WO2015075811A1 - Electrolyte solution for lithium ion secondary batteries - Google Patents

Electrolyte solution for lithium ion secondary batteries Download PDF

Info

Publication number
WO2015075811A1
WO2015075811A1 PCT/JP2013/081499 JP2013081499W WO2015075811A1 WO 2015075811 A1 WO2015075811 A1 WO 2015075811A1 JP 2013081499 W JP2013081499 W JP 2013081499W WO 2015075811 A1 WO2015075811 A1 WO 2015075811A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
electrolyte
secondary battery
metal salt
Prior art date
Application number
PCT/JP2013/081499
Other languages
French (fr)
Japanese (ja)
Inventor
繁貴 坪内
西村 勝憲
渉平 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/081499 priority Critical patent/WO2015075811A1/en
Publication of WO2015075811A1 publication Critical patent/WO2015075811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution for a lithium ion secondary battery and a lithium ion secondary battery including the electrolyte solution.
  • Lithium ion secondary batteries have a high energy density, and are therefore attracting attention as secondary batteries used in various applications such as portable electronic devices, mobile devices, power tools, nursing care devices, automobiles, aircraft, and power storage batteries. ing.
  • a lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution containing an electrolyte containing a lithium ion salt as basic components.
  • the electrolytic solution contains lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of an organic solvent containing a cyclic carbonate and a chain carbonate.
  • the mixed solution of organic solvent is flammable. For this reason, when a lithium ion secondary battery short-circuits, it may ignite and the fire may generate
  • Patent Document 1 describes a flame-retardant electrolyte solution that uses a phosphate ester-containing solvent in a lithium battery electrolyte solution in which a lithium salt is dissolved in an organic solvent.
  • This document describes trimethyl phosphate (TMP), dimethyl ethyl phosphate, methyl ethyl propyl phosphate and the like as the phosphate ester.
  • Patent Document 2 describes a fluorine-containing phosphate ester for a non-aqueous electrolytic solution represented by the general formula (1) and having a fluorine atom content of 30% or more by weight.
  • Patent Document 3 describes a flame retardant electrolytic solution characterized in that, in an electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent, the organic solvent contains at least one phosphorus compound represented by the general formula (I). To do.
  • Non-Patent Document 1 describes the effect of calcium salt addition on the electrochemical behavior of a graphite negative electrode in an electrolyte based on ethylene carbonate (EC) containing 40% by volume of TMP.
  • phosphorus compounds such as phosphoric acid esters are known as flame retardants used in organic solvents for electrolytes for lithium ion secondary batteries.
  • TMP described in Patent Document 1 when used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, TMP can form a solvated molecule with lithium ions of the electrolyte. Such solvated molecules may be co-inserted into the graphite used as the negative electrode. Therefore, a lithium ion secondary battery manufactured using TMP as a flame retardant for an electrolytic solution may have a reduced charge / discharge efficiency.
  • a fluorine-based phosphorus compound such as the fluorine-containing phosphate described in Patent Document 2 generally has low electrolyte solubility. For this reason, when such a fluorine-based phosphorus compound is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, the conductivity of the electrolyte solution is reduced, and the resulting lithium ion secondary battery is charged at a high rate. Discharge characteristics may be degraded.
  • the fluorine-based phosphorus compound has a higher molecular weight than an unsubstituted phosphorus compound, the vapor pressure can be reduced. For this reason, the function as a flame retardant of such a fluorine-type phosphorus compound may fall.
  • an object of the present invention is to provide an electrolyte for a lithium ion secondary battery excellent in flame retardancy and battery performance.
  • the electrolyte for a lithium ion secondary battery of the present invention has the formula (I): [Where: R 1 , R 2 and R 3 are independently of each other C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. ]
  • An organic solvent containing a compound represented by in is selected from LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiClO 4, the group consisting of LiCF 3 CO 2, LiAsF 6 and LiSbF 6 It contains an electrolyte that is one or more lithium salts and an additive composed of an alkali metal salt or an alkaline earth metal salt.
  • the lithium ion secondary battery of the present invention also includes the electrolyte for a lithium ion secondary battery of the present invention, a positive electrode, and a negative electrode.
  • an electrolyte for a lithium ion secondary battery that is excellent in flame retardancy and battery performance.
  • FIG. 1 shows the change amount (ppm) of the chemical shift of the oxygen atom of the carbonyl group (C ⁇ O) of EC determined from the 17 O NMR spectrum of the organic solvent (EC) in the electrolytic solution of Example or Comparative Example. It is a figure which shows the relationship with the charging / discharging efficiency (%) of the lithium ion secondary battery of an Example or a comparative example.
  • Electrolyte for lithium ion secondary battery> The present invention relates to an electrolyte solution for a lithium ion secondary battery.
  • the electrolyte solution for a lithium ion secondary battery of the present invention needs to contain an organic solvent, an electrolyte, and an additive composed of an alkali metal salt or an alkaline earth metal salt.
  • the organic solvent has the formula (I): It is necessary to contain the compound represented by these.
  • R 1 , R 2 and R 3 need to be, independently of each other, C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. It is preferable that at least two of R 1 , R 2 and R 3 are independently C 1 -C 2 alkoxyl, and R 1 , R 2 and R 3 are methoxyl, or R 1 More preferably, R 2 is methoxyl and R 3 is methyl.
  • “C 1 -C 2 alkyl” and “C 1 -C 2 alkoxyl” mean an unsubstituted group.
  • TMP trimethyl phosphate
  • DMMP dimethyl methylphosphonate
  • the compound represented by the formula (I) has low flammability compared to one or more additional organic solvents described below. Therefore, the compound represented by the formula (I) can be used as a flame retardant in the electrolyte for a lithium ion secondary battery of the present invention.
  • the compound represented by the formula (I) has a higher donor number than one or more additional organic solvents described below.
  • the compound represented by the formula (I) has higher electrolyte solubility than a fluorine-based phosphorus compound such as the fluorine-containing phosphate described in Patent Document 2. Therefore, the compound represented by the formula (I) can dissolve a desired amount of electrolyte even when used alone as an organic solvent without being mixed with other organic solvents.
  • the organic solvent may be used in a form consisting only of the compound represented by the formula (I), and if desired, a mixture of the compound represented by the formula (I) and one or more additional organic solvents (hereinafter referred to as “a mixture”). , Also referred to as “mixed solution”).
  • one or more additional organic solvents include cyclic carbonates commonly used in the art, such as ethylene carbonate (EC) or propylene carbonate; Linear or branched) carbonates such as dimethyl carbonate, ethyl methyl carbonate (EMC) or diethyl carbonate; cyclic ethers such as tetrahydrofuran, 1,3-dioxolane; linear (linear or branched) ethers; Examples thereof include dimethoxyethane; cyclic esters such as ⁇ -butyrolactone; and chain (linear or branched) esters such as methyl acetate or ethyl acetate.
  • cyclic carbonates commonly used in the art, such as ethylene carbonate (EC) or propylene carbonate
  • Linear or branched) carbonates such as dimethyl carbonate, ethyl methyl carbonate (EMC) or diethyl carbonate
  • cyclic ethers such as tetrahydrofuran, 1,
  • the one or more additional organic solvents are preferably selected from the group consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and propylene carbonate.
  • the content of the compound represented by formula (I) in the organic solvent is preferably at least 10% by volume, more preferably at least 40% by volume, and more preferably at least 50% with respect to the total volume of the organic solvent. More preferably, it is volume%.
  • the content of the compound represented by the formula (I) in the organic solvent is preferably in the range of 10 to 100% by volume, and in the range of 40 to 100% by volume with respect to the total volume of the organic solvent. More preferably, it is more preferably in the range of 50 to 100% by volume, and particularly preferably in the range of 50 to 60% by volume.
  • the electrolyte is from LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiClO 4, LiCF 3 CO 2, LiAsF 6 and LiSbF 6 It is necessary to be at least one lithium salt selected from the group consisting of
  • the electrolyte is preferably LiPF 6 .
  • LiPF 6 has high ionic conductivity and high solubility in the organic solvent described above. Therefore, by using LiPF 6 as the electrolyte, the battery characteristics (for example, charge / discharge characteristics) of the resulting lithium ion secondary battery can be improved.
  • LiN (SO 2 CF 3 ) 2 As an electrolyte used for an electrolyte for a lithium ion secondary battery, not only the above compound but also LiN (SO 2 CF 3 ) 2 is known (Takeuchi, S. et al., J Electrochem Soc, 159 (12) , A2089-A2091, 2012). However, when an electrolyte having a large anion radius such as LiN (SO 2 CF 3 ) 2 is applied to the electrolyte for a lithium ion secondary battery of the present invention, it is expressed by the formula (I) described below. May inhibit the formation of a solvate between the compound to be added and the alkali metal ion or alkaline earth metal ion of the additive, and may not exhibit the desired effect. Therefore, LiN (SO 2 CF 3 ) 2 is not preferable as an electrolyte used in the electrolyte solution for a lithium ion secondary battery of the present invention.
  • the electrolyte is preferably contained at a concentration of at least 0.5 mol / L (mol / dm ⁇ 3 ).
  • the concentration is a molar concentration with respect to the total volume of the electrolytic solution.
  • the concentration of the electrolyte is preferably in the range of 0.5 to 2 mol / L, more preferably in the range of 0.5 to 1.5 mol / L, and particularly preferably in the range of 0.5 to 1 mol / L.
  • the present inventors add a specific alkali metal salt or alkaline earth metal salt as an additive. By this, it discovered that formation of the solvation molecule
  • the reason why the electrolytic solution for lithium ion secondary battery of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
  • the lithium ions constituting the electrolyte usually form solvated molecules with an organic solvent.
  • the ability to form solvates with lithium ions (hereinafter also referred to as “solvation ability”) is higher as the electrolyte has a higher solubility and a larger donor number.
  • the compound represented by the formula (I) has a high solvating ability as compared with the one or more additional organic solvents. Therefore, when the compound represented by the formula (I) is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, a solvated molecule can be formed with lithium ions constituting the electrolyte.
  • the solvated molecule of the compound represented by the formula (I) and lithium ions is co-inserted into graphite used as the negative electrode, and as a result, the battery characteristics (for example, charge / discharge characteristics) of the lithium ion secondary battery are lowered. There is a possibility to make it.
  • the compound represented by the formula (I) takes precedence over lithium ions.
  • solvates can be formed with alkali metal ions or alkaline earth metal ions.
  • the electrolytic solution for a lithium ion secondary battery of the present invention contains an additive composed of an alkali metal salt or an alkaline earth metal salt in addition to the organic solvent containing the compound represented by the formula (I). It is necessary.
  • the additive includes, for example, an alkali metal ion or alkaline earth metal ion (cation) other than lithium, such as Na + , Mg 2+ , Ca 2+ , Sr 2+ or Ba 2+ , PF 6 ⁇ , BF 4 -, ClO 4 -, SO 3 CF 3 -, N (SO 2 F 2) 2-, (N (SO 2 CF 3) 2) 2-, N (SO 2 CF 2 CF 3) 2-, Br - or I - consisting of salts with anions such as.
  • an alkali metal ion or alkaline earth metal ion (cation) other than lithium such as Na + , Mg 2+ , Ca 2+ , Sr 2+ or Ba 2+ , PF 6 ⁇
  • the additive consisting of the alkali metal salt or alkaline earth metal salt includes Na + , Ca 2+ or Mg 2+ , PF 6 ⁇ , BF 4 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 F 2 ) 2.
  • (N (SO 2 CF 3) 2) 2- or I - is preferably one or more salts formed from and, NaPF 6, NaSO 3 CF 3 , NaN (SO 2 CF 3) 2, More preferably, it is at least one salt selected from the group consisting of Ca (N (SO 2 CF 3 ) 2 ) 2 , Mg (N (SO 2 CF 3 ) 2 ) 2 and CaI 2 , NaPF 6 , Particularly preferred is one or more salts selected from the group consisting of Ca (N (SO 2 CF 3 ) 2 ) 2 and Mg (N (SO 2 CF 3 ) 2 ) 2 .
  • the alkali metal salt or alkaline earth metal salt in particular, one selected from the group consisting of NaPF 6 , Ca (N (SO 2 CF 3 ) 2 ) 2 and Mg (N (SO 2 CF 3 ) 2 ) 2
  • the above salts have high Lewis acidity compared to lithium ions, and have high solubility in the organic solvent described above. Therefore, the inclusion of these additives in the lithium ion secondary battery electrolyte of the present invention substantially prevents the formation of a solvated molecule between the lithium ion of the electrolyte and the compound represented by formula (I). It can suppress and can improve the battery characteristic (for example, charging / discharging characteristic) of a lithium ion secondary battery.
  • the formation of the solvated molecule is not limited.
  • it can be represented by an organic solvent or a formula (I) according to 17 O nuclear magnetic resonance (NMR) spectrum under the condition that the additive is included or not. This can be determined by observing changes in the chemical shift of the oxygen atom of the compound.
  • the additive comprising the alkali metal salt or alkaline earth metal salt is preferably contained at a concentration of at least 0.05 mol / L (mol / dm ⁇ 3 ). .
  • the concentration is a molar concentration with respect to the total volume of the electrolytic solution.
  • the concentration of the additive comprising the alkali metal salt or alkaline earth metal salt is preferably in the range of 0.05 to 1 mol / L, more preferably in the range of 0.05 to 0.5 mol / L, and more preferably 0.05 to 0.1. A range of mol / L is particularly preferred.
  • the present invention also relates to a lithium ion secondary battery.
  • the lithium ion secondary battery of this invention is equipped with the electrolyte solution for lithium ion secondary batteries, a positive electrode, and a negative electrode.
  • the electrolyte for a lithium ion secondary battery is the electrolyte for a lithium ion secondary battery of the present invention described above.
  • the lithium ion secondary battery of the present invention can be applied to a technical field such as a separator, a battery container, a positive electrode current collector tab, a negative electrode current collector tab, an insulating plate, a gasket, or a battery lid that also serves as a positive electrode external terminal. It is also possible to provide various members of a lithium ion secondary battery that is normally used.
  • any material can be used without particular limitation as long as it is a material mainly composed of carbon capable of occluding and releasing lithium ions, which is usually used in the technical field.
  • the negative electrode include graphite such as artificial graphite or natural graphite, amorphous carbon, non-graphitizable carbons, activated carbon, coke, pyrolytic carbon, and a mixture thereof. Of the materials, graphite is preferred.
  • Graphite is a material having a high ability to occlude and release lithium ions.
  • a positive electrode material such as lithium cobaltate, lithium manganate, or lithium nickelate that is usually used in the technical field can be used.
  • the lithium ion secondary battery of the present invention may be used alone or in the form of a module in which a plurality of lithium ion secondary batteries are connected.
  • the lithium ion secondary battery electrolyte of the present invention is excellent in flame retardancy and battery performance. For this reason, the lithium ion secondary battery using the electrolyte solution for lithium ion secondary batteries of the present invention can be made higher in safety and higher performance than the conventional product.
  • the lithium ion secondary battery of the present invention can be used for various applications such as portable electronic devices, mobile devices, electric tools, nursing care devices, automobiles, airplanes, or power storage batteries. Is possible.
  • a lithium ion secondary battery was produced using an electrolytic solution having a predetermined composition shown below.
  • a graphite negative electrode was used as a working electrode
  • Li metal was used as a counter electrode and a reference electrode.
  • Test method> [2-1. Solubility test of electrolyte in flame retardant] Using the flame retardant contained in the organic solvent as a medium, the solubility of the electrolyte in the flame retardant was measured.
  • the formula amount of LiPF 6 is 151.91 and the density (g / mL) of TMP or DMMP is 1.197 or 1.16, respectively. Therefore, the solubility (g / 100 g medium) of LiPF 6 in TMP or DMMP was calculated to be 25.4 or more or 26.2 or more, respectively (25 ° C.).
  • Example 1 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaPF 6 was dissolved as an additive.
  • Example 2 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaSO 3 CF 3 was dissolved as an additive.
  • Example 3 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaN (SO 2 CF 3 ) 2 was dissolved as an additive.
  • Example 4 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). 0.5 mol / dm ⁇ 3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive in the obtained solution.
  • Example 5 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the resulting solution, 0.5 mol / dm ⁇ 3 Mg (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
  • the lithium ion secondary battery including the electrolyte solutions of Examples 1 to 5 containing the additive composed of an alkali metal salt or an alkaline earth metal salt is the electrolyte of Comparative Example 1 containing no additive. Compared with a lithium ion secondary battery provided with a liquid, charge / discharge efficiency was improved.
  • Example 6 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaPF 6 was dissolved as an additive.
  • Example 7 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaSO 3 CF 3 was dissolved as an additive.
  • Example 8 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm ⁇ 3 NaN (SO 2 CF 3 ) 2 was dissolved as an additive.
  • Example 9 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). 0.5 mol / dm ⁇ 3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive in the obtained solution.
  • Example 10 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the resulting solution, 0.5 mol / dm ⁇ 3 Mg (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
  • Lithium ion secondary batteries were fabricated using the electrolyte solutions of Examples 6 to 10 and Comparative Example 2. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary batteries of Examples 6 to 10 and Comparative Example 2 was calculated. The results are shown in Table 2.
  • the lithium ion secondary batteries provided with the electrolytic solutions of Examples 6 to 10 containing the additive composed of an alkali metal salt or an alkaline earth metal salt are the electrolytes of Comparative Example 2 containing no additive.
  • charge / discharge efficiency was improved. The above effects were confirmed not only when TMP was used as a flame retardant contained in an organic solvent (Examples 1 to 5) but also when DMMP was used (Examples 6 to 10).
  • Example 11 1.0 mol / dm -3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 28.3: 56.7: 15). In the obtained solution, 0.1 mol / dm ⁇ 3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
  • the lithium ion secondary battery provided with the electrolyte solution of Example 11 containing an additive composed of an alkali metal salt or an alkaline earth metal salt is the electrolyte solution of Comparative Example 3 containing no additive.
  • the charge / discharge efficiency was improved. The above effect was confirmed in the same manner even when the composition of the organic solvent and the amount of additive were different from those in Examples 1 to 10.
  • Example 12 1.0 mol / dm ⁇ 3 LiPF 6 was dissolved in an organic solvent solution containing only DMMP. In the obtained solution, 0.2 mol / dm ⁇ 3 of CaI 2 was dissolved as an additive.
  • the lithium ion secondary battery provided with the electrolytic solution of Example 12 containing an additive composed of an alkali metal salt or an alkaline earth metal salt is equivalent to the electrolytic solution of Comparative Example 4 that does not contain an additive.
  • the charge / discharge efficiency was improved. The above effect was similarly confirmed even when an organic solvent containing only a flame retardant was used.
  • a lithium ion secondary battery was produced using the electrolytic solution of Comparative Example 5. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary battery of Comparative Example 5 was calculated. The results are shown in Table 5.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)

Abstract

The objective of the present invention is to provide an electrolyte solution for lithium ion secondary batteries, which has excellent flame retardancy and battery performance. The present invention relates to an electrolyte solution for lithium ion secondary batteries, which contains an organic solvent containing a compound represented by formula (I) (wherein each of R1, R2 and R3 independently represents a C1 or C2 alkyl group or a C1 or C2 alkoxyl group), an electrolyte that is composed of one or more lithium salts selected from the group consisting of LiPF6, LiBF4, LiCF3SO3, LiN(SO2F)2, LiClO4, LiCF3CO2, LiAsF6 and LiSbF6, and an additive that is composed of an alkali metal salt or an alkaline earth metal salt.

