JP2010238603A - Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery - Google Patents

Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery Download PDF

Info

Publication number
JP2010238603A
JP2010238603A JP2009086838A JP2009086838A JP2010238603A JP 2010238603 A JP2010238603 A JP 2010238603A JP 2009086838 A JP2009086838 A JP 2009086838A JP 2009086838 A JP2009086838 A JP 2009086838A JP 2010238603 A JP2010238603 A JP 2010238603A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
solid solution
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086838A
Other languages
Japanese (ja)
Inventor
Yuji Mishima
祐司 三島
Miwa Nonaka
美和 野中
Kota Sato
幸太 佐藤
Hiroshi Yamamoto
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009086838A priority Critical patent/JP2010238603A/en
Publication of JP2010238603A publication Critical patent/JP2010238603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium iron fluorophosphate solid solution powder manufactured inexpensively and easily and having a high discharge capacity in a high current load as a secondary battery, and to provide the secondary battery using the same. <P>SOLUTION: A carbon content is 0.5-5 wt.%, and a primary particle size is 50-200 nm, in this lithium iron fluorophosphate solid solution powder Na<SB>2-a</SB>Li<SB>a</SB>Fe<SB>1-b-c</SB>Mg<SB>b</SB>Co<SB>c</SB>P<SB>1-d</SB>B<SB>d</SB>O<SB>4</SB>F (1.5<a≤2, 0.025≤b+c≤0.1, 0≤d≤0.1) positive electrode active material containing carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

低コストで、安易に製造でき、且つ、二次電池としたときに高電流負荷における放電容量が高い、炭素を含むフッ化リン酸鉄リチウム固溶体正極活物質粉末、及び製造方法、並びにリチウムイオン二次電池を提供する。   Low-cost, easily manufactured and high-capacity discharge capacity at high current load when used as a secondary battery, carbon-containing lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method, and lithium ion secondary Provide the next battery.

近年、AV機器やパソコン等の電子機器、電動工具等のパワーツールのポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として高出力、且つ、高エネルギー密度を有する二次電池の要求が高くなっている。また、近年地球環境への配慮から、ハイブリッド自動車、電気自動車の開発及び実用化がなされ、大型用途として充放電の繰返し特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、安全性が高いという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers, and power tools such as electric tools have been rapidly becoming portable and cordless, and secondary batteries having high output and high energy density have been used as power sources for driving these devices. The demand is high. In recent years, in consideration of the global environment, hybrid vehicles and electric vehicles have been developed and put into practical use, and there is an increasing demand for lithium ion secondary batteries having excellent charge / discharge repetition characteristics as large-scale applications. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has attracted attention.

最近、3.5V以上の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質として、斜方晶系のA2MPO4F(AはLi、又はNaの少なくとも1種、Mは遷移金属)が高い充放電理論容量を有する電池として報告されている。しかしながら、これらの材料は、報告例が少なく、また、十分な容量を取り出せていない為、特性改善が求められている(非特許文献1、2)。 Recently, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 3.5 V or more, orthorhombic A 2 MPO 4 F (A is at least one of Li or Na, M Has been reported as a battery having a high charge / discharge capacity. However, these materials have few reported examples and a sufficient capacity cannot be taken out, so that improvement in characteristics is required (Non-Patent Documents 1 and 2).

即ち、斜方晶系のLi2MPO4Fはフッ素イオンと強固なリン酸4面体骨格と酸化還元に寄与する2価遷移金属を中心にもつ酸素8面体と電流の担い手であるリチウムイオンとから構成される。この結晶構造ため、充放電反応を繰り返すことによっても結晶構造は安定であり、充放電を繰り返しても特性は他のリチウムイオン正極材に比べ、劣化しにくい特長がある。また、リチウムイオンの移動経路が二次元的であり、高負荷電流特性の向上が期待される。一方、自由電子が少ないことによる高い電気抵抗を有するという欠点がある。この課題を解決する為に、斜方晶系のフッ化リン酸鉄リチウムLi2FePO4Fは炭素被覆がなされている(非特許文献2)。 That is, orthorhombic Li 2 MPO 4 F is composed of fluorine ions, a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on a divalent transition metal that contributes to redox, and lithium ions that are current carriers. Composed. Because of this crystal structure, the crystal structure is stable even by repeating the charge / discharge reaction, and the characteristics are less likely to deteriorate compared to other lithium ion cathode materials even if charge / discharge is repeated. In addition, the movement path of lithium ions is two-dimensional, and high load current characteristics are expected to be improved. On the other hand, there is a drawback that it has a high electric resistance due to a small number of free electrons. In order to solve this problem, orthorhombic lithium iron fluorophosphate Li 2 FePO 4 F is coated with carbon (Non-patent Document 2).

上記の斜方晶系のフッ化リン酸鉄リチウムLiFePOFは、オリビン構造のLiFePOと同様に、粉末を構成する一次粒子径が小さいほど高い電流負荷での充放電特性の向上、また、活物質表面の十分な電気抵抗低減により電極反応が起こり得るサイトを増加させての充放電特性の向上、異種元素置換による充放電特性の向上が期待される。 The orthorhombic lithium iron fluoride phosphate Li 2 FePO 4 F, like LiFePO 4 having an olivine structure, improves the charge / discharge characteristics at a higher current load as the primary particle size of the powder is smaller, In addition, it is expected that the charge / discharge characteristics are improved by increasing the sites where electrode reaction can occur by sufficiently reducing the electric resistance of the active material surface, and the charge / discharge characteristics are improved by substituting different elements.

即ち、非水電解質二次電池用の正極活物質粉末としては、高容量、且つ、電気抵抗の小さな斜方晶系の異種元素置換型フッ化リン酸鉄リチウム固溶体Li2FePO4Fを環境負荷が小さな工業的な方法で生産することが要求されている。 That is, as a positive electrode active material powder for a non-aqueous electrolyte secondary battery, an orthorhombic dissimilar element substitution type lithium iron phosphate solid solution Li 2 FePO 4 F having a high capacity and a small electric resistance is used as an environmental load. Are required to be produced in a small industrial way.

従来、Li2MPO4F(Mは遷移金属)の諸特性改善のために、種々の改良が行われている。例えば、遷移金属MにFe、Mn、Ni、Cu、Ti、Coを用いたLi2MPO4F(特許文献1、非特許文献1)、1000℃/hrの急速昇温で溶融させてLi2MPO4Fを製造する方法(特許文献2)、Na2FePO4Fを固相反応で合成し、溶液でNaをLiとイオン交換する方法(特許文献3、非特許文献2)等が知られている。 Conventionally, various improvements have been made to improve various properties of Li 2 MPO 4 F (M is a transition metal). For example, Li 2 MPO 4 F (Patent Document 1, Non-Patent Document 1) using Fe, Mn, Ni, Cu, Ti, Co as the transition metal M is melted at a rapid temperature rise of 1000 ° C./hr and Li 2. A method of producing MPO 4 F (Patent Document 2), a method of synthesizing Na 2 FePO 4 F by solid phase reaction, and ion-exchanging Na with Li in a solution (Patent Document 3, Non-Patent Document 2), etc. are known. ing.

特開2003−229126号公報JP 2003-229126 A 特開2007−73360号公報JP 2007-73360 A 米国特許出願公開第2008/0153002号明細書US Patent Application Publication No. 2008/0153002

S. Okada等、J. Power. Sources、2005、 Vol.146、 p.565−569.S. Okada et al. Power. Sources, 2005, Vol. 146, p. 565-569. B. L. Ellis等、Nature Materials、2007、Vol.148、p.749−753.B. L. Ellis et al., Nature Materials, 2007, Vol. 148, p. 749-753.

しかしながら、非水電解質二次電池用の正極活物質として不純物結晶相が極めて少なく、電気抵抗の小さな斜方晶系のフッ化リン酸鉄リチウム固溶体粉末を得る安価で環境負荷の少ない製造方法について、現在最も要求されているところであるが、未だ確立されていない。   However, as a positive electrode active material for a non-aqueous electrolyte secondary battery, there is very little impurity crystal phase, and an inexpensive and low environmental load manufacturing method for obtaining orthorhombic lithium iron phosphate phosphate solid solution powder with low electrical resistance. It is the most demanded now, but it has not been established yet.

即ち、前記特許文献1〜3、前記非特許文献1、2に記載された技術では、優れた高電流負荷特性を有する斜方晶系のフッ化リン酸鉄リチウム固溶体LiFePOFからなる正極活物質粉末を工業的に得られるものではない。 That is, the techniques described in Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 are composed of an orthorhombic lithium iron fluoride phosphate solid solution Li 2 FePO 4 F having excellent high current load characteristics. The positive electrode active material powder is not industrially obtained.

また、特許文献1〜3、非特許文献1、2記載の技術は、LiFePOFに対する異種元素の添加が結晶構造に及ぼす影響については触れていない。 In addition, the techniques described in Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 do not mention the influence of the addition of different elements to Li 2 FePO 4 F on the crystal structure.

そこで、本発明は、炭素を含むリン酸鉄リチウム固溶体Na2−aLiaFe1−b−cMgCo1−dF(1.5<a≦2,0.025≦b+c≦0.1,0≦d≦0.1)からなる正極活物質粉末(以下、正極活物質粉末とする。)と、該正極活物質粉末を得る環境負荷の小さな工業的手法を確立すること、及び、高電流負荷特性に優れたリチウムイオン二次電池を提供することを技術的課題とする。 Accordingly, the present invention is a lithium iron phosphate containing carbon solid solution Na 2-a Li a Fe 1 -b-c Mg b Co c P 1-d B d O 4 F (1.5 <a ≦ 2,0. 025 ≦ b + c ≦ 0.1, 0 ≦ d ≦ 0.1), and an industrial product with a small environmental load for obtaining the positive electrode active material powder. It is a technical problem to establish a method and to provide a lithium ion secondary battery excellent in high current load characteristics.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、炭素を含むフッ化リン酸鉄リチウム固溶体Na2−aLiaFe1−b−cMgCo1−dF(1.5<a≦2,0.025≦b+c≦0.1,0≦d≦0.1)正極活物質粉末において、炭素量が0.5〜5重量%、一次粒子径が50〜200nmであることを特徴とする正極活物質粉末である(本発明1)。 That is, the present invention, lithium fluoride iron phosphate containing carbon solid solution Na 2-a Li a Fe 1 -b-c Mg b Co c P 1-d B d O 4 F (1.5 <a ≦ 2, 0.025.ltoreq.b + c.ltoreq.0.1, 0.ltoreq.d.ltoreq.0.1) The positive electrode active material powder has a carbon content of 0.5 to 5% by weight and a primary particle size of 50 to 200 nm. It is the positive electrode active material powder to perform (Invention 1).

また、本発明は、圧縮成型体の電気抵抗率が10Ω・cm以下である本発明1に記載の正極活物質粉末である(本発明2)。 Further, the present invention is the positive electrode active material powder according to the first aspect of the present invention, wherein the electric resistivity of the compression-molded body is 10 3 Ω · cm or less (the second aspect of the present invention).

また、本発明は、炭素を含むフッ化リン酸鉄ナトリウム固溶体NaFe1−b−cMgCo1−dF(0.025≦b+c≦0.1,0≦d≦0.1)作製後、該フッ化リン酸鉄ナトリウム固溶体を溶液に分散させ、次いでフッ化リン酸鉄ナトリウム固溶体中のNaをLiでイオン交換反応させる、本発明1又は2に記載の正極活物質粉末の製造方法である(本発明3)。 In addition, the present invention also relates to a sodium fluorophosphate solid solution Na 2 Fe 1-bc Mg b Co c P 1-d B d O 4 F containing carbon (0.025 ≦ b + c ≦ 0.1, 0 ≦ d ≦ 0.1) After the preparation, the sodium iron phosphate solid solution is dispersed in a solution, and then Na in the sodium iron fluoride solid solution is subjected to an ion exchange reaction with Li. It is a manufacturing method of the positive electrode active material powder of description (invention 3).

また、本発明は、本発明1又は2に記載の正極活物質粉末を含有する非水溶媒電解質のリチウムイオン二次電池である(本発明4)。   Further, the present invention is a lithium ion secondary battery of a non-aqueous solvent electrolyte containing the positive electrode active material powder according to the first or second aspect of the present invention (Invention 4).

本発明に係る正極活物質粉末は、異種元素置換により欠陥構造を持つため電子とLiイオンの移動を容易にしたものである。また、本発明に係る正極活物質粉末は、体積あたりの出力密度とエネルギー密度を向上させることができる。そのため、本発明に係る正極活物質粉末を用いた二次電池は高電流負荷特性に優れている。また、本発明に係る正極活物質の製造方法は、低コストで、環境負荷が小さく製造できるため、工業的生産に適している。   Since the positive electrode active material powder according to the present invention has a defect structure due to substitution of different elements, the movement of electrons and Li ions is facilitated. Moreover, the positive electrode active material powder according to the present invention can improve the output density and energy density per volume. Therefore, the secondary battery using the positive electrode active material powder according to the present invention is excellent in high current load characteristics. In addition, the method for producing a positive electrode active material according to the present invention is suitable for industrial production because it can be produced at low cost and with low environmental impact.

