JP4963675B2 - Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same - Google Patents

Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same Download PDF

Info

Publication number
JP4963675B2
JP4963675B2 JP2008043436A JP2008043436A JP4963675B2 JP 4963675 B2 JP4963675 B2 JP 4963675B2 JP 2008043436 A JP2008043436 A JP 2008043436A JP 2008043436 A JP2008043436 A JP 2008043436A JP 4963675 B2 JP4963675 B2 JP 4963675B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008043436A
Other languages
Japanese (ja)
Other versions
JP2009200013A (en
Inventor
英俊 阿部
智統 鈴木
聖志 金村
薫 獨古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Tokyo Metropolitan University
Original Assignee
Furukawa Battery Co Ltd
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Tokyo Metropolitan University filed Critical Furukawa Battery Co Ltd
Priority to JP2008043436A priority Critical patent/JP4963675B2/en
Publication of JP2009200013A publication Critical patent/JP2009200013A/en
Application granted granted Critical
Publication of JP4963675B2 publication Critical patent/JP4963675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、リチウム二次電池の正極活物質およびその製造方法、さらにその正極活物質を用いたリチウム二次電池に関する。   The present invention relates to a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the positive electrode active material.

最近のエレクトロニクス分野での急速な進展により電子機器の高性能化、小型化、ポータブル化が進んでいる。これらの電子機器に使用される再充電可能な高エネルギー密度二次電池の要求が強まっている。従来、これらの電子機器に搭載される二次電池としては、鉛蓄電池、ニカド電池、ニッケル−水素電池などがあるが、さらに高いエネルギー密度を有するものが要求され、最近では金属リチウムやリチウム合金、或いは電気化学的にリチウムイオンを吸蔵・放出できる炭素材料などを負極活物質として用いた負極と、リチウム含有複合酸化物やカルコゲン化合物などを正極活物質として用いた正極活物質とを組み合わせたリチウム二次電池が研究開発され一部で実用化されている。この種の電池は電池電圧が高く、また上記の従来の二次電池に比し重量および体積当たりのエネルギー密度が大きく、今後大きく期待されている二次電池とされている。   Due to recent rapid developments in the electronics field, electronic devices have become more sophisticated, smaller and more portable. There is an increasing demand for rechargeable high energy density secondary batteries used in these electronic devices. Conventionally, as secondary batteries mounted on these electronic devices, there are lead storage batteries, nickel-cadmium batteries, nickel-hydrogen batteries, etc., but those having higher energy density are required, and recently, lithium metal, lithium alloys, Alternatively, a lithium secondary battery combining a negative electrode using a carbon material that can electrochemically occlude and release lithium ions as a negative electrode active material and a positive electrode active material using a lithium-containing composite oxide or a chalcogen compound as a positive electrode active material. Secondary batteries have been researched and developed and put into practical use in part. This type of battery has a high battery voltage and a higher energy density per weight and volume than the above-described conventional secondary battery, and is regarded as a highly anticipated secondary battery in the future.

従来、この種の電池に用いられる正極活物質は、主にLiCoO,LiNiO,LiMnO,LiMnが用いられているが、これらに使用されるコバルトやニッケルは埋蔵量が少なくしかも限られた地域でしか産出されなかった。今後、より一層の需要増加が見込まれるリチウムイオン二次電池の正極活物質としては、価格の面からも原料の安定供給の面からも問題があった。また、安全性の面からもこれらの活物質では反応性が高いために問題となることがあり、さらにマンガン系の正極活物質は比較的安価な材料であるがサイクル特性の安定性に問題のあるものであった。 Conventionally, LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are mainly used as positive electrode active materials for this type of battery, but cobalt and nickel used in these materials have a small reserve amount. It was produced only in a limited area. In the future, the positive electrode active material for lithium ion secondary batteries, for which demand is expected to increase further, has had problems in terms of both price and stable supply of raw materials. From the standpoint of safety, these active materials may be problematic due to their high reactivity, and manganese-based positive electrode active materials are relatively inexpensive materials, but the stability of cycle characteristics is problematic. There was something.

こうしたことで産出量が多くて安価な鉄を原料にしたリン酸鉄リチウム或いはリン酸鉄リチウムの鉄の一部を他の元素で置換した材料をリチウム二次電池の正極活物質として使用することが提案されている。   As a result, lithium iron phosphate made from high-cost, inexpensive iron as a raw material or a material obtained by substituting part of iron in lithium iron phosphate with other elements should be used as the positive electrode active material for lithium secondary batteries. Has been proposed.

例えば、組成式,AyMPO[Aはアルカリ金属,Mは遷移金属,0<y<2,但し、MがFeのみを単独で含む相,AyFePO(0<y<2)は除く]で表されるリン酸化合物を正極活物質として用いることが提案されている。(例えば、特許文献1。)。 For example, represented by the composition formula, AyMPO 4 [A is an alkali metal, M is a transition metal, 0 <y <2, where M is a phase containing only Fe, and AyFePO 4 (0 <y <2) is excluded) It has been proposed to use a phosphoric acid compound as a positive electrode active material. (For example, Patent Document 1).

特開平9−134724号(請求項1) また、十分な充放電容量が得られるようにするために、一般式Li2Fe1−yXyPO4(0≦y≦0.3,0≦z≦1,X:マグネシウム,コバルト,ニッケル,亜鉛の少なくとも1種)で与えられるオリビン構造のリン酸鉄リチウム系材料粉末上に、導電性でなおかつ酸化還元電位がリン酸鉄リチウム系材料のリチウム二次電池正極活物質としての電位よりも貴な導電性微粒子を担持させたリチウム二次電池正極活物質が公知である。(例えば、特許文献2。)。JP-A-9-134724 (Claim 1) In order to obtain a sufficient charge / discharge capacity, the general formula Li2Fe1-yXyPO4 (0≤y≤0.3, 0≤z≤1, X: magnesium) As a lithium secondary battery positive electrode active material of a lithium iron phosphate material that is electrically conductive and has a redox potential on the olivine-structured lithium iron phosphate material powder given by, cobalt, nickel, zinc) A positive electrode active material for a lithium secondary battery in which conductive fine particles having a potential no lower than the potential is supported is known. (For example, patent document 2).