Description

リチウムイオン二次電池用電解質液Electrolyte solution for lithium ion secondary battery
 本発明は、リチウムイオン二次電池用電解質液、及び該電解質液を備えるリチウムイオン二次電池に関する。 The present invention relates to an electrolyte solution for a lithium ion secondary battery and a lithium ion secondary battery including the electrolyte solution.
 リチウムイオン二次電池は、高いエネルギー密度を有することから、携帯用電子機器、モバイル機器、電動工具、介護機器、自動車、航空機又は電力貯蔵用蓄電池のような各種用途に用いる二次電池として注目されている。リチウムイオン二次電池は、基本的な構成部材として、正極と、負極と、リチウムイオン塩を含む電解質を含有する電解液とを備える。前記電解液は、一般に、環状カーボネート及び鎖状カーボネートを含む有機溶媒の混合溶液中に、六フッ化リン酸リチウム(LiPF6)を電解質として含有する。 Lithium ion secondary batteries have a high energy density, and are therefore attracting attention as secondary batteries used in various applications such as portable electronic devices, mobile devices, power tools, nursing care devices, automobiles, aircraft, and power storage batteries. ing. A lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution containing an electrolyte containing a lithium ion salt as basic components. In general, the electrolytic solution contains lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of an organic solvent containing a cyclic carbonate and a chain carbonate.
 有機溶媒の混合溶液は、引火性を有する。このため、リチウムイオン二次電池がショートした場合、有機溶媒の混合溶液を含有する電解液に引火して、火災が発生する可能性がある。それ故、電解液の難燃性向上が必要とされている。 The mixed solution of organic solvent is flammable. For this reason, when a lithium ion secondary battery short-circuits, it may ignite and the fire may generate | occur | produce in the electrolyte solution containing the mixed solution of an organic solvent. Therefore, it is necessary to improve the flame retardancy of the electrolytic solution.
 例えば、特許文献1は、リチウム塩を有機溶媒に溶解したリチウム電池用電解液において、リン酸エステルを含んだ溶媒を使用する難燃性電解液を記載する。当該文献は、前記リン酸エステルとして、トリメチルホスフェート(TMP)、ジメチルエチルホスフェート及びメチルエチルプロピルホスフェート等を記載する。 For example, Patent Document 1 describes a flame-retardant electrolyte solution that uses a phosphate ester-containing solvent in a lithium battery electrolyte solution in which a lithium salt is dissolved in an organic solvent. This document describes trimethyl phosphate (TMP), dimethyl ethyl phosphate, methyl ethyl propyl phosphate and the like as the phosphate ester.
 特許文献2は、一般式(1)で表され、且つフッ素原子の含有率が重量比で30%以上である非水電解液用の含フッ素リン酸エステルを記載する。 Patent Document 2 describes a fluorine-containing phosphate ester for a non-aqueous electrolytic solution represented by the general formula (1) and having a fluorine atom content of 30% or more by weight.
 特許文献3は、電解質塩を有機溶媒に溶解した電解液において、該有機溶媒が、一般式(I)で表されるリン化合物の少なくとも一種を含むことを特徴とする難燃性電解液を記載する。 Patent Document 3 describes a flame retardant electrolytic solution characterized in that, in an electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent, the organic solvent contains at least one phosphorus compound represented by the general formula (I). To do.
 非特許文献1は、40体積%のTMPを含むエチレンカーボネート(EC)をベースとした電解液中のグラファイト負極の電気化学的挙動におけるカルシウム塩添加の効果を記載する。 Non-Patent Document 1 describes the effect of calcium salt addition on the electrochemical behavior of a graphite negative electrode in an electrolyte based on ethylene carbonate (EC) containing 40% by volume of TMP.
特開平4-184870号公報JP-A-4-184870 国際公開第2011/016212号International Publication No. 2011/016212 特開平10-228928号公報Japanese Patent Laid-Open No. 10-228928
 前記の通り、リチウムイオン二次電池用電解液の有機溶媒に使用される難燃剤として、リン酸エステルのようなリン化合物が知られている。しかしながら、例えば特許文献1に記載のTMPを、リチウムイオン二次電池用電解液の難燃剤として使用する場合、TMPが電解質のリチウムイオンと溶媒和分子を形成し得る。このような溶媒和分子は、負極として使用されるグラファイトに共挿入される可能性がある。それ故、TMPを電解液の難燃剤として用いて作製されたリチウムイオン二次電池は、充放電効率が低下する可能性がある。 As described above, phosphorus compounds such as phosphoric acid esters are known as flame retardants used in organic solvents for electrolytes for lithium ion secondary batteries. However, for example, when TMP described in Patent Document 1 is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, TMP can form a solvated molecule with lithium ions of the electrolyte. Such solvated molecules may be co-inserted into the graphite used as the negative electrode. Therefore, a lithium ion secondary battery manufactured using TMP as a flame retardant for an electrolytic solution may have a reduced charge / discharge efficiency.
 また、特許文献2に記載の含フッ素リン酸エステルのようなフッ素系リン化合物は、一般に電解質の溶解度が低い。このため、このようなフッ素系リン化合物を、リチウムイオン二次電池用電解液の難燃剤として使用する場合、電解液の導電性が低下して、結果として得られるリチウムイオン二次電池のハイレート充放電特性が低下する可能性がある。また、フッ素系リン化合物は、非置換のリン化合物と比較して分子量が大きくなるため、蒸気圧が低下し得る。このため、このようなフッ素系リン化合物は、難燃剤としての機能が低下する可能性がある。 In addition, a fluorine-based phosphorus compound such as the fluorine-containing phosphate described in Patent Document 2 generally has low electrolyte solubility. For this reason, when such a fluorine-based phosphorus compound is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, the conductivity of the electrolyte solution is reduced, and the resulting lithium ion secondary battery is charged at a high rate. Discharge characteristics may be degraded. In addition, since the fluorine-based phosphorus compound has a higher molecular weight than an unsubstituted phosphorus compound, the vapor pressure can be reduced. For this reason, the function as a flame retardant of such a fluorine-type phosphorus compound may fall.
 以上のように、難燃剤を用いるリチウムイオン二次電池用電解液において、難燃性及び電池性能のいずれも満足し得る水準を達成することは困難であった。 As described above, it has been difficult to achieve satisfactory levels of both flame retardancy and battery performance in an electrolyte for a lithium ion secondary battery using a flame retardant.
 それ故、本発明は、難燃性と電池性能に優れたリチウムイオン二次電池用電解液を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrolyte for a lithium ion secondary battery excellent in flame retardancy and battery performance.
 前記課題を解決するため、本発明のリチウムイオン二次電池用電解液は、式(I):
Figure JPOXMLDOC01-appb-C000002
[式中、
R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルである。]
で表される化合物を含む有機溶媒と、LiPF6、LiBF4、LiCF3SO3、LiN(SO2F)2、LiClO4、LiCF3CO2、LiAsF6及びLiSbF6からなる群より選択される1種以上のリチウム塩である電解質と、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤とを含有する。
In order to solve the above-mentioned problem, the electrolyte for a lithium ion secondary battery of the present invention has the formula (I):
Figure JPOXMLDOC01-appb-C000002
[Where:
R 1 , R 2 and R 3 are independently of each other C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. ]
An organic solvent containing a compound represented by in is selected from LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiClO 4, the group consisting of LiCF 3 CO 2, LiAsF 6 and LiSbF 6 It contains an electrolyte that is one or more lithium salts and an additive composed of an alkali metal salt or an alkaline earth metal salt.
 本発明のリチウムイオン二次電池はまた、本発明のリチウムイオン二次電池用電解液と、正極と、負極とを備える。 The lithium ion secondary battery of the present invention also includes the electrolyte for a lithium ion secondary battery of the present invention, a positive electrode, and a negative electrode.
 本発明により、難燃性と電池性能に優れたリチウムイオン二次電池用電解液を提供することが可能となる。 According to the present invention, it is possible to provide an electrolyte for a lithium ion secondary battery that is excellent in flame retardancy and battery performance.
 前記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
図1は、実施例又は比較例の電解液における有機溶媒(EC)の17O NMRスペクトルから決定されるECのカルボニル基(C=O)の酸素原子の化学シフトの変化量(ppm)と、実施例又は比較例のリチウムイオン二次電池の充放電効率(%)との関係を示す図である。FIG. 1 shows the change amount (ppm) of the chemical shift of the oxygen atom of the carbonyl group (C═O) of EC determined from the 17 O NMR spectrum of the organic solvent (EC) in the electrolytic solution of Example or Comparative Example. It is a figure which shows the relationship with the charging / discharging efficiency (%) of the lithium ion secondary battery of an Example or a comparative example.
 以下、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
<1. リチウムイオン二次電池用電解液>
 本発明は、リチウムイオン二次電池用電解液に関する。
<1. Electrolyte for lithium ion secondary battery>
The present invention relates to an electrolyte solution for a lithium ion secondary battery.
 本発明のリチウムイオン二次電池用電解液は、有機溶媒と、電解質と、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤とを含有することが必要である。 The electrolyte solution for a lithium ion secondary battery of the present invention needs to contain an organic solvent, an electrolyte, and an additive composed of an alkali metal salt or an alkaline earth metal salt.
 本発明のリチウムイオン二次電池用電解液において、前記有機溶媒は、式(I):
Figure JPOXMLDOC01-appb-C000003
で表される化合物を含むことが必要である。
In the electrolyte solution for a lithium ion secondary battery of the present invention, the organic solvent has the formula (I):
Figure JPOXMLDOC01-appb-C000003
It is necessary to contain the compound represented by these.