本発明におけるフッ化リン酸鉄リチウム固溶体粉末の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the lithium iron phosphate solid solution powder in this invention. 実施例1で得られた炭素を含むNa2Fe0.95Mg0.05PO4Fの走査型電子顕微鏡による二次電子像である。It is a secondary electron image by a scanning electron microscope Na 2 Fe 0.95 Mg 0.05 PO 4 F containing carbon obtained in Example 1. 実施例1で得られた炭素を含むNa2Fe0.95Mg0.05PO4FのX線回折パターンのRietveld解析結果である。A Na 2 Fe 0.95 Mg 0.05 PO 4 F Rietveld analysis results of X-ray diffraction pattern of including carbon obtained in Example 1. 実施例1で得られた正極活物質粉末の走査型電子顕微鏡による二次電子像である。2 is a secondary electron image of the positive electrode active material powder obtained in Example 1 by a scanning electron microscope. 実施例と比較例において、固相反応で得られた炭素を含むフッ化リン酸鉄ナトリウム固溶体の格子定数比である。In an Example and a comparative example, it is a lattice constant ratio of the sodium fluorophosphate solid solution containing carbon obtained by the solid-phase reaction. 実施例3の放電特性である。3 shows the discharge characteristics of Example 3.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

まず、本発明に係る正極活物質粉末について述べる。   First, the positive electrode active material powder according to the present invention will be described.

本発明に係る正極活物質粉末の組成は、Na2−aLiaFe1−b−cMgCo1−dF(1.5<a≦2,0.025≦b+c≦0.1,0≦d≦0.1)であり、MgとCoは少なくともどちらか一方が含まれていればよい。斜方晶系を形成する結晶が化学量論比から大幅にずれる場合、異相を形成しやすく、場合によっては焼成中に粒成長を促進し、性能の高い電池特性を得ることができない。
aの値は1.5<a≦2であり、好ましくは1.65≦a≦2、より好ましくは1.8≦a≦1.95である。1.5以下の場合にはNaの移動量も増加し、電池特性を悪化させる可能性があるためである。
b+cの値は0.025≦b+c≦0.1であり、好ましくは0.03≦b+c≦0.08である。0.025未満の場合には異種元素置換の効果が電池特性に現れにくく、0.1を超える場合には電池特性を悪化させるためである。
また、本発明に係る正極活物質粉末においては、Feサイトを電子がホッピングして伝導すると考えられ、BでPサイトを置換することで電子がPサイトもホッピング伝導することができ、電池特性も改善できると考えている。dの値が0.1を超えると異相が生成しやすく、電池特性を悪化させる。
The composition of the positive electrode active material powder according to the present invention, Na 2-a Li a Fe 1-b-c Mg b Co c P 1-d B d O 4 F (1.5 <a ≦ 2,0.025 ≦ b + c ≦ 0.1, 0 ≦ d ≦ 0.1), and it is sufficient that at least one of Mg and Co is included. When crystals forming the orthorhombic system are greatly deviated from the stoichiometric ratio, a heterogeneous phase is likely to be formed. In some cases, grain growth is promoted during firing, and high performance battery characteristics cannot be obtained.
The value of a is 1.5 <a ≦ 2, preferably 1.65 ≦ a ≦ 2, and more preferably 1.8 ≦ a ≦ 1.95. This is because when the amount is 1.5 or less, the amount of Na movement increases, which may deteriorate battery characteristics.
The value of b + c is 0.025 ≦ b + c ≦ 0.1, and preferably 0.03 ≦ b + c ≦ 0.08. This is because the effect of substituting different elements hardly appears in the battery characteristics when it is less than 0.025, and deteriorates the battery characteristics when it exceeds 0.1.
Further, in the positive electrode active material powder according to the present invention, it is considered that electrons are hopped and conducted through Fe sites, and by replacing P sites with B, electrons can also conduct hopping conduction at P sites, and battery characteristics are also improved. I think it can be improved. If the value of d exceeds 0.1, a heterogeneous phase is likely to be generated, and the battery characteristics are deteriorated.

本発明に係る正極活物質粉末に含まれる炭素量は0.5〜5重量%である。0.5重量%未満では粉末の電気抵抗を改善できず、5重量%を超えた場合には効果的に電気抵抗を低減できない。好ましくは1.5〜3重量%である。   The amount of carbon contained in the positive electrode active material powder according to the present invention is 0.5 to 5% by weight. If it is less than 0.5% by weight, the electrical resistance of the powder cannot be improved, and if it exceeds 5% by weight, the electrical resistance cannot be effectively reduced. Preferably it is 1.5 to 3 weight%.

本発明に係る正極活物質粉末の一次粒子径は50〜200nmである。50nm未満であれば、炭素の被覆が困難であり、また、成型体密度も低下し、二次電池の体積当りのエネルギー密度も低下する。一方、200nmを超える場合、粒子内のLiの移動を困難にするため、二次電池の高負荷電流での容量を得ることが困難となる。より好ましくは、70〜120nmである。   The primary particle diameter of the positive electrode active material powder according to the present invention is 50 to 200 nm. If it is less than 50 nm, it is difficult to coat the carbon, the density of the molded body also decreases, and the energy density per volume of the secondary battery also decreases. On the other hand, when it exceeds 200 nm, it is difficult to obtain the capacity of the secondary battery at a high load current because it makes it difficult to move Li in the particles. More preferably, it is 70-120 nm.

本発明に係る正極活物質粉末の圧縮成型体の電気抵抗率は10Ω・cm以下であることが好ましい。10Ω・cmを超える場合、正極シートを作製する際の導電剤との混合に負荷が掛かる。より好ましくは10Ω・cm以下である。 The electrical resistivity of the compression molded body of the positive electrode active material powder according to the present invention is preferably 10 3 Ω · cm or less. When it exceeds 10 3 Ω · cm, a load is applied to the mixing with the conductive agent when producing the positive electrode sheet. More preferably, it is 10 2 Ω · cm or less.

次に、本発明に係る正極活物質の製造法について述べる。   Next, a method for producing the positive electrode active material according to the present invention will be described.

本発明に係る正極活物質粉末は、炭素を含むフッ化リン酸鉄ナトリウム固溶体NaFe1−b−cMgCo1−dF(0.025≦b+c≦0.1,0≦d≦0.1)作製後、該フッ化リン酸鉄ナトリウム固溶体を溶液に分散させ、次いでフッ化リン酸鉄ナトリウム固溶体中のNaをLiでイオン交換反応させて得られる。 The positive electrode active material powder according to the present invention comprises carbon-containing sodium iron fluoride phosphate solid solution Na 2 Fe 1-bc Mg b Co c P 1-d B d O 4 F (0.025 ≦ b + c ≦ 0.1,0 ≦ d ≦ 0.1) After the preparation, the sodium fluorophosphate solid solution is dispersed in a solution, and then Na in the sodium fluorophosphate solid solution is ion-exchanged with Li. .