特開2001−110414号(請求項1) さらに、Li源と,Fe(III)源と,P源と,C源と,O源を含有する溶液,分散液または懸濁液を、高温雰囲気中に噴霧して前駆体とし、これを還元性雰囲気または不活性雰囲気中で熱処理する電極材料の製造方法が公知である。(例えば、特許文献3。)。JP, 2001-110414 (Claim 1) Further, a solution, dispersion or suspension containing a Li source, an Fe (III) source, a P source, a C source, and an O source in a high temperature atmosphere. There is a known method for producing an electrode material which is sprayed to form a precursor and heat-treated in a reducing atmosphere or an inert atmosphere. (For example, patent document 3).

特開2005−116392号(請求項1) さらに、リン酸第一鉄含水塩(Fe3(PO4)2・8H2O)とリン酸リチウム(Li3PO4)および炭素質物質前駆体から得られるLiFePO4の粒子表面を炭素質物質で被覆してなるリチウム鉄リン系複合酸化物炭素複合体で、炭素複合体は平均粒径が0.5μm以下の物質としたリチウム鉄リン系複合酸化物のリチウム二次電池の正極活物質が公知である。JP-A-2005-116392 (Claim 1) Further, the particle surface of LiFePO4 obtained from a ferrous phosphate hydrate (Fe3 (PO4) 2.8H2O), lithium phosphate (Li3PO4) and a carbonaceous material precursor is used. Lithium iron phosphorus composite oxide carbon composite coated with a carbonaceous material, wherein the carbon composite has a mean particle size of 0.5 μm or less and is a lithium iron phosphorus composite oxide positive electrode for a lithium secondary battery Active materials are known.

特開2003−292309号(請求項1)JP2003-292309 (Claim 1)

しかしながら、先行技術1のオリビン構造のリン酸Mリチウム系材料(Mは遷移元素、以下同じ)は、電池充放電時のリチウムの挿入脱離反応が遅く、しかも従来使用されてきたLiCoOなどのリチウム金属酸化物に比較して電気抵抗が非常に大きいため、充放電を行った場合に抵抗分極が増大し十分な放電容量が得られず、またレート特性が悪いといった問題があった。特に、大電流の充放電を行う場合はこれらの問題は顕著なものであった。 However, the lithium phosphate M-based material having the olivine structure of prior art 1 (M is a transition element, the same applies hereinafter) has a slow lithium insertion / release reaction during battery charging / discharging, and LiCoO 2 that has been conventionally used. Since the electric resistance is much larger than that of lithium metal oxide, there is a problem that when charging / discharging, resistance polarization increases, a sufficient discharge capacity cannot be obtained, and the rate characteristic is poor. In particular, when charging and discharging a large current, these problems are remarkable.

こうした問題を解決する方法として、オリビン型リン酸Mリチウム系材料の粒子を微細化して反応面積を増やし、リチウムイオンの拡散を容易にして電気がリン酸Mリチウム系材料粒子の内部を流れる距離を短くすることが考えられている。しかし、オリビン型リン酸Mリチウム系材料の微粒子は電極作製時にカーボンブラックなどの導電材と混合する際に二次凝集を起こし易く、この凝集粒子内部ではリン酸鉄リチウム系材料同士および導電剤が点接触しているために十分な集電効果が得られずに電気抵抗が非常に大きくなるものであった。このために、凝集粒子中央部の活物質は電池の充放電を行っても電子伝導が起こらず充放電容量が低下するものであった。   As a method for solving these problems, the olivine type M lithium phosphate material particles are made finer to increase the reaction area, facilitate the diffusion of lithium ions, and the distance that electricity flows inside the M lithium phosphate material particles. It is considered to shorten. However, the fine particles of the olivine-type M lithium phosphate material are likely to cause secondary aggregation when mixed with a conductive material such as carbon black at the time of electrode preparation. Due to the point contact, a sufficient current collecting effect could not be obtained and the electrical resistance was very large. For this reason, the active material in the central part of the aggregated particles does not cause electron conduction even when the battery is charged / discharged, and the charge / discharge capacity decreases.

こうした問題を解決するために、先行技術2の特開2001−110414では、リン酸鉄リチウム系材料の微粒子上に導電性で酸化還元電位よりも貴な銀,炭素,白金,パラジウムなどの微粒子を担持することを提案しているが、金属粒子の担持であるために還元剤の使用が必要であり、さらにボールミリングまたはビーズミリングが必要になり工程が煩雑になるといった問題があった。さらに、金属であるために化学的な変化も受けやすく安定性にも問題があり、また粒子同士の接続であるために上記の集電性の問題も十分に解決することはできなかった。   In order to solve such a problem, in Japanese Patent Application Laid-Open No. 2001-110414 of Prior Art 2, fine particles of silver, carbon, platinum, palladium, etc. that are conductive and nobler than the redox potential are formed on the fine particles of the lithium iron phosphate material. Although it has been proposed to support the metal particles, there is a problem that the use of a reducing agent is necessary because of the metal particle support, and further, ball milling or bead milling is necessary, and the process becomes complicated. Furthermore, since it is a metal, it is susceptible to chemical changes and has a problem in stability, and since the particles are connected to each other, the above-described problem of current collection cannot be sufficiently solved.

また、先行技術3のカーボン源としてカーボンブラックまたは有機化合物などの懸濁液をリン酸鉄リチウム系材料の合成時に投入して、これをLiFePOの粒子表面に均一に分散する方法は分散効果が十分でなく十分な集電効果をあげることは出来なかった。 In addition, the method of introducing a suspension of carbon black or an organic compound as a carbon source of the prior art 3 at the time of synthesizing the lithium iron phosphate material and uniformly dispersing the suspension on the surface of the LiFePO 4 particles has a dispersion effect. Insufficient current collection effect could not be achieved.