 式(I)で表される化合物において、R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルであることが必要である。R1、R2及びR3は、そのうち少なくとも2つが、互いに独立して、C1~C2アルコキシルであることが好ましく、R1、R2及びR3がメトキシルであるか、又は、R1及びR2がメトキシルであり、R3がメチルであることがより好ましい。本発明において、「C1~C2アルキル」及び「C1~C2アルコキシル」は、非置換の基を意味する。式(I)で表される化合物としては、例えば、トリメチルホスフェート(リン酸トリメチル、TMP)又はジメチル=メチルホスホナート(メチルホスホン酸ジメチル、DMMP)が好ましい。前記式(I)で表される化合物は、以下において説明する1種以上のさらなる有機溶媒と比較して引火性が低い。それ故、前記式(I)で表される化合物は、本発明のリチウムイオン二次電池用電解液において、難燃剤として使用することができる。また、前記式(I)で表される化合物は、以下において説明する1種以上のさらなる有機溶媒と比較してドナー数が高い。さらに、前記式(I)で表される化合物は、特許文献2に記載の含フッ素リン酸エステルのようなフッ素系リン化合物と比較して、電解質の溶解度が高い。それ故、前記式(I)で表される化合物は、他の有機溶媒と混合せず、単独で有機溶媒として使用した場合であっても、所望の量の電解質を溶解することができる。 In the compound represented by the formula (I), R 1 , R 2 and R 3 need to be, independently of each other, C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. It is preferable that at least two of R 1 , R 2 and R 3 are independently C 1 -C 2 alkoxyl, and R 1 , R 2 and R 3 are methoxyl, or R 1 More preferably, R 2 is methoxyl and R 3 is methyl. In the present invention, “C 1 -C 2 alkyl” and “C 1 -C 2 alkoxyl” mean an unsubstituted group. As the compound represented by the formula (I), for example, trimethyl phosphate (trimethyl phosphate, TMP) or dimethyl = methylphosphonate (dimethyl methylphosphonate, DMMP) is preferable. The compound represented by the formula (I) has low flammability compared to one or more additional organic solvents described below. Therefore, the compound represented by the formula (I) can be used as a flame retardant in the electrolyte for a lithium ion secondary battery of the present invention. In addition, the compound represented by the formula (I) has a higher donor number than one or more additional organic solvents described below. Furthermore, the compound represented by the formula (I) has higher electrolyte solubility than a fluorine-based phosphorus compound such as the fluorine-containing phosphate described in Patent Document 2. Therefore, the compound represented by the formula (I) can dissolve a desired amount of electrolyte even when used alone as an organic solvent without being mixed with other organic solvents.
 前記有機溶媒は、式(I)で表される化合物のみからなる形態で使用されてもよく、所望により、式(I)で表される化合物と1種以上のさらなる有機溶媒との混合物(以下、「混合溶液」とも記載する)の形態で使用されてもよい。前記有機溶媒が混合溶液の形態で使用される場合、1種以上のさらなる有機溶媒としては、当該技術分野で通常使用される環状カーボネート、例えば、エチレンカーボネート(EC)若しくはプロピレンカーボネート;鎖状(直鎖状若しくは分岐鎖状)カーボネート、例えば、ジメチルカーボネート、エチルメチルカーボネート(EMC)若しくはジエチルカーボネート;環状エーテル、例えば、テトラヒドロフラン、1,3-ジオキソラン;鎖状(直鎖状若しくは分岐鎖状)エーテル、例えば、ジメトキシエタン;環状エステル、例えば、γ-ブチロラクトン;及び、鎖状(直鎖状若しくは分岐鎖状)エステル、例えば、メチルアセテート若しくはエチルアセテート等を挙げることができる。1種以上のさらなる有機溶媒は、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピレンカーボネートからなる群より選択されることが好ましい。前記1種以上のさらなる有機溶媒を用いることにより、有機溶媒に対する電解質の溶解度を向上させることができる。 The organic solvent may be used in a form consisting only of the compound represented by the formula (I), and if desired, a mixture of the compound represented by the formula (I) and one or more additional organic solvents (hereinafter referred to as “a mixture”). , Also referred to as “mixed solution”). When the organic solvent is used in the form of a mixed solution, one or more additional organic solvents include cyclic carbonates commonly used in the art, such as ethylene carbonate (EC) or propylene carbonate; Linear or branched) carbonates such as dimethyl carbonate, ethyl methyl carbonate (EMC) or diethyl carbonate; cyclic ethers such as tetrahydrofuran, 1,3-dioxolane; linear (linear or branched) ethers; Examples thereof include dimethoxyethane; cyclic esters such as γ-butyrolactone; and chain (linear or branched) esters such as methyl acetate or ethyl acetate. The one or more additional organic solvents are preferably selected from the group consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and propylene carbonate. By using the one or more additional organic solvents, the solubility of the electrolyte in the organic solvent can be improved.
 前記有機溶媒における式(I)で表される化合物の含有量は、有機溶媒の総体積に対して、少なくとも10体積%であることが好ましく、少なくとも40体積%であることがより好ましく、少なくとも50体積%であることがさらに好ましい。或いは、前記有機溶媒における式(I)で表される化合物の含有量は、有機溶媒の総体積に対して、10~100体積%の範囲であることが好ましく、40~100体積%の範囲であることがより好ましく、50~100体積%の範囲であることがさらに好ましく、50~60体積%の範囲であることが特に好ましい。前記有機溶媒における式(I)で表される化合物の含有量が前記範囲である場合、有機溶媒に対する電解質の溶解度を向上させることができる。 The content of the compound represented by formula (I) in the organic solvent is preferably at least 10% by volume, more preferably at least 40% by volume, and more preferably at least 50% with respect to the total volume of the organic solvent. More preferably, it is volume%. Alternatively, the content of the compound represented by the formula (I) in the organic solvent is preferably in the range of 10 to 100% by volume, and in the range of 40 to 100% by volume with respect to the total volume of the organic solvent. More preferably, it is more preferably in the range of 50 to 100% by volume, and particularly preferably in the range of 50 to 60% by volume. When the content of the compound represented by formula (I) in the organic solvent is within the above range, the solubility of the electrolyte in the organic solvent can be improved.
 本発明のリチウムイオン二次電池用電解液において、前記電解質は、LiPF6、LiBF4、LiCF3SO3、LiN(SO2F)2、LiClO4、LiCF3CO2、LiAsF6及びLiSbF6からなる群より選択される1種以上のリチウム塩であることが必要である。前記電解質は、LiPF6であることが好ましい。LiPF6は、イオン伝導度が高く、且つ前記で説明した有機溶媒に対する溶解度が高い。それ故、前記電解質としてLiPF6を用いることにより、結果として得られるリチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。 In the lithium ion secondary battery electrolyte of the present invention, the electrolyte is from LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiClO 4, LiCF 3 CO 2, LiAsF 6 and LiSbF 6 It is necessary to be at least one lithium salt selected from the group consisting of The electrolyte is preferably LiPF 6 . LiPF 6 has high ionic conductivity and high solubility in the organic solvent described above. Therefore, by using LiPF 6 as the electrolyte, the battery characteristics (for example, charge / discharge characteristics) of the resulting lithium ion secondary battery can be improved.
 リチウムイオン二次電池用電解液に使用される電解質としては、前記化合物だけでなく、LiN(SO2CF3)2も知られている(Takeuchi, S.ら, J Electrochem Soc, 159(12), A2089-A2091, 2012年)。しかしながら、LiN(SO2CF3)2のように、アニオンのイオン半径が大きい電解質を、本発明のリチウムイオン二次電池用電解液に適用する場合、以下において説明する、式(I)で表される化合物と添加剤のアルカリ金属イオン又はアルカリ土類金属イオンとの溶媒和物の形成を阻害して、所望の効果を発現しない可能性がある。それ故、LiN(SO2CF3)2は、本発明のリチウムイオン二次電池用電解液に使用される電解質として好ましくない。 As an electrolyte used for an electrolyte for a lithium ion secondary battery, not only the above compound but also LiN (SO 2 CF 3 ) 2 is known (Takeuchi, S. et al., J Electrochem Soc, 159 (12) , A2089-A2091, 2012). However, when an electrolyte having a large anion radius such as LiN (SO 2 CF 3 ) 2 is applied to the electrolyte for a lithium ion secondary battery of the present invention, it is expressed by the formula (I) described below. May inhibit the formation of a solvate between the compound to be added and the alkali metal ion or alkaline earth metal ion of the additive, and may not exhibit the desired effect. Therefore, LiN (SO 2 CF 3 ) 2 is not preferable as an electrolyte used in the electrolyte solution for a lithium ion secondary battery of the present invention.
 本発明のリチウムイオン二次電池用電解液において、前記電解質は、少なくとも0.5 mol/L(mol/dm-3)の濃度で含有されることが好ましい。前記濃度は、電解液の総体積に対するモル濃度である。前記電解質の濃度は、0.5~2 mol/Lの範囲であることが好ましく、0.5~1.5 mol/Lの範囲であることがより好ましく、0.5~1 mol/Lの範囲であることが特に好ましい。前記濃度で電解質を含有させることにより、結果として得られるリチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。 In the lithium ion secondary battery electrolyte of the present invention, the electrolyte is preferably contained at a concentration of at least 0.5 mol / L (mol / dm −3 ). The concentration is a molar concentration with respect to the total volume of the electrolytic solution. The concentration of the electrolyte is preferably in the range of 0.5 to 2 mol / L, more preferably in the range of 0.5 to 1.5 mol / L, and particularly preferably in the range of 0.5 to 1 mol / L. By containing the electrolyte at the concentration, the battery characteristics (for example, charge / discharge characteristics) of the resulting lithium ion secondary battery can be improved.
 本発明者らは、前記式(I)で表される化合物をリチウムイオン二次電池用電解液の難燃剤として使用する場合において、特定のアルカリ金属塩又はアルカリ土類金属塩を添加剤として加えることにより、式(I)で表される化合物とリチウムイオンとの溶媒和分子の形成を実質的に抑制できることを見出した。本発明のリチウムイオン二次電池用電解液が前記のような特性を有する理由は、以下のように説明することができる。なお、本発明は、以下の作用・原理に限定されるものではない。 In the case where the compound represented by the formula (I) is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, the present inventors add a specific alkali metal salt or alkaline earth metal salt as an additive. By this, it discovered that formation of the solvation molecule | numerator of the compound represented by Formula (I) and lithium ion can be suppressed substantially. The reason why the electrolytic solution for lithium ion secondary battery of the present invention has the above-described characteristics can be explained as follows. Note that the present invention is not limited to the following actions and principles.