本発明におけるフッ化リン酸鉄ナトリウム固溶体は固相反応によって製造することができる。   The sodium fluorophosphate solid solution in the present invention can be produced by a solid phase reaction.

本発明におけるフッ化リン酸鉄ナトリウム固溶体の原料としては、Na源はNaOH、NaHCO3、Na2CO3、Fe原料として、FeC24・nH2O、Fe34、α−FeOOH、P原料として、H3PO4、(NH4)H2PO4、(NH42HPO4、NaH2PO4、Na2HPO4、F源として、HF、NaF、(NH4)F等が使用される。また、炭素源として、ショ糖等の低温熱分解が可能な糖類、被粉砕物を疎水化しやすいステアリン酸等の脂肪酸、焼成前駆体の粒子表面に吸着しやすいPVA等の親水性高分子、生成する凝集した活物質粒子内の空隙を残しやすいポリエチレン等の疎水性高分子等が使用される。 As a raw material of the sodium fluorophosphate solid solution in the present invention, Na source is NaOH, NaHCO 3 , Na 2 CO 3 , Fe raw material is FeC 2 O 4 .nH 2 O, Fe 3 O 4 , α-FeOOH, As P raw materials, H 3 PO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , NaH 2 PO 4 , Na 2 HPO 4 , F sources as HF, NaF, (NH 4 ) F, etc. Is used. Also, as a carbon source, sugars that can be pyrolyzed at low temperature such as sucrose, fatty acids such as stearic acid that easily hydrophobize the material to be crushed, hydrophilic polymers such as PVA that are easily adsorbed on the particle surface of the calcined precursor, Hydrophobic polymers such as polyethylene that easily leave voids in the aggregated active material particles are used.

固相反応において低温焼成を行うために、炭素源として導電性の高いカーボンブラックを混合することも可能である。使用可能なカーボンブラックとして、例えば、アセチレンブラック(電気化学工業(株)製)やケッチェンブラック(ライオン(株)製)がある。これにより、400〜500℃といった低温焼成でも、得られる正極活物質粉末の圧縮成型体は10Ω・cm以下の電気抵抗率を満たし、性能の高い二次電池特性を示す。 In order to perform low-temperature firing in the solid phase reaction, carbon black having high conductivity can be mixed as a carbon source. Examples of usable carbon black include acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and ketjen black (manufactured by Lion Corporation). Thereby, the compression molded body of the obtained positive electrode active material powder satisfies the electrical resistivity of 10 3 Ω · cm or less and exhibits high performance secondary battery characteristics even at low temperature firing of 400 to 500 ° C.

また、異種元素添加物としては、Mg源として、Mg(OH)2、MgCO3、Co源として、CoC24・nH2O、Co34、CoOOH、B源としてH3BO3、B23等が使用される。 Further, as the different element additive, Mg (OH) 2 , MgCO 3 , Mg source, CoC 2 O 4 .nH 2 O, Co 3 O 4 , CoOOH as Co source, H 3 BO 3 as B source, B 2 O 3 or the like is used.

使用する原料の粒径はサブミクロンサイズであることが望ましく、湿式合成、或いは粉砕により粒度を調整しておくことが好ましい。   The particle size of the raw material to be used is desirably a submicron size, and it is preferable to adjust the particle size by wet synthesis or pulverization.

原料混合、粉砕の装置として、ヘンシェルミキサー、らいかい機、ハイスピードミキサー、ボールミル、振動ミル、媒体攪拌型ミル等がある。   Examples of the raw material mixing and pulverizing apparatus include a Henschel mixer, a rakai machine, a high speed mixer, a ball mill, a vibration mill, and a medium stirring mill.

固相反応の焼成条件として、酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250〜750℃で、1〜10時間焼成を行うことが望ましい。   As firing conditions for the solid phase reaction, it is desirable to perform firing for 1 to 10 hours at a temperature of 250 to 750 ° C. in an inert gas atmosphere having an oxygen concentration of 0.1% or less or a reducing gas atmosphere.

また、焼成による固相反応後、粉砕を行い、炭素源を添加し、上記条件で再焼成を行うのも望ましい。   It is also desirable to perform pulverization after the solid-phase reaction by calcination, add a carbon source, and perform calcination again under the above conditions.

焼成装置として、ガス流通式箱型マッフル炉、ガス流通式回転炉、流動熱処理炉等がある。不活性ガスとして、N2、Ar、H2O、CO2或いはその混合ガスが用いられる。還元性ガスとして、H、又はCO、或いはこれらのガスと前記不活性ガスの混合ガスが用いられる。 Examples of the firing apparatus include a gas flow type box muffle furnace, a gas flow type rotary furnace, and a fluidized heat treatment furnace. As the inert gas, N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used. As the reducing gas, H 2 , CO, or a mixed gas of these gases and the inert gas is used.

本発明における炭素を含むフッ化リン酸鉄ナトリウム固溶体を生成するには、遷移金属Fe原料中に含まれるFe3+は添加炭素源、或いは還元性ガスによりFe2+へと変化させるため、酸素濃度0.1%以下の雰囲気で焼成を行う必要がある。固相反応を完結させ、且つ、炭素源から電子伝導性の高いグラファイト相を形成させるため、400〜800℃で数時間熱処理を行うことが好ましい。 In order to produce the sodium fluorophosphate solid solution containing carbon in the present invention, since Fe 3+ contained in the transition metal Fe raw material is changed to Fe 2+ by an added carbon source or a reducing gas, the oxygen concentration is 0. It is necessary to perform firing in an atmosphere of 1% or less. In order to complete the solid-phase reaction and form a graphite phase with high electron conductivity from a carbon source, it is preferable to perform heat treatment at 400 to 800 ° C. for several hours.