さらに、先行技術4の粒子表面を炭素質物質で被覆してなるリチウム鉄リン系複合酸化物炭素複合体では、電池活物質として高度な粒度制御が必要になるので制御が困難であるといった問題があった。   Furthermore, the lithium iron phosphorus-based composite oxide carbon composite obtained by coating the particle surface of the prior art 4 with a carbonaceous material has a problem that it is difficult to control because it requires advanced particle size control as a battery active material. there were.

オリビン型リン酸Mリチウム系材料の粒子表面はバルクと比較して結晶性が低いために活性なアモルフアス状となっていると考えられる。このために空気中での放置により容易に二価の金属が酸化され、一層抵抗の大きなMなどの酸化物や三価のリン酸Mに変化する。これによって初充電には大きな分極を発生するので放置条件が厳しいと活性化が煩雑になることや抵抗成分が残留するといった問題があった。さらに三価のMは電池中で電解液に溶出しやすく電池運用中に電気泳動して負極表面へ移動して固体電解質皮膜(SEI)を破壊して電池の寿命性能を悪化させる原因となっていた。 The surface of the particles of the olivine-type lithium M phosphate material is considered to be in an active amorphous form because it has lower crystallinity than the bulk. For this reason, a divalent metal is easily oxidized by being left in the air, and is converted into an oxide such as M 2 O 3 or trivalent phosphoric acid M having higher resistance. As a result, a large polarization is generated in the initial charge, so that there are problems that activation is complicated and resistance components remain if the leaving conditions are severe. Furthermore, trivalent M easily elutes into the electrolyte solution in the battery, and migrates to the negative electrode surface by electrophoresis during battery operation, causing the solid electrolyte film (SEI) to break down and deteriorating the battery life performance. It was.

従って、この発明は安価なリン酸鉄リチウム系材料を用い、大電流での放電特性と高温特性の改善および放置中の容量低下を抑制したリチウム二次電池の正極活物質を得ようとするものである。   Accordingly, the present invention is intended to obtain a positive electrode active material for a lithium secondary battery using an inexpensive lithium iron phosphate material, improving discharge characteristics at high current and high temperature characteristics, and suppressing capacity decrease during standing. It is.

この発明は、常法で得られたオリビン型リン酸Mリチウム(Mは遷移金属、以下同じ。)または炭素と複合したオリビン型Mリチウムを、還元性を有する酸または酸に還元剤を添加した水溶液で洗浄することを特徴とするリチウム二次電池正極活物質の製造方法(請求項1)、常法で得られたオリビン型リン酸Mリチウムまたは炭素と複合したオリビン型Mリチウムを、還元性を有する酸または酸に還元剤を添加した水溶液で洗浄したリチウム二次電池正極活物質(請求項2)、前記オリビン型リン酸Mリチウムの遷移金属が、鉄、コバルト、マンガン、または一部が他の元素で置換されたこれらの化合物或いはこれらの混合物である請求項1記載のリチウム二次電池正極活物質の製造方法(請求項3)、前記オリビン型リン酸Mリチウムの遷移金属が、鉄、コバルト、マンガン、または一部が他の元素で置換されたこれらの化合物或いはこれらの混合物である請求項1記載のリチウム二次電池正極活物質(請求項4)、請求項1または4に記載の正極活物質を用いたリチウム二次電池(請求項5)および請求項1または4に記載の正極活物質を乾燥させることなく、これに導電材、結着剤、増粘剤を加えさらに分散剤を添加し混練したペーストを集電体に塗布し、その後分散剤を乾燥除去して得たリチウム二次電池(請求項6)である。   In the present invention, an olivine-type M lithium phosphate (M is a transition metal, the same shall apply hereinafter) obtained by a conventional method or an olivine-type M lithium compounded with carbon is added to a reducing acid or acid. A method for producing a positive electrode active material for a lithium secondary battery characterized by washing with an aqueous solution (Claim 1), an olivine-type M lithium obtained by a conventional method or an olivine-type M lithium compounded with carbon being reduced. A lithium secondary battery positive electrode active material washed with an acid having acid or an aqueous solution obtained by adding a reducing agent to the acid (Claim 2), and the transition metal of the olivine-type M lithium phosphate is iron, cobalt, manganese, or a part thereof The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the compound is a compound or a mixture thereof substituted with another element (Claim 3), The lithium secondary battery positive electrode active material according to claim 1, wherein the transfer metal is iron, cobalt, manganese, or a compound thereof partially substituted with other elements or a mixture thereof. A lithium secondary battery using the positive electrode active material according to 1 or 4 (Claim 5) and the positive electrode active material according to Claim 1 or 4 are dried without being dried. A lithium secondary battery obtained by applying a kneaded paste with a dispersant added to the current collector and applying the paste to a current collector, followed by drying and removing the dispersant (Claim 6).

この発明によれば、オリビン型リン酸Mリチウム(Mは二価の金属)粒子を、還元性
を有する酸または酸に還元剤を添加した水溶液で洗浄し、リン酸Mリチウム粒子表面に高抵抗な不純物として存在するリン酸鉄またはリン酸リチウムを除去して、活物質間および活物質と導電剤間の電気抵抗を低減させるようにしたので集電効果が向上し、高率放電が良好なオリビン型リン酸Mリチウム系正極活物質を用いたリチウム二次電池とすることができる。また、この発明によれば表面不純物を予め酸で溶解させるために、電池内での鉄の溶出が抑制され、高温下での運用や放置中の容量低下を抑制することが可能である。
According to the present invention, olivine-type M lithium phosphate (M is a divalent metal) particles are washed with a reducing acid or an aqueous solution in which a reducing agent is added to the acid, and the surface of the lithium M phosphate particles has high resistance. Iron phosphate or lithium phosphate, which is a rare impurity, is removed to reduce the electrical resistance between the active materials and between the active material and the conductive agent, improving the current collection effect and improving the high rate discharge It can be set as the lithium secondary battery using the olivine type | mold M lithium phosphate positive electrode active material. Further, according to the present invention, since surface impurities are dissolved in advance with an acid, the elution of iron in the battery is suppressed, and it is possible to suppress a decrease in capacity during operation at high temperature or during standing.