 前記電解質を構成するリチウムイオンは、通常は、有機溶媒との溶媒和分子を形成する。リチウムイオンと溶媒和を形成する能力(以下、「溶媒和能」とも記載する)は、電解質の溶解度が高く、且つドナー数が大きい物質ほど高い。このため、前記式(I)で表される化合物は、前記1種以上のさらなる有機溶媒と比較して、溶媒和能が高い。それ故、前記式(I)で表される化合物をリチウムイオン二次電池用電解液の難燃剤として使用する場合、電解質を構成するリチウムイオンと溶媒和分子を形成し得る。式(I)で表される化合物とリチウムイオンとの溶媒和分子は、負極として使用されるグラファイトに共挿入し、結果として、リチウムイオン二次電池の電池特性(例えば、充放電特性)を低下させる可能性がある。ここで、リチウムイオンと比較してルイス酸性(アクセプター数)が高いアルカリ金属イオン又はアルカリ土類金属イオンが電解液中に存在する場合、式(I)で表される化合物は、リチウムイオンに優先して、アルカリ金属イオン又はアルカリ土類金属イオンと溶媒和物を形成し得る。それ故、このようなアルカリ金属イオン又はアルカリ土類金属イオンの塩を添加剤としてリチウムイオン二次電池用電解液に加えることにより、式(I)で表される化合物とリチウムイオンとの溶媒和分子の形成を実質的に抑制して、結果として得られるリチウムイオン二次電池の電池特性(例えば、充放電特性)の低下を実質的に抑制することができる。 The lithium ions constituting the electrolyte usually form solvated molecules with an organic solvent. The ability to form solvates with lithium ions (hereinafter also referred to as “solvation ability”) is higher as the electrolyte has a higher solubility and a larger donor number. For this reason, the compound represented by the formula (I) has a high solvating ability as compared with the one or more additional organic solvents. Therefore, when the compound represented by the formula (I) is used as a flame retardant for an electrolyte solution for a lithium ion secondary battery, a solvated molecule can be formed with lithium ions constituting the electrolyte. The solvated molecule of the compound represented by the formula (I) and lithium ions is co-inserted into graphite used as the negative electrode, and as a result, the battery characteristics (for example, charge / discharge characteristics) of the lithium ion secondary battery are lowered. There is a possibility to make it. Here, when alkali metal ions or alkaline earth metal ions having a higher Lewis acidity (acceptor number) than lithium ions are present in the electrolyte, the compound represented by the formula (I) takes precedence over lithium ions. Thus, solvates can be formed with alkali metal ions or alkaline earth metal ions. Therefore, by adding a salt of such an alkali metal ion or alkaline earth metal ion as an additive to the electrolyte for a lithium ion secondary battery, the solvation of the compound represented by formula (I) and lithium ion is achieved. It is possible to substantially suppress the formation of molecules and to substantially suppress the deterioration of the battery characteristics (for example, charge / discharge characteristics) of the resulting lithium ion secondary battery.
 以上に鑑み、本発明のリチウムイオン二次電池用電解液は、式(I)で表される化合物を含む有機溶媒に加えて、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤を含有することが必要である。前記添加剤は、例えば、Na+、Mg2+、Ca2+、Sr2+又はBa2+のような、リチウム以外のアルカリ金属イオン又はアルカリ土類金属イオン(カチオン)と、PF6 -、BF4 -、ClO4 -、SO3CF3 -、N(SO2F2)2-、(N(SO2CF3)2)2-、N(SO2CF2CF3)2-、Br-又はI-のようなアニオンとの塩からなる。前記アルカリ金属塩又はアルカリ土類金属塩からなる添加剤は、Na+、Ca2+若しくはMg2+と、PF6 -、BF4 -、SO3CF3 -、N(SO2F2)2-、(N(SO2CF3)2)2-若しくはI-とから形成される1種以上の塩であることが好ましく、NaPF6、NaSO3CF3、NaN(SO2CF3)2、Ca(N(SO2CF3)2)2、Mg(N(SO2CF3)2)2及びCaI2からなる群より選択される1種以上の塩であることがより好ましく、NaPF6、Ca(N(SO2CF3)2)2及びMg(N(SO2CF3)2)2からなる群より選択される1種以上の塩であることが特に好ましい。前記アルカリ金属塩又はアルカリ土類金属塩、特に、NaPF6、Ca(N(SO2CF3)2)2及びMg(N(SO2CF3)2)2からなる群より選択される1種以上の塩は、リチウムイオンと比較してルイス酸性が高く、且つ、前記で説明した有機溶媒に対する溶解度が高い。それ故、本発明のリチウムイオン二次電池用電解液にこれらの添加剤を含有させることにより、電解質のリチウムイオンと式(I)で表される化合物との溶媒和分子の形成を実質的に抑制して、リチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。 In view of the above, the electrolytic solution for a lithium ion secondary battery of the present invention contains an additive composed of an alkali metal salt or an alkaline earth metal salt in addition to the organic solvent containing the compound represented by the formula (I). It is necessary. The additive includes, for example, an alkali metal ion or alkaline earth metal ion (cation) other than lithium, such as Na + , Mg 2+ , Ca 2+ , Sr 2+ or Ba 2+ , PF 6 , BF 4 -, ClO 4 -, SO 3 CF 3 -, N (SO 2 F 2) 2-, (N (SO 2 CF 3) 2) 2-, N (SO 2 CF 2 CF 3) 2-, Br - or I - consisting of salts with anions such as. The additive consisting of the alkali metal salt or alkaline earth metal salt includes Na + , Ca 2+ or Mg 2+ , PF 6 , BF 4 , SO 3 CF 3 , N (SO 2 F 2 ) 2. -, (N (SO 2 CF 3) 2) 2- or I - is preferably one or more salts formed from and, NaPF 6, NaSO 3 CF 3 , NaN (SO 2 CF 3) 2, More preferably, it is at least one salt selected from the group consisting of Ca (N (SO 2 CF 3 ) 2 ) 2 , Mg (N (SO 2 CF 3 ) 2 ) 2 and CaI 2 , NaPF 6 , Particularly preferred is one or more salts selected from the group consisting of Ca (N (SO 2 CF 3 ) 2 ) 2 and Mg (N (SO 2 CF 3 ) 2 ) 2 . The alkali metal salt or alkaline earth metal salt, in particular, one selected from the group consisting of NaPF 6 , Ca (N (SO 2 CF 3 ) 2 ) 2 and Mg (N (SO 2 CF 3 ) 2 ) 2 The above salts have high Lewis acidity compared to lithium ions, and have high solubility in the organic solvent described above. Therefore, the inclusion of these additives in the lithium ion secondary battery electrolyte of the present invention substantially prevents the formation of a solvated molecule between the lithium ion of the electrolyte and the compound represented by formula (I). It can suppress and can improve the battery characteristic (for example, charging / discharging characteristic) of a lithium ion secondary battery.
 なお、溶媒和分子の形成は、限定するものではないが、例えば、17O 核磁気共鳴(NMR)スペクトルにより、添加剤を含むか又は含まない条件下で、有機溶媒又は式(I)で表される化合物の酸素原子の化学シフトの変化を観測することにより、決定することができる。 The formation of the solvated molecule is not limited. For example, it can be represented by an organic solvent or a formula (I) according to 17 O nuclear magnetic resonance (NMR) spectrum under the condition that the additive is included or not. This can be determined by observing changes in the chemical shift of the oxygen atom of the compound.
 本発明のリチウムイオン二次電池用電解液において、前記アルカリ金属塩又はアルカリ土類金属塩からなる添加剤は、少なくとも0.05 mol/L(mol/dm-3)の濃度で含有されることが好ましい。前記濃度は、電解液の総体積に対するモル濃度である。前記アルカリ金属塩又はアルカリ土類金属塩からなる添加剤の濃度は、0.05~1 mol/Lの範囲であることが好ましく、0.05~0.5 mol/Lの範囲であることがより好ましく、0.05~0.1 mol/Lの範囲であることが特に好ましい。前記濃度で添加剤を含有させることにより、電解質のリチウムイオンと式(I)で表される化合物との溶媒和分子の形成を実質的に抑制して、リチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。 In the electrolyte for a lithium ion secondary battery of the present invention, the additive comprising the alkali metal salt or alkaline earth metal salt is preferably contained at a concentration of at least 0.05 mol / L (mol / dm −3 ). . The concentration is a molar concentration with respect to the total volume of the electrolytic solution. The concentration of the additive comprising the alkali metal salt or alkaline earth metal salt is preferably in the range of 0.05 to 1 mol / L, more preferably in the range of 0.05 to 0.5 mol / L, and more preferably 0.05 to 0.1. A range of mol / L is particularly preferred. By containing an additive at the above concentration, formation of a solvated molecule between the lithium ion of the electrolyte and the compound represented by formula (I) is substantially suppressed, and the battery characteristics of the lithium ion secondary battery (for example, , Charge / discharge characteristics) can be improved.
<2. リチウムイオン二次電池>
 本発明はまた、リチウムイオン二次電池に関する。本発明のリチウムイオン二次電池は、リチウムイオン二次電池用電解液と、正極と、負極とを備える。リチウムイオン二次電池用電解液は、前記で説明した本発明のリチウムイオン二次電池用電解液である。また、本発明のリチウムイオン二次電池は、所望により、セパレータ、電池容器、正極集電タブ、負極集電タブ、絶縁板、ガスケット、又は正極外部端子を兼ねる電池蓋のような、当該技術分野で通常使用されるリチウムイオン二次電池の各種部材を備えることもできる。
<2. Lithium ion secondary battery>
The present invention also relates to a lithium ion secondary battery. The lithium ion secondary battery of this invention is equipped with the electrolyte solution for lithium ion secondary batteries, a positive electrode, and a negative electrode. The electrolyte for a lithium ion secondary battery is the electrolyte for a lithium ion secondary battery of the present invention described above. Moreover, the lithium ion secondary battery of the present invention can be applied to a technical field such as a separator, a battery container, a positive electrode current collector tab, a negative electrode current collector tab, an insulating plate, a gasket, or a battery lid that also serves as a positive electrode external terminal. It is also possible to provide various members of a lithium ion secondary battery that is normally used.