本発明において、熱処理の際、水蒸気発生、及び、前駆体Fe3+還元に伴う酸化性ガスの発生に伴い、局所的なガス濃度分布が品質に影響を与えることもある。そのため、所謂仮焼を経て、前記炭素源含有物添加と粉砕・混合を再び行い、再度、熱処理(本焼成)を行うことも可能である。その際、仮焼温度は250〜500℃程度と低く、本焼成温度は400〜750℃と高温で行うことが好ましい。仮焼と本焼成の間の炭素源含有物添加と粉砕・混合と操作の順序は特に限定はしない。 In the present invention, during the heat treatment, the local gas concentration distribution may affect the quality due to the generation of water vapor and the generation of oxidizing gas accompanying the precursor Fe 3+ reduction. Therefore, it is also possible to perform the heat treatment (main firing) again by performing the so-called calcination, again adding the carbon source-containing material, pulverizing and mixing. At that time, the calcining temperature is preferably as low as about 250 to 500 ° C., and the main baking temperature is preferably as high as 400 to 750 ° C. The order of carbon source content addition, pulverization / mixing, and operation during calcination and main calcination is not particularly limited.

元素組成比は、炭素Cを除いて、熱処理前後で変化することはほとんどなく、得られたフッ化リン酸鉄ナトリウム固溶体は焼成前と同等の組成比である。炭素Cは遷移金属の還元熱処理により50重量%未満に減少することがあり、予め、各焼成条件で残存する炭素Cの量を測定し、焼成後の正極活物質粉末に含まれる炭素量が0.5〜5重量%となるよう調整する必要がある。   The elemental composition ratio hardly changes before and after the heat treatment except for carbon C, and the obtained sodium iron fluoride phosphate solid solution has the same composition ratio as before firing. Carbon C may be reduced to less than 50% by reduction heat treatment of the transition metal. The amount of carbon C remaining under each firing condition is measured in advance, and the amount of carbon contained in the positive electrode active material powder after firing is 0. It is necessary to adjust so that it may become 5 to 5 weight%.

本発明におけるフッ化リン酸鉄ナトリウム固溶体はa軸とb軸との格子定数比(b/a)が2.647〜2.652、a軸とc軸との格子定数比(c/a)が2.250〜2.254であることが好ましい。   The solid solution of sodium iron phosphate in the present invention has a lattice constant ratio (b / a) between the a-axis and b-axis of 2.647 to 2.652, and a lattice constant ratio (c / a) between the a-axis and c-axis. Is preferably 2.250 to 2.254.

そして、固相反応により合成された炭素を含むフッ化リン酸鉄ナトリウム固溶体のNaをLiでイオン交換反応させてフッ化リン酸鉄リチウム固溶体正極活物質粉末を得る。溶媒として、アセトニトリル、エタノール、純水等Li塩を溶解することが可能なものを用い、LiBr、LiCl、LiOH等のLi原料を溶解させた溶媒中に該フッ化リン酸鉄ナトリウム固溶体を分散させ、温度50〜150℃で数時間反応させ、溶媒中に析出したNa塩は洗浄、乾燥して除去する。   Then, Na of the sodium fluorophosphate solid solution containing carbon synthesized by the solid phase reaction is subjected to an ion exchange reaction with Li to obtain a positive electrode active material powder of lithium fluorophosphate solid solution. A solvent capable of dissolving a Li salt such as acetonitrile, ethanol, or pure water is used as a solvent, and the solid solution of sodium iron phosphate is dispersed in a solvent in which a Li raw material such as LiBr, LiCl, or LiOH is dissolved. The reaction is carried out at a temperature of 50 to 150 ° C. for several hours, and the Na salt precipitated in the solvent is removed by washing and drying.

次に、本発明に係る正極活物質粉末を用いた正極シートと非水電解質二次電池について述べる。   Next, a positive electrode sheet and a nonaqueous electrolyte secondary battery using the positive electrode active material powder according to the present invention will be described.

本発明に係る正極活物質を用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、グラファイト等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N−メチル−ピロリドンを用い、75μm以下に篩い分けられた該正極活物質と該添加物を含むスラリーを蜂蜜状になるまで混練する。得られたスラリーを溝が25μm〜500μmのドクターブレードで集電体上に塗布する。該塗布速度は約60cm/secで、集電体として通常約20μmのAl箔を用いる。溶媒除去と結着剤軟化のため、乾燥は80〜120℃で、Fe2+の非酸化性雰囲気で行う。該シートを1〜3t/cmの圧力になるようカレンダーロール処理を行う。前記シート化の工程で、室温においてもFe2+のFe3+への酸化反応が生じる恐れがあるため、極力、非酸化性雰囲気で行うことが望ましい。 When a positive electrode sheet is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable. As the solvent, for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 75 μm or less and the slurry containing the additive are kneaded until they become honey. The obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 μm to 500 μm. The coating speed is about 60 cm / sec, and an Al foil of about 20 μm is usually used as a current collector. In order to remove the solvent and soften the binder, drying is performed at 80 to 120 ° C. in a non-oxidizing atmosphere of Fe 2+ . The sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 . In the sheet forming step, there is a possibility that an oxidation reaction of Fe 2+ to Fe 3+ may occur at room temperature. Therefore, it is desirable to carry out in a non-oxidizing atmosphere as much as possible.

得られた正極シートの集電体上の正極活物質、カーボン、及び結着剤からなる正極密度は1.8g/cc以上である。本発明に係る正極シートは、該正極活物質の圧縮成型体密度が2.0g/cc以上と高く、また、該正極活物質の圧縮成型体の電気抵抗率が10Ω・cm以下と低いため、シート作製時のカーボン添加量を抑制でき、結果として密度の高い正極シートが得られる。 The density of the positive electrode made of the positive electrode active material, carbon, and binder on the current collector of the obtained positive electrode sheet is 1.8 g / cc or more. In the positive electrode sheet according to the present invention, the density of the compression molded body of the positive electrode active material is as high as 2.0 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is as low as 10 3 Ω · cm or less. Therefore, the amount of carbon added during sheet preparation can be suppressed, and as a result, a positive electrode sheet having a high density can be obtained.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、金属、又は合金の場合、圧延されたシートを使用し、粉末の場合、正極と同様のドクターブレード法により負極シートは作製される。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used. In the case of a metal or alloy, a rolled sheet is used. The negative electrode sheet is produced by the doctor blade method.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

<作用>
本発明に係る正極活物質粉末は、異種元素置換により欠陥構造を持つため電子とLiイオンの移動を容易にしたものである。また、本発明に係る正極活物質粉末は、体積あたりの出力密度とエネルギー密度を向上させることができる。また、本発明に係る正極活物質粉末は、異種元素置換を制御したため、不純物結晶相が極めて少なくできる。そこで、本発明に係る正極活物質粉末は、高電流負荷特性に優れ、且つ充放電を繰返しても容量の低下が少ない正極活物質粉末が得られたものと本発明者は推定している。また、焼成による固相反応と溶液中でのイオン交換反応を用いるため低コストで、環境負荷が小さく製造できる。
<Action>
Since the positive electrode active material powder according to the present invention has a defect structure due to substitution of different elements, the movement of electrons and Li ions is facilitated. Moreover, the positive electrode active material powder according to the present invention can improve the output density and energy density per volume. Further, since the positive electrode active material powder according to the present invention controls the substitution of different elements, the impurity crystal phase can be extremely reduced. Therefore, the present inventor presumes that the positive electrode active material powder according to the present invention is a positive electrode active material powder that is excellent in high current load characteristics and has little decrease in capacity even after repeated charge and discharge. In addition, since a solid phase reaction by firing and an ion exchange reaction in a solution are used, it can be manufactured at low cost and with a small environmental load.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

本発明に係る正極活物質粉末の一次粒子の評価として走査型電子顕微鏡SEM、炭素の被覆状態観察に透過型電子顕微鏡TEMが使用される。   A scanning electron microscope SEM is used for evaluating the primary particles of the positive electrode active material powder according to the present invention, and a transmission electron microscope TEM is used for observing the coating state of carbon.

本発明におけるフッ化リン酸鉄ナトリウム固溶体の結晶相の同定に、X線回折装置RINT−2500[(株)リガク製]を用いて、管球Cu−Kα、電圧40kV,電流300mA、2θ範囲10〜90°、スキャンステップ0.05°、メインピーク強度が8000〜12000countsになるようなスキャンスピードで測定を行い、空間群No.60として格子定数比をRietveld法で定量化した。解析ソフトとしてRIETAN2000を用い、プロファイル関数としてTCH擬ヴォイド関数を用い、その関数の非対称化にFinger等の手法を用い、結晶子の異方的な広がりが無いと仮定し、解析した。   In order to identify the crystal phase of the sodium fluorophosphate solid solution in the present invention, an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation] was used, and the tube Cu-Kα, voltage 40 kV, current 300 mA, 2θ range 10 Measured at a scan speed such that the main peak intensity is 8000 to 12000 counts. The lattice constant ratio as 60 was quantified by the Rietveld method. The analysis was performed under the assumption that there was no anisotropic expansion of the crystallites using Rietan 2000 as the analysis software, using the TCH pseudo-void function as the profile function, and using a method such as Finger for asymmetry of the function.

残存する炭素量はEMIA−820[(株)ホリバ製作所製]を用いて、燃焼炉で酸素気流中にて燃焼させ、定量化した。   The amount of remaining carbon was quantified by burning it in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Ltd.].

Li、Fe、P主元素と炭素以外に添加された元素は発光プラズマ分析装置ICAP−6500[サーモフィッシャーサイエンティフィク社製]を用いて測定した。   Elements added in addition to Li, Fe, P main elements and carbon were measured using an emission plasma analyzer ICAP-6500 [manufactured by Thermo Fisher Scientific Co., Ltd.].

圧縮成型体密度は13mmφの治具で1.5t/cmに圧粉し、2端子法により粉体電気抵抗を測定し、重量と体積から電気抵抗率を算出した。 The compression-molded body density was compressed to 1.5 t / cm 2 with a jig of 13 mmφ, the powder electrical resistance was measured by the two-terminal method, and the electrical resistivity was calculated from the weight and volume.

本発明に係る正極活物質を用いて、CR2032型コインセルによる二次電池特性を評価した。
用いた正極導電補助剤のカーボンは、アセチレンブラックで、結着剤は重量平均分子量約63万のポリフッ化ビニリデン((株)クレハ製)で、正極活物質:カーボン:結着剤=88:4:8(wt%)になるよう計量し、N−メチルピロリドン(関東化学(株)製)に溶解した。
Using the positive electrode active material according to the present invention, the secondary battery characteristics of a CR2032-type coin cell were evaluated.
The carbon used as the positive electrode conductive auxiliary agent was acetylene black, the binder was polyvinylidene fluoride having a weight average molecular weight of about 630,000 (manufactured by Kureha Corporation), and the positive electrode active material: carbon: binder = 88: 4. : Weighed to 8 (wt%) and dissolved in N-methylpyrrolidone (manufactured by Kanto Chemical Co., Inc.).

1t/cmにプレスし、2cmに打ち抜いた正極シート、17mmφに打ち抜いた厚さ0.15mmLi負極、19mmφにセパレーター(セルガード#2400)、1mol/lのLiPFを溶解した炭酸エチレンECと炭酸ジエチルDEC(体積比3:7)で混合した電解液(キシダ化学製)用いて、CR22032型コインセル((株)宝泉製)を作製した。 Positive electrode sheet pressed to 1 t / cm 2 , punched to 2 cm 2 , 0.15 mm Li negative electrode punched to 17 mmφ, separator (Celgard # 2400) to 19 mmφ, ethylene carbonate EC and carbonic acid dissolved in 1 mol / l LiPF 6 A CR22032 type coin cell (manufactured by Hosen Co., Ltd.) was prepared using an electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) mixed with diethyl DEC (volume ratio 3: 7).

本発明に係る正極活物質を用いて製造した二次電池の電池特性は、室温において測定し、十分に充電させた後、放電速度を変えて評価を行なっている。   The battery characteristics of the secondary battery manufactured using the positive electrode active material according to the present invention are measured at room temperature, fully charged, and then evaluated by changing the discharge rate.

放電速度に対応したC/20とは20時間で斜方晶系のフッ化リン酸鉄リチウム固溶体LiFePOF正極活物質の理論容量146mAh/gの電流が流れるよう固定した電流値であり、また、5Cとは1/5時間で該正極活物質の理論容量の電流が流れるよう固定した電流値である。Cの係数が高くなるほど、高い電流負荷特性を意味する。 C / 20 corresponding to the discharge rate is a current value fixed so that a current of a theoretical capacity of 146 mAh / g of an orthorhombic lithium iron phosphate solid solution Li 2 FePO 4 F positive electrode active material flows in 20 hours. Further, 5C is a current value fixed so that a current having a theoretical capacity of the positive electrode active material flows in 1/5 hour. A higher C coefficient means higher current load characteristics.

充電時の電流値は特に限定しないが、本発明において、C/10の定電流値を用い、十分に充電を行った。また、充電と放電時の電圧範囲は特に限定しないが、本発明において、2.0〜4.5V間で行った。   Although the current value at the time of charging is not particularly limited, in the present invention, charging was sufficiently performed using a constant current value of C / 10. Moreover, the voltage range at the time of charge and discharge is not particularly limited, but in the present invention, the voltage range was 2.0 to 4.5V.

[実施例1]
NaHCO3、FeC24・2H2O、Mg(OH)2、(NH4)H2PO4、NaFを10gのNa2Fe0.95Mg0.05PO4Fになるよう秤量し、また、仮焼後の残存炭素量が約1wt%になるようPVA粉末を0.45g秤量し、エタノール溶媒中3日間ボールミルで混合、粉砕を行った。得られた原料スラリーを容器内で乾燥後、メノウ乳鉢で粉砕し、75μm以下に篩い分けした。400℃、2時間、N中で仮焼後、ポリエチレン粉末を仮焼物に対し5重量%添加後、再度、ボールミルにて1日粉砕した。該粉砕物を700℃、2時間、N中で本焼成し、冷却後、75μm以下に篩い分けした。図2に得られた炭素を含むNa2Fe0.95Mg0.05PO4F粉末のSEM写真を、図3に粉末X線回折パターンのRietveld解析結果を示す。Rietveld解析は信頼度因子Rwp=7.41%、S=1.66と低く、信頼できる結果であった。
[Example 1]
NaHCO 3 , FeC 2 O 4 .2H 2 O, Mg (OH) 2 , (NH 4 ) H 2 PO 4 and NaF are weighed to 10 g of Na 2 Fe 0.95 Mg 0.05 PO 4 F and calcined. Next, 0.45 g of PVA powder was weighed so that the amount of residual carbon was about 1 wt%, and mixed and pulverized in a ethanol solvent in a ball mill for 3 days. The obtained raw material slurry was dried in a container, pulverized in an agate mortar, and sieved to 75 μm or less. After calcining in N 2 at 400 ° C. for 2 hours, 5% by weight of polyethylene powder was added to the calcined product, and then pulverized again with a ball mill for 1 day. The pulverized product was calcined in N 2 at 700 ° C. for 2 hours, cooled, and sieved to 75 μm or less. FIG. 2 shows an SEM photograph of the obtained Na 2 Fe 0.95 Mg 0.05 PO 4 F powder containing carbon, and FIG. 3 shows the Rietveld analysis result of the powder X-ray diffraction pattern. The Rietveld analysis was a reliable result with a low reliability factor Rwp = 7.41% and S = 1.66.

得られた炭素を含むNa2Fe0.95Mg0.05PO4F粉末を、LiBrを含むアセトニトリル溶液中に分散させ、120℃、50分間でイオン交換反応し、メタノール溶液で洗浄、60℃で乾燥後、炭素を含む斜方晶系のNa0.2Li1.8Fe0.95Mg0.05POF正極活物質粉末を得た(図4にSEM写真を示す)。 The obtained carbon-containing Na 2 Fe 0.95 Mg 0.05 PO 4 F powder was dispersed in an acetonitrile solution containing LiBr, subjected to an ion exchange reaction at 120 ° C. for 50 minutes, washed with a methanol solution, dried at 60 ° C., An orthorhombic Na 0.2 Li 1.8 Fe 0.95 Mg 0.05 PO 4 F positive electrode active material powder containing carbon was obtained (FIG. 4 shows an SEM photograph).

また、TEM観察によって、炭素が粒子表面を十分に被覆していることを確認した。   Further, it was confirmed by TEM observation that carbon sufficiently covered the particle surface.

次に、得られた炭素を含むNa0.2Li1.8Fe0.95Mg0.05PO4F正極活物質粉末を用い、ギャップ250μmのドクターブレードで電極スラリーをAl箔集電体上に塗布した。シート乾燥後、1t/cmに加圧し、2cmに打ち抜き、正極とした。 Next, using the obtained Na 0.2 Li 1.8 Fe 0.95 Mg 0.05 PO 4 F positive electrode active material powder containing carbon, electrode slurry was applied onto the Al foil current collector with a doctor blade having a gap of 250 μm. After the sheet drying, punched 1t / cm 2 pressurized to 2 cm 2, and a positive electrode.

上記、及び、以下の実施例、及び比較例の実験条件、粉体特性、及び電池特性を表1に記す。   Table 1 shows experimental conditions, powder characteristics, and battery characteristics of the above and the following examples and comparative examples.

[実施例2〜5]
炭素源としてポリエチレン粉末を用い、添加する異種元素の種類と各元素の仕込み比を変化させた他は実施例1と同様の方法で、炭素を含むフッ化リン酸鉄リチウム固溶体正極活物質を得た。
[Examples 2 to 5]
Using lithium powder as a carbon source and changing the kind of different elements to be added and the charge ratio of each element, the same method as in Example 1 was used to obtain a lithium iron fluorophosphate solid solution positive electrode active material containing carbon. It was.

[比較例1〜2]
炭素源としてポリエチレン粉末を用い、異種元素を添加しなかった他は実施例1と同様の方法で、炭素を含むフッ化リン酸鉄リチウム固溶体正極活物質を得た。
[Comparative Examples 1-2]
A lithium fluoride fluorophosphate solid solution positive electrode active material containing carbon was obtained in the same manner as in Example 1 except that polyethylene powder was used as the carbon source and no different element was added.

[比較例3〜7]
炭素源としてポリエチレン粉末を用い、添加する異種元素の種類と各元素の仕込み比を変化させた他は実施例1と同様の方法で、炭素を含むフッ化リン酸鉄リチウム固溶体正極活物質を得た。
[Comparative Examples 3 to 7]
Using lithium powder as a carbon source and changing the kind of different elements to be added and the charge ratio of each element, the same method as in Example 1 was used to obtain a lithium iron fluorophosphate solid solution positive electrode active material containing carbon. It was.

表1記載の実施例の電池特性において、本発明に係る正極活物質は1C以上の高負荷電流において高い電池特性を満たすことがわかった。   In the battery characteristics of Examples shown in Table 1, it was found that the positive electrode active material according to the present invention satisfied high battery characteristics at a high load current of 1 C or more.

表1記載の比較例の電池特性において、特に、5Cにおける放電容量が低かったのは異相が析出し、炭素被覆が不十分なためと考えている。   In the battery characteristics of the comparative example described in Table 1, the discharge capacity at 5C was particularly low because the heterogeneous phases were precipitated and the carbon coating was insufficient.

また、表1記載の実施例と比較例において、固相反応で得られた炭素を含む斜方晶系のフッ化リン酸鉄ナトリウム固溶体の格子定数比を図5に示す。傾向として、異種元素を置換しても格子定数があまり変化しない領域で優れた電池特性を示すことが見出された。   FIG. 5 shows the lattice constant ratio of orthorhombic sodium iron fluoride phosphate solid solution containing carbon obtained by solid phase reaction in the examples and comparative examples shown in Table 1. As a trend, it has been found that excellent battery characteristics are exhibited in a region where the lattice constant does not change much even when different elements are substituted.

最後に、表1記載の実施例3の二次電池放電特性を図6に示す。測定はC/10、C1C、・・・、10Cの順で放電させた。高レートにおいても電圧低下が少なく、高負荷電流特性が良好なことを確認した。   Finally, the secondary battery discharge characteristics of Example 3 shown in Table 1 are shown in FIG. In the measurement, C / 10, C1C,..., 10C were discharged in this order. It was confirmed that the voltage drop was small even at a high rate and the high load current characteristics were good.

以上の結果から本発明に係る異種元素で置換されたフッ化リン酸鉄リチウム固溶体正極活物質粉末は低コストで環境負荷の少ない製法で得られ、該正極活物質粉末を用いた二次電池は高電流負荷特性に優れることが確認された。   From the above results, the lithium iron phosphate solid solution positive electrode active material powder substituted with a different element according to the present invention is obtained by a low cost and low environmental impact manufacturing method, and the secondary battery using the positive electrode active material powder is It was confirmed that the high current load characteristics were excellent.

本発明は低コストで、環境負荷の少ない製法で作製されたフッ化リン酸鉄リチウム固溶体粉末を二次電池正極活物質として用いることで、体積当りのエネルギー密度が高く、高電流負荷特性においても高容量が得られる非水溶媒系二次電池を得ることができる。   The present invention uses a lithium iron phosphate solid solution powder produced by a low-cost and low environmental load production method as a secondary battery positive electrode active material, so that the energy density per volume is high and high current load characteristics are also achieved. A nonaqueous solvent secondary battery capable of obtaining a high capacity can be obtained.

Claims (4)

炭素を含むフッ化リン酸鉄リチウム固溶体Na2−aLiaFe1−b−cMgCo1−dF(1.5<a≦2,0.025≦b+c≦0.1,0≦d≦0.1)正極活物質粉末において、炭素量が0.5〜5重量%、一次粒子径が50〜200nmであることを特徴とする正極活物質粉末。 Lithium fluoride iron phosphate solid solution containing carbon Na 2-a Li a Fe 1 -b-c Mg b Co c P 1-d B d O 4 F (1.5 <a ≦ 2,0.025 ≦ b + c ≦ 0.1, 0 ≦ d ≦ 0.1) A positive electrode active material powder having a carbon content of 0.5 to 5% by weight and a primary particle size of 50 to 200 nm. 圧縮成型体の電気抵抗率が10Ω・cm以下である請求項1に記載の正極活物質粉末。 The positive electrode active material powder according to claim 1, wherein the compression-molded body has an electrical resistivity of 10 3 Ω · cm or less. 炭素を含むフッ化リン酸鉄ナトリウム固溶体NaFe1−b−cMgCo1−dF(0.025≦b+c≦0.1,0≦d≦0.1)作製後、該フッ化リン酸鉄ナトリウム固溶体を溶液に分散させ、次いでフッ化リン酸鉄ナトリウム固溶体中のNaをLiでイオン交換反応させる、請求項1又は2に記載の正極活物質粉末の製造方法。 Carbon-containing sodium iron fluorophosphate solid solution Na 2 Fe 1- bc Mg b Co c P 1-d B d O 4 F (0.025 ≦ b + c ≦ 0.1, 0 ≦ d ≦ 0. 1) The positive electrode active material powder according to claim 1 or 2, wherein after the production, the solid solution of sodium iron phosphate is dispersed in a solution, and then Na in the solid solution of sodium iron phosphate is subjected to an ion exchange reaction with Li. Manufacturing method. 請求項1又は2に記載の正極活物質粉末を含有する非水溶媒電解質のリチウムイオン二次電池。 The lithium ion secondary battery of the nonaqueous solvent electrolyte containing the positive electrode active material powder of Claim 1 or 2.
JP2009086838A 2009-03-31 2009-03-31 Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery Pending JP2010238603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086838A JP2010238603A (en) 2009-03-31 2009-03-31 Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086838A JP2010238603A (en) 2009-03-31 2009-03-31 Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2010238603A true JP2010238603A (en) 2010-10-21

Family

ID=43092742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086838A Pending JP2010238603A (en) 2009-03-31 2009-03-31 Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2010238603A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2012204307A (en) * 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same
CN102810669A (en) * 2011-05-31 2012-12-05 现代自动车株式会社 Positive electrode material for secondary battery and method for manufacturing the same
JP2013163602A (en) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology Iron-containing combined phosphate fluoride, its production method, and secondary battery using it as cathode active material
JP2016189352A (en) * 2011-09-21 2016-11-04 現代自動車株式会社Hyundai Motor Company Method of manufacturing positive electrode material for lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2012204307A (en) * 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same
CN102810669A (en) * 2011-05-31 2012-12-05 现代自动车株式会社 Positive electrode material for secondary battery and method for manufacturing the same
JP2012252996A (en) * 2011-05-31 2012-12-20 Hyundai Motor Co Ltd Positive electrode material for secondary battery, and method for manufacturing the same
US9385371B2 (en) 2011-05-31 2016-07-05 Hyundai Motor Company Positive electrode material for secondary battery and method for manufacturing the same
US10177379B2 (en) 2011-05-31 2019-01-08 Hyundai Motor Company Positive electrode material for secondary battery and method for manufacturing the same
JP2016189352A (en) * 2011-09-21 2016-11-04 現代自動車株式会社Hyundai Motor Company Method of manufacturing positive electrode material for lithium secondary battery
JP2013163602A (en) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology Iron-containing combined phosphate fluoride, its production method, and secondary battery using it as cathode active material

Similar Documents

Publication Publication Date Title
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5604036B2 (en) Si / C composite, anode active material containing the same, and lithium battery
CA2778127C (en) Hydrothermal process for the production of lifepo4 powder
JP5013622B2 (en) Method for producing lithium borate compound
WO2010089931A1 (en) Method for producing lithium silicate compound
JP5980472B2 (en) Titanium dioxide, method for producing titanium dioxide, lithium ion battery, and electrode for lithium ion battery
JP2010001214A (en) Crystalline nanometric lifepo4
WO2012121110A1 (en) Electrode active substance and method for producing same
JP6172288B2 (en) Positive electrode active material for sodium battery and sodium battery
JP2008184346A (en) Ultrafine olivine type compound particle and its production method
KR20160081582A (en) Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
EP3883019B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5928648B1 (en) Electrode material for lithium ion secondary battery
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
US11374217B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5900926B2 (en) Positive electrode active material for sodium ion secondary battery, positive electrode and sodium ion secondary battery
JP6098670B2 (en) Method for producing titanium dioxide
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
WO2021193662A1 (en) Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013077517A (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
KR101948549B1 (en) Cathode Active Material for Secondary Battery
JP2004002066A (en) Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process