JP2012204307A - Positive electrode active material, and method for manufacturing the same - Google Patents

Positive electrode active material, and method for manufacturing the same Download PDF

Info

Publication number
JP2012204307A
JP2012204307A JP2011070785A JP2011070785A JP2012204307A JP 2012204307 A JP2012204307 A JP 2012204307A JP 2011070785 A JP2011070785 A JP 2011070785A JP 2011070785 A JP2011070785 A JP 2011070785A JP 2012204307 A JP2012204307 A JP 2012204307A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011070785A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
Hideki Mizuta
秀樹 水田
Yosuke Yamada
陽祐 山田
Eiji Kobayashi
栄次 小林
Junichi Yamaki
準一 山木
Takayuki Doi
貴之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2011070785A priority Critical patent/JP2012204307A/en
Publication of JP2012204307A publication Critical patent/JP2012204307A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing technology for inexpensively manufacturing a positive electrode active material having sufficient charging and discharging capacity.SOLUTION: A method for manufacturing a positive electrode active material is a method for manufacturing an active material that contains lithium and fluorine as constituent elements and becomes a positive electrode of a nonaqueous electrolyte secondary battery. The method comprises the step of obtaining the positive electrode active material by dipping a solid object that contains sodium and fluorine as the constituent elements and becomes a precursor of the positive electrode active material into an organic solvent containing an electrolyte which contains lithium. The electrolyte containing lithium, and the organic solvent are used as an electrolytic solution of a nonaqueous electrolyte lithium ion secondary battery.

Description

本発明は、非水電解質二次電池の技術分野に属し、特に、リチウム元素を含む正極活物質を低コストで効率よく製造する新規な製造方法およびその正極活物質に関する。   The present invention belongs to the technical field of non-aqueous electrolyte secondary batteries, and particularly relates to a novel production method for efficiently producing a positive electrode active material containing lithium element at low cost and the positive electrode active material.

非水電解質を用いるリチウムイオン二次電池には、主として、正極にリチウム元素を含む正極活物質が使用され、高電圧で高エネルギー密度を達成できる電池として盛んに研究開発が行われている。   A lithium ion secondary battery using a non-aqueous electrolyte mainly uses a positive electrode active material containing a lithium element as a positive electrode, and has been actively researched and developed as a battery capable of achieving a high energy density at a high voltage.

しかしながら、リチウム元素を含む正極活物質(リチウム塩)は、一般に、ナトリウム元素を含む正極活物質(ナトリウム塩)よりも合成が難しいという問題がある。例えば、正極活物質として、NaFeF3(理論容量197mAh/g)は合成されているものの、LiFeF3(理論容量224mAh/g)はこれまでのところ直接合成されていない。これは、ナトリウム元素の原子サイズがリチウム元素より大きいことが主な原因と考えられる。 However, a positive electrode active material (lithium salt) containing a lithium element generally has a problem that synthesis is more difficult than a positive electrode active material (sodium salt) containing a sodium element. For example, as a cathode active material, NaFeF 3 (theoretical capacity 197 mAh / g) but is synthesized, LiFeF 3 (theoretical capacity 224mAh / g) is not directly synthesized so far. This is presumably because the atomic size of the sodium element is larger than the lithium element.

さらに、近年ではハイブリッド自動車や電気自動車用搭載電源等への応用が検討されており、より高容量で経済的な大型リチウムイオン二次電池の開発が求められている。大型リチウムイオン二次電池の正極として、LiFePO4に代表されるレアメタルフリーのオリビン型結晶構造を有する正極が注目されているが、ポリアニオンが持つ大きな分子量のためにその理論容量は170mAh/g程度に止まっている。1分子中に2Liを含有する正極活物質が製造できれば、この容量上の制約が解消され、理論容量を増大できると考えられる。 Further, in recent years, application to a power source for a hybrid vehicle or an electric vehicle has been studied, and development of a large capacity and economical large lithium ion secondary battery is required. As a positive electrode of a large lithium ion secondary battery, a positive electrode having a rare metal-free olivine type crystal structure typified by LiFePO 4 is attracting attention, but due to the large molecular weight of polyanion, its theoretical capacity is about 170 mAh / g At rest. If a positive electrode active material containing 2Li in one molecule can be produced, it is considered that this capacity limitation can be eliminated and the theoretical capacity can be increased.

1分子中に2Liを含有する正極活物質として、例えば、理論容量が300mAh/gのフッ素化ポリアニオンLi2FePO4Fが挙げられるが、その合成は難しく、これまでのところ十分に合成されていない。例えば、Na2FePO4Fのナトリウム元素をリチウム元素に一部置換してLi2FePO4Fを製造することが試みられているが、実質的なリチウムの含有率は90%程度にとどまっている(非特許文献1参照)。 As a positive electrode active material containing 2Li in one molecule, for example, a fluorinated polyanion Li 2 FePO 4 F having a theoretical capacity of 300 mAh / g can be mentioned, but its synthesis is difficult and so far not sufficiently synthesized. . For example, an attempt has been made to produce Li 2 FePO 4 F by partially replacing the sodium element of Na 2 FePO 4 F with lithium element, but the substantial lithium content is only about 90%. (Refer nonpatent literature 1).

B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill & L. F. Nazar, Nature Materials 6, 749 - 753 (2007)B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill & L. F. Nazar, Nature Materials 6, 749-753 (2007)

上記のように、従来の技術では、リチウム元素を含有する正極活物質の合成が、ナトリウム元素を含有する正極活物質に比べて困難であるという課題がある。さらに、従来の技術では、正極活物質として可及的に多くのリチウム元素を含有する(例えば、Li2FePO4Fのように1分子中に2Liを含有する)リチウム塩を得る手段は確立されておらず、正極活物質の理論容量を増大させるまでには至っていないという課題がある。 As described above, in the conventional technique, there is a problem that synthesis of a positive electrode active material containing a lithium element is difficult as compared with a positive electrode active material containing a sodium element. Furthermore, in the prior art, means for obtaining a lithium salt containing as much lithium element as possible as the positive electrode active material (for example, containing 2Li in one molecule like Li 2 FePO 4 F) has been established. However, there is a problem that the theoretical capacity of the positive electrode active material has not been increased.

本発明は、上記課題を解決するために提案されたものであり、合成が容易なナトリウム塩を用いることで、従来は合成が困難であったリチウム元素を含有する正極活物質を簡便に製造し、特に正極活物質の選定によりその理論容量を増大させる技術を提供することを目的とする。   The present invention has been proposed to solve the above problems, and by using a sodium salt that is easy to synthesize, a positive electrode active material containing lithium element, which has been difficult to synthesize in the past, can be easily produced. In particular, an object is to provide a technique for increasing the theoretical capacity by selecting a positive electrode active material.