常法により、オリビン型リン酸Mリチウムまたは炭素と複合したオリビン型Mリチウムを作製する。オリビン型リン酸Mリチウムとして、例えばリン酸鉄リチウムの水熱法による合成法の一例を説明すると次の如くである。リン酸リチウム4.63g,二価の鉄酸化物としての二価の塩化鉄4水和物7.95gを耐圧容器中に蒸留水200mlとともに入れ、これをアルゴンガスで置換したのちに密閉した。この耐圧容器を180℃のオイルバスに入れて48時間反応させた。その後これを室温まで放冷したのち耐圧容器から内容物を取り出して水洗し、これを100℃で乾燥させて粉末試料6.47gを得た。得られた粉末をX線回折で調べたところリン酸鉄リチウムであった。また、走査型顕微鏡(SEM)観察から、それは20nmから200nmの粒径を有していることが確認された。
また、炭素と複合したオリビン型Mリチウムを作成する方法では、硝酸リチウム2.07g、硝酸第一鉄9水和物10.26gの水溶液に中性になるまでアンモニア水を入れ、リン酸第一鉄とリン酸リチウムの混合沈殿物をろ過して収集する。これにショ糖2.25gを加え、この前駆体をアルゴンガス中、350℃で10時間の予備焼成した後に600℃16時間の本焼成を行い炭素と複合したリン酸鉄リチウムを得る。
By an ordinary method, olivine-type M lithium compounded with olivine-type M lithium phosphate or carbon is produced. As an example of the olivine-type M lithium phosphate, for example, a method for synthesizing lithium iron phosphate by a hydrothermal method will be described as follows. 4.63 g of lithium phosphate and 7.95 g of divalent iron chloride tetrahydrate as a divalent iron oxide were placed in a pressure vessel together with 200 ml of distilled water, and this was sealed with argon gas. This pressure vessel was placed in a 180 ° C. oil bath and allowed to react for 48 hours. Then, after cooling to room temperature, the contents were taken out from the pressure vessel and washed with water, and dried at 100 ° C. to obtain 6.47 g of a powder sample. When the obtained powder was examined by X-ray diffraction, it was lithium iron phosphate. Moreover, it was confirmed by scanning microscope (SEM) observation that it has a particle size of 20 nm to 200 nm.
Further, in the method of preparing olivine-type M lithium combined with carbon, ammonia water is added to an aqueous solution of 2.07 g of lithium nitrate and 10.26 g of ferrous nitrate nonahydrate until neutral, The mixed precipitate of iron and lithium phosphate is collected by filtration. To this, 2.25 g of sucrose is added, and this precursor is pre-baked in argon gas at 350 ° C. for 10 hours, followed by main baking at 600 ° C. for 16 hours to obtain lithium iron phosphate complexed with carbon.

こうして得られたオリビン型リン酸Mリチウムまたは炭素と複合化したリン酸鉄リチウム粉末を、還元性を有する酸または酸に還元剤を添加した水溶液で洗浄する。還元性を有する酸としては、アスコルビン酸、亜二チオン酸、シュウ酸、ギ酸などが使用できる。酸と還元剤の組み合わせでは、酸として酢酸、クエン酸、乳酸などの有機弱酸、還元剤としてはホルムアルデヒド、アセトアルデヒドなどのアルデヒド類、ヒドラジン、ハイドロキノンなどが使用できる。処理液の濃度はおおむね0.01〜0.1Nが好ましい。処理温度は室温付近でよい。この処理液で処理することにより、リン酸鉄リチウム粒子表面に存在する高抵抗の三価の鉄は二価に還元され、不純物のリン酸リチウムやリン酸鉄は酸性溶液に溶出するので除去される。これにより高抵抗層の除去による集電効率の向上と、予め酸溶出分を除去することにより高温環境における電池中の鉄溶出を抑制することができる。   The thus obtained olivine-type lithium phosphate M or lithium iron phosphate powder complexed with carbon is washed with a reducing acid or an aqueous solution obtained by adding a reducing agent to the acid. As the acid having reducibility, ascorbic acid, dithionite, oxalic acid, formic acid and the like can be used. In the combination of an acid and a reducing agent, weak organic acids such as acetic acid, citric acid and lactic acid can be used as the acid, and aldehydes such as formaldehyde and acetaldehyde, hydrazine and hydroquinone can be used as the reducing agent. The concentration of the treatment liquid is preferably about 0.01 to 0.1N. The treatment temperature may be around room temperature. By treating with this treatment solution, high-resistance trivalent iron present on the surface of lithium iron phosphate particles is reduced to divalent, and impurities such as lithium phosphate and iron phosphate are removed by elution into the acidic solution. The As a result, it is possible to improve the current collection efficiency by removing the high resistance layer and to suppress the elution of iron in the battery in a high temperature environment by removing the acid elution in advance.

水熱合成法により正極材料を微粒子化させ乾燥して該活物質粉末を得る過程では静電凝集を引き起こし、その凝集粒子は高速ディスパーミキサーなどを用いても十分に分散することは難しい。その結果、この凝集粒子が核となってペースト中にダマを作る原因となる。そこでこの発明では、オリビン型リン酸Mリチウムを乾燥させることなく導電剤、結着剤、増粘剤を加え、さらに分散剤を加えて混練したペーストを集電体に塗布する。これによって静電凝集によるペースト中のダマを抑制することが可能である。   In the process of making the positive electrode material fine particles by the hydrothermal synthesis method and drying to obtain the active material powder, electrostatic aggregation is caused, and it is difficult to sufficiently disperse the aggregated particles even using a high-speed disper mixer. As a result, the aggregated particles become nuclei and cause lumps in the paste. Therefore, in the present invention, a conductive agent, a binder and a thickener are added without drying the olivine-type lithium M phosphate, and a paste kneaded with a dispersant is applied to the current collector. As a result, it is possible to suppress lumps in the paste due to electrostatic aggregation.

(実施例1)
(水熱合成法)
リン酸鉄リチウムを水熱合成法で合成した。リン酸リチウム46.3gと2価の鉄化合物として2価の塩化鉄4水和物79.5gを蒸留水200mlとともに耐圧容器に入れ、この中をアルゴンガスで置換したのち密閉した。この耐圧容器を180℃のオイルバス中で48時間反応させた。その後、この耐圧容器を室温まで自然放冷してから内容物を取り出し、これを100℃で乾燥させて粉末試料64.7gを得た。ここに得られた粉末の若干量を採取しX線回折したところこれがリン酸鉄リチウムであることが確認された。さらに、走査型電子顕微鏡(SEM)で観察したところこれは20〜200nmの粒径を有していることが確認された。
Example 1
(Hydrothermal synthesis method)
Lithium iron phosphate was synthesized by hydrothermal synthesis. 46.3 g of lithium phosphate and 79.5 g of divalent iron chloride tetrahydrate as a divalent iron compound were placed in a pressure vessel together with 200 ml of distilled water, and the inside was replaced with argon gas and then sealed. The pressure vessel was reacted in an oil bath at 180 ° C. for 48 hours. Thereafter, the pressure vessel was naturally allowed to cool to room temperature, the contents were taken out, and dried at 100 ° C. to obtain 64.7 g of a powder sample. A small amount of the powder obtained here was collected and X-ray diffractometrically confirmed to be lithium iron phosphate. Furthermore, when observed with a scanning electron microscope (SEM), it was confirmed that it had a particle size of 20-200 nm.

別に、還元性を有する酸として0.1Nのアスコルビン酸水溶液を20ml調整し、これをステンレス容器に入れこれに前記で得られたリン酸鉄リチウム6.47gを投入し、これを室温で30分間撹拌したのちに濾過し、さらに十分に水洗して60℃の真空乾燥を2時間行なった。   Separately, 20 ml of a 0.1N ascorbic acid aqueous solution as a reducing acid was prepared, put into a stainless steel container, and charged with 6.47 g of the lithium iron phosphate obtained above, and this was added at room temperature for 30 minutes. After stirring, the mixture was filtered, further thoroughly washed with water, and vacuum dried at 60 ° C. for 2 hours.

次に、上記のアスコルビン酸処理をしたリン酸鉄リチウムに導電剤としてアセチレンブラックを全炭素量として10%になるよう混合した。この混合粉末と結着剤であるポリフッ化ビニリデン(PVF)を重量比で95:5の割合で混合し、さらにN−メチル−2−ピロリドン(NMP)を加えて、ビーズ径1mmのビーズミルで十分混合し正極スラリーを得た。次いで、この正極スラリーを厚さ20μmのアルミニウム箔集電体に塗布し120℃で30分間乾燥した。その後、これをロールプレスで圧延加工し2cmの円盤状に打ち抜いて正極とした。 Next, acetylene black as a conductive agent was mixed with lithium iron phosphate subjected to the ascorbic acid treatment so as to have a total carbon amount of 10%. This mixed powder and polyvinylidene fluoride (PVF) as a binder are mixed at a weight ratio of 95: 5, N-methyl-2-pyrrolidone (NMP) is added, and a bead mill with a bead diameter of 1 mm is sufficient. A positive electrode slurry was obtained by mixing. Next, this positive electrode slurry was applied to an aluminum foil current collector having a thickness of 20 μm and dried at 120 ° C. for 30 minutes. Then, this was rolled with a roll press and punched into a 2 cm 2 disk shape to obtain a positive electrode.

負極の作製は、負極材料である人造黒鉛(平均粒径5μm,d002=0.337nm,Lc=58nm)およびポリフッ化ビニリデンを重量比95:5の割合で混合し、これにN−メチル−2−ピロリドンを加えて十分混練して負極ペーストとした。次いで、この負極ペーストを厚さ20μmの銅箔集電体に塗布し25℃の常温で自然乾燥し、さらに減圧下130℃で12時間乾燥した。その後、これをロールプレスで圧延加工し2cmの円盤状に打ち抜いて負極とした。 The negative electrode was prepared by mixing artificial graphite (average particle size 5 μm, d 002 = 0.337 nm, Lc = 58 nm) and polyvinylidene fluoride in a weight ratio of 95: 5, and mixing it with N-methyl- 2-Pyrrolidone was added and sufficiently kneaded to obtain a negative electrode paste. Next, this negative electrode paste was applied to a copper foil current collector having a thickness of 20 μm, dried naturally at a room temperature of 25 ° C., and further dried at 130 ° C. under reduced pressure for 12 hours. Then, this was rolled with a roll press and punched into a 2 cm 2 disk shape to obtain a negative electrode.

電解液は、エチレンカーボネート及びジエチレンカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPFを1Mの濃度で溶解して作製した。LiPFを投入する前の電解液中の水分量は15ppm未満とした。 The electrolytic solution was prepared by dissolving LiPF 6 at a concentration of 1M in a mixed solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 1: 1. The amount of water in the electrolytic solution before introducing LiPF 6 was less than 15 ppm.

