JP6090085B2 - Positive electrode active material, method for producing positive electrode active material, and lithium battery - Google Patents

Positive electrode active material, method for producing positive electrode active material, and lithium battery Download PDF

Info

Publication number
JP6090085B2
JP6090085B2 JP2013201358A JP2013201358A JP6090085B2 JP 6090085 B2 JP6090085 B2 JP 6090085B2 JP 2013201358 A JP2013201358 A JP 2013201358A JP 2013201358 A JP2013201358 A JP 2013201358A JP 6090085 B2 JP6090085 B2 JP 6090085B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
composite oxide
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013201358A
Other languages
Japanese (ja)
Other versions
JP2015069754A (en
Inventor
秀教 三木
秀教 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013201358A priority Critical patent/JP6090085B2/en
Publication of JP2015069754A publication Critical patent/JP2015069754A/en
Application granted granted Critical
Publication of JP6090085B2 publication Critical patent/JP6090085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電池の放電容量を増大させることが可能な正極活物質に関する。   The present invention relates to a positive electrode active material capable of increasing the discharge capacity of a battery.

リチウム電池の正極活物質の一種にLiMXO(MはNi、Co、Mn等、XはP、Si、Ti等)で表されるポリアニオン系化合物があり、その性能を向上させるべく様々な研究がなされている。例えば、特許文献1によれば、所定の平均一次粒子径を有するポリアニオン系化合物粒子を炭素粒子に担持させることで放電容量及びレート特性に優れた電気化学素子を形成可能、とされている。 One type of positive electrode active material for lithium batteries is a polyanionic compound represented by Li a MXO 4 (M is Ni, Co, Mn, etc., X is P, Si, Ti, etc.). Research has been done. For example, according to Patent Document 1, an electrochemical device having excellent discharge capacity and rate characteristics can be formed by supporting polyanionic compound particles having a predetermined average primary particle size on carbon particles.

また、特許文献2、3によれば、活物質の性能を向上させるには、活物質に合金を担持させる、或いは、合金相を備えさせることも有効とされている。   According to Patent Documents 2 and 3, in order to improve the performance of the active material, it is effective to carry an alloy on the active material or to provide an alloy phase.

特開2010−86772号公報JP 2010-86772 A 特許第3578992号Japanese Patent No. 3578992 特開2006−185716号公報JP 2006-185716 A

しかしながら、本発明者が鋭意研究を進めたところ、上記したポリアニオン系化合物のうちTiO系化合物を電池の正極活物質として用いた場合、十分な放電容量が得られない場合があることを知見した。 However, as a result of diligent research conducted by the present inventor, it has been found that when a TiO 4 compound is used as a positive electrode active material of a battery among the polyanion compounds described above, a sufficient discharge capacity may not be obtained. .

そこで、本発明は電池の放電容量を増大させることが可能な正極活物質を提供することを課題とする。   Then, this invention makes it a subject to provide the positive electrode active material which can increase the discharge capacity of a battery.

本発明者は鋭意研究により以下の着想・知見に至った。
(1)従来のLiMTiO系複合酸化物は、構造上、リチウムイオンの拡散パスが存在するものの、十分にリチウムが脱離せず、正極活物質として理論容量の半分程度の実容量しか得られていない。これはリチウムイオンの拡散係数が低く、リチウムの拡散パスが十分でないためと考えられる。
(2)当該複合酸化物においてリチウムは2個分動くはずであるが、従来技術では1電子分しか反応していない。2電子反応に至るには、構造上、拡散パスを広く確保することが必要と考えられる。
(3)当該複合酸化物に金属粒子を担持させ、電子伝導性を向上させることにより、拡散パスを広く確保でき、容量を増大させることができる。
(4)一方で金属粒子は電池の充電中に高電位に曝されると電解液と反応して溶出する虞がある。金属粒子の溶出を抑制するには金属粒子を複合酸化物粒子内に内包させることが有効である。
(5)金属粒子を複合酸化物粒子内に内包させるには、複合酸化物の合成過程において金属粒子を生成させればよい。
The present inventor has made the following ideas and knowledge through earnest research.
(1) The conventional Li 2 MTiO 4 -based composite oxide has a lithium ion diffusion path due to its structure, but lithium is not sufficiently desorbed, and only a real capacity of about half the theoretical capacity is obtained as a positive electrode active material. It is not done. This is probably because the diffusion coefficient of lithium ions is low and the diffusion path of lithium is not sufficient.
(2) In the composite oxide, lithium should move by two, but in the conventional technique, only one electron is reacted. In order to reach a two-electron reaction, it is considered necessary to secure a wide diffusion path because of the structure.
(3) By supporting metal particles on the composite oxide and improving the electron conductivity, a wide diffusion path can be secured and the capacity can be increased.
(4) On the other hand, when the metal particles are exposed to a high potential during charging of the battery, they may react with the electrolyte and elute. In order to suppress elution of the metal particles, it is effective to enclose the metal particles in the composite oxide particles.
(5) In order to encapsulate the metal particles in the composite oxide particles, the metal particles may be generated in the composite oxide synthesis process.