本発明者らは、鋭意研究の結果、イオン交換を利用して、合成が容易なナトリウム塩から、非水電解液を用いる二次電池に好適なリチウム元素を含有する正極活物質を製造する方法を新たに見出した。さらに、この正極活物質を用いて、負極活物質を選択して組み合わせることにより、稼動安定性の高い非水電解質二次電池を構築できることを見出した。   As a result of intensive studies, the present inventors have made use of ion exchange to produce a positive electrode active material containing a lithium element suitable for a secondary battery using a non-aqueous electrolyte from a sodium salt that is easy to synthesize. Newly found. Furthermore, it has been found that a non-aqueous electrolyte secondary battery with high operational stability can be constructed by selecting and combining negative electrode active materials using this positive electrode active material.

かくして、本発明に従えば、リチウムおよびフッ素を構成元素として含み非水電解質二次電池の正極となる活物質を製造する方法であって、ナトリウムおよびフッ素を構成元素として含み前記正極活物質の前駆体となる固体を、リチウム元素を含有する電解質を含む有機溶媒中に浸漬して前記正極活物質を得る工程を含み、前記リチウム元素を含有する電解質および前記有機溶媒が非水電解質リチウムイオン二次電池の電解液として用いられているものであることを特徴とする正極活物質の製造方法が提供される。   Thus, according to the present invention, there is provided a method for producing an active material containing lithium and fluorine as constituent elements and serving as a positive electrode of a non-aqueous electrolyte secondary battery, comprising sodium and fluorine as constituent elements, the precursor of the positive electrode active material. A solid body is immersed in an organic solvent containing an electrolyte containing lithium element to obtain the positive electrode active material, and the electrolyte containing lithium element and the organic solvent are non-aqueous electrolyte lithium ion secondary Provided is a method for producing a positive electrode active material, which is used as an electrolytic solution for a battery.

また、本発明に従えば、上記の方法により製造された非水電解質二次電池用正極活物質も提供される。さらに、本発明に従えば、上記の正極活物質を用いる非水電解質二次電池も提供される。   Moreover, according to this invention, the positive electrode active material for nonaqueous electrolyte secondary batteries manufactured by said method is also provided. Furthermore, according to this invention, the nonaqueous electrolyte secondary battery using said positive electrode active material is also provided.

本発明に係るペレット電極および塗布電極の概略図を示す。The schematic of the pellet electrode and coating electrode which concern on this invention is shown. 本発明により製造された正極活物質Li2FePO4FのXRDパターン結果、原子吸光および充放電試験結果を示す。XRD patterns result of the positive electrode active material Li 2 FePO 4 F produced by the present invention, showing the atomic absorption and the charge-discharge test results. 本発明により製造された正極活物質LiFeF3のXRDパターン結果、原子吸光結果および交換処理時間とイオン交換反応の関係図を示す。XRD patterns result of the positive electrode active material LiFeF 3 produced by the present invention, showing the relationship diagram of atomic absorption results and exchange processing time and the ion exchange reaction. 本発明により製造された正極活物質LiFeF3の充放電試験結果を示す。It shows a charge-discharge test results of the positive electrode active material LiFeF 3 produced by the present invention.

本発明に従えば、ナトリウムおよびフッ素を構成元素として含み(非水電解質二次電池用のものでリチウムおよびフッ素を構成元素として含む)正極活物質の前駆体となる固体(前駆体固体)を、リチウム元素を含有する電解質を含む(非水電解質二次電池の電解液として用いられる)有機溶媒中に浸漬して前記正極活物質を製造することができる。すなわち、原料となる前駆体固体を、リチウム元素を含有する電解質を含む有機溶媒中に浸漬することにより、前駆体固体に含まれるナトリウム元素を可及的にリチウム元素にイオン交換し、目的となるリチウム元素およびフッ素元素を含む結晶質または非晶質の正極活物質を得る。   According to the present invention, a solid (precursor solid) that contains sodium and fluorine as constituent elements (for non-aqueous electrolyte secondary batteries and contains lithium and fluorine as constituent elements) as a precursor of the positive electrode active material, The positive electrode active material can be manufactured by immersing in an organic solvent containing an electrolyte containing lithium element (used as an electrolyte for a non-aqueous electrolyte secondary battery). That is, by immersing the precursor solid as a raw material in an organic solvent containing an electrolyte containing lithium element, the sodium element contained in the precursor solid is ion-exchanged to lithium element as much as possible, and this is the purpose. A crystalline or amorphous positive electrode active material containing lithium element and fluorine element is obtained.

イオン交換の効率を高めるために、一般に、窒素ガスやアルゴンガスのような不活性ガス雰囲気下で数日間攪拌することが好ましい。攪拌する期間は、5〜15日間程度が好ましい。攪拌時の温度としては、常温〜100℃が好ましいが、反応性を高める観点から、常温よりも高温であることがより好ましく、例えば80℃とすることができる。不活性ガスは、取り扱いの容易さからアルゴンガスを用いることが好ましい。   In order to increase the efficiency of ion exchange, it is generally preferable to stir for several days in an inert gas atmosphere such as nitrogen gas or argon gas. The stirring period is preferably about 5 to 15 days. The temperature at the time of stirring is preferably from room temperature to 100 ° C., but from the viewpoint of increasing the reactivity, it is more preferably higher than normal temperature, for example, 80 ° C. As the inert gas, it is preferable to use argon gas because of easy handling.

このように、本発明の特徴は、通常の非水電解質リチウムイオン二次電池用電解液をそのまま用いて、比較的低温でイオン交換を実施するという非常に簡便な方法を用いて、目的となるリチウム元素およびフッ素元素を含む正極活物質を得ることにある。さらに、1分子中にナトリウム元素とリチウム元素の総原子数が2以上含まれる前駆体固体の場合には、前駆体固体に含まれるナトリウム元素が可及的にリチウム元素にイオン交換されることにより、1分子中にリチウム元素を1元素以上(1Li)含有する正極活物質の製造が可能となり、正極活物質の理論容量を増大させることができる。   As described above, the feature of the present invention is an object by using a very simple method of performing ion exchange at a relatively low temperature by using a normal electrolyte solution for a non-aqueous electrolyte lithium ion secondary battery as it is. The object is to obtain a positive electrode active material containing lithium element and fluorine element. Furthermore, in the case of a precursor solid in which the total number of sodium and lithium elements is 2 or more in one molecule, the sodium element contained in the precursor solid is ion-exchanged to the lithium element as much as possible. A positive electrode active material containing one or more lithium elements (1Li) in one molecule can be produced, and the theoretical capacity of the positive electrode active material can be increased.

また、前駆体固体は、所謂ナトリウム塩であり、その原子サイズはリチウム塩より大きいことから、一般にリチウム塩(すなわち本発明に従い製造される正極活物質)よりも簡
便に合成できるケースが多い。このようなことからも、本発明が有意に適用できる対象は以下に例示するように広範に及び、比較的合成が容易なナトリウム塩(前駆体固体)を用いて、これまで合成が困難であったリチウム元素を含有する多種の正極活物質を簡素に製造することができる。
Further, the precursor solid is a so-called sodium salt, and its atomic size is larger than that of the lithium salt. Therefore, in general, the precursor solid is generally more easily synthesized than the lithium salt (that is, the positive electrode active material produced according to the present invention). For these reasons, the present invention can be applied to a wide range of subjects as exemplified below, and it has been difficult to synthesize using sodium salts (precursor solids) that are relatively easy to synthesize. Various positive electrode active materials containing lithium element can be simply produced.

前駆体固体と正極活物質
前駆体固体としては、ナトリウム元素およびフッ素元素を含む固体であれば限定されず、例えば、Na2FePO4F、LiNaFePO4F、NaFeF3、NaMnF3、Na2CoPO4F、Na2NiPO4F、Na2TiF6、Na3FeF6、NaVPO4FおよびLiNaMnPO4Fを挙げることができる。本発明に従えば、これらの前駆体固体のナトリウム元素をリチウム元素にイオン交換し、正極活物質として、各々、Li2FePO4F、Li2FePO4F、LiFeF3、LiMnF3、Li2CoPO4F、Li2NiPO4F、Li2TiF6、Li3FeF6、LiVPO4FおよびLi2MnPO4Fを得ることができる。
The precursor solid and the positive electrode active material precursor solid are not limited as long as they are solids containing sodium element and fluorine element. For example, Na 2 FePO 4 F, LiNaFePO 4 F, NaFeF 3 , NaMnF 3 , Na 2 CoPO 4 Mention may be made of F, Na 2 NiPO 4 F, Na 2 TiF 6 , Na 3 FeF 6 , NaVPO 4 F and LiNaMnPO 4 F. According to the present invention, these precursor solid sodium elements are ion-exchanged with lithium elements, and the positive electrode active materials are Li 2 FePO 4 F, Li 2 FePO 4 F, LiFeF 3 , LiMnF 3 , and Li 2 CoPO, respectively. 4 F, Li 2 NiPO 4 F, Li 2 TiF 6 , Li 3 FeF 6 , LiVPO 4 F and Li 2 MnPO 4 F can be obtained.

このうち車載用等の大型電池の用途として好適なものは、マンガン元素または鉄元素を含有するものであり、例えば、前駆体固体Na2FePO4F、LiNaFePO4F、NaFeF3、NaMnF3が好ましく、正極活物質として、各々Li2FePO4F、Li2FePO4F、LiFeF3、LiMnF3を得ることができる。さらに、正極活物質の理論容量を増大させる観点から、1分子中にナトリウム元素とリチウム元素の総原子数が2原子である前駆体固体Na2FePO4FまたはLiNaFePO4Fが好ましく、正極活物質としてLi2FePO4Fを得ることができる。 Among them, those suitable for use in large batteries such as in-vehicle use are those containing manganese element or iron element, and for example, precursor solid Na 2 FePO 4 F, LiNaFePO 4 F, NaFeF 3 , NaMnF 3 are preferable. As the positive electrode active material, Li 2 FePO 4 F, Li 2 FePO 4 F, LiFeF 3 , and LiMnF 3 can be obtained, respectively. Furthermore, from the viewpoint of increasing the theoretical capacity of the positive electrode active material, a precursor solid Na 2 FePO 4 F or LiNaFePO 4 F in which the total number of sodium elements and lithium elements in one molecule is two atoms is preferable, and the positive electrode active material Li 2 FePO 4 F can be obtained as

有機溶媒
非水溶媒系電解質リチウムイオン二次電池の電解液として用いられている有機溶媒(非水溶媒)がそのまま使用され、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)等の炭酸エステル系溶媒を用いることができる。特に好ましいものとして、例えば、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒を使用することができる。リチウム塩を溶解する有機溶媒であっても、リチウムイオン二次電池の電解液として使用されていないもの(例えば、アセトニトリル)は、適さない。例えば、アセトニトリルのようにシアノ基を持ったニトリル系では燃焼時にシアンガスが発生するため、毒性の観点から電解液として適さない。
Organic solvent Non-aqueous solvent type electrolyte The organic solvent (non-aqueous solvent) used as the electrolyte of the lithium ion secondary battery is used as it is, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), A carbonate ester solvent such as propylene carbonate (PC) can be used. As a particularly preferable one, for example, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) can be used. Even if it is an organic solvent which melt | dissolves lithium salt, what is not used as electrolyte solution of a lithium ion secondary battery (for example, acetonitrile) is unsuitable. For example, a nitrile system having a cyano group such as acetonitrile generates cyan gas at the time of combustion, and is not suitable as an electrolyte from the viewpoint of toxicity.

リチウム元素を含有する電解質
リチウム元素を含有する電解質としては、上記の有機溶媒中でリチウムイオンが電極間を移動できリチウムイオン二次電池に用いられている電解質であれば限定されず、例えば、LiPF6、LiClO4、LiBF4、LiCF3SO3、LiAsF6、LiB(C654、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32を挙げることができる。構築される二次電池にその電解質がそのまま使用されることで、洗浄加熱等の余分な溶媒乾燥除去作業工程を省くことができることから好ましく、そのような電解質としては、例えば、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32を挙げることができる。特に好ましいのは、酸化分解が発生し難く、非水電解液中の伝導性が高く、実際のリチウムイオン二次電池にも広く使われている六フッ化リン酸リチウム(LiPF6)である。
Electrolyte containing lithium element The electrolyte containing lithium element is not limited as long as the lithium ion can move between the electrodes in the above organic solvent and is used in a lithium ion secondary battery. For example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3, LiN (SO 3 CF 3) 2 can be cited. By using the electrolyte as it is in the secondary battery to be constructed, it is preferable that an extra solvent drying and removing operation step such as washing and heating can be omitted. Examples of such an electrolyte include LiPF 6 and LiBF 4. , LiCF 3 SO 3 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 it can. Particularly preferred is lithium hexafluorophosphate (LiPF 6 ), which does not easily undergo oxidative decomposition, has high conductivity in a non-aqueous electrolyte, and is widely used in actual lithium ion secondary batteries.

また、LiBrやLiClは、リチウム塩であるが、上記電解質の溶質としては適さない。その理由としては、BrやClは、アニオン半径が小さすぎることから、Liとの静電
引力のためにイオン解離が抑制され、電解液溶媒に多くの溶質を溶かしきれないためである。
LiBr and LiCl are lithium salts, but are not suitable as the solute of the electrolyte. This is because Br and Cl have an anion radius that is too small, so that ion dissociation is suppressed due to electrostatic attraction with Li, and many solutes cannot be completely dissolved in the electrolyte solvent.

本発明に従えば、一例として、原料の前駆体固体がLiNaFePO4、NaFeF3、NaMnF3の場合には、以下のイオン交換反応により、各々、非水電解質二次電池用の正極活物質Li2FePO4F、LiFeF3、LiMnF3が生成されるものと考えられる。なお、Li2FePO4Fは、以下の前駆体固体LiNaFePO4Fから生成することもできるが、同様にして、前駆体固体Na2FePO4Fから生成することも可能である。 According to the present invention, as an example, when the raw material precursor solid is LiNaFePO 4 , NaFeF 3 , or NaMnF 3 , a positive electrode active material Li 2 for a nonaqueous electrolyte secondary battery is obtained by the following ion exchange reaction. It is thought that FePO 4 F, LiFeF 3 , and LiMnF 3 are generated. Li 2 FePO 4 F can be produced from the following precursor solid LiNaFePO 4 F, but can also be produced from the precursor solid Na 2 FePO 4 F in the same manner.

〔化1〕
LiNaFePO4F+Li+ → Li2FePO4F+Na+
〔化2〕
NaFeF3+Li+ → LiFeF3+Na+
〔化3〕
NaMnF3+Li+ → LiMnF3+Na+
非水電解質二次電池の正極として、上記の正極活物質をそのまま用いてもよいが、電極のレート特性を向上させるために、公知の導電材との複合体を形成させてもよい。
[Chemical formula 1]
LiNaFePO 4 F + Li + → Li 2 FePO 4 F + Na +
[Chemical 2]
NaFeF 3 + Li + → LiFeF 3 + Na +
[Chemical formula 3]
NaMnF 3 + Li + → LiMnF 3 + Na +
As the positive electrode of the non-aqueous electrolyte secondary battery, the above positive electrode active material may be used as it is, but in order to improve the rate characteristics of the electrode, a composite with a known conductive material may be formed.

すなわち、本発明に従えば、レート特性を向上させる観点から、上記のイオン交換によって得られた正極活物質を、不活性ガス雰囲気下で炭素微粒子と共に粉砕・混合することにより、カーボンコートすることができる。該炭素微粒子としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等を使用することができるが、電極として使用する際の導電性の高さからアセチレンブラックが好適である。不活性ガスとしては、窒素ガスやアルゴンガス等を用いることができ、例えば、アルゴンガスを用いることができる。   That is, according to the present invention, from the viewpoint of improving rate characteristics, the positive electrode active material obtained by the above ion exchange can be carbon coated by pulverizing and mixing together with carbon fine particles in an inert gas atmosphere. it can. As the carbon fine particles, furnace black, channel black, acetylene black, thermal black, and the like can be used, but acetylene black is preferred because of its high conductivity when used as an electrode. As the inert gas, nitrogen gas, argon gas, or the like can be used. For example, argon gas can be used.

カーボンコートの際の粉砕・混合に適用される具体的手段は、特に限定されるものではなく、固形物質の粉砕・混合の目的で従来から用いられている各種の手段が適用可能であるが、好ましいのは、ボールミルであり、そのうち特に、原料を充分に粉砕・混合することができる点から遊星型ボールミル(planetary ball milling)を用いることが好ましい。   Specific means applied to the pulverization / mixing at the time of carbon coating are not particularly limited, and various means conventionally used for the purpose of pulverization / mixing of solid substances can be applied, A ball mill is preferable, and among these, a planetary ball milling is preferably used because the raw materials can be sufficiently pulverized and mixed.

本発明に従えば、以上のようにして得られた正極活物質を含む二次電池正極、および該正極に負極を組み合わせた二次電池が提供される。   According to this invention, the secondary battery positive electrode containing the positive electrode active material obtained as mentioned above and the secondary battery which combined the negative electrode with this positive electrode are provided.

本発明に従う正極を作製する際には、上記の正極活物質を用いるほかは公知の電極の作製方法に従えばよい。例えば、上記活物質の粉末を必要に応じてポリエチレン等の公知の結着材、さらに必要に応じてアセチレンブラック等の公知の導電材と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填したりすることができる。このような正極の例として、ペレット電極がある。ペレット電極としては、例えば、図1(a)に示すように、ペレット電極10aと、スペーサー11aと、コインセル容器(下蓋)12と、チタン製のチタンメッシュ13とから構成することができる。ペレット電極10aは、例えば、10mmの厚さとすることができる。スペーサー11aは、チタンメッシュ13を載置し、このチタンメッシュ13上にペレット電極10aを載置する。   When the positive electrode according to the present invention is manufactured, a known electrode manufacturing method may be followed except that the positive electrode active material described above is used. For example, the active material powder is mixed with a known binder such as polyethylene, if necessary, and a known conductive material such as acetylene black, if necessary, and the resulting mixed powder is made of stainless steel or the like. It can be pressure-molded on the support or filled into a metal container. An example of such a positive electrode is a pellet electrode. As a pellet electrode, as shown to Fig.1 (a), it can comprise from the pellet electrode 10a, the spacer 11a, the coin cell container (lower lid) 12, and the titanium mesh 13 made from titanium, for example. The pellet electrode 10a can have a thickness of 10 mm, for example. The spacer 11 a mounts the titanium mesh 13 and mounts the pellet electrode 10 a on the titanium mesh 13.

また、例えば、上記混合粉末をトルエン等の有機溶剤と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても本発明の正極を作製することができる。このような正極の例として、塗布電極がある。塗布電極としては、例えば、図1(b)に示すように、塗布電極10bと、スペーサー11b
と、コインセル容器(下蓋)12とから構成することができる。塗布電極10bは、例えば、10mmの電極径とすることができる。スペーサー11bは、上面中央部に塗布電極10bがスポット溶接される。
In addition, for example, the positive electrode of the present invention can also be produced by a method such as applying a slurry obtained by mixing the mixed powder with an organic solvent such as toluene onto a metal substrate such as aluminum, nickel, stainless steel, or copper. Can do. An example of such a positive electrode is a coated electrode. As the application electrode, for example, as shown in FIG. 1B, the application electrode 10b and the spacer 11b are used.
And a coin cell container (lower lid) 12. The coating electrode 10b can have an electrode diameter of 10 mm, for example. As for the spacer 11b, the coating electrode 10b is spot-welded in the center part of the upper surface.

以上の正極と組み合わせて用いられる負極(負極活物質)としては、ナトリウムまたはリチウム、それらのアルカリ金属の化合物または合金なども用いることができ、炭素質材料を使用することもできる。本発明に従い負極に用いられる炭素質材料としては、グラファイト(黒鉛系)系炭素体が好ましく、その他に、各種高分子を焼成して得られるハードカーボンなども使用されるが、これらに限定されるものではない。さらに、これらの炭素質材料は二種類以上を混合して用いてもよい。   As the negative electrode (negative electrode active material) used in combination with the above positive electrode, sodium or lithium, a compound or alloy of an alkali metal thereof, or the like can be used, and a carbonaceous material can also be used. As the carbonaceous material used for the negative electrode according to the present invention, a graphite (graphite-based) carbon body is preferable. In addition, hard carbon obtained by firing various polymers is also used, but is not limited thereto. It is not a thing. Furthermore, these carbonaceous materials may be used in combination of two or more.

負極の作製は公知の方法に従えばよく、例えば、正極に関連して上述した方法と同様にして作製することができる。すなわち、例えば、負極活物質の粉末を必要に応じて、既述の公知の結着材、さらに必要に応じて、既述の公知の導電材と混合した後、この混合粉末をシート状に成形し、これをステンレス、銅等の導電体網(集電体)に圧着すればよい。また、例えば、上記混合粉末を既述の公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
その他の構成要素としては、公知の非水電解質二次電池に使用されるものを構成要素として使用できる。例えば、以下のものが例示できる。
The negative electrode may be manufactured by a known method. For example, the negative electrode can be manufactured in the same manner as described above in relation to the positive electrode. That is, for example, if necessary, the negative electrode active material powder is mixed with the known binder described above and, if necessary, the known conductive material described above, and then the mixed powder is formed into a sheet shape. Then, this may be pressure-bonded to a conductor network (current collector) such as stainless steel or copper. Moreover, for example, it can also be produced by applying a slurry obtained by mixing the above mixed powder with the above-mentioned known organic solvent on a metal substrate such as copper.
As another component, what is used for a well-known nonaqueous electrolyte secondary battery can be used as a component. For example, the following can be illustrated.

電解液は通常、電解質及び溶媒を含む。電解液の溶媒としては、非水系であれば特に制限されず、例えば、カーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの例としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等を挙げることができる。これらは1種または2種以上で用いることができ、例えば、ジメチルカーボネートおよびエチレンカーボネートを使用することができる。   The electrolytic solution usually includes an electrolyte and a solvent. The solvent of the electrolytic solution is not particularly limited as long as it is non-aqueous, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, Esters, amides, phosphate ester compounds and the like can be used. Examples of these are 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, γ-butyrolactone, dimethylformamide. Dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane , Propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate and the like. These can be used by 1 type (s) or 2 or more types, for example, can use dimethyl carbonate and ethylene carbonate.

電解液に含まれる電解質としては、上記の溶媒に、負極活物質中のアルカリ金属イオンが、上記の正極活物質及び負極活物質と電気化学反応するための移動を行うことができる電解質、例えば、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiB(C654、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32、NaClO4、NaPF6、NaBF4、NaCF3SO3、NaAsF6、NaB(C654、NaCl、NaBr、CH3SO3Na、CF3SO3Na、NaN(SO2CF32、NaN(SO2252、NaC(SO2CF33、NaN(SO3CF32等を使用することができる。製造コストを抑える観点から、電池を製造する際の電解質と同一のものを使用することが好ましく、特に、電池の電解質として広く使用されている六フッ化リン酸リチウム(LiPF6)を使用することが好ましい。 As an electrolyte contained in the electrolytic solution, an electrolyte capable of performing migration for causing an alkali metal ion in the negative electrode active material to electrochemically react with the positive electrode active material and the negative electrode active material, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3, LiN (SO 3 CF 3) 2, NaClO 4, NaPF 6, NaBF 4, NaCF 3 SO 3, NaAsF 6, NaB (C 6 H 5) 4 , NaCl, NaBr, CH 3 SO 3 Na, CF 3 SO 3 Na, NaN (SO 2 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2 , NaC (SO 2 CF 3 ) 3 , NaN (SO 3 CF 3) using the 2, etc. It can be. From the viewpoint of reducing the manufacturing cost, it is preferable to use the same electrolyte as that used for manufacturing the battery. In particular, lithium hexafluorophosphate (LiPF 6 ) widely used as the battery electrolyte is used. Is preferred.

本発明に係る非水電解質二次電池は、セパレータ、電池ケース他、構造材料等の要素についても従来公知の各種材料を使用することができ、特に制限はない。本発明に係る非水電解質二次電池は、上記の電池要素を用いて公知の方法に従って組み立てればよい。この
場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。
In the nonaqueous electrolyte secondary battery according to the present invention, various conventionally known materials can be used for elements such as a separator, a battery case, and other structural materials, and there is no particular limitation. What is necessary is just to assemble the non-aqueous electrolyte secondary battery which concerns on this invention according to a well-known method using said battery element. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.

以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。
(実施例1)
Li 2 FePO 4 Fの製造
まず、出発原料として、フッ素源のフッ化ナトリウム(NaF、ナカライテスク製 99.1%)と別途固相合成したLiFePO4を用い、乳鉢で10分間混合粉砕し、得られた粉末を単ロール溶融急冷装置でアルゴン雰囲気下、1300℃で加熱溶融後急冷することにより非晶質体を得た。500℃で3時間、アルゴン雰囲気下でアニール処理することによって、前駆体固体であるLiNaFePO4F結晶試料を得た。
EXAMPLES Examples will be described below to more specifically illustrate the features of the present invention, but the present invention is not limited to the following examples.
Example 1
Production of Li 2 FePO 4 F First, as a starting material, sodium fluoride (NaF, manufactured by Nacalai Tesque 99.1%) as a fluorine source and LiFePO 4 separately solid-phase synthesized were mixed and ground for 10 minutes in a mortar. The powder was heated and melted at 1300 ° C. in an argon atmosphere using a single roll melting and quenching apparatus and then quenched to obtain an amorphous body. An annealing treatment was performed at 500 ° C. for 3 hours under an argon atmosphere to obtain a LiNaFePO 4 F crystal sample as a precursor solid.

リチウム源として1mol/dm3 LiPF6/EC:DMC(体積比1:1)(富山薬品工業株式会社製)を使用し、アルゴン雰囲気下のグローブボックス(株式会社高杉製作所製)中にて、LiNaFePO4F:(LiPF6/EC:DMC)=1:40のモル比で秤量し、80oCで5日間撹拌してLi2FePO4Fを合成した。加熱および攪拌にはホットスターラー(アズワン製、DP-1M)を用いた。遠心分離機を用いて10分間の遠心分離を3回行った。得られた沈殿物を一晩80℃で乾燥して合成物を得た。 Using 1 mol / dm 3 LiPF 6 / EC: DMC (volume ratio 1: 1) as a lithium source (manufactured by Toyama Pharmaceutical Co., Ltd.), in a glove box (manufactured by Takasugi Seisakusho Co., Ltd.) under an argon atmosphere, LiNaFePO 4 F: (LiPF 6 / EC: DMC) = 1: 40 was weighed at a molar ratio and stirred at 80 ° C. for 5 days to synthesize Li 2 FePO 4 F. A hot stirrer (manufactured by ASONE, DP-1M) was used for heating and stirring. Centrifugation for 10 minutes was performed 3 times using a centrifuge. The resulting precipitate was dried overnight at 80 ° C. to obtain a composite.

(コインセルの作製)
LiFeF3結晶試料とアセチレンブラック(AB;Acetylene Black)をそれぞれ70:25の重量比でコンポジット化し、このLiFeF3/C複合体と結着剤(PTFE)をそれぞれ95:5の重量比で混合しペレットに成型して正極とした。これらをアルゴン雰囲気下のドライボックス中で、負極にリチウム金属、電解液に1mol/dm3 LiPF6 EC+DMC(体積比1:1)を用いコインセルを作製した。
(Production of coin cell)
The LiFeF 3 crystal sample and acetylene black (AB) were each composited at a weight ratio of 70:25, and the LiFeF 3 / C composite and the binder (PTFE) were mixed at a weight ratio of 95: 5. The positive electrode was molded into a pellet. A coin cell was produced in a dry box under an argon atmosphere using lithium metal as a negative electrode and 1 mol / dm 3 LiPF 6 EC + DMC (volume ratio 1: 1) as an electrolyte.

(XRD測定)
出発物質であるLiNaFePO4Fと得られた試料のXRDパターン結果を図2(a)に示す。イオン交換前後の粉末5mgを塩酸に溶かして水で希釈し、試料溶液とした。AB/LiFeF3複合体を洗浄後、アルゴン雰囲気下のグローブボックス内でXRD測定を行った。XRD測定は、XRD回折装置(リガク製、RINT-TTRIII)を用い、走査範囲を20°-50°、スキャンスピードを0.06°/分、X線50kV/300mA、走査モード2θ/θ、サンプリング幅0.01°の条件で行った。
(XRD measurement)
FIG. 2 (a) shows the XRD pattern results of LiNaFePO 4 F as a starting material and the obtained sample. 5 mg of the powder before and after ion exchange was dissolved in hydrochloric acid and diluted with water to obtain a sample solution. After the AB / LiFeF3 composite was washed, XRD measurement was performed in a glove box under an argon atmosphere. XRD measurement uses an XRD diffractometer (RINT-TTRIII, manufactured by Rigaku), scanning range 20 ° -50 °, scanning speed 0.06 ° / min, X-ray 50kV / 300mA, scanning mode 2θ / θ, sampling width 0.01 It was performed under the condition of °.

XRD測定結果から、斜方晶構造(空間群Pnma)を有するLi2NiPO4FのXRDパターンと良い一致を示した。さらに、得られた試料に対して、偏光ゼーマン原子吸光光度計[Z-5310、日立ハイテクノロジーズ(株)製]を用いて、Li、Na、およびFeについて原子吸光測定を行った結果を図2(b)に示す。同図(b)から、イオン交換によりすべてのナトリウム元素がリチウム元素にイオン交換されたことがわかった。以上の結果から、1mol/dm3 LiPF6/EC:DMC(体積比1:1)を用いたイオン交換法により斜方晶構造のLi2FePO4Fが合成されたことが分かった。 The XRD measurement results showed good agreement with the XRD pattern of Li 2 NiPO 4 F having an orthorhombic structure (space group Pnma). Furthermore, the results of atomic absorption measurement of Li, Na, and Fe using the polarized Zeeman atomic absorption spectrophotometer [Z-5310, manufactured by Hitachi High-Technologies Corporation] for the obtained sample are shown in FIG. Shown in (b). From FIG. 5B, it was found that all sodium elements were ion-exchanged to lithium elements by ion exchange. From the above results, it was found that Li 2 FePO 4 F having an orthorhombic structure was synthesized by an ion exchange method using 1 mol / dm 3 LiPF 6 / EC: DMC (volume ratio 1: 1).

(充放電試験)
作製したコインセルで、負極にナトリウム金属、電解液に1mol/dm3過塩素酸ナトリウム/エチレンカーボネート+ジメチルカーボネート[LiPF6/EC+DMC (体積比1:1)]を用いて充放電試験をCCVモードで行った。電流密度は0.068mA/cm2、電圧範囲は2.0-4.5Vで行った。1サイクル及び2サイクル目の充放電曲線を図2(c)に示す。得られた充放電曲線から、初期放電容量は160mAh/gであり、1電子以上の反応で過電圧も小さいことが示された。
(Charge / discharge test)
Using the manufactured coin cell, CCV was charged and discharged using sodium metal as the negative electrode and 1 mol / dm 3 sodium perchlorate / ethylene carbonate + dimethyl carbonate [LiPF 6 / EC + DMC (volume ratio 1: 1)] as the electrolyte. Went in mode. The current density was 0.068 mA / cm 2 and the voltage range was 2.0-4.5V. The charge / discharge curves for the first and second cycles are shown in FIG. From the obtained charge / discharge curve, it was shown that the initial discharge capacity was 160 mAh / g, and the overvoltage was small due to the reaction of one electron or more.

(実施例2)
LiFeF 3 の製造
液相法(溶媒比OA/OAm=10/10)で合成したNaFeF30.33 mmol(45.3mg)と、1M LiPF6/EC+DMC(体積比1:1) 40 mmol(40mL)をアルゴン雰囲気下のグローブボックス内(美和製作所製)で密閉し、300 rpm、80℃で15日間撹拌した。加熱および攪拌にはホットスターラー(アズワン製、DP-1M)を用いた。遠心分離機を用いて10 分間の遠心分離を3 回行った。得られた沈殿物を一晩80℃で乾燥して合成物を得た。得られた沈殿物を一晩80℃で乾燥して合成物を得た。
(Example 2)
And NaFeF 3 0.33 mmol (45.3mg) which was prepared in Preparative liquid phase of LiFeF 3 (solvent ratio OA / OAm = 10/10) , 1M LiPF6 / EC + DMC ( volume ratio 1: 1) 40 mmol of (40 mL) It sealed in the glove box (made by Miwa Seisakusho) under argon atmosphere, and stirred at 300 rpm and 80 degreeC for 15 days. A hot stirrer (manufactured by ASONE, DP-1M) was used for heating and stirring. Centrifugation was performed 3 times for 10 minutes using a centrifuge. The resulting precipitate was dried overnight at 80 ° C. to obtain a composite. The resulting precipitate was dried overnight at 80 ° C. to obtain a composite.

(XRD測定)
上述の実施例1と同じ方法でコインセルを作製し、XRD測定を行った。XRD測定の結果を図3(a)に示す。回折ピークから、電解液に浸漬していた電極が高角度側にシフトしていることから、NaFeF3 粉末を電解液に浸しておくのみのイオン交換によって構造が変化したことが分かった。イオン交換して得られた粉末の原子吸光結果を同図(b)に示す。また交換処理時間とイオン交換反応の関係図を同図(c)に示す。5日間の撹拌で、約79 %のNaとLiのイオン交換が確認された。10日間の撹拌で約95 %のイオン交換が確認された。15 日間の撹拌では約96 %のイオン交換が確認された。以上の結果から、1 mol/dm3 LiPF6/EC:DMC(体積比1:1)を用いたイオン交換法によりLiFeF3が合成されたことが分かった。
(XRD measurement)
A coin cell was produced by the same method as in Example 1 above, and XRD measurement was performed. The result of XRD measurement is shown in FIG. From the diffraction peak, since the electrode immersed in the electrolyte was shifted to a higher angle side, it was found that the structure was changed by ion exchange only by immersing the NaFeF 3 powder in the electrolyte. The atomic absorption results of the powder obtained by ion exchange are shown in FIG. The relationship between the exchange treatment time and the ion exchange reaction is shown in FIG. About 79% of Na and Li ion exchange was confirmed by stirring for 5 days. About 95% ion exchange was confirmed by stirring for 10 days. About 15% ion exchange was confirmed after 15 days of stirring. From the above results, it was found that LiFeF 3 was synthesized by an ion exchange method using 1 mol / dm 3 LiPF 6 / EC: DMC (volume ratio 1: 1).

(充放電試験)
作製したコインセルで、負極にナトリウム金属、電解液に1 mol/dm3 過塩素酸ナトリウム/エチレンカーボネート+ジメチルカーボネート[ LiPF6 /EC+DMC(体積比1:1)]を用いて、25 ℃の恒温槽内で充放電試験をCCVモードで行った。測定条件は、充放電電流値を定電流1/10 C (22.4 mA/g)、1 C (224 mA/g)レート、電圧範囲を2.0-4.5 V、休止時間を1時間で行った。測定結果を図4に示す。この結果から、本発明に従い製造されたAB/LiFeF3 複合体は、初回放電容量が196mAh/gを示し、初回充電容量も放電とほぼ同じ199 mAh/gを示したことから、充放電特性に優れた正極材料がイオン交換により得られたことが示された。また、すべての測定条件でイオン交換前より放電容量が向上した。これは正極活物質内に含まれているナトリウム元素がイオン交換により減少したことで、ナトリウム元素によるイオン挿入脱離反応の妨害等が抑制されたためだと推察される。
(Charge / discharge test)
In the produced coin cell, sodium metal for the negative electrode and 1 mol / dm 3 sodium perchlorate / ethylene carbonate + dimethyl carbonate for the electrolyte [ Using LiPF 6 / EC + DMC (volume ratio 1: 1)], a charge / discharge test was conducted in a CCV mode in a constant temperature bath at 25 ° C. Measurement conditions were such that the charge / discharge current value was a constant current 1/10 C (22.4 mA / g), 1 C (224 mA / g) rate, the voltage range was 2.0-4.5 V, and the rest time was 1 hour. The measurement results are shown in FIG. From this result, the AB / LiFeF3 composite produced according to the present invention has an excellent initial charge capacity of 196 mAh / g and an initial charge capacity of 199 mAh / g, which is almost the same as the discharge. The positive electrode material was obtained by ion exchange. In addition, the discharge capacity improved before ion exchange under all measurement conditions. This is presumed to be because the sodium element contained in the positive electrode active material was reduced by ion exchange, so that interference of the ion insertion and desorption reaction by the sodium element was suppressed.

(実施例3)
LiMnF 3 の製造
上記実施例2のNaFeF3をNaMnF3に置き換えて、実施例2と同じ手順によって、メカノケミカル法で合成したNaMnF3 からLiMnF3を合成した。上述の実施例1と同じ方法で、コインセルを作製した。得られた試料に対して、偏光ゼーマン原子吸光光度計(Z-5310、日立ハイテクノロジーズ(株)製)を用いて、Li、Na、およびFeについて原子吸光測定を行い、イオン交換により約75%のナトリウム元素とリチウム元素がイオン交換できたことがわかった。以上の結果から、1 mol/dm3 LiPF6/EC:DMC(体積比1:1)を用いたイオン交換法によりLiMnF3が合成されたことが分かった。
(Example 3)
Replacing NaFeF 3 manufacturing the second embodiment of LiMnF 3 to NaMnF 3, by the same procedure as in Example 2, was synthesized LiMnF 3 from NaMnF 3 synthesized by mechanochemical method. A coin cell was produced by the same method as in Example 1 described above. The obtained sample was subjected to atomic absorption measurement for Li, Na, and Fe using a polarized Zeeman atomic absorption photometer (Z-5310, manufactured by Hitachi High-Technologies Corporation), and about 75% by ion exchange. It was found that the sodium element and the lithium element were ion exchanged. From the above results, it was found that LiMnF 3 was synthesized by an ion exchange method using 1 mol / dm 3 LiPF 6 / EC: DMC (volume ratio 1: 1).

10a ペレット電極
10b 塗布電極
11a スペーサー
11b スペーサー
12 コインセル容器(下蓋)
13 チタンメッシュ
10a pellet electrode 10b coating electrode 11a spacer 11b spacer 12 coin cell container (lower lid)
13 Titanium mesh

Claims (8)

リチウムおよびフッ素を構成元素として含み非水電解質二次電池の正極となる活物質を製造する方法であって、ナトリウムおよびフッ素を構成元素として含み前記正極活物質の前駆体となる固体を、リチウム元素を含有する電解質を含む有機溶媒中に浸漬して前記正極活物質を得る工程を含み、前記リチウム元素を含有する電解質および前記有機溶媒が非水電解質リチウムイオン二次電池の電解液として用いられているものであることを特徴とする正極活物質の製造方法。   A method for producing an active material containing lithium and fluorine as constituent elements and serving as a positive electrode of a non-aqueous electrolyte secondary battery, wherein a solid containing sodium and fluorine as constituent elements and serving as a precursor of the positive electrode active material A step of obtaining the positive electrode active material by immersing in an organic solvent containing an electrolyte containing, wherein the electrolyte containing the lithium element and the organic solvent are used as an electrolyte of a non-aqueous electrolyte lithium ion secondary battery. A method for producing a positive electrode active material, comprising: 電解質がフッ素元素を含有することを特徴とする請求項1に記載の正極活物質の製造方法。   The method for producing a positive electrode active material according to claim 1, wherein the electrolyte contains a fluorine element. 電解質がLiPF6であり、有機溶媒がエチレンカーボナイト及びジメチルカーボナイトから成ることを特徴とする請求項2に記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 2, wherein the electrolyte is LiPF 6 and the organic solvent is composed of ethylene carbonate and dimethyl carbonite. 前駆体固体がNa2FePO4FまたはLiNaFePO4Fであり、得られる正極活物質がLi2NaFePO4Fであることを特徴とする請求項1〜3のいずれかに記載の正極活物質の製造方法。 The precursor solid is Na 2 FePO 4 F or LiNaFePO 4 F, and the obtained positive electrode active material is Li 2 NaFePO 4 F, The production of the positive electrode active material according to claim 1, Method. 前駆体固体がNaFeF3であり、得られる正極活物質がLiFeF3であることを特徴とする請求項1〜3のいずれかに記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1, wherein the precursor solid is NaFeF 3 , and the obtained positive electrode active material is LiFeF 3 . 前駆体固体がNaMnF3であり、得られる正極活物質がLiMnF3であることを特徴とする請求項1〜3のいずれかに記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to claim 1, wherein the precursor solid is NaMnF 3 , and the obtained positive electrode active material is LiMnF 3 . 請求項1〜6のいずれかの方法により製造された非水電解質二次電池用正極活物質。   The positive electrode active material for nonaqueous electrolyte secondary batteries manufactured by the method in any one of Claims 1-6. 請求項7の正極活物質を用いる非水電解質二次電池。   A nonaqueous electrolyte secondary battery using the positive electrode active material according to claim 7.
JP2011070785A 2011-03-28 2011-03-28 Positive electrode active material, and method for manufacturing the same Pending JP2012204307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070785A JP2012204307A (en) 2011-03-28 2011-03-28 Positive electrode active material, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070785A JP2012204307A (en) 2011-03-28 2011-03-28 Positive electrode active material, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012204307A true JP2012204307A (en) 2012-10-22

Family

ID=47185058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070785A Pending JP2012204307A (en) 2011-03-28 2011-03-28 Positive electrode active material, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012204307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
WO2015075811A1 (en) * 2013-11-22 2015-05-28 株式会社日立製作所 Electrolyte solution for lithium ion secondary batteries
WO2016103558A1 (en) * 2014-12-25 2016-06-30 信越化学工業株式会社 Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
JP2019091558A (en) * 2017-11-13 2019-06-13 大陽日酸株式会社 Manufacturing method of positive electrode active material
CN112133891A (en) * 2019-06-24 2020-12-25 本田技研工业株式会社 Positive electrode for lithium ion battery, and method for producing positive electrode for lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220650A (en) * 2006-01-23 2007-08-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2008071702A (en) * 2006-09-15 2008-03-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
US20080153002A1 (en) * 2006-11-27 2008-06-26 Nazar Linda Faye Mixed Lithium/Sodium Ion Iron Fluorophosphate Cathodes for Lithium Ion Batteries
JP2010225378A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Lithium secondary battery
JP2010238603A (en) * 2009-03-31 2010-10-21 Toda Kogyo Corp Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2010272376A (en) * 2009-05-21 2010-12-02 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having this electrolyte
JP2011165392A (en) * 2010-02-05 2011-08-25 Equos Research Co Ltd Positive electrode active material, manufacturing method of positive electrode active material, and alkaline metal ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220650A (en) * 2006-01-23 2007-08-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2008071702A (en) * 2006-09-15 2008-03-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
US20080153002A1 (en) * 2006-11-27 2008-06-26 Nazar Linda Faye Mixed Lithium/Sodium Ion Iron Fluorophosphate Cathodes for Lithium Ion Batteries
JP2010225378A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Lithium secondary battery
JP2010238603A (en) * 2009-03-31 2010-10-21 Toda Kogyo Corp Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2010272376A (en) * 2009-05-21 2010-12-02 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having this electrolyte
JP2011165392A (en) * 2010-02-05 2011-08-25 Equos Research Co Ltd Positive electrode active material, manufacturing method of positive electrode active material, and alkaline metal ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
US10629902B2 (en) 2013-07-03 2020-04-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2015075811A1 (en) * 2013-11-22 2015-05-28 株式会社日立製作所 Electrolyte solution for lithium ion secondary batteries
WO2016103558A1 (en) * 2014-12-25 2016-06-30 信越化学工業株式会社 Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
JP2016122582A (en) * 2014-12-25 2016-07-07 信越化学工業株式会社 Lithium phosphorus-based complex oxide carbon composite, manufacturing method thereof, electrochemical device, and lithium ion secondary battery
CN107112532A (en) * 2014-12-25 2017-08-29 信越化学工业株式会社 Lithium phosphorus-based complex oxide carbon complex and its manufacture method and electrochemical device and lithium rechargeable battery
JP2019091558A (en) * 2017-11-13 2019-06-13 大陽日酸株式会社 Manufacturing method of positive electrode active material
JP7048266B2 (en) 2017-11-13 2022-04-05 大陽日酸株式会社 Manufacturing method of positive electrode active material
CN112133891A (en) * 2019-06-24 2020-12-25 本田技研工业株式会社 Positive electrode for lithium ion battery, and method for producing positive electrode for lithium ion battery

Similar Documents

Publication Publication Date Title
JP5835107B2 (en) Nonaqueous electrolyte secondary battery
Zhu et al. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries
JP5091517B2 (en) Fluoride cathode fabrication method
JP5831268B2 (en) Secondary battery active material and method for producing the same
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
KR101159085B1 (en) Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP5991680B2 (en) Method for producing oxyfluorolite-based positive electrode active material and oxyfluorolite-based positive electrode active material
US20160149259A1 (en) Sulfide solid electrolyte material, sulfide glass, solid state lithium battery, and method for producing sulfide solid electrolyte material
Jeong et al. Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries
JP2005317512A (en) Nonaqueous electrolyte battery
US10205168B2 (en) Sodium transition metal silicates
JP2006155941A (en) Method of manufacture for electrode active material
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
WO2014171053A1 (en) Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery
CN103782439A (en) Non-aqueous electrolyte secondary battery
JP2012204307A (en) Positive electrode active material, and method for manufacturing the same
JP2022522559A (en) Coated Lithium Ion Rechargeable Battery Active Material
RU2656241C1 (en) Silicon material and negative electrode of secondary battery
JP2010034006A (en) Solid lithium battery
Li et al. Novel cathode materials LixNa2− xV2O6 (x= 2, 1.4, 1, 0) for high-performance lithium-ion batteries
JP5721171B2 (en) Electrode active material and method for producing the same
JP5765811B2 (en) Method for producing lithium iron phosphate positive electrode active material
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
JP4887743B2 (en) Non-aqueous electrolyte battery
JP2013105649A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119