 負極としては、当該技術分野で通常使用される、リチウムイオンの吸蔵及び放出ができる炭素を主成分とする材料であれば、特に限定されず使用することができる。前記負極としては、例えば、人造黒鉛若しくは天然黒鉛のようなグラファイト、非晶質炭素、難黒鉛化炭素類、活性炭、コークス及び熱分解炭素等、並びにこれらの混合物を挙げることができる。前記材料のうち、グラファイトが好ましい。グラファイトは、リチウムイオンを吸蔵及び放出する能力の高い材料である。また、前記で説明したように、グラファイトを負極材料として用いた場合、リチウムイオンの吸蔵能力の高さに起因して、リチウムイオンと難燃剤との溶媒和分子が、グラファイトに共挿入する可能性がある。しかしながら、本発明のリチウムイオン二次電池用電解液を使用することにより、リチウムイオンと難燃剤との溶媒和分子がグラファイトに共挿入することを実質的に抑制することができる。それ故、グラファイトを本発明のリチウムイオン二次電池の負極材料として用いることにより、リチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。 As the negative electrode, any material can be used without particular limitation as long as it is a material mainly composed of carbon capable of occluding and releasing lithium ions, which is usually used in the technical field. Examples of the negative electrode include graphite such as artificial graphite or natural graphite, amorphous carbon, non-graphitizable carbons, activated carbon, coke, pyrolytic carbon, and a mixture thereof. Of the materials, graphite is preferred. Graphite is a material having a high ability to occlude and release lithium ions. In addition, as described above, when graphite is used as a negative electrode material, there is a possibility that solvated molecules of lithium ions and flame retardant co-insert into graphite due to the high lithium ion storage capacity. There is. However, by using the electrolytic solution for a lithium ion secondary battery of the present invention, it is possible to substantially suppress co-insertion of solvated molecules of lithium ions and a flame retardant into graphite. Therefore, battery characteristics (for example, charge / discharge characteristics) of the lithium ion secondary battery can be improved by using graphite as the negative electrode material of the lithium ion secondary battery of the present invention.
 正極としては、当該技術分野で通常使用されるコバルト酸リチウム、マンガン酸リチウム又はニッケル酸リチウム等の正極材料を使用することができる。 As the positive electrode, a positive electrode material such as lithium cobaltate, lithium manganate, or lithium nickelate that is usually used in the technical field can be used.
 本発明のリチウムイオン二次電池は、単独で用いてもよく、複数のリチウムイオン二次電池を接続したモジュールの形態で用いてもよい。 The lithium ion secondary battery of the present invention may be used alone or in the form of a module in which a plurality of lithium ion secondary batteries are connected.
 以上詳細に説明したように、本発明のリチウムイオン二次電池用電解液は、難燃性及び電池性能に優れる。このため、本発明のリチウムイオン二次電池用電解液を用いたリチウムイオン二次電池は、従来品と比較して安全性が高く、且つ高性能のものとすることができる。前記の特性を有することにより、本発明のリチウムイオン二次電池は、携帯用電子機器、モバイル機器、電動工具、介護機器、自動車、航空機又は電力貯蔵用蓄電池のような様々な用途に用いることが可能である。 As described in detail above, the lithium ion secondary battery electrolyte of the present invention is excellent in flame retardancy and battery performance. For this reason, the lithium ion secondary battery using the electrolyte solution for lithium ion secondary batteries of the present invention can be made higher in safety and higher performance than the conventional product. By having the above-mentioned characteristics, the lithium ion secondary battery of the present invention can be used for various applications such as portable electronic devices, mobile devices, electric tools, nursing care devices, automobiles, airplanes, or power storage batteries. Is possible.
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
<1. 材料>
 下記に示す所定の組成の電解液を用いて、リチウムイオン二次電池を作製した。各実施例又は比較例において、作用極としてグラファイト負極を、対極及び参照極としてLi金属を使用した。
<1. Materials>
A lithium ion secondary battery was produced using an electrolytic solution having a predetermined composition shown below. In each example or comparative example, a graphite negative electrode was used as a working electrode, and Li metal was used as a counter electrode and a reference electrode.
<2. 試験方法>
[2-1. 難燃剤に対する電解質の溶解性試験]
 有機溶媒に含まれる難燃剤を媒体として、難燃剤に対する電解質の溶解度を測定した。
<2. Test method>
[2-1. Solubility test of electrolyte in flame retardant]
Using the flame retardant contained in the organic solvent as a medium, the solubility of the electrolyte in the flame retardant was measured.
[2-2. リチウムイオン二次電池の充放電効率]
 実施例又は比較例のリチウムイオン二次電池を、1 mA/cm2の電流値で0.01 Vまで定電流充電した。その後、0.01 Vで、各リチウムイオン二次電池の定電圧充電を継続し、0.025 mA/cm2まで電流値が収束するか、又は7時間経過した時点で充電を終了した。充電後の実施例又は比較例のリチウムイオン二次電池を、1 mA/cm2の電流値で1.5 Vまで放電した。実施例又は比較例のリチウムイオン二次電池において、充電量に対する放電量の百分率で表される充放電効率(%)を算出した。
[2-2. Charging / discharging efficiency of lithium ion secondary battery]
The lithium ion secondary batteries of Examples or Comparative Examples were charged with a constant current up to 0.01 V at a current value of 1 mA / cm 2 . Thereafter, constant voltage charging of each lithium ion secondary battery was continued at 0.01 V, and the current value converged to 0.025 mA / cm 2 , or charging was terminated when 7 hours passed. The lithium ion secondary batteries of Examples and Comparative Examples after charging were discharged to 1.5 V at a current value of 1 mA / cm 2 . In the lithium ion secondary batteries of Examples or Comparative Examples, the charge / discharge efficiency (%) expressed as a percentage of the discharge amount with respect to the charge amount was calculated.
[2-3. 有機溶媒と添加剤のイオンとの相互作用試験]
 実施例又は比較例の電解液における有機溶媒(EC)の17O NMRスペクトルを測定した。純粋なECにおけるECのカルボニル基(C=O)の酸素原子の化学シフトを基準(0 ppm)として、実施例又は比較例の電解液におけるECのカルボニル基(C=O)の酸素原子の化学シフトの変化量(ppm)を決定した。
[2-3. Interaction test between organic solvent and additive ion]
The 17 O NMR spectrum of the organic solvent (EC) in the electrolytic solution of Example or Comparative Example was measured. Chemistry of oxygen atom of EC carbonyl group (C = O) in electrolyte solution of Example or Comparative Example with reference to chemical shift of oxygen atom of EC carbonyl group (C = O) in pure EC as standard (0 ppm) The amount of shift (ppm) was determined.
<3. 試験結果>
[難燃剤に対する電解質の溶解性試験]
 LiPF6は、2 mol/Lの濃度まで、TMP又はDMMPに溶解した(25℃)。3 mol/Lの場合、LiPF6は、TMP又はDMMPに一旦溶解したものの、その後、媒体中に氷状の結晶が析出した。
<3. Test results>
[Solubility test of electrolyte in flame retardant]
LiPF 6 was dissolved in TMP or DMMP to a concentration of 2 mol / L (25 ° C.). In the case of 3 mol / L, LiPF 6 was once dissolved in TMP or DMMP, but thereafter, ice-like crystals were precipitated in the medium.
 LiPF6の式量は、151.91であり、TMP又はDMMPの密度(g/mL)は、それぞれ1.197又は1.16である。それ故、TMP又はDMMPに対するLiPF6の溶解度(g/100 g媒体)は、それぞれ25.4以上又は26.2以上と算出された(25℃)。 The formula amount of LiPF 6 is 151.91 and the density (g / mL) of TMP or DMMP is 1.197 or 1.16, respectively. Therefore, the solubility (g / 100 g medium) of LiPF 6 in TMP or DMMP was calculated to be 25.4 or more or 26.2 or more, respectively (25 ° C.).
[実施例1]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaPF6を溶解させた。
[Example 1]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaPF 6 was dissolved as an additive.
[実施例2]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaSO3CF3を溶解させた。
[Example 2]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaSO 3 CF 3 was dissolved as an additive.
[実施例3]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaN(SO2CF3)2を溶解させた。
[Example 3]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaN (SO 2 CF 3 ) 2 was dissolved as an additive.
[実施例4]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のCa(N(SO2CF3)2)2を溶解させた。
[Example 4]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). 0.5 mol / dm −3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive in the obtained solution.
[実施例5]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のMg(N(SO2CF3)2)2を溶解させた。
[Example 5]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50). In the resulting solution, 0.5 mol / dm −3 Mg (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
[比較例1]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。
[Comparative Example 1]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and TMP (volume ratio of 16.7: 33.3: 50).
 実施例1~5及び比較例1の電解液を用いて、リチウムイオン二次電池を作製した。前記の手順に従い、実施例1~5及び比較例1のリチウムイオン二次電池の充放電効率(%)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
Using the electrolytic solutions of Examples 1 to 5 and Comparative Example 1, lithium ion secondary batteries were produced. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary batteries of Examples 1 to 5 and Comparative Example 1 was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤を含有する実施例1~5の電解液を備えるリチウムイオン二次電池は、添加剤を含有しない比較例1の電解液を備えるリチウムイオン二次電池と比較して、充放電効率が向上した。 As shown in Table 1, the lithium ion secondary battery including the electrolyte solutions of Examples 1 to 5 containing the additive composed of an alkali metal salt or an alkaline earth metal salt is the electrolyte of Comparative Example 1 containing no additive. Compared with a lithium ion secondary battery provided with a liquid, charge / discharge efficiency was improved.