以上の電池用部材を用いてコイン型リチウム二次電池を作製した。なお、作製雰囲気は露点が−50℃以下とした。各極は集電体の付いた電槽缶に圧着して用いた。上記の正極、負極、電解質およびセパレータを用いて直径25mm,厚さ1.6mmのコイン型リチウム二次電池を作製した。   A coin-type lithium secondary battery was produced using the battery member described above. The production atmosphere was a dew point of −50 ° C. or lower. Each electrode was used by being crimped to a battery case with a current collector. A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced using the above positive electrode, negative electrode, electrolyte and separator.

(実施例2)
還元剤としてアセトアルデヒドを用い、酸として酢酸を用いて0.1Nの水溶液を20ml調整した以外は実施例1と同様にして直径25mm,厚さ1.6mmのコイン型リチウム二次電池を作製した。
(Example 2)
A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1 except that 20 ml of a 0.1N aqueous solution was prepared using acetaldehyde as the reducing agent and acetic acid as the acid.

(実施例3)
リン酸リチウム46.3gと2価の鉄化合物として2価の塩化鉄4水和物79.5gを蒸留水200mlとともに耐圧容器に入れ、この中をアルゴンガスで置換したのち密閉した。この耐圧容器を180℃のオイルバス中で48時間反応させた。その後、この耐圧容器を室温まで自然放冷してから内容物を取り出し、沈殿しているケーキ状態の反応生成物64.7gを得た。ここに得られた反応生成物を若干量を採取して70℃で2時間真空乾燥させてこれを粉末状とした。これをX線回折したところこれがリン酸鉄リチウムであることが確認された。さらに、走査型電子顕微鏡(SEM)で観察したところこれは20〜200nmの粒径を有していることが確認された。
(Example 3)
46.3 g of lithium phosphate and 79.5 g of divalent iron chloride tetrahydrate as a divalent iron compound were placed in a pressure vessel together with 200 ml of distilled water, and the inside was replaced with argon gas and then sealed. The pressure vessel was reacted in an oil bath at 180 ° C. for 48 hours. Thereafter, the pressure vessel was naturally allowed to cool to room temperature, and then the contents were taken out to obtain 64.7 g of a reaction product in a cake state. A small amount of the reaction product obtained here was collected and vacuum-dried at 70 ° C. for 2 hours to obtain a powder. This was confirmed by X-ray diffraction to be lithium iron phosphate. Furthermore, when observed with a scanning electron microscope (SEM), it was confirmed that it had a particle size of 20-200 nm.

別に、還元性を有する酸として0.1Nのアスコルビン酸水溶液を20ml調整してこれをステンレス容器に入れ、これに前記で得られたケーキ状のリン酸鉄リチウムを6.47g投入し、これを室温で30分間撹拌したのちに濾過し、さらに十分に水洗して60℃の真空乾燥を2時間行なった。その他は実施例1と同様にして直径25mm,厚さ1.6mmのコイン型リチウム2次電池を作製した。   Separately, 20 ml of 0.1N ascorbic acid aqueous solution as a reducing acid was prepared and placed in a stainless steel container, and 6.47 g of the cake-like lithium iron phosphate obtained above was added thereto, After stirring at room temperature for 30 minutes, the mixture was filtered, thoroughly washed with water, and vacuum-dried at 60 ° C. for 2 hours. Otherwise, a coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1.

(実施例4)
(固相合成法)
リン酸鉄リチウムを固相合成法で合成した。炭素と複合する方法は、硝酸リチウム20.7g、硝酸第一鉄9水和物102.6gの水溶液に中性になるまでアンモニア水を入れ、リン酸第一鉄とリン酸リチウムの混合沈殿物を濾過して収集後、これにショ糖22.5gを加えた。この前駆体をアルゴンガス中350℃で10時間の予備焼成を行って、その後600℃で16時間の本焼成を行ない炭素と複合したリン酸鉄リチウムを得た。この粉末はX線回折の結果リン酸鉄リチウムであることが確認され、走査型電子顕微鏡による観察で粒径は50から500nmであることが認められた。また、プラズマ発光分光分析装置(ICP)による元素分析の結果、粉末に含まれている炭素含有量は6.5%であった。
Example 4
(Solid-phase synthesis method)
Lithium iron phosphate was synthesized by solid phase synthesis. The method of combining with carbon is to put ammonia water into an aqueous solution of 20.7 g of lithium nitrate and 102.6 g of ferrous nitrate nonahydrate until mixed, and a mixed precipitate of ferrous phosphate and lithium phosphate After being collected by filtration, 22.5 g of sucrose was added thereto. This precursor was pre-baked in argon gas at 350 ° C. for 10 hours, and then subjected to main baking at 600 ° C. for 16 hours to obtain lithium iron phosphate combined with carbon. As a result of X-ray diffraction, this powder was confirmed to be lithium iron phosphate, and the particle size was found to be 50 to 500 nm by observation with a scanning electron microscope. As a result of elemental analysis using a plasma emission spectrometer (ICP), the carbon content contained in the powder was 6.5%.

別に、還元性を有する酸として0.1Nのアスコルビン酸水溶液を20ml調整してこれをステンレス容器に入れ、これに前記で得られたリン酸鉄リチウムを6.47g投入し、これを室温で30分間撹拌したのちに濾過し、さらに十分に水洗して60℃の真空乾燥を2時間行なった。その他は実施例1と同様にして直径25mm,厚さ1.6mmのコイン型リチウム二次電池を作製した。 Separately, 20 ml of a 0.1N ascorbic acid aqueous solution as a reducing acid was prepared and placed in a stainless steel container, and 6.47 g of the lithium iron phosphate obtained above was added thereto, and this was added at room temperature for 30 minutes. After stirring for 5 minutes, the mixture was filtered, washed thoroughly with water, and vacuum-dried at 60 ° C. for 2 hours. Otherwise, a coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1.

(比較例1)
還元剤による表面処理を行わなかった以外は実施例1と同様にして直径25mm、厚さ1.6mmのコイン型リチウム二次電池を作製した。
(Comparative Example 1)
A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced in the same manner as in Example 1 except that the surface treatment with a reducing agent was not performed.