本発明は上記着想・知見により完成されたものである。すなわち、
第1の本発明は、下記式(1)で表される空間群fm−3mに属する複合酸化物の粒子内に、Ni−Co合金を有することを特徴とする、正極活物質である。
LiNiCoMnTiO … (1)
The present invention has been completed based on the above ideas and findings. That is,
1st this invention is a positive electrode active material which has a Ni-Co alloy in the particle | grains of complex oxide which belongs to the space group fm-3m represented by following formula (1).
Li a Ni x Co y Mn z TiO b (1)

本発明において「下記式(1)で表される空間群fm−3mに属する複合酸化物」とは、Li、Co、Ni、Mn、Ti及びOからなる不規則岩塩構造を有する複合酸化物をいう。すなわち、このような構造を採ってさえいれば、式(1)中のa、b、x、y、zの値は特に限定されるものではない。例えばa=2、b=4、x=1/3、y=1/3、z=1/3の複合酸化物が挙げられるが、これに限定されるものではない。   In the present invention, “a composite oxide belonging to the space group fm-3m represented by the following formula (1)” is a composite oxide having an irregular rock salt structure composed of Li, Co, Ni, Mn, Ti, and O. Say. That is, as long as such a structure is adopted, the values of a, b, x, y, and z in the formula (1) are not particularly limited. For example, a composite oxide of a = 2, b = 4, x = 1/3, y = 1/3, and z = 1/3 can be mentioned, but is not limited thereto.

「複合酸化物の粒子」とは、複合酸化物からなる粒子であることが好ましいが、厳密には不規則岩塩構造を構成しないLi、Mn、Ti、Oが一部確認されるような粒子であってもよい。すなわち、正極活物質についてXRD測定を行った場合に、不規則岩塩構造に由来する回折ピークと、後述のNi−Co合金に由来する回折ピークとが確認できればよい。   “Composite oxide particles” are preferably particles made of composite oxides, but strictly speaking, particles in which Li, Mn, Ti, and O that do not constitute an irregular rock salt structure are partially confirmed. There may be. That is, when XRD measurement is performed on the positive electrode active material, it is only necessary to confirm a diffraction peak derived from an irregular rock salt structure and a diffraction peak derived from a Ni—Co alloy described later.

「複合酸化物の粒子内に、Ni−Co合金を有する」とは、少なくとも粒子内に、Ni−Co合金が存在していることを意味する。すなわち、複合酸化物粒子表面に露出しているNi−Co合金が存在していてもよい趣旨である。   “Having a Ni—Co alloy in the composite oxide particles” means that the Ni—Co alloy is present at least in the particles. That is, the Ni—Co alloy exposed on the surface of the composite oxide particle may exist.

本発明において、「Ni−Co合金」の存在は、正極活物質についてXRD測定を行った場合における回折ピークの有無によって確認できる。また「複合酸化物の粒子内に、Ni−Co合金を有する」ことについては以下の方法により確認できる。すなわち、正極活物質を電解液電池の正極に適用したうえで、電池充電前後の当該正極のXRD回折ピークと、電池放電前後の当該正極のXRD回折ピークとを確認する。充放電前後のいずれにおいても、複合酸化物に由来するピークとともにNi−Co合金に由来するピークが確認できる場合、電池の充放電時においてNi−Co合金が電解液に溶出していない、すなわち、複合酸化物の粒子内にNi−Co合金を有する、と判断できる。   In the present invention, the presence of the “Ni—Co alloy” can be confirmed by the presence or absence of a diffraction peak when XRD measurement is performed on the positive electrode active material. Further, “having a Ni—Co alloy in the composite oxide particles” can be confirmed by the following method. That is, after applying the positive electrode active material to the positive electrode of the electrolyte battery, the XRD diffraction peak of the positive electrode before and after battery charging and the XRD diffraction peak of the positive electrode before and after battery discharge are confirmed. When the peak derived from the Ni-Co alloy can be confirmed together with the peak derived from the composite oxide before and after charging / discharging, the Ni-Co alloy is not eluted into the electrolyte during charging / discharging of the battery, that is, It can be judged that the composite oxide particles have a Ni-Co alloy.

第2の本発明は、第1の本発明に係る正極活物質を備えるリチウム電池である。   2nd this invention is a lithium battery provided with the positive electrode active material which concerns on 1st this invention.

本発明において「リチウム電池」は、正極中に本発明に係る正極活物質が用いられていればよく、その他の構成については特に限定されるものではない。   In the present invention, the “lithium battery” is not particularly limited as long as the positive electrode active material according to the present invention is used in the positive electrode.

第3の本発明は、下記式(1)で表される空間群fm−3mに属する複合酸化物に比してNi及びCoを過剰に含む混合物を還元剤の共存下で焼成することで、当該複合酸化物の粒子とNi−Co合金とを生成させるとともに、当該複合酸化物の粒子内にNi−Co合金を担持させることを特徴とする、正極活物質の製造方法である。
LiNiCoMnTiO … (1)
According to a third aspect of the present invention, a mixture containing Ni and Co in excess as compared with a composite oxide belonging to the space group fm-3m represented by the following formula (1) is fired in the presence of a reducing agent. A method for producing a positive electrode active material, wherein the composite oxide particles and the Ni—Co alloy are generated, and the Ni—Co alloy is supported in the composite oxide particles.
Li a Ni x Co y Mn z TiO b (1)

本発明において、「…複合酸化物に比してNi及びCoを過剰に含む混合物」とは、不規則岩塩構造を構成し得るLi、Ni、Co、Mn、Ti及びOの組成比と混合物における組成比とを比較して、混合物中にNi及びCoが過剰に含まれていることを意味する。このような混合物を「還元剤の共存下で焼成」することで、複合酸化物を合成しながらNi−Co合金を生成させることができ、少なくとも一部のNi−Co合金を複合酸化物粒子中に容易に内包させることができる。   In the present invention, “… a mixture containing Ni and Co in excess compared to the composite oxide” means the composition ratio of Li, Ni, Co, Mn, Ti and O that can form an irregular rock salt structure and the mixture. By comparing the composition ratio, it means that Ni and Co are excessively contained in the mixture. By firing such a mixture “in the presence of a reducing agent”, a Ni—Co alloy can be produced while synthesizing the composite oxide, and at least a part of the Ni—Co alloy is contained in the composite oxide particles. Can be easily included.