[実施例6]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaPF6を溶解させた。
[Example 6]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaPF 6 was dissolved as an additive.
[実施例7]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaSO3CF3を溶解させた。
[Example 7]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaSO 3 CF 3 was dissolved as an additive.
[実施例8]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のNaN(SO2CF3)2を溶解させた。
[Example 8]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the obtained solution, 0.5 mol / dm −3 NaN (SO 2 CF 3 ) 2 was dissolved as an additive.
[実施例9]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のCa(N(SO2CF3)2)2を溶解させた。
[Example 9]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). 0.5 mol / dm −3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive in the obtained solution.
[実施例10]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のMg(N(SO2CF3)2)2を溶解させた。
[Example 10]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50). In the resulting solution, 0.5 mol / dm −3 Mg (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
[比較例2]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。
[Comparative Example 2]
1.0 mol / dm −3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 16.7: 33.3: 50).
 実施例6~10及び比較例2の電解液を用いて、リチウムイオン二次電池を作製した。前記の手順に従い、実施例6~10及び比較例2のリチウムイオン二次電池の充放電効率(%)を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Lithium ion secondary batteries were fabricated using the electrolyte solutions of Examples 6 to 10 and Comparative Example 2. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary batteries of Examples 6 to 10 and Comparative Example 2 was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤を含有する実施例6~10の電解液を備えるリチウムイオン二次電池は、添加剤を含有しない比較例2の電解液を備えるリチウムイオン二次電池と比較して、充放電効率が向上した。前記の効果は、有機溶媒に含まれる難燃剤としてTMPを用いた場合(実施例1~5)だけでなく、DMMPを用いた場合(実施例6~10)であっても確認された。 As shown in Table 2, the lithium ion secondary batteries provided with the electrolytic solutions of Examples 6 to 10 containing the additive composed of an alkali metal salt or an alkaline earth metal salt are the electrolytes of Comparative Example 2 containing no additive. Compared with a lithium ion secondary battery provided with a liquid, charge / discharge efficiency was improved. The above effects were confirmed not only when TMP was used as a flame retardant contained in an organic solvent (Examples 1 to 5) but also when DMMP was used (Examples 6 to 10).
[実施例11]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(28.3:56.7:15の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.1 mol/dm-3のCa(N(SO2CF3)2)2を溶解させた。
[Example 11]
1.0 mol / dm -3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 28.3: 56.7: 15). In the obtained solution, 0.1 mol / dm −3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive.
[比較例3]
 EC、EMC及びDMMPを含む有機溶媒の混合溶液(28.3:56.7:15の体積比)に、1.0 mol/dm-3のLiPF6を溶解させた。
[Comparative Example 3]
1.0 mol / dm -3 LiPF 6 was dissolved in a mixed solution of organic solvents containing EC, EMC and DMMP (volume ratio of 28.3: 56.7: 15).
 実施例11及び比較例3の電解液を用いて、リチウムイオン二次電池を作製した。前記の手順に従い、実施例11及び比較例3のリチウムイオン二次電池の充放電効率(%)を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
Using the electrolytic solutions of Example 11 and Comparative Example 3, lithium ion secondary batteries were produced. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary batteries of Example 11 and Comparative Example 3 was calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤を含有する実施例11の電解液を備えるリチウムイオン二次電池は、添加剤を含有しない比較例3の電解液を備えるリチウムイオン二次電池と比較して、充放電効率が向上した。前記の効果は、有機溶媒の組成及び添加剤の添加量が実施例1~10と異なる場合であっても、同様に確認された。 As shown in Table 3, the lithium ion secondary battery provided with the electrolyte solution of Example 11 containing an additive composed of an alkali metal salt or an alkaline earth metal salt is the electrolyte solution of Comparative Example 3 containing no additive. Compared with the lithium ion secondary battery provided, the charge / discharge efficiency was improved. The above effect was confirmed in the same manner even when the composition of the organic solvent and the amount of additive were different from those in Examples 1 to 10.
[実施例12]
 DMMPのみを含む有機溶媒の溶液に、1.0 mol/dm-3のLiPF6を溶解させた。得られた溶液に、添加剤として0.2 mol/dm-3のCaI2を溶解させた。
[Example 12]
1.0 mol / dm −3 LiPF 6 was dissolved in an organic solvent solution containing only DMMP. In the obtained solution, 0.2 mol / dm −3 of CaI 2 was dissolved as an additive.
[比較例4]
 DMMPのみを含む有機溶媒の溶液に、1.0 mol/dm-3のLiPF6を溶解させた。
[Comparative Example 4]
1.0 mol / dm −3 LiPF 6 was dissolved in an organic solvent solution containing only DMMP.
 実施例12及び比較例4の電解液を用いて、リチウムイオン二次電池を作製した。前記の手順に従い、実施例12及び比較例4のリチウムイオン二次電池の充放電効率(%)を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
Using the electrolytic solutions of Example 12 and Comparative Example 4, lithium ion secondary batteries were produced. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary batteries of Example 12 and Comparative Example 4 was calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤を含有する実施例12の電解液を備えるリチウムイオン二次電池は、添加剤を含有しない比較例4の電解液を備えるリチウムイオン二次電池と比較して、充放電効率が向上した。前記の効果は、難燃剤のみを含む有機溶媒を用いた場合であっても、同様に確認された。 As shown in Table 4, the lithium ion secondary battery provided with the electrolytic solution of Example 12 containing an additive composed of an alkali metal salt or an alkaline earth metal salt is equivalent to the electrolytic solution of Comparative Example 4 that does not contain an additive. Compared with the lithium ion secondary battery provided, the charge / discharge efficiency was improved. The above effect was similarly confirmed even when an organic solvent containing only a flame retardant was used.
[比較例5]
 EC、EMC及びTMPを含む有機溶媒の混合溶液(16.7:33.3:50の体積比)に、1.0 mol/dm-3のLiN(SO2CF3)2を溶解させた。得られた溶液に、添加剤として0.5 mol/dm-3のCa(N(SO2CF3)2)2を溶解させた。
[Comparative Example 5]
1.0 mol / dm −3 LiN (SO 2 CF 3 ) 2 was dissolved in a mixed solution of organic solvents containing EC, EMC, and TMP (volume ratio of 16.7: 33.3: 50). 0.5 mol / dm −3 of Ca (N (SO 2 CF 3 ) 2 ) 2 was dissolved as an additive in the obtained solution.
 比較例5の電解液を用いて、リチウムイオン二次電池を作製した。前記の手順に従い、比較例5のリチウムイオン二次電池の充放電効率(%)を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
A lithium ion secondary battery was produced using the electrolytic solution of Comparative Example 5. According to the above procedure, the charge / discharge efficiency (%) of the lithium ion secondary battery of Comparative Example 5 was calculated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
[有機溶媒と添加剤のイオンとの相互作用]
 実施例又は比較例の電解液におけるECのカルボニル基(C=O)の酸素原子の化学シフトの変化量(ppm)と、実施例又は比較例のリチウムイオン二次電池の充放電効率(%)との関係を図1に示す。
[Interaction between organic solvent and additive ions]
Change amount (ppm) of chemical shift of oxygen atom of EC carbonyl group (C = O) in electrolyte solution of Example or Comparative Example, and charge / discharge efficiency (%) of lithium ion secondary battery of Example or Comparative Example Figure 1 shows the relationship.
 図1に示すように、実施例又は比較例の電解液におけるECのカルボニル基(C=O)の酸素原子の化学シフトは、添加剤の存在に依存して変化した。かかる変化は、ECのカルボニル基の酸素原子と、添加剤のアルカリ金属イオン又はアルカリ土類金属イオンとが相互作用して、溶媒和物を形成することに起因すると考えられる。また、実施例又は比較例の電解液におけるECのカルボニル基(C=O)の酸素原子の化学シフトの変化量と、結果として得られる実施例又は比較例のリチウムイオン二次電池の充放電効率との間には、一定の相関関係が確認された。 As shown in FIG. 1, the chemical shift of the oxygen atom of the carbonyl group (C = O) of EC in the electrolytic solution of Example or Comparative Example changed depending on the presence of the additive. Such a change is considered to be caused by the interaction between the oxygen atom of the carbonyl group of EC and the alkali metal ion or alkaline earth metal ion of the additive to form a solvate. Further, the amount of change in chemical shift of the oxygen atom of the carbonyl group (C = O) of EC in the electrolyte solution of Example or Comparative Example and the resulting charge / discharge efficiency of the lithium ion secondary battery of Example or Comparative Example A certain correlation was confirmed between and.
 なお、本発明は、前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除及び/又は置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, it is possible to add, delete, and / or replace another configuration with respect to a part of the configuration of each embodiment.
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.