(比較例2)
還元剤による表面処理を行わなかった以外は実施例4と同様にして直径25mm、厚さ1.6mmのコイン型リチウム二次電池を作製した。
(Comparative Example 2)
A coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced in the same manner as in Example 4 except that the surface treatment with a reducing agent was not performed.

リン酸鉄リチウムを正極に用いた電池は高温でのフロート充電または放電によって、電解液中に鉄が溶出し、これが負極に析出して固体電解質皮膜を破壊することにより容量低下が起こることが知られている。そこで電解液中への鉄の溶出を確認するため、コイン型リチウム電池に使用した電解液に種々に作製したリン酸鉄リチウムが5gになるように入れこれを80℃で10日間放置した。その後電解液中に溶出した鉄濃度を原子吸光分析法によって測定した。その結果を表1に示した。

Figure 0004963675
Batteries using lithium iron phosphate as the positive electrode are known to have a capacity reduction due to iron eluting into the electrolyte due to float charge or discharge at high temperature, which deposits on the negative electrode and destroys the solid electrolyte film. It has been. Therefore, in order to confirm the elution of iron into the electrolyte, 5 g of lithium iron phosphate prepared in various ways was put in the electrolyte used for the coin-type lithium battery, and this was left at 80 ° C. for 10 days. Thereafter, the iron concentration eluted in the electrolyte was measured by atomic absorption spectrometry. The results are shown in Table 1.
Figure 0004963675

表1に示すように、本発明1〜3による方法ではリン酸鉄リチウム粒子表面の三価の鉄量が少ないことおよび予め酸で溶ける成分を除去したことにより、比較例1〜2に比し鉄の溶出量を十分に抑制することが可能であることが分かる。また、水熱合成法と固相合成法を比較して固相合成法の方がFeの溶出量が少ないのは、炭素との複合化によって表面露出が抑えられたためと推定される。これらのことは、Feの溶出量が抑えられていることで高温でも長期安定な電池が得られることを示す。   As shown in Table 1, in the methods according to the present invention 1 to 3, the amount of trivalent iron on the surface of the lithium iron phosphate particles is small, and the components that are soluble in an acid are removed in advance, compared with Comparative Examples 1 and 2. It can be seen that the elution amount of iron can be sufficiently suppressed. In addition, the hydrothermal synthesis method and the solid phase synthesis method are compared, and the reason why the solid phase synthesis method has a smaller amount of Fe elution is presumed to be because the surface exposure was suppressed by the combination with carbon. These facts show that a battery that is stable for a long time even at high temperatures can be obtained by suppressing the amount of Fe elution.

(リチウム二次電池の電池試験)
本発明1ないし4、比較例1および2のコイン型リチウム二次電池について、サイクル試験を行った。このサイクル試験は、10サイクル目までを0.1Cの低率放電(充電条件:電流0.1C、電圧4.5Vの定電流定電圧充電、放電条件:電流0.1C、終止電圧2.0Vの定電流放電)、11サイクル目を5.0Cの高率放電(充電条件:電流0.1C、電圧4.5Vの定電流定電圧充電、放電条件:電流5.0C、終止電圧2.0Vの定電流放電)で行った。温度は全て雰囲気温度が25℃となるように恒温槽を用いて調整した。
(Battery test of lithium secondary battery)
A cycle test was performed on the coin-type lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 and 2. This cycle test is performed at a low rate of 0.1 C up to the 10th cycle (charging condition: constant current and constant voltage charging at a current of 0.1 C and a voltage of 4.5 V, discharging condition: current of 0.1 C and a final voltage of 2.0 V. Constant current discharge), eleventh cycle 5.0C high rate discharge (charge condition: current 0.1C, constant voltage constant voltage 4.5V, discharge condition: current 5.0C, end voltage 2.0V) Constant current discharge). All the temperatures were adjusted using a thermostatic bath so that the ambient temperature was 25 ° C.

表2に、10サイクル目の0.1Cの放電容量および11サイクル目の5.0C放電容量を示した。なお、それぞれの容量は充電したリン酸鉄リチウム1g当たりの容量とした。

Figure 0004963675
Table 2 shows the 0.1 C discharge capacity at the 10th cycle and the 5.0 C discharge capacity at the 11th cycle. In addition, each capacity | capacitance was made into the capacity | capacitance per 1g of charged lithium iron phosphate.
Figure 0004963675

表2に示すように、表面処理を行った本発明1〜3は、表面処理を行わなかった比較例1及び2に比較して良好な放電性能が得られた。特に、5CAの高率放電容量における差が顕著である事が分かる。これは本発明1〜4に示した表面処理を行うことにより、リン酸鉄リチウム粒子表面の高抵抗層が除去されて集電高率が向上したためと推測される。これに対して比較例1および2は、合成調整時に生成した表面の高抵抗層の残存により放電特性が劣ったものと推定される。   As shown in Table 2, the present inventions 1 to 3 subjected to the surface treatment had better discharge performance than Comparative Examples 1 and 2 where the surface treatment was not performed. In particular, it can be seen that the difference in the high rate discharge capacity of 5 CA is significant. This is presumably because the surface treatment shown in the first to fourth aspects of the present invention resulted in the removal of the high resistance layer on the surface of the lithium iron phosphate particles and the improvement of the current collection rate. In contrast, Comparative Examples 1 and 2 are presumed to have inferior discharge characteristics due to the remaining high resistance layer on the surface generated during synthesis adjustment.

Claims (6)

常法で得られたオリビン型リン酸Mリチウム(Mは遷移金属、以下同じ。)または炭素と複合したオリビン型Mリチウムを、還元性を有する酸または酸に還元剤を添加した水溶液で洗浄することを特徴とするリチウム二次電池正極活物質の製造方法。   The olivine-type M lithium phosphate (M is a transition metal, the same shall apply hereinafter) obtained by a conventional method or the olivine-type M lithium compounded with carbon is washed with a reducing acid or an aqueous solution obtained by adding a reducing agent to an acid. The manufacturing method of the positive electrode active material of a lithium secondary battery characterized by the above-mentioned. 常法で得られたオリビン型リン酸Mリチウムまたは炭素と複合したオリビン型Mリチウムを、還元性を有する酸または酸に還元剤を添加した水溶液で洗浄したリチウム二次電池正極活物質。   A positive electrode active material for a lithium secondary battery obtained by washing olivine-type M lithium combined with olivine-type M lithium phosphate or carbon obtained by a conventional method with a reducing acid or an aqueous solution in which a reducing agent is added to the acid. 前記オリビン型リン酸Mリチウムの遷移金属が、鉄、コバルト、マンガン、または一部が他の元素で置換されたこれらの化合物或いはこれらの混合物である請求項1記載のリチウム二次電池正極活物質の製造方法。   The lithium secondary battery positive electrode active material according to claim 1, wherein the transition metal of the olivine-type lithium M phosphate is iron, cobalt, manganese, or a compound thereof partially substituted with another element or a mixture thereof. Manufacturing method. 前記オリビン型リン酸Mリチウムの遷移金属が、鉄、コバルト、マンガン、または一部が他の元素で置換されたこれらの化合物或いはこれらの混合物である請求項2記載のリチウム二次電池正極活物質。 The lithium secondary battery positive electrode active material according to claim 2, wherein the transition metal of the olivine-type lithium phosphate M is iron, cobalt, manganese, or a compound thereof partially substituted with another element or a mixture thereof. . 請求項2または4に記載の正極活物質を用いたリチウム二次電池。 A lithium secondary battery using the positive electrode active material according to claim 2 . 請求項2または4に記載の正極活物質を乾燥させることなく、これに導電材、結着剤、増粘剤を加えさらに分散剤を添加し混練したペーストを集電体に塗布し、その後分散剤を乾燥除去して得たリチウム二次電池。 Without drying the positive electrode active material according to claim 2 or 4, a conductive material, a binder, a thickener, a dispersant, and a kneaded paste are applied to a current collector and then dispersed. Lithium secondary battery obtained by drying and removing the agent.
JP2008043436A 2008-02-25 2008-02-25 Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same Active JP4963675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043436A JP4963675B2 (en) 2008-02-25 2008-02-25 Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043436A JP4963675B2 (en) 2008-02-25 2008-02-25 Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009200013A JP2009200013A (en) 2009-09-03
JP4963675B2 true JP4963675B2 (en) 2012-06-27

Family

ID=41143285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043436A Active JP4963675B2 (en) 2008-02-25 2008-02-25 Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4963675B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552360B2 (en) * 2010-05-12 2014-07-16 トヨタ自動車株式会社 Method for producing composite positive electrode active material, method for producing all-solid battery, and composite positive electrode active material
CN102723464B (en) * 2011-03-30 2015-08-26 比亚迪股份有限公司 A kind for the treatment of fluid of LiFePO 4 material and processing method thereof
JP5838934B2 (en) 2012-08-30 2016-01-06 株式会社デンソー Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6382810B2 (en) 2013-07-05 2018-08-29 住友化学株式会社 Method for producing positive electrode active material for lithium ion secondary battery
JP5820521B1 (en) * 2014-09-29 2015-11-24 太平洋セメント株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP5835446B1 (en) * 2014-10-28 2015-12-24 住友大阪セメント株式会社 Positive electrode material, method for producing positive electrode material, positive electrode and lithium ion battery
US10230107B2 (en) * 2015-12-31 2019-03-12 Ecopro Bm Co., Ltd. Method of manufacturing cathode active material and cathode active material manufactured by the same
CN114702018A (en) * 2022-03-25 2022-07-05 四川大学 Method for preparing nano lithium iron phosphate by low-temperature hydrothermal method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190912B2 (en) * 2003-02-24 2008-12-03 住友大阪セメント株式会社 Positive electrode active material for lithium ion battery and lithium ion battery having the same
JP4737607B2 (en) * 2005-07-22 2011-08-03 テイカ株式会社 Method for producing carbon-olivine type lithium iron phosphate composite particles, and positive electrode material for lithium ion battery
JP2009032656A (en) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd Method of manufacturing active material for lithium secondary battery, method of manufacturing electrode for lithium secondary battery, method of manufacturing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery

Also Published As

Publication number Publication date
JP2009200013A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5651937B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5127179B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6216965B2 (en) Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP4963675B2 (en) Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same
JP5314264B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
EP2936592B1 (en) Lmfp cathode materials with improved electrochemical performance
JP5165515B2 (en) Lithium ion secondary battery
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP4264513B2 (en) Composite powder for electrode and method for producing the same
JP2012513097A (en) Method for producing fluorinated lithium vanadium polyanion powder for battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP5381115B2 (en) Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
Garhi et al. Coprecipitation synthesis of Co-doped LiMn1. 5Ni0. 5O4 material as 5 V cathode of Li-ion batteries with huge rate capability for high power applications
JP6374348B2 (en) Lithium phosphorus-based vanadium composite oxide carbon composite, method for producing the same, lithium ion secondary battery, and electrochemical device
WO2009144873A1 (en) Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery
JP6139573B2 (en) Method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery including the same
EP3415467B1 (en) Method for manufacturing vanadium lithium phosphate
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
EP4269359A1 (en) Spinel-type lithium manganese, method for producing same, and use of same
Sharma et al. Li-storage and cycling properties of spinel, CdFe 2 O 4, as an anode for lithium ion batteries
JP2012056827A (en) Iron oxide particle
WO2023126955A1 (en) Closed loop process for near zero-energy regeneration of electrodes by recycling spent rechargeable lithium batteries
CN118213533A (en) Modified electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4963675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250