第3の本発明においては、還元剤として有機酸由来の有機物を用いることができる。「有機物」は還元剤として機能するものであればよく、分子中に炭素を含む化合物であればよい。例えば、溶液法によって複合酸化物を合成する場合は、原料混合時に添加される有機酸由来の残留物、或いは、原料として有機酸塩を用いた場合は当該有機酸塩由来の残留物をそのまま「有機物」として用いることができる。   In the third aspect of the present invention, an organic substance derived from an organic acid can be used as the reducing agent. The “organic substance” only needs to function as a reducing agent, and may be a compound containing carbon in the molecule. For example, when a composite oxide is synthesized by a solution method, a residue derived from an organic acid added at the time of mixing raw materials, or a residue derived from an organic acid salt when an organic acid salt is used as a raw material It can be used as “organic matter”.

本発明に係る正極活物質においては、所定の複合酸化物粒子中にNi−Co合金が含まれる。これにより、電子伝導性を向上させて拡散パスを広く確保できる一方で、電池反応時における合金の溶出を適切に抑制できる。すなわち本発明によれば、電池の放電容量を増大させることが可能な正極活物質を提供することができる。   In the positive electrode active material according to the present invention, the Ni—Co alloy is contained in the predetermined composite oxide particles. Thereby, the electron conductivity can be improved to ensure a wide diffusion path, while the elution of the alloy during the battery reaction can be appropriately suppressed. That is, according to the present invention, it is possible to provide a positive electrode active material capable of increasing the discharge capacity of a battery.

本発明に係る正極活物質を説明するための概略図である。It is the schematic for demonstrating the positive electrode active material which concerns on this invention. 実施例、比較例に係る試料それぞれについてのXRD測定結果を示す図である。It is a figure which shows the XRD measurement result about each sample which concerns on an Example and a comparative example. 実施例に係る試料のSEM観察結果であり、(A)は2次電子像、(B)は反射電子像である。It is a SEM observation result of the sample which concerns on an Example, (A) is a secondary electron image, (B) is a reflected electron image. 実施例に係る試料を正極活物質として用いた場合における電池の充放電試験結果を示す図である。It is a figure which shows the charging / discharging test result of a battery at the time of using the sample which concerns on an Example as a positive electrode active material. 比較例に係る試料を正極活物質として用いた場合における電池の充放電試験結果を示す図である。It is a figure which shows the charging / discharging test result of a battery in case the sample which concerns on a comparative example is used as a positive electrode active material. 実施例に係る試料について、充放電後のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result after charging / discharging about the sample which concerns on an Example.

1.正極活物質
本発明に係る正極活物質は、下記式(1)で表される空間群fm−3mに属する複合酸化物の粒子内に、Ni−Co合金を有することを特徴とする。
LiNiCoMnTiO … (1)
1. Cathode Active Material The cathode active material according to the present invention is characterized by having a Ni—Co alloy in the composite oxide particles belonging to the space group fm-3m represented by the following formula (1).
Li a Ni x Co y Mn z TiO b (1)

図1に一実施形態に係る本発明の正極活物質10を概略的に示す。図1に示すように、正極活物質10は複合酸化物粒子1の内にNi−Co合金2を有している。本発明では、少なくとも複合酸化物粒子1内にNi−Co合金2が存在していればよく、図1に示すように、複合酸化物粒子1の表面にNi−Co合金2の一部が露出していてもよい。   FIG. 1 schematically shows a positive electrode active material 10 according to an embodiment of the present invention. As shown in FIG. 1, the positive electrode active material 10 has a Ni—Co alloy 2 in a composite oxide particle 1. In the present invention, it is sufficient that at least the Ni—Co alloy 2 is present in the composite oxide particle 1, and as shown in FIG. 1, a part of the Ni—Co alloy 2 is exposed on the surface of the composite oxide particle 1. You may do it.

1.1.複合酸化物粒子1
複合酸化物粒子1は、上記式(1)で表される空間群fm−3mに属する複合酸化物の粒子である。当該複合酸化物は、Li、Co、Ni、Mn、Ti及びOからなる不規則岩塩構造を有するものであればよい。このような構造を採ってさえいれば、式(1)中のa、b、x、y、zの値は特に限定されるものではない。例えばa=2、b=4、x=1/3、y=1/3、z=1/3の複合酸化物が挙げられるが、これに限定されるものではない。通常、a=1.5〜2.5、b=3〜4、x=0〜1、y=0〜1、z=0〜1である。
1.1. Composite oxide particles 1
The composite oxide particle 1 is a composite oxide particle belonging to the space group fm-3m represented by the above formula (1). The complex oxide only needs to have an irregular rock salt structure composed of Li, Co, Ni, Mn, Ti, and O. As long as such a structure is adopted, the values of a, b, x, y, and z in the formula (1) are not particularly limited. For example, a composite oxide of a = 2, b = 4, x = 1/3, y = 1/3, and z = 1/3 can be mentioned, but is not limited thereto. Usually, a = 1.5 to 2.5, b = 3 to 4, x = 0 to 1, y = 0 to 1, and z = 0 to 1.

本発明において複合酸化物粒子1は、正極活物質10についてXRD測定を行った場合に、不規則岩塩構造に由来する回折ピークが確認できるものであればよく、不規則岩塩構造に由来する回折ピークのみが確認されるものが好ましい。   In the present invention, the composite oxide particle 1 may be any material as long as a diffraction peak derived from an irregular rock salt structure can be confirmed when XRD measurement is performed on the positive electrode active material 10, and a diffraction peak derived from an irregular rock salt structure. It is preferred that only be confirmed.

複合酸化物粒子1の大きさについては特に限定されるものではないが、その一次粒子径は好ましくは10nm以上1μm以下、より好ましくは10nm以上500nm以下である。複合酸化物粒子1の大きさは合成条件等によって調整することができる。   The size of the composite oxide particle 1 is not particularly limited, but the primary particle diameter is preferably 10 nm to 1 μm, more preferably 10 nm to 500 nm. The size of the composite oxide particle 1 can be adjusted according to synthesis conditions and the like.

1.2.Ni−Co合金2
正極活物質10は複合酸化物粒子1内にNi−Co合金2を有する。Ni−Co合金2は少なくとも粒子1内に存在していればよく、その大きさ・形態は限定されるものではない。例えば、後述する溶液法によって正極活物質を製造した場合、粒子状のNi−Co合金を析出させることができる。この場合の一次粒子径は好ましくは10nm以上300nm以下、より好ましくは10nm以上100nm以下である。尚、上述したように、Ni−Co合金2は、その一部が複合酸化物粒子1の表面に露出していても良い。
1.2. Ni-Co alloy 2
The positive electrode active material 10 has a Ni—Co alloy 2 in the composite oxide particle 1. The Ni—Co alloy 2 only needs to be present in at least the particles 1, and the size and form thereof are not limited. For example, when a positive electrode active material is produced by a solution method to be described later, a particulate Ni—Co alloy can be precipitated. In this case, the primary particle diameter is preferably 10 nm to 300 nm, more preferably 10 nm to 100 nm. As described above, a part of the Ni—Co alloy 2 may be exposed on the surface of the composite oxide particle 1.

正極活物質10におけるNi−Co合金の含有量は、本発明の効果が奏される限り、特に限定されるものではない。   The content of the Ni—Co alloy in the positive electrode active material 10 is not particularly limited as long as the effect of the present invention is exhibited.

以上の通り、正極活物質10においては、複合酸化物粒子1中にNi−Co合金2が含まれる。これにより、電子伝導性を向上させて拡散パスを広く確保できる一方で、電池反応時における合金2の溶出を適切に抑制でき、電池の放電容量を増大させることが可能である。   As described above, in the positive electrode active material 10, the Ni—Co alloy 2 is included in the composite oxide particles 1. Thereby, while it is possible to improve the electron conductivity and secure a wide diffusion path, it is possible to appropriately suppress the elution of the alloy 2 during the battery reaction, and to increase the discharge capacity of the battery.

2.リチウム電池
本発明はリチウム電池としての側面も有する。すなわち、上記した本発明に係る正極活物質を備えるリチウム電池である。リチウム電池の構成については、本発明に係る正極活物質が正極中に用いられてさえいれば、電解質や負極、集電体等のその他構成については特に限定されるものではない。その他構成については従来からリチウム電池に適用されてきた構成をそのまま採用することが可能である。尚、上述の通り、本発明に係る正極活物質は、電池充放電中のNi−Co合金の溶出を抑制可能とされているため、電解液(特に非水電解液)を用いたリチウム電池にも適用可能である。
2. Lithium battery This invention also has the side as a lithium battery. That is, it is a lithium battery provided with the above-described positive electrode active material according to the present invention. The configuration of the lithium battery is not particularly limited as long as the positive electrode active material according to the present invention is used in the positive electrode, and other configurations such as an electrolyte, a negative electrode, and a current collector are not limited. As for other configurations, it is possible to adopt the configurations conventionally applied to lithium batteries as they are. As described above, since the positive electrode active material according to the present invention can suppress the elution of the Ni—Co alloy during battery charging / discharging, the positive electrode active material is applied to a lithium battery using an electrolytic solution (particularly a nonaqueous electrolytic solution). Is also applicable.

3.正極活物質の製造方法
本発明に係る正極活物質は、例えば以下に説明するような特徴的な製造方法によって容易に製造することができる。すなわち、本発明に係る正極活物質の製造方法は、下記式(1)で表される空間群fm−3mに属する複合酸化物に比してNi及びCoを過剰に含む混合物を還元剤の共存下で焼成することで、複合酸化物の粒子とNi−Co合金とを生成させるとともに、複合酸化物の粒子内にNi−Co合金を担持させることを特徴とする。
LiNiCoMnTiO … (1)
3. Method for Producing Cathode Active Material The cathode active material according to the present invention can be easily produced by a characteristic production method as described below, for example. That is, in the method for producing a positive electrode active material according to the present invention, a mixture containing an excessive amount of Ni and Co as compared with a composite oxide belonging to the space group fm-3m represented by the following formula (1) is coexistent with a reducing agent. The composite oxide particles and the Ni—Co alloy are produced by firing at a lower temperature, and the Ni—Co alloy is supported in the composite oxide particles.
Li a Ni x Co y Mn z TiO b (1)

すなわち、本発明においては、上記複合酸化物に係る組成比よりもNi及びCoを過剰に含む混合物を用い、当該混合物のNi−Co源を還元しながら焼成することで、複合酸化物の合成・焼結過程でNi−Co合金を生成させる。このことで、複合酸化物粒子内にNi−Co合金が取り込まれた正極活物質を容易に製造可能である。   That is, in the present invention, by using a mixture containing Ni and Co in excess of the composition ratio of the composite oxide, and firing while reducing the Ni-Co source of the mixture, the composite oxide is synthesized and synthesized. A Ni—Co alloy is produced during the sintering process. This makes it possible to easily manufacture a positive electrode active material in which a Ni—Co alloy is taken into composite oxide particles.