Claims (7)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルである。]
    で表される化合物を含む有機溶媒と、LiPF6、LiBF4、LiCF3SO3、LiN(SO2F)2、LiClO4、LiCF3CO2、LiAsF6及びLiSbF6からなる群より選択される1種以上のリチウム塩である電解質と、アルカリ金属塩又はアルカリ土類金属塩からなる添加剤とを含有する、リチウムイオン二次電池用電解液。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    R 1 , R 2 and R 3 are independently of each other C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. ]
    An organic solvent containing a compound represented by in is selected from LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiClO 4, the group consisting of LiCF 3 CO 2, LiAsF 6 and LiSbF 6 An electrolyte for a lithium ion secondary battery, comprising an electrolyte that is one or more lithium salts and an additive comprising an alkali metal salt or an alkaline earth metal salt.
  2.  前記アルカリ金属塩又はアルカリ土類金属塩からなる添加剤が、Na+、Ca2+若しくはMg2+と、PF6 -、BF4 -、SO3CF3 -、N(SO2F2)2-、(N(SO2CF3)2)2-若しくはI-とから形成される1種以上の塩である、請求項1に記載のリチウムイオン二次電池用電解液。 The additive consisting of the alkali metal salt or alkaline earth metal salt is Na + , Ca 2+ or Mg 2+ , PF 6 , BF 4 , SO 3 CF 3 , N (SO 2 F 2 ) 2. -, (N (SO 2 CF 3) 2) 2- or I - is one or more salt formed from a lithium-ion secondary battery electrolyte of claim 1.
  3.  前記アルカリ金属塩又はアルカリ土類金属塩からなる添加剤が、NaPF6、NaSO3CF3、NaN(SO2CF3)2、Ca(N(SO2CF3)2)2、Mg(N(SO2CF3)2)2及びCaI2からなる群より選択される1種以上の塩である、請求項2に記載のリチウムイオン二次電池用電解液。 The additive comprising the alkali metal salt or alkaline earth metal salt is NaPF 6 , NaSO 3 CF 3 , NaN (SO 2 CF 3 ) 2 , Ca (N (SO 2 CF 3 ) 2 ) 2 , Mg (N ( 3. The electrolyte for a lithium ion secondary battery according to claim 2, wherein the electrolyte is one or more salts selected from the group consisting of SO 2 CF 3 ) 2 ) 2 and CaI 2 .
  4.  R1、R2及びR3の少なくとも2つが、互いに独立して、C1~C2アルコキシルである、請求項1~3のいずれか1項に記載のリチウムイオン二次電池用電解液。 The electrolyte solution for a lithium ion secondary battery according to any one of claims 1 to 3 , wherein at least two of R 1 , R 2 and R 3 are independently of each other C 1 -C 2 alkoxyl.
  5.  R1、R2及びR3がメトキシルであるか、又は、R1及びR2がメトキシルであり、R3がメチルである、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用電解液。 The lithium ion secondary according to any one of claims 1 to 4, wherein R 1 , R 2 and R 3 are methoxyl, or R 1 and R 2 are methoxyl and R 3 is methyl. Battery electrolyte.
  6.  前記有機溶媒の総体積に対して少なくとも50体積%の式(I)で表される化合物を含む、請求項1~5のいずれか1項に記載のリチウムイオン二次電池用電解液。 6. The electrolyte for a lithium ion secondary battery according to claim 1, comprising at least 50% by volume of the compound represented by the formula (I) with respect to the total volume of the organic solvent.
  7.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池用電解液と、正極と、負極とを備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the electrolyte solution for a lithium ion secondary battery according to any one of claims 1 to 6, a positive electrode, and a negative electrode.
PCT/JP2013/081499 2013-11-22 2013-11-22 Electrolyte solution for lithium ion secondary batteries WO2015075811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081499 WO2015075811A1 (en) 2013-11-22 2013-11-22 Electrolyte solution for lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081499 WO2015075811A1 (en) 2013-11-22 2013-11-22 Electrolyte solution for lithium ion secondary batteries

