 2.0 V. Constant current discharge.

(高率放電試験)
上記充放電試験に続いて、電流0.1CmA(約10時間率)、電圧4.3V、15時間の定電流定電圧充電を行った後、放電電流2CmA(約0.5時間率)、放電終止電圧2.0Vの定電流放電を行った。上記充放電試験の放電容量に対して、高率放電試験時に得られた放電容量の比率を「放電容量維持率(%)」として記録した。
(High rate discharge test)
Following the above charge / discharge test, a constant current / constant voltage charge of current 0.1 CmA (approximately 10 hour rate), voltage 4.3 V, and 15 hours was performed, and then discharge current 2 CmA (approximately 0.5 hour rate), discharge A constant current discharge with a final voltage of 2.0 V was performed. The ratio of the discharge capacity obtained during the high rate discharge test to the discharge capacity of the charge / discharge test was recorded as “discharge capacity maintenance rate (%)”.

(充放電試験および高率放電試験の結果)
表2に実施例1〜6および比較例の正極活物質を用いた簡易セルの試験結果を示す。図2に電流0.1CmAでの放電容量、図3に電流2CmAでの放電容量を示す。
(Results of charge / discharge test and high rate discharge test)
Table 2 shows the test results of simple cells using the positive electrode active materials of Examples 1 to 6 and Comparative Example. FIG. 2 shows the discharge capacity at a current of 0.1 CmA, and FIG. 3 shows the discharge capacity at a current of 2 CmA.

Figure 2013175374
Figure 2013175374

表2、図2および図3において、バナジウムを含まない比較例と比べて、バナジウムを添加した試料では、いずれも放電容量維持率が大きくなっている(実施例1〜6)。V添加量を増やすにしたがって電流2CmAでの放電容量および放電容量維持率が増加するが(実施例1〜4)、V添加量が10モル%を超えると電流2CmAでの放電容量が低下する傾向が見られた。V添加量が15モル%を超えると電流2CmAでの放電容量が比較例と同程度となり、放電容量維持率が低下する傾向が見られた。従って、本発明におけるV添加量は、1モル%〜20モル%であることが好ましいことがわかる。また、2CmA放電時の放電容量が大きいことから、1モル%〜15モル%がより好ましく、0.1CmA放電時の放電容量が大きいことから、5モル%〜10モル%が特に好ましい。本発明の二次電池用活物質は、高率放電特性が優れているので、高率放電が求められる用途、例えば、ハイブリッド自動車電源等でメリットがある。   In Table 2, FIG. 2, and FIG. 3, compared with the comparative example which does not contain vanadium, in all the samples which added vanadium, the discharge capacity maintenance factor is large (Examples 1-6). The discharge capacity and the discharge capacity retention rate at a current of 2 CmA increase as the amount of V added is increased (Examples 1 to 4). However, when the amount of V added exceeds 10 mol%, the discharge capacity at a current of 2 CmA tends to decrease. It was observed. When the amount of addition of V exceeds 15 mol%, the discharge capacity at a current of 2 CmA was almost the same as that of the comparative example, and a tendency that the discharge capacity retention rate decreased was observed. Therefore, it can be seen that the V addition amount in the present invention is preferably 1 mol% to 20 mol%. Moreover, since the discharge capacity at the time of 2 CmA discharge is large, 1 mol%-15 mol% are more preferable, and since the discharge capacity at the time of 0.1 CmA discharge is large, 5 mol%-10 mol% are especially preferable. Since the active material for a secondary battery of the present invention is excellent in high rate discharge characteristics, it is advantageous in applications where high rate discharge is required, for example, a hybrid vehicle power source.

なお、本発明は以上の実施形態または実施例に限定されるものではなく、本発明の技術的思想の範囲内で種々の変形が可能である。例えば、本発明の二次電池用正極活物質はナトリウム、マグネシウム等の挿入・脱離が可能であるため、リチウム二次電池以外の二次電池にも用いることができる。   In addition, this invention is not limited to the above embodiment or Example, A various deformation | transformation is possible within the range of the technical idea of this invention. For example, the positive electrode active material for a secondary battery of the present invention can be used for secondary batteries other than lithium secondary batteries because sodium and magnesium can be inserted and removed.

Claims (7)

リチウム、マンガン、リン、酸素およびバナジウムの各元素を含み、かつ、
オリビン構造の化合物を含有し、
マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が20%以下である
ことを特徴とする二次電池用正極活物質。
Contains lithium, manganese, phosphorus, oxygen and vanadium elements, and
Contains a compound of the olivine structure,
A positive electrode active material for a secondary battery, wherein the ratio of the number of vanadium atoms to the sum of the number of manganese and vanadium atoms is 20% or less.
マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が1%以上15%以下である
ことを特徴とする請求項1に記載の二次電池用正極活物質。
2. The positive electrode active material for a secondary battery according to claim 1, wherein the ratio of the number of vanadium atoms to the sum of the number of manganese and vanadium atoms is 1% or more and 15% or less.
マンガンとバナジウムの原子数の和に対するバナジウムの原子数の比率が5%以上10%以下である
ことを特徴とする請求項2に記載の二次電池用正極活物質。
The positive electrode active material for a secondary battery according to claim 2, wherein the ratio of the number of vanadium atoms to the sum of the number of manganese and vanadium atoms is 5% or more and 10% or less.
Cu−Kα線を使用したX線回折測定において、オリビン型結晶構造に由来する回折ピークの他に、2θ=23.4°、34.2°および36.7°付近に回折ピークが現れる、
請求項1〜3のいずれか一項に記載の二次電池用正極活物質。
In the X-ray diffraction measurement using Cu-Kα rays, in addition to the diffraction peak derived from the olivine type crystal structure, diffraction peaks appear in the vicinity of 2θ = 23.4 °, 34.2 ° and 36.7 °.
The positive electrode active material for secondary batteries as described in any one of Claims 1-3.
請求項1〜4のいずれか一項に記載の正極活物質の粒子にさらにカーボンを備えた二次電池用正極活物質粒子。   The positive electrode active material particle for secondary batteries which further provided carbon to the particle | grain of the positive electrode active material as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の二次電池用正極活物質を用いた正極。   The positive electrode using the positive electrode active material for secondary batteries as described in any one of Claims 1-5. 請求項1〜5のいずれか一項に記載の二次電池用正極活物質を用いた二次電池。   The secondary battery using the positive electrode active material for secondary batteries as described in any one of Claims 1-5.
JP2012039475A 2012-02-27 2012-02-27 Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those Pending JP2013175374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039475A JP2013175374A (en) 2012-02-27 2012-02-27 Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039475A JP2013175374A (en) 2012-02-27 2012-02-27 Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those

Publications (1)

Publication Number Publication Date
JP2013175374A true JP2013175374A (en) 2013-09-05

Family

ID=49268112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039475A Pending JP2013175374A (en) 2012-02-27 2012-02-27 Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those

Country Status (1)

Country Link
JP (1) JP2013175374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045337A (en) * 2013-10-18 2015-04-28 삼성전자주식회사 Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063270A (en) * 2002-07-29 2004-02-26 Sony Corp Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP2006278256A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010211990A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Charge and discharge control method of lithium ion secondary battery, secondary battery system, and hybrid automobile
JP2010533354A (en) * 2007-07-13 2010-10-21 ダウ グローバル テクノロジーズ インコーポレイティド Carbon coated lithium manganese phosphate cathode material
JP2011517053A (en) * 2008-04-14 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery
JP2011121802A (en) * 2009-12-09 2011-06-23 Tdk Corp METHOD FOR PRODUCING LiFePO4 AND LITHIUM ION SECONDARY BATTERY
JP2011181452A (en) * 2010-03-03 2011-09-15 Sumitomo Osaka Cement Co Ltd Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063270A (en) * 2002-07-29 2004-02-26 Sony Corp Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP2006278256A (en) * 2005-03-30 2006-10-12 Ngk Insulators Ltd Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010533354A (en) * 2007-07-13 2010-10-21 ダウ グローバル テクノロジーズ インコーポレイティド Carbon coated lithium manganese phosphate cathode material
JP2011517053A (en) * 2008-04-14 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery
JP2010211990A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Charge and discharge control method of lithium ion secondary battery, secondary battery system, and hybrid automobile
JP2011121802A (en) * 2009-12-09 2011-06-23 Tdk Corp METHOD FOR PRODUCING LiFePO4 AND LITHIUM ION SECONDARY BATTERY
JP2011181452A (en) * 2010-03-03 2011-09-15 Sumitomo Osaka Cement Co Ltd Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045337A (en) * 2013-10-18 2015-04-28 삼성전자주식회사 Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same
KR102124052B1 (en) * 2013-10-18 2020-06-17 삼성전자주식회사 Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same

Similar Documents

Publication Publication Date Title
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5509918B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5293936B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery
JP5376894B2 (en) Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP5489063B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2011071018A (en) Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
JP4963675B2 (en) Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same
WO2015059998A1 (en) Positive electrode active material for sodium batteries, and sodium battery
KR101352793B1 (en) Cathode Material for Secondary Battery and Manufacturing Method of the Same
CN111591971B (en) Titanium lithium phosphate nanocomposite, preparation method and application in aqueous battery
JP2012204322A (en) Method for producing active material for nonaqueous electrolyte secondary battery
JP5760524B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP5604962B2 (en) Positive electrode active material for secondary battery and secondary battery
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP5862172B2 (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
JP2013175374A (en) Positive electrode active material for secondary battery, active material particle, and positive electrode and secondary battery using those
JP5818086B2 (en) Secondary battery and manufacturing method thereof
JP2013089393A (en) Active material for secondary battery, and method for producing active material for secondary battery
JP2015056222A (en) Positive electrode active material for nonaqueous secondary batteries, method for manufacturing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries and nonaqueous secondary battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131230

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160418

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160513