混合物はLi源、Ni源、Co源、Mn源、Ti源を少なくとも含んでいればよい。還元剤はNi源及びCo源をNi−Co合金に転化させ得るものであればよく、各種有機物を用いることが可能である。以下、溶液法により正極活物質を製造する場合について説明する。   The mixture may contain at least a Li source, a Ni source, a Co source, a Mn source, and a Ti source. Any reducing agent may be used as long as it can convert a Ni source and a Co source into a Ni—Co alloy, and various organic substances can be used. Hereinafter, the case where a positive electrode active material is manufactured by a solution method will be described.

溶液法によって正極活物質を合成する場合は、溶液として例えば硝酸溶液を用いることができ、また、Li源、Ni源、Co源、Mn源として各種酢酸塩を用いることができ、Ti源として酸化チタンを用いることができる。混合物における組成比は、既に説明したように、最終的に得られる正極活物質において不規則岩塩構造の複合酸化物とNi−Co合金とが所定量含まれるよう、Ni源、Co源が過剰量となるように適宜調整すればよい。   When the positive electrode active material is synthesized by the solution method, for example, a nitric acid solution can be used as the solution, various acetates can be used as the Li source, Ni source, Co source, and Mn source, and oxidation can be performed as the Ti source. Titanium can be used. As already explained, the composition ratio in the mixture is such that the final amount of the positive electrode active material contains an excessive amount of Ni source and Co source so that a predetermined amount of a complex oxide having a random rock salt structure and a Ni—Co alloy are included. What is necessary is just to adjust suitably so that it may become.

ここで、溶液法によって正極活物質を合成する場合、溶液中に有機酸を添加することで、各種原料を容易に溶解させることができる。ただし、各種原料が溶解されることなく分散されていてもよい。有機酸は焼成工程における還元剤としても機能し得る。或いは、上記したように原料として各種酢酸塩を用いた場合、当該酢酸も焼成工程における還元剤として機能し得る。   Here, when a positive electrode active material is synthesized by a solution method, various raw materials can be easily dissolved by adding an organic acid to the solution. However, various raw materials may be dispersed without being dissolved. The organic acid can also function as a reducing agent in the firing step. Or when various acetates are used as a raw material as mentioned above, the said acetic acid can also function as a reducing agent in a baking process.

すなわち、溶液法において、各種原料を混合してなる混合分散溶液を攪拌・乾燥させてゲルを得た後で当該ゲルをか焼するにあたり、通常のか焼温度よりも低温で、或いは、通常のか焼時間よりも短時間でか焼することで意図的に有機物を残存させる。そして有機物が残存した粉体をそのまま焼成することによって、有機物を還元剤として機能させてNi−Co合金を生成させつつ、所望の複合酸化物を合成できる。   That is, in the solution method, after the gel is obtained by stirring and drying a mixed dispersion solution obtained by mixing various raw materials, the gel is calcined at a temperature lower than the normal calcination temperature or at normal calcination. The organic matter is intentionally left by calcination in a shorter time than the time. By firing the powder in which the organic matter remains as it is, a desired composite oxide can be synthesized while the organic matter functions as a reducing agent to produce a Ni—Co alloy.

か焼は水分を除去しつつ有機物を残存させ得るような条件であればよく、例えば空気雰囲気下、200℃で5時間程度の熱処理とすることが好ましい。一方、焼成は本発明に係る正極活物質を製造可能な条件であればよく、焼成雰囲気、焼成温度、焼成時間について特に限定されるものではない。例えば、アルゴン等の不活性ガス雰囲気下、800℃〜1000℃程度で3時間〜24時間程度焼成する、好ましくは900℃で10時間程度焼成することで、本発明に係る正極活物質を製造可能である。   The calcination should just be the conditions which can leave organic substance, removing a water | moisture content, For example, it is preferable to set it as the heat processing for about 5 hours at 200 degreeC by air atmosphere. On the other hand, the firing is not particularly limited with respect to the firing atmosphere, firing temperature, and firing time, as long as the positive electrode active material according to the present invention can be produced. For example, the positive electrode active material according to the present invention can be produced by baking at 800 ° C. to 1000 ° C. for about 3 hours to 24 hours, preferably at 900 ° C. for about 10 hours in an inert gas atmosphere such as argon. It is.

尚、本発明に係る製造方法は上記した溶液法による形態に限定されるものではない。例えば、固相反応によって上記した複合酸化物を合成するにあたり、Ni源及びCo源が過剰に含まれた粉体混合物を用意し、ここにさらに固体有機物等を混合したうえで焼成を行うことで、Ni−Co合金の生成と所望の複合酸化物の合成とを同時に進行させることが可能と言える。ただし、均質性に優れた正極活物質を低温にて容易に製造できる観点、電池に適用するに好適な微細な正極活物質が得られる観点等からは、溶液法によって正極活物質を製造することが好ましい。   The production method according to the present invention is not limited to the above-described solution method. For example, in synthesizing the composite oxide described above by solid-phase reaction, a powder mixture containing an excessive amount of Ni source and Co source is prepared, and further, solid organic matter etc. is further mixed therein, followed by firing. It can be said that the formation of the Ni—Co alloy and the synthesis of the desired composite oxide can proceed simultaneously. However, from the viewpoint of easily producing a positive electrode active material excellent in homogeneity at a low temperature and obtaining a fine positive electrode active material suitable for application to a battery, a positive electrode active material is produced by a solution method. Is preferred.

以下、実施例に基づいて、本発明に係る正極活物質について詳述するが、本発明は以下の具体的な形態に限定されるものではない。尚、実施例においては、LiNi1/3Co1/3Mn1/3TiOの合成過程でNi−Co合金を生成させ、複合酸化物の粒子内に合金を担持させるものとした。 Hereinafter, although the positive electrode active material which concerns on this invention is explained in full detail based on an Example, this invention is not limited to the following specific forms. In the examples, a Ni—Co alloy was generated during the synthesis of Li 2 Ni 1/3 Co 1/3 Mn 1/3 TiO 4 and the alloy was supported in the composite oxide particles.

1.正極活物質の作製
1.1.実施例に係る正極活物質
以下の合成手順で、実施例に係る正極活物質を得た。
(1)硝酸水溶液に酢酸リチウム、酢酸マンガン、酢酸ニッケル、酢酸コバルト、グリコール酸を溶解させ、溶液Aを得た。この際、Ni、Coが複合酸化物組成よりも過剰となるように、酢酸ニッケル、酢酸コバルトを余分に溶解させた。
(2)得られた溶液Aに酸化チタンを分散させ、溶液Bを得た。
(3)溶液Bを80℃で保持しながら攪拌し、水分を除去しつつゲル化させた。
(4)得られたゲルを回収し、大気中で200℃、5時間熱処理し、水分を除去しつつも有機物を残存させた粉体を得た。
(5)得られた粉体をアルゴン雰囲気下、900℃で10時間焼成し、正極活物質を得た。
1. Production of positive electrode active material 1.1. Cathode Active Material According to Example A cathode active material according to the example was obtained by the following synthesis procedure.
(1) Solution A was obtained by dissolving lithium acetate, manganese acetate, nickel acetate, cobalt acetate, and glycolic acid in an aqueous nitric acid solution. At this time, nickel acetate and cobalt acetate were excessively dissolved so that Ni and Co were in excess of the composite oxide composition.
(2) Titanium oxide was dispersed in the obtained solution A to obtain a solution B.
(3) The solution B was stirred while being kept at 80 ° C., and gelled while removing water.
(4) The obtained gel was recovered and heat-treated in the atmosphere at 200 ° C. for 5 hours to obtain a powder in which organic matter remained while removing moisture.
(5) The obtained powder was fired at 900 ° C. for 10 hours in an argon atmosphere to obtain a positive electrode active material.

1.2.比較例に係る正極活物質
以下の合成手順で、比較例に係る正極活物質を得た。
(1)硝酸水溶液に酢酸リチウム、酢酸マンガン、酢酸ニッケル、酢酸コバルト、グリコール酸を溶解させ、溶液A’を得た。
(2)得られた溶液Aに酸化チタンを分散させ、溶液B’を得た。溶液B’において、各種原料は組成比がLiNi1/3Co1/3Mn1/3TiOと一致させるようにした。
(3)溶液Bを80℃で保持しながら攪拌し、水分を除去しつつゲル化させた。
(4)得られたゲルを回収し、大気中で350℃、10時間熱処理し、水分とともに残留有機物も除去して粉体を得た。
(5)得られた粉体をアルゴン雰囲気下、900℃で10時間焼成し、正極活物質を得た。
1.2. Positive electrode active material according to comparative example The positive electrode active material according to the comparative example was obtained by the following synthesis procedure.
(1) Lithium acetate, manganese acetate, nickel acetate, cobalt acetate, and glycolic acid were dissolved in an aqueous nitric acid solution to obtain a solution A ′.
(2) Titanium oxide was dispersed in the obtained solution A to obtain a solution B ′. In the solution B ′, the composition ratio of the various raw materials was made to match that of Li 2 Ni 1/3 Co 1/3 Mn 1/3 TiO 4 .
(3) The solution B was stirred while being kept at 80 ° C., and gelled while removing water.
(4) The obtained gel was collected and heat-treated in the atmosphere at 350 ° C. for 10 hours to remove residual organic substances together with moisture to obtain a powder.
(5) The obtained powder was fired at 900 ° C. for 10 hours in an argon atmosphere to obtain a positive electrode active material.

2.正極活物質の評価
2.1.XRD測定結果
図2に、実施例及び比較例に係る正極活物質のXRD回折パターンを示す。図2から明らかなように、実施例に係る正極活物質は、空間群fm−3mに属する複合酸化物に由来する回折ピークとともにNi−Co合金に由来する回折ピークが確認できた。すなわち、Ni及びCoを過剰に含ませるとともに、ゲルのか焼において有機物を意図的に残留させることで、焼成時にNi−Co源を還元することができ、正極活物質にNi−Co合金を含ませることができたと言える。一方、比較例に係る正極活物質は、当該複合酸化物に由来する回折ピークのみが確認された。すなわち、ゲルのか焼において有機物を完全に除去したため、正極活物質中にNi−Co合金を生成させることができなかったと言える。
2. Evaluation of positive electrode active material 2.1. XRD Measurement Results FIG. 2 shows XRD diffraction patterns of positive electrode active materials according to examples and comparative examples. As is clear from FIG. 2, the positive electrode active material according to the example was able to confirm the diffraction peak derived from the Ni—Co alloy together with the diffraction peak derived from the composite oxide belonging to the space group fm-3m. That is, Ni and Co are excessively contained, and organic substances are intentionally left in the calcination of the gel, so that the Ni—Co source can be reduced at the time of firing, and the Ni—Co alloy is included in the positive electrode active material. It can be said that it was possible. On the other hand, only the diffraction peak derived from the composite oxide was confirmed in the positive electrode active material according to the comparative example. That is, it can be said that the Ni—Co alloy could not be generated in the positive electrode active material because the organic substances were completely removed by calcination of the gel.

2.2.SEM観察結果
図3に、実施例に係る正極活物質のSEM画像を示す。図3(A)が2次電子像、図3(B)反射電子像である。また、下記表1に、図3(B)にて確認できる白い斑点部分におけるEDX測定結果(スペクトル1、2)及びそれ以外の領域におけるEDX測定結果(スペクトル3、4)を示す。
2.2. SEM Observation Results FIG. 3 shows an SEM image of the positive electrode active material according to the example. 3A shows a secondary electron image, and FIG. 3B shows a reflected electron image. Table 1 below shows the EDX measurement results (spectrum 1 and 2) in the white spots that can be confirmed in FIG. 3B and the EDX measurement results (spectrums 3 and 4) in other regions.

図3及び表1の結果から、図3(B)における白い斑点部分は他の領域と比較してNi及びCoの存在比率が高く、Ni−Co合金が存在していると言える。すなわち、実施例に係る正極活物質は、複合酸化物の合成過程でNi−Co合金を生成させたことで、複合酸化物の粒子内にNi−Co合金を含有し、且つ、合金の一部は粒子の表面に露出していることが分かる。すなわち、実施例に係る正極活物質は、図1に示すような構造を採っていることが確認できた。   From the results in FIG. 3 and Table 1, it can be said that the white spot portion in FIG. 3B has a higher ratio of Ni and Co compared to other regions, and Ni—Co alloy is present. That is, the positive electrode active material according to the example includes a Ni—Co alloy in the composite oxide synthesis process, thereby containing the Ni—Co alloy in the composite oxide particles, and a part of the alloy. It can be seen that is exposed on the surface of the particles. That is, it was confirmed that the positive electrode active material according to the example had a structure as shown in FIG.

2.3.充放電試験結果
実施例及び比較例に係る正極活物質と、さらに以下に示す各部材とを用いてコインセルを作製し、充放電試験を行った。充放電試験においては、4.8Vを上限とした定電流モードで充電した後で2Vまで放電を行い、放電容量とした。実施例に係る結果を図4に、比較例に係る結果を図5に示す。
2.3. Charge / Discharge Test Results Coin cells were produced using the positive electrode active materials according to Examples and Comparative Examples and each member shown below, and a charge / discharge test was performed. In the charge / discharge test, the battery was charged in a constant current mode with an upper limit of 4.8 V, and then discharged to 2 V to obtain a discharge capacity. The results according to the example are shown in FIG. 4, and the results according to the comparative example are shown in FIG.

(正極層)
層中に含まれる正極活物質、導電助剤、バインダーの比率を、正極活物質:アセチレンブラック:PVdF=85:10:5(質量比)とした。分散剤としてはN−メチル−2−ピロリドン(ナカライテスク社製)を用いた。
(正極集電体)
アルミニウム箔を使用した。
(非水電解液)
EC:DMC=1:1(体積比)とした混合溶媒に、電解質としてLiPFを1mol/Lとなるように配合したものを用いた。
(負極層)
金属リチウムを使用した。
(負極集電体)
SUSを使用した。
(筐体)
SUS製2032型コインセルを使用した。
(Positive electrode layer)
The ratio of the positive electrode active material, the conductive assistant, and the binder contained in the layer was positive electrode active material: acetylene black: PVdF = 85: 10: 5 (mass ratio). As a dispersant, N-methyl-2-pyrrolidone (manufactured by Nacalai Tesque) was used.
(Positive electrode current collector)
Aluminum foil was used.
(Nonaqueous electrolyte)
A mixed solvent in which EC: DMC = 1: 1 (volume ratio) was blended with LiPF 6 as an electrolyte at 1 mol / L was used.
(Negative electrode layer)
Metallic lithium was used.
(Negative electrode current collector)
SUS was used.
(Casing)
A SUS 2032 type coin cell was used.

図4、5から明らかなように、実施例に係る正極活物質を用いた電池は、比較例に係るものよりも放電容量が2倍程度増加し、200mAh/gの放電容量が得られた。正極活物質において複合酸化物粒子中にNi−Co合金を担持したことによる顕著な効果が確認できた。   As apparent from FIGS. 4 and 5, the battery using the positive electrode active material according to the example increased the discharge capacity about twice as much as that according to the comparative example, and a discharge capacity of 200 mAh / g was obtained. The remarkable effect by having supported the Ni-Co alloy in the composite oxide particle in the positive electrode active material was confirmed.

2.4.Ni−Co合金が複合酸化物粒子中に含まれていることの確認
充放電試験の前後における正極のXRD回折パターンを確認した。結果を図6に示す。
2.4. Confirmation that Ni-Co alloy is contained in composite oxide particles The XRD diffraction pattern of the positive electrode before and after the charge / discharge test was confirmed. The results are shown in FIG.

図6から明らかなように、充放電前後に亘ってNi−Co合金起因のピークが確認できた。すなわち、充放電中にNi−Co合金が電解液中に溶出していないことが示された。このことは、Ni−Co合金が複合酸化物粒子内に存在していることを裏付けている。   As is clear from FIG. 6, a peak attributable to the Ni—Co alloy was observed before and after charging and discharging. That is, it was shown that the Ni—Co alloy was not eluted into the electrolyte during charge / discharge. This confirms that the Ni—Co alloy is present in the composite oxide particles.

以上のように、実施例によって、本発明に係る正極活物質の特有の構成及び顕著な効果を確認することができた。   As described above, the specific configuration and remarkable effects of the positive electrode active material according to the present invention could be confirmed by Examples.

本発明はリチウム電池等の正極活物質として広く利用可能である。本発明によれば電池の放電容量を増大させることが可能である。   The present invention can be widely used as a positive electrode active material for lithium batteries and the like. According to the present invention, the discharge capacity of a battery can be increased.

1 複合酸化物
2 Ni−Co合金
10 正極活物質
DESCRIPTION OF SYMBOLS 1 Composite oxide 2 Ni-Co alloy 10 Positive electrode active material

Claims (4)

下記式(1)で表される空間群fm−3mに属する複合酸化物の粒子内に、Ni−Co合金を有することを特徴とする、正極活物質。
LiNiCoMnTiO … (1)
(式(1)において、a=1.5〜2.5、b=3〜4、x=0〜1、y=0〜1、z=0〜1である。)
A positive electrode active material comprising a Ni—Co alloy in a composite oxide particle belonging to the space group fm-3m represented by the following formula (1).
Li a Ni x Co y Mn z TiO b (1)
(In the formula (1), a = 1.5 to 2.5, b = 3 to 4, x = 0 to 1, y = 0 to 1, and z = 0 to 1.)
請求項1に記載の正極活物質を備えるリチウム電池。 A lithium battery comprising the positive electrode active material according to claim 1. 下記式(1)で表される空間群fm−3mに属する複合酸化物に比してNi及びCoを過剰に含む混合物を還元剤の共存下で焼成することで、前記複合酸化物の粒子とNi−Co合金とを生成させるとともに、前記複合酸化物の粒子内にNi−Co合金を担持させることを特徴とする、正極活物質の製造方法。
LiNiCoMnTiO … (1)
(式(1)において、a=1.5〜2.5、b=3〜4、x=0〜1、y=0〜1、z=0〜1である。)
By firing a mixture containing Ni and Co in excess in the presence of a reducing agent as compared with a composite oxide belonging to the space group fm-3m represented by the following formula (1), the composite oxide particles and A method for producing a positive electrode active material, wherein a Ni—Co alloy is produced and a Ni—Co alloy is supported in particles of the composite oxide.
Li a Ni x Co y Mn z TiO b (1)
(In the formula (1), a = 1.5 to 2.5, b = 3 to 4, x = 0 to 1, y = 0 to 1, and z = 0 to 1.)
前記還元剤が有機酸由来の有機物である、請求項3に記載の製造方法。 The manufacturing method of Claim 3 whose said reducing agent is the organic substance derived from an organic acid.
JP2013201358A 2013-09-27 2013-09-27 Positive electrode active material, method for producing positive electrode active material, and lithium battery Active JP6090085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201358A JP6090085B2 (en) 2013-09-27 2013-09-27 Positive electrode active material, method for producing positive electrode active material, and lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201358A JP6090085B2 (en) 2013-09-27 2013-09-27 Positive electrode active material, method for producing positive electrode active material, and lithium battery

Publications (2)

Publication Number Publication Date
JP2015069754A JP2015069754A (en) 2015-04-13
JP6090085B2 true JP6090085B2 (en) 2017-03-08

Family

ID=52836245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201358A Active JP6090085B2 (en) 2013-09-27 2013-09-27 Positive electrode active material, method for producing positive electrode active material, and lithium battery

Country Status (1)

Country Link
JP (1) JP6090085B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013848A1 (en) 2015-07-23 2017-01-26 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
WO2017047022A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP6861402B2 (en) 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 battery
CN107408687B (en) 2015-09-16 2022-01-28 松下知识产权经营株式会社 Positive electrode active material and battery
EP3352262B1 (en) 2015-09-16 2019-10-16 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery
WO2017047023A1 (en) 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
WO2017047019A1 (en) 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
JP6861399B2 (en) 2015-09-16 2021-04-21 パナソニックIpマネジメント株式会社 battery
WO2017047018A1 (en) 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
JP6941811B2 (en) * 2016-09-26 2021-09-29 パナソニックIpマネジメント株式会社 Positive electrode active material for batteries and batteries
WO2018092359A1 (en) 2016-11-15 2018-05-24 パナソニックIpマネジメント株式会社 Positive electrode active material for batteries, and battery
JP6979586B2 (en) 2016-11-15 2021-12-15 パナソニックIpマネジメント株式会社 Positive electrode active material for batteries and batteries using positive electrode active materials for batteries
JP6964246B2 (en) 2016-12-02 2021-11-10 パナソニックIpマネジメント株式会社 Positive electrode active material and battery using positive electrode active material
JP7065341B2 (en) 2017-01-19 2022-05-12 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP6952247B2 (en) 2017-01-19 2021-10-20 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945906B2 (en) * 2005-03-02 2012-06-06 日本電気株式会社 Secondary battery negative electrode and secondary battery using the same
US20120064406A1 (en) * 2009-04-01 2012-03-15 Namics Corporation Electrode material, method for producing same, and lithium ion secondary battery
WO2012066638A1 (en) * 2010-11-16 2012-05-24 トヨタ自動車株式会社 Positive active material, process for producing same, and lithium secondary battery including same

Also Published As

Publication number Publication date
JP2015069754A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
CN107531510B (en) Aluminum-coated nickel-cobalt-containing composite hydroxide and method for producing same, nonaqueous electrolyte secondary battery, positive electrode active material, and method for producing same
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP5651937B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6560917B2 (en) Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP6341516B2 (en) Method for producing positive electrode material for lithium secondary battery
JP4522683B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP5314264B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP7260249B2 (en) TRANSITION METAL CONTAINING COMPOSITE HYDROXIDE PARTICLES AND MANUFACTURING METHOD THEREFOR, POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JPWO2014061654A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2010086922A (en) Lithium complex compound particle powder and method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
TW201626626A (en) Method of preparing positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and lithium secondary battery including the positive electrode material
EP3086389B1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
WO2017034001A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6540077B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP6511761B2 (en) Method of producing coated composite oxide particles for positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using coated composite oxide particles produced by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151