Publications (1)

Publication Number Publication Date
WO2015075811A1 true WO2015075811A1 (en) 2015-05-28

Family

ID=53179117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081499 WO2015075811A1 (en) 2013-11-22 2013-11-22 Electrolyte solution for lithium ion secondary batteries

Country Status (1)

Country Link
WO (1) WO2015075811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064082B2 (en) * 2014-03-05 2017-01-18 株式会社日立製作所 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using the same
WO2022133836A1 (en) * 2020-12-23 2022-06-30 宁德新能源科技有限公司 Electrolyte, electrochemical device, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP2012069894A (en) * 2009-09-28 2012-04-05 Sumitomo Chemical Co Ltd Sodium-ion-type power storage device
JP2012204307A (en) * 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same
JP2013163602A (en) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology Iron-containing combined phosphate fluoride, its production method, and secondary battery using it as cathode active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP2012069894A (en) * 2009-09-28 2012-04-05 Sumitomo Chemical Co Ltd Sodium-ion-type power storage device
JP2012204307A (en) * 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same
JP2013163602A (en) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology Iron-containing combined phosphate fluoride, its production method, and secondary battery using it as cathode active material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064082B2 (en) * 2014-03-05 2017-01-18 株式会社日立製作所 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using the same
WO2022133836A1 (en) * 2020-12-23 2022-06-30 宁德新能源科技有限公司 Electrolyte, electrochemical device, and electronic device

Similar Documents

Publication Publication Date Title
KR101233829B1 (en) Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US20110020700A1 (en) Nonaqueous electrolyte for secondary cell, and secondary cell
JP6081264B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
KR102621934B1 (en) Electrolyte additives for lithium-ion battery systems
CA3069973A1 (en) Phosphorus containing electrolytes
KR20180093700A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
JP5622424B2 (en) Electrolyte for secondary battery
WO2013187073A1 (en) METHOD FOR STABILIZING LiPF6, ELECTROLYTE SOLUTION FOR NONAQUEOUS SECONDARY BATTERIES HAVING EXCELLENT THERMAL STABILITY, AND NONAQUEOUS SECONDARY BATTERY HAVING EXCELLENT THERMAL STABILITY
US20180159173A1 (en) Lithium salt compound, nonaqueous electrolyte solution using same, lithium ion secondary battery and lithium ion capacitor
JP2006216361A (en) Electrolytic solution for lithium battery
JP2005514750A (en) Electrolyte system and energy storage device using the same
KR20110056150A (en) Flame resistant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
CN113906607A (en) Nonaqueous electrolyte composition
WO2012120846A1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP5360463B2 (en) Non-aqueous electrolyte secondary battery
KR20160074618A (en) Flame retardant for electrolytes for batteries
JP2009289557A5 (en)
JP5982201B2 (en) Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
US10615456B2 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
WO2015078791A1 (en) Electrolyte compositions for lithium batteries
KR102239772B1 (en) Electrolyte additives for secondary battery and electrolyte for secondary battery including the same
JP3986216B2 (en) Non-aqueous electrolyte and secondary battery using the same
WO2015075811A1 (en) Electrolyte solution for lithium ion secondary batteries
JP2014013728A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and electricity storage device
JP5842873B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP