JP7048266B2 - Manufacturing method of positive electrode active material - Google Patents

Manufacturing method of positive electrode active material Download PDF

Info

Publication number
JP7048266B2
JP7048266B2 JP2017218026A JP2017218026A JP7048266B2 JP 7048266 B2 JP7048266 B2 JP 7048266B2 JP 2017218026 A JP2017218026 A JP 2017218026A JP 2017218026 A JP2017218026 A JP 2017218026A JP 7048266 B2 JP7048266 B2 JP 7048266B2
Authority
JP
Japan
Prior art keywords
fluoride
treatment
positive electrode
containing compound
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017218026A
Other languages
Japanese (ja)
Other versions
JP2019091558A (en
Inventor
逸人 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017218026A priority Critical patent/JP7048266B2/en
Publication of JP2019091558A publication Critical patent/JP2019091558A/en
Application granted granted Critical
Publication of JP7048266B2 publication Critical patent/JP7048266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、フッ化物正極活物質の製造方法に関し、詳しくは、非水電解液二次電池用のフッ化物正極活物質を、金属粉末をガス処理することによって製造する方法に関する。 The present invention relates to a method for producing a fluoride positive electrode active material, and more particularly to a method for producing a fluoride positive electrode active material for a non-aqueous electrolyte secondary battery by gas-treating a metal powder.

室温付近で動作するリチウムイオン二次電池は、携帯電子機器、ハイブリッド自動車、電気自動車などに広く用いられており、開発が進められている。従来のリチウムイオン二次電池における正極活物質として、LiCoOや、三元系と呼ばれるLiCo1/3Ni1/3などの層状酸化物正極が使われてきた。しかし、満充電状態では、Coの4価やNiの4価といった異常電子価状態となって酸素が放出されるため、電池という密閉空間の中では、内圧上昇や発熱などのトラブル原因になっていた。 Lithium-ion secondary batteries that operate near room temperature are widely used in portable electronic devices, hybrid vehicles, electric vehicles, etc., and are being developed. As a positive electrode active material in a conventional lithium ion secondary battery, a layered oxide positive electrode such as LiCoO 2 or LiCo 1/3 Ni 1/3 O 2 called a ternary system has been used. However, in a fully charged state, oxygen is released in an abnormal electronic value state such as Co tetravalent or Ni tetravalent, which causes troubles such as an increase in internal pressure and heat generation in the enclosed space of a battery. rice field.

一方、正極活物質の中で、LiTiFなどのアルカリ金属含有フッ化金属は、高温下、満充電時においても酸素の放出がなく、電池の熱安定性が高く有用であり、例えば、コバルト酸リチウムと硝酸サマリウムと酸性フッ化アンモニウムとを混合し、フッ素を含むガス中において800℃、5時間処理することで、2wt%のフッ化物金属を得る技術(例えば、特許文献1参照。)や、LiTiFなどのリチウムフッ化金属を合成するため、TiOなどの金属材料と炭酸リチウム(LiCO)をフッ酸溶液中で反応させる技術(例えば、特許文献2参照。)が提案されている。 On the other hand, among the positive electrode active materials, an alkali metal-containing fluoride metal such as Li 2 TiF 6 is useful because it does not release oxygen even at high temperature and when fully charged, and has high thermal stability of the battery. A technique for obtaining a 2 wt% fluoride metal by mixing lithium cobaltate, samarium nitrate, and acidic ammonium fluoride and treating them in a gas containing fluorine at 800 ° C. for 5 hours (see, for example, Patent Document 1). Also, in order to synthesize a lithium fluoride metal such as LiTiF 6 , a technique of reacting a metal material such as TiO 2 with lithium carbonate (LiCO 3 ) in a fluoride solution (see, for example, Patent Document 2) has been proposed. There is.

特開2000-353524号公報Japanese Unexamined Patent Publication No. 2000-353524 特開2009-238687号公報Japanese Unexamined Patent Publication No. 2009-238686

しかし、特許文献1に記載された技術では、フッ化水素などのフッ素含有ガスを使用して800℃の高温雰囲気で処理するため、処理室や配管などの接ガス部に、フッ素やフッ化水素に対する耐性を有する材料を使用する必要がある。このため、フッ素やフッ化水素に対する耐性が200℃程度のステンレス鋼を使用することができず、耐性が高いインコネル(登録商標)などの高耐性金属であっても、実用上は600℃程度が限界であることから、処理室などの接ガス部に用いる適当な材料が多くは存在せず、安定的にフッ化物金属を得るためには、処理温度の低温化が必須となっている。 However, in the technique described in Patent Document 1, since fluorine-containing gas such as hydrogen fluoride is used for treatment in a high temperature atmosphere of 800 ° C., fluorine or hydrogen fluoride is applied to a gas contact portion such as a treatment chamber or a pipe. It is necessary to use a material that is resistant to. Therefore, it is not possible to use stainless steel with a resistance to fluorine and hydrogen fluoride of about 200 ° C, and even a highly resistant metal such as Inconel (registered trademark) with high resistance can be practically used at about 600 ° C. Due to the limit, there are not many suitable materials used for the gas contact part such as the treatment chamber, and it is essential to lower the treatment temperature in order to stably obtain the fluoride metal.

また、特許文献2に記載された技術では、合成されたフッ化物金属中に、フッ酸溶液中に含まれる多量の水分が混入してしまう。混入した水分は、電池の充放電が繰り返される中で材料から脱離し、電池材料中のフッ素化合物と反応してフッ化水素が発生し、これが、電池寿命を劣化させる要因となることが問題となっている。 Further, in the technique described in Patent Document 2, a large amount of water contained in the hydrofluoric acid solution is mixed in the synthesized fluoride metal. The problem is that the mixed water desorbs from the material as the battery is repeatedly charged and discharged, and reacts with the fluorine compound in the battery material to generate hydrogen fluoride, which causes deterioration of battery life. It has become.

そこで本発明は、処理温度の低温化が図れるとともに、水分をほとんど含まない正極活物質を得ることができるリチウムイオン二次電池用のフッ化物正極活物質の製造方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a method for producing a fluoride positive electrode active material for a lithium ion secondary battery, which can reduce the treatment temperature and obtain a positive electrode active material containing almost no water. ..

上記目的を達成するため、本発明のフッ化物正極活物質の製造方法は、処理室内に配置した*/を加熱しながら処理ガスを供給してリチウムイオン二次電池用のフッ化物正極活物質を製造する方法であって、前記処理室内に配置した金属酸化物、金属フッ化物及びリチウム含有化合物の少なくとも1種類以上からなる原料粉末を加熱する加熱工程と、前記処理室内に水素含有化合物を供給して前記原料粉末の還元処理を行う還元処理工程と、前記処理室内にフッ素含有化合物を供給して還元処理された前記原料粉末のフッ化処理を行うフッ化処理工程とを含み、前記水素含有化合物は、H 、SiH 、Si 、NH 、ヒドラジン、メチルヒドラジン、ジメチルヒドラジンの中の少なくとも1種類以上であり、
前記フッ素含有化合物は、F 、NF 、HF、BF 、ClF 、CF 、SF 、C 、XeF 、PF 、SiF 、CH F、CHF の中の少なくとも1種類以上であることを特徴としている。
In order to achieve the above object, in the method for producing a fluoride positive electrode active material of the present invention, a treated gas is supplied while heating * / arranged in a processing chamber to obtain a fluoride positive electrode active material for a lithium ion secondary battery. It is a manufacturing method, which comprises a heating step of heating a raw material powder composed of at least one of a metal oxide, a metal fluoride and a lithium-containing compound arranged in the treatment chamber, and supplying a hydrogen-containing compound to the treatment chamber. The hydrogen -containing compound comprises a reduction treatment step of reducing the raw material powder and a fluorination treatment step of supplying the fluorine-containing compound to the treatment chamber to perform the fluorination treatment of the raw material powder . The compound is at least one of H 2 , Si H 4 , Si 2 H 6 , NH 3 , hydrazine, methyl hydrazine, and dimethyl hydrazine.
The fluorine-containing compound is at least among F 2 , NF 3 , HF, BF 3 , ClF 3 , CF 4 , SF 6 , C 2 F 6 , XeF 2 , PF 3 , SiF 4 , CH 3 F, and CHF 3 . It is characterized by having one or more types .

特に、本発明のフッ化物正極活物質の製造方法は、処理室内に配置した原料粉末を加熱しながら処理ガスを供給してリチウムイオン二次電池用のフッ化物正極活物質を製造する方法であって、前記処理室内に配置した金属酸化物、金属フッ化物及びリチウム含有化合物の少なくとも1種類以上からなる原料粉末を加熱する加熱工程と、前記処理室内に水素含有化合物を供給して前記原料粉末の還元処理を行う還元処理工程と、前記処理室内に水素含有化合物を供給しながら還元処理された前記原料粉末を、前記還元処理工程の温度より低い温度に冷却する冷却工程と、前記処理室内にフッ素含有化合物を供給し、還元処理後に冷却された前記原料粉末のフッ化処理を行うフッ化処理工程とを含み、前記水素含有化合物は、H 、SiH 、Si 、NH 、ヒドラジン、メチルヒドラジン、ジメチルヒドラジンの中の少なくとも1種類以上であり、前記フッ素含有化合物は、F 、NF 、HF、BF 、ClF 、CF 、SF 、C 、XeF 、PF 、SiF 、CH F、CHF の中の少なくとも1種類以上であることを特徴としている。 In particular, the method for producing a fluoride positive electrode active material of the present invention is a method for producing a fluoride positive electrode active material for a lithium ion secondary battery by supplying a processing gas while heating the raw material powder arranged in the processing chamber. A heating step of heating a raw material powder composed of at least one of a metal oxide, a metal fluoride, and a lithium-containing compound arranged in the treatment chamber, and a heating step of supplying the hydrogen-containing compound to the treatment chamber to prepare the raw material powder . A reduction treatment step of performing a reduction treatment, a cooling step of cooling the raw material powder reduced while supplying a hydrogen-containing compound to the treatment chamber to a temperature lower than the temperature of the reduction treatment step, and fluorine in the treatment chamber. The hydrogen-containing compound includes H 2 , SiH 4 , Si 2 H 6 , NH 3 , and hydrazine , which comprises a fluoride treatment step of supplying the contained compound and performing a fluoride treatment of the raw material powder cooled after the reduction treatment. , Methylhydrazine , at least one of dimethylhydrazine, and the fluoride-containing compounds are F2 , NF3 , HF , BF3 , ClF3 , CF4 , SF6 , C2F6 , XeF2 , It is characterized in that it is at least one of PF 3 , SiF 4 , CH 3 F, and CHF 3 .

さらに、本発明のフッ化物正極活物質の製造方法は、前記フッ化物正極活物質が、LiPOF(式中のa,bは、0<a≦2.0、0<b≦1.0を示し、Mは、Fe、Mn、Ni、Cu、Ti、Co、Mo、V、Znの中の少なくとも1種類以上を示す。)又は、Li(式中のc、d、eは、0<c≦3.0、0<d≦1.0、3.0≦e≦6.0を示し、Mは、Fe、Mn、Ni、Cu、Ti、Co、Mo、V、Znの中の少なくとも1種類以上を示す。)であることを特徴としている。 Further, in the method for producing a fluoride positive electrode active material of the present invention, the fluoride positive electrode active material is Li a M b PO 4 F (a and b in the formula are 0 <a ≦ 2.0, 0 <b). ≤1.0, where M indicates at least one of Fe, Mn, Ni, Cu, Ti, Co, Mo, V, and Zn) or Li c M d Fe (in the formula). c, d, e indicate 0 <c ≦ 3.0, 0 <d ≦ 1.0, 3.0 ≦ e ≦ 6.0, and M is Fe, Mn, Ni, Cu, Ti, Co, It indicates at least one of Mo, V, and Zn.).

また、前記加熱工程では、前記原料粉末を600~750℃に加熱して保持すること、前記フッ化処理工程では、前記原料粉末を500~600℃のときに行うことを特徴とし、さらに、前記還元処理工程は、前記処理室から排出される排気ガス中の水分濃度が100ppm以下になるまで行うことを特徴としている。
Further, the heating step is characterized in that the raw material powder is heated and held at 600 to 750 ° C., and the fluorination treatment step is performed when the raw material powder is heated to 500 to 600 ° C. The reduction treatment step is characterized in that it is carried out until the water concentration in the exhaust gas discharged from the treatment chamber becomes 100 ppm or less.

本発明の正極活物質の製造方法によれば、水分をほとんど含まないリチウムイオン二次電池用のフッ化物正極活物質を効率よく製造することができる。また、高温で還元処理工程を行い、冷却工程を介してフッ化処理工程を行うことにより、還元処理を高温で効果的に行うことができるとともに、フッ化処理工程を、処理室などの接ガス部をフッ素含有化合物から保護することができ、安定した状態でフッ化物正極活物質を製造することができる。さらに、還元処理工程を行っている際に処理室から排出される排気ガス中の水分濃度を監視することにより、還元処理工程をより確実に行うことができ、フッ化物正極活物質を更に効率よく製造することができる。 According to the method for producing a positive electrode active material of the present invention, a fluoride positive electrode active material for a lithium ion secondary battery containing almost no water can be efficiently produced. Further, by performing the reduction treatment step at a high temperature and performing the fluoride treatment step via the cooling step, the reduction treatment can be effectively performed at a high temperature, and the fluoride treatment step can be carried out by contacting gas in a treatment room or the like. The part can be protected from the fluorine-containing compound, and the fluoride positive electrode active material can be produced in a stable state. Furthermore, by monitoring the water concentration in the exhaust gas discharged from the treatment chamber during the reduction treatment step, the reduction treatment step can be performed more reliably, and the fluoride positive electrode active material can be used more efficiently. Can be manufactured.

まず、本発明は、LiPOF(式中のa,bは、0<a≦2.0、0<b≦1.0を示し、Mは、Fe、Mn、Ni、Cu、Ti、Co、Mo、V、Znの中の少なくとも1種類以上を示す(Mについては、以下に記載する各式についても同様である。)。)又は、Li(式中のc、d、eは、0<c≦3.0、0<d≦1.0、3.0≦e≦6.0を示す。)で示されるリチウムイオン二次電池用のフッ化物正極活物質、具体的には、LiCoO、LiFeF、LiFeFなどのフッ化物正極活物質を製造するためのものであって、基本的に、高温状態を保持可能な処理室内に原料となる金属粉末を配置するとともに、処理室内を特定の温度に保持しながら特定の処理ガスを供給することにより、フッ化物正極活物質を製造するものである。 First, in the present invention, Li a M b PO 4 F (a and b in the formula show 0 <a ≦ 2.0, 0 <b ≦ 1.0, and M is Fe, Mn, Ni, Cu. , Ti, Co, Mo, V, Zn at least one of them (M is the same for each of the following formulas)) or Li c M d Fe (in the formula). C, d, and e indicate 0 <c ≦ 3.0, 0 <d ≦ 1.0, 3.0 ≦ e ≦ 6.0) as a fluoride positive electrode for a lithium ion secondary battery. An active material, specifically, a metal for producing a fluoride positive electrode active material such as LiCoO 2 , LiFeF 3 , and LiFeF 3 , which is basically a raw material in a processing chamber capable of maintaining a high temperature state. A fluoride positive electrode active material is produced by arranging powder and supplying a specific processing gas while keeping the processing chamber at a specific temperature.

原料となる金属粉末は、金属酸化物、金属フッ化物及びリチウム含有化合物の少なくとも1種類以上であって、金属酸化物や金属フッ化物は、特に限定されるものではないが、例えば、Li2-xPO(式中、xは、0≦x≦2.0)、LiM(式中、yは、0≦y≦1.0)、MF、MF、MO、MO、Mを使用することができる。具体的には、LiCoPO、LiNiPO、LiCoO、LiNiO、LiMnO、LiFeO、CoF、CoF、NiF、NiF、MnF、MnF、MnF、FeF、FeF、CoO、Co、Co、NiO、TiO、Fe、FeOなどを挙げることができる。これらの金属酸化物や金属フッ化物は、単独で、あるいは、複数種類を混合した状態で用いることができる。また、リチウム含有化合物としては、例えば、LiF、LiCO、LiOH、LiO、LiHなどを単独であるいは複数種類を混合して用いることができる。 The metal powder as a raw material is at least one kind of a metal oxide, a metal fluoride and a lithium-containing compound, and the metal oxide and the metal fluoride are not particularly limited, but for example, Li 2- . x M x PO 4 (in the formula, x is 0 ≦ x ≦ 2.0), LiM y O 2 (in the formula, y is 0 ≦ y ≦ 1.0), MF 3 , MF 2 , MO 2 , MO, M 2 O 3 can be used. Specifically, Li 2 CoPO 4 , Li 2 NiPO 4 , LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFeO 2 , CoF 2 , CoF 3 , NiF 2 , NiF 3 , MnF 2 , MnF 3 , MnF 4 , FeF 2 . , FeF 3 , CoO, Co 2 O 3 , Co 3 O 4 , NiO, TiO 2 , Fe 2 O 3 , FeO and the like. These metal oxides and metal fluorides can be used alone or in a mixed state of a plurality of types. Further, as the lithium-containing compound, for example, LiF, Li 2 CO 3 , LiOH, Li 2 O, Li H and the like can be used alone or in combination of two or more.

加熱工程は、処理室にヒータなどの加熱手段を設けたり、処理室内に供給する処理ガスを加熱したりすることによって行うことができる。加熱温度は、使用する原料金属粉末の種類や使用する処理ガスの種類などの条件によって異なるが、通常、加熱工程に続く還元処理工程における原料金属粉末の温度を750℃以下、好ましくは600~750℃に加熱するようにしている。 The heating step can be performed by providing a heating means such as a heater in the processing chamber or heating the processing gas supplied to the processing chamber. The heating temperature varies depending on conditions such as the type of the raw material metal powder used and the type of the processing gas used, but usually the temperature of the raw material metal powder in the reduction treatment step following the heating step is 750 ° C. or lower, preferably 600 to 750. I try to heat it to ℃.

600~750℃の範囲に原料金属粉末を保持した状態で行う還元処理工程で使用する処理ガスは、金属粉末の還元処理を行うことができる水素単独を含む水素含有化合物からなるガス、あるいは、水素含有化合物と不活性ガスとの混合ガスを使用することができる。水素含有化合物は、使用する原料金属粉末や加熱温度などの条件によって異なるが、通常は、H、SiH、Si、NH、ヒドラジン、メチルヒドラジン、ジメチルヒドラジンを使用することができ、これらの水素含有化合物を、単独で、あるいは、複数種類を混合した状態で用いることができる。 The treatment gas used in the reduction treatment step in which the raw metal powder is held in the range of 600 to 750 ° C. is a gas composed of a hydrogen-containing compound containing hydrogen alone capable of reducing the metal powder, or hydrogen. A mixed gas of the contained compound and the inert gas can be used. The hydrogen-containing compound varies depending on the conditions such as the raw metal powder used and the heating temperature, but usually H 2 , SiH 4 , Si 2 H 6 , NH 3 , hydrazine, methylhydrazine, and dimethylhydrazine can be used. , These hydrogen-containing compounds can be used alone or in a mixed state of a plurality of types.

フッ化処理工程は、前記還元処理工程と同程度の温度、好ましくは、還元処理工程の温度より低い温度で行われるもので、通常は、還元処理工程を終えた後、処理室内に水素含有化合物を供給しながら還元処理工程の温度より低い温度に冷却する冷却工程を行い、還元処理された金属粉末を、600℃以下、好ましくは500~600℃になった状態でフッ化処理工程を開始することが望ましい。冷却工程は、ヒータなどの作動を一時停止し、あらかじめ設定した温度に低下した後、その温度を保持するようにすればよい。 The fluorination treatment step is performed at a temperature similar to that of the reduction treatment step, preferably lower than the temperature of the reduction treatment step, and usually, after the reduction treatment step is completed, a hydrogen-containing compound is placed in the treatment chamber. A cooling step is performed to cool the reduced metal powder to a temperature lower than the temperature of the reduction treatment step, and the fluoride treatment step is started in a state where the reduced metal powder is at 600 ° C. or lower, preferably 500 to 600 ° C. Is desirable. In the cooling step, the operation of the heater or the like may be temporarily stopped, the temperature may be lowered to a preset temperature, and then the temperature may be maintained.

フッ化処理工程で使用するフッ素単独を含むフッ素含有化合物としては、特に限定されるものではないが、例えば、F、NF、HF、BF、ClF、CF、SF、C、XeF、PF、SiF、CHF、CHFなどを使用することができ、これらを単独で、あるいは、複数種類を混合した状態で用いることができる。 The fluorine-containing compound containing fluorine alone used in the fluoride treatment step is not particularly limited, and is, for example, F 2 , NF 3 , HF, BF 3 , ClF 3 , CF 4 , SF 6 , C 2 . F 6 , XeF 2 , PF 3 , SiF 4 , CH 3 F, CHF 3 , and the like can be used, and these can be used alone or in a state where a plurality of types are mixed.

また、プラズマ、マイクロ波、紫外線、触媒などを使用し、水素含有化合物やフッ素含有化合物を活性化させた状態で処理室内に供給することも可能である。 It is also possible to supply the hydrogen-containing compound or the fluorine-containing compound to the treatment chamber in an activated state by using plasma, microwave, ultraviolet rays, a catalyst or the like.

このように、還元処理工程を高い温度、例えば750℃で行うことにより、水素含有化合物による金属粉末の還元処理を効率よく行えるとともに、金属粉末に含まれる水分を効果的に除去することができる。また、通常の金属材料は、水素含有化合物に対する耐性を有しているため、750℃の高温で実施しても、処理室などの接ガス部が腐食したり、劣化したりすることはほとんどない。 As described above, by performing the reduction treatment step at a high temperature, for example, 750 ° C., the reduction treatment of the metal powder by the hydrogen-containing compound can be efficiently performed, and the water content contained in the metal powder can be effectively removed. Further, since ordinary metal materials have resistance to hydrogen-containing compounds, even if they are carried out at a high temperature of 750 ° C., the gas contact portion such as a treatment chamber is hardly corroded or deteriorated. ..

一方、フッ化処理工程では、処理室内の金属材料を還元処理工程より低い温度、例えば600℃で行うことにより、処理室などの接ガス部がフッ素やフッ素含有化合物によって侵されることが少なくなり、特に、前述のインコネル(登録商標)を使用することにより、接ガス部が腐食したり、劣化したりすることがほとんどなくなり、長期間にわたって安定してフッ化処理工程を行うことができる。 On the other hand, in the fluorination treatment step, by performing the metal material in the treatment chamber at a temperature lower than that in the reduction treatment step, for example, 600 ° C., the gas contact portion of the treatment chamber or the like is less likely to be corroded by fluorine or a fluorine-containing compound. In particular, by using the above-mentioned Inconel (registered trademark), the gas contact portion is hardly corroded or deteriorated, and the fluorination treatment step can be stably performed for a long period of time.

また、一つの処理室で還元処理工程とフッ化処理工程とを連続的に行うことが望ましいが、還元処理工程用の処理室とフッ化処理工程用の処理室とを別に形成し、適宜な搬送手段で還元処理工程用の処理室からフッ化処理工程用の処理室へ金属粉末を移送するように形成することもできる。 Further, it is desirable to continuously perform the reduction treatment step and the fluorination treatment step in one treatment chamber, but it is appropriate to form a treatment chamber for the reduction treatment step and a treatment chamber for the fluorination treatment step separately. It can also be formed so as to transfer the metal powder from the processing chamber for the reduction treatment step to the treatment chamber for the fluorination treatment step by the transport means.

すなわち、高温状態で還元処理工程を行うことにより、水素などと酸素原子などとの酸化還元反応が進行しやすくなり、原料を単原子金属に近い状態にすることができるので、FやHFとの反応性を高めることができ、フッ化処理を低い温度で行うことが可能となり、このような水素含有化合物を供給する還元処理工程とフッ素含有化合物を供給するフッ化処理工程とを組み合わせることで、フッ化物正極活物質への反応効率が向上し、フッ化処理工程の低温化が可能となる。 That is, by performing the reduction treatment step in a high temperature state, the redox reaction between hydrogen and the like and oxygen atoms and the like is facilitated, and the raw material can be brought into a state close to that of a monoatomic metal. The reactivity of the compound can be enhanced, and the fluorine treatment can be performed at a low temperature. By combining the reduction treatment step of supplying such a hydrogen-containing compound and the fluoride treatment step of supplying the fluorine-containing compound. , The reaction efficiency with the fluoride positive electrode active material is improved, and the temperature of the fluoride treatment step can be lowered.

また、フッ酸溶液を使用せずに完全なドライ環境の製造工程であることから、フッ酸溶液による合成方法よりも格段に含有水分が少ないフッ化物正極活物質を得ることができる。さらに、還元処理工程を、処理室から排出される排気ガス中の水分濃度が100ppm以下、好ましくは50ppm以下、より好ましくは10ppm以下になるまで継続することにより、還元処理工程で水素と酸素とが反応して生成した水分を確実に除去できるとともに、排気ガス中の水分濃度を確認することにより、還元反応の進行状況、完了時間を把握することができ、必要十分な還元処理を行うことができる。 Further, since the manufacturing process is in a completely dry environment without using a hydrofluoric acid solution, it is possible to obtain a fluoride positive electrode active material containing significantly less water than the synthesis method using a hydrofluoric acid solution. Further, by continuing the reduction treatment step until the water concentration in the exhaust gas discharged from the treatment chamber becomes 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, hydrogen and oxygen are released in the reduction treatment step. By surely removing the water generated by the reaction and confirming the water concentration in the exhaust gas, the progress and completion time of the reduction reaction can be grasped, and the necessary and sufficient reduction treatment can be performed. ..

処理室内に配置する金属粉末は、処理室内容積において単位容積(L)当たり1g以上とすることが好ましく、1g未満の場合は処理量が少ないため、生産性が低下するだけでなく、排気ガス中の水分濃度の検出が困難となることがある。さらに、水素含有化合物の供給量は、原料金属粉末量単位グラム(g)当たり100sccm以下とすることが好ましく、100sccmを超えると排気ガス中の水分が希釈されすぎてしまうため、測定が困難になることがある。例えば、処理室内容積が10Lの場合、原料金属粉末は10g以上とすることが好ましく、原料金属粉末を10gとした場合の水素含有化合物の供給量は、1000sccm以下とすることが好ましい。また、処理室内の圧力は、1kPa以上、好ましくは100kPa以上に圧力制御した状態で各ガス処理を実施することが望ましく、各工程において圧力を変更してもよい。 The metal powder to be placed in the treatment chamber is preferably 1 g or more per unit volume (L) in the treatment chamber volume, and if it is less than 1 g, the treatment amount is small, so that not only the productivity is lowered but also the exhaust gas is contained. It may be difficult to detect the water concentration of the gas. Further, the supply amount of the hydrogen-containing compound is preferably 100 sccm or less per gram (g) of the raw metal powder amount, and if it exceeds 100 sccm, the water content in the exhaust gas is too diluted, which makes measurement difficult. Sometimes. For example, when the processing chamber volume is 10 L, the raw metal powder is preferably 10 g or more, and when the raw metal powder is 10 g, the supply amount of the hydrogen-containing compound is preferably 1000 sccm or less. Further, it is desirable to carry out each gas treatment in a state where the pressure in the treatment chamber is controlled to 1 kPa or more, preferably 100 kPa or more, and the pressure may be changed in each step.

処理室内への各処理ガスの供給は、特に制限はなく、水素含有化合物の供給とフッ素含有化合物の供給とを繰り返し行ってもよく、各工程において水素含有化合物、フッ素含有化合物、不活性ガスをそれぞれ混合してから処理室内に供給してもよい。また、2種類以上を混合して導入する場合も、特に限定されるものではないが、混合手法として、例えば、混合ガスを容器に充填したものを処理室内に供給する方法、処理室の上流側で2種類以上のガスを予混合して処理室内に供給する方法、各ガス種を個別に供給して処理室内で混合する方法などを適宜に選択できる。不活性ガスには、N、He、Ar、Ne、Xe、Krを使用できる。 The supply of each treatment gas to the treatment chamber is not particularly limited, and the supply of the hydrogen-containing compound and the supply of the fluorine-containing compound may be repeated, and the hydrogen-containing compound, the fluorine-containing compound, and the inert gas may be supplied in each step. Each may be mixed and then supplied to the processing chamber. Further, the case where two or more types are mixed and introduced is not particularly limited, but as a mixing method, for example, a method of supplying a mixed gas filled in a container to the processing chamber, or an upstream side of the processing chamber. A method of premixing two or more types of gas and supplying them to the processing chamber, a method of individually supplying each gas type and mixing them in the processing chamber, and the like can be appropriately selected. As the inert gas, N 2 , He, Ar, Ne, Xe, Kr can be used.

実施例1
LiCoFの製造実験を行った。まず、CoOの粉末とLiFの粉末とを十分に混合したものを原料金属粉末に用いて処理室内に設置し、処理室内に窒素を流通させた状態で加熱工程を行って金属粉末を750℃まで加熱した。750℃の状態で、水素含有化合物としてのHを供給し、240分間加熱処理して還元処理工程を行った。還元処理工程終了後、Hの供給を継続した状態で、金属粉末を600℃まで冷却する冷却工程を行った。600℃を保持した状態で、Hの供給を停止し、N中にFを20%含むガスをフッ素含有化合物として供給し、240分間加熱処理してフッ化処理工程を行った。各工程における処理室内の圧力は、いずれも100kPaに制御した(以下、同様)。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、CoF及びLiFの成分ピークが消え、LiCoFの成分ピークが確認できた。
Example 1
A manufacturing experiment of LiCoF 3 was carried out. First, a sufficiently mixed mixture of CoO powder and LiF powder is used as a raw material metal powder and installed in a processing chamber, and a heating step is performed with nitrogen flowing in the processing chamber to bring the metal powder to 750 ° C. Heated. At 750 ° C., H 2 as a hydrogen-containing compound was supplied and heat-treated for 240 minutes to carry out a reduction treatment step. After the reduction treatment step was completed, a cooling step of cooling the metal powder to 600 ° C. was performed while the supply of H 2 was continued. While the temperature was maintained at 600 ° C., the supply of H 2 was stopped, a gas containing 20% of F 2 in N 2 was supplied as a fluorine-containing compound, and heat treatment was performed for 240 minutes to perform a fluoride treatment step. The pressure in the processing chamber in each step was controlled to 100 kPa (hereinafter, the same applies). When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peaks of CoF 2 and LiF disappeared, and the component peak of LiCoF 3 was confirmed.

実施例2
実施例1と同じLiCoFの製造実験を、コバルト酸リチウム(LiCoO)を原料金属粉末に使用して行った。実施例1と同じ条件で加熱工程、還元処理工程及びフッ化処理工程を行った。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、LiCoOの成分ピークが消え、LiCoFの成分ピークが確認できた。
Example 2
The same production experiment of LiCoF 3 as in Example 1 was carried out using lithium cobalt oxide (LiCoO 2 ) as a raw material metal powder. The heating step, the reduction treatment step, and the fluorine treatment step were performed under the same conditions as in Example 1. When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peak of LiCoO 2 disappeared and the component peak of LiCoF 3 was confirmed.

比較例1
LiCoOの粉末と酸性フッ化アンモニウム(NHF・HF)の粉末とを十分に混合したものを処理室内に設置した。処理室内に窒素を流通した状態で金属粉末を800℃まで加熱した。800℃の状態で、N中にFを20%含むガスをフッ素含有化合物として供給し、240分間加熱処理を行った。処理後のサンプルのXRD測定を実施したところ、LiCoFの成分ピークは検出されず、LiCoOが残留していた。
Comparative Example 1
A sufficiently mixed mixture of LiCoO 2 powder and acidic ammonium fluoride (NH 4F · HF) powder was installed in the treatment chamber. The metal powder was heated to 800 ° C. with nitrogen flowing through the treatment chamber. At 800 ° C., a gas containing 20% of F 2 in N 2 was supplied as a fluorine-containing compound, and heat treatment was performed for 240 minutes. When the XRD measurement of the treated sample was carried out, the component peak of LiCoF 3 was not detected, and LiCoO 2 remained.

比較例2
CoOの粉末とLiFの粉末とを十分に混合したものを処理室内に設置した。処理室内に窒素を流通した状態で金属粉末を600℃まで加熱した。600℃の状態でN中にFを20%含むガスをフッ素含有化合物として供給し、240分間加熱処理を行った。処理後のサンプルのXRD測定を実施したところ、LiCoFのピーク成分は検出されず、LiCoOの成分ピークとLiFの成分ピークとが検出された。
Comparative Example 2
A sufficiently mixed mixture of CoO powder and LiF powder was installed in the treatment chamber. The metal powder was heated to 600 ° C. with nitrogen flowing through the treatment chamber. A gas containing 20% of F 2 in N 2 was supplied as a fluorine-containing compound at 600 ° C., and heat treatment was performed for 240 minutes. When the XRD measurement of the treated sample was carried out, the peak component of LiCoF 3 was not detected, and the component peak of LiCoO and the component peak of LiF were detected.

実施例1,2及び比較例1,2の結果をまとめて表1に示す。 The results of Examples 1 and 2 and Comparative Examples 1 and 2 are summarized in Table 1.

Figure 0007048266000001
Figure 0007048266000001

表1に示すように、実施例1,2では、LiCoFの製造を確認できたが、比較例1,2では、共にLiCoFは検出できなかった。特に、比較例1は、800℃の高温条件下であっても生成されなかった。この要因として、800℃以下ではFによる反応エネルギーが不足しており、フッ素含有化合物を供給する工程単独ではフッ化物正極活物質の製造が困難であることを示している。 As shown in Table 1, the production of LiCoF 3 could be confirmed in Examples 1 and 2, but LiCoF 3 could not be detected in both Comparative Examples 1 and 2. In particular, Comparative Example 1 was not produced even under high temperature conditions of 800 ° C. As a factor for this, the reaction energy due to F 2 is insufficient at 800 ° C. or lower, indicating that it is difficult to produce a fluoride positive electrode active material only by the step of supplying the fluorine-containing compound.

一方、実施例1,2では、水素を供給して還元処理工程を行い、CoOやLiCoOの還元処理を行うことによって生成されるCoは、含有されているLiFやFを供給するフッ化処理工程におけるフッ化反応を促進させる効果があるため、フッ素含有化合物を供給して行うフッ化処理工程を低温で行うことが可能となる。したがって、ガス処理によってLiCoFを製造する際に、フッ化処理工程の前段に、水素含有化合物を供給する還元処理工程を導入することで、フッ化処理工程の低温化を達成できることがわかる。 On the other hand, in Examples 1 and 2, the Co produced by supplying hydrogen to perform the reduction treatment step and performing the reduction treatment of CoO and LiCoO 2 is the fluoride that supplies the contained LiF and F 2 . Since it has the effect of accelerating the fluorination reaction in the treatment step, it is possible to carry out the fluorination treatment step of supplying the fluorine-containing compound at a low temperature. Therefore, it can be seen that when LiCoF 3 is produced by gas treatment, the temperature of the fluoride treatment step can be lowered by introducing a reduction treatment step of supplying a hydrogen-containing compound before the fluoride treatment step.

実施例3
LiFeFの製造実験を行った。Feの粉末とLiFの粉末とを十分に混合したものを処理室内に設置し、処理室内に窒素を流通させた状態で加熱工程を行って金属粉末を750℃まで加熱した。750℃の状態で、水素含有化合物としてのHを供給し、240分間加熱処理して還元処理工程を行った。還元処理工程終了後、Hの供給を継続した状態で、金属粉末を600℃まで冷却する冷却工程を行った。600℃を保持した状態で、Hの供給を停止し、N中にFを20%含むガスをフッ素含有化合物として供給し、240分間加熱処理してフッ化処理工程を行った。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、Fe及びLiFの成分ピークが消え、LiFeFの成分ピークが確認できた。
Example 3
A manufacturing experiment of LiFeF 3 was carried out. A sufficiently mixed mixture of Fe 2 O 3 powder and LiF powder was placed in the treatment chamber, and a heating step was performed with nitrogen flowing through the treatment chamber to heat the metal powder to 750 ° C. At 750 ° C., H 2 as a hydrogen-containing compound was supplied and heat-treated for 240 minutes to carry out a reduction treatment step. After the reduction treatment step was completed, a cooling step of cooling the metal powder to 600 ° C. was performed while the supply of H 2 was continued. While the temperature was maintained at 600 ° C., the supply of H 2 was stopped, a gas containing 20% of F 2 in N 2 was supplied as a fluorine-containing compound, and heat treatment was performed for 240 minutes to perform a fluoride treatment step. When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peaks of Fe 2 O 3 and LiF disappeared, and the component peak of LiFeF 3 was confirmed.

実施例4
実施例3と同じLiFeFの製造実験を、LiFeOの粉末を使用して行った。実施例3と同じ条件で加熱工程、還元処理工程及びフッ化処理工程を行った。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、LiFeOの成分ピークが消え、LiFeFの成分ピークが確認できた。
Example 4
The same production experiment of LiFeF 3 as in Example 3 was carried out using the powder of LiFeO 2 . The heating step, the reduction treatment step, and the fluorine treatment step were performed under the same conditions as in Example 3. When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peak of LiFeO 2 disappeared and the component peak of LiFeF 3 was confirmed.

比較例3
Feの粉末とLiFの粉末とを十分に混合したものを処理室内に設置し、600℃に加熱した状態で、N中にFを20%含むガスを供給し、240分間加熱処理を行った。処理後のサンプルのXRD測定を実施したところ、LiFeFの成分ピークは検出されず、FeとLiFとが残留していた。
Comparative Example 3
A sufficiently mixed mixture of Fe 2 O 3 powder and Li F powder was placed in the processing chamber, and in a state of being heated to 600 ° C., a gas containing 20% of F 2 was supplied into N 2 and heated for 240 minutes. Processing was performed. When the XRD measurement of the sample after the treatment was carried out, the component peak of LiFeF 3 was not detected, and Fe 2 O 3 and LiF remained.

実施例3,4及び比較例3の結果をまとめて表2に示す。 The results of Examples 3 and 4 and Comparative Example 3 are summarized in Table 2.

Figure 0007048266000002
Figure 0007048266000002

表2に示す結果から、実施例3,4ではLiFeの製造を確認できたが、比較例3ではLiFeFが未検出であった。これは、実施例1、2と同様、還元処理工程によってFeやLiFeOの還元反応を生じさせ、Fを供給する工程でフッ化反応を促進させる効果があることを示している。したがって、ガス処理によってLiFeFを製造する際に、フッ化処理工程の前段に、水素含有化合物を供給する還元処理工程を導入することで、フッ化処理工程の低温化を達成できることがわかる。 From the results shown in Table 2, the production of LiFe 3 could be confirmed in Examples 3 and 4, but LiFeF 3 was not detected in Comparative Example 3. This indicates that, as in Examples 1 and 2, the reduction treatment step causes a reduction reaction of Fe 2 O 3 and LiFeO 2 , and the step of supplying F 2 has the effect of promoting the fluorination reaction. .. Therefore, it can be seen that when LiFeF 3 is produced by gas treatment, the temperature of the fluoride treatment step can be lowered by introducing a reduction treatment step of supplying a hydrogen-containing compound before the fluoride treatment step.

実施例5
LiFeFの製造実験を行い、含有水分量を測定した。Feの粉末とLiFの粉末とを十分に混合したものを処理室内に設置し、処理室内に窒素を流通させた状態で加熱工程を行って金属粉末を750℃まで加熱した。750℃の状態で、水素含有化合物としてのHを供給し、240分間加熱処理して還元処理工程を行った。このとき、処理室から排出される排気ガス中の水分濃度をFT-IRを用いて分析し、240分後の水分濃度が10ppm以下であることを確認した。還元処理工程終了後、Hの供給を継続した状態で、金属粉末を600℃まで冷却する冷却工程を行った。600℃を保持した状態で、Hの供給を停止し、N中にFを20%含むガスをフッ素含有化合物として供給し、240分間加熱処理してフッ化処理工程を行った。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、Fe及びLiFの成分ピークが消え、LiFeFの成分ピークが確認できた。さらに、得られたLiFeF内の含有水分量を、昇温脱離ガス質量分析(TDS-MS)で測定したところ、LiFeFの1g当たり、14.5μgであった。
Example 5
A production experiment of LiFeF 3 was carried out, and the water content was measured. A sufficiently mixed mixture of Fe 2 O 3 powder and LiF powder was placed in the treatment chamber, and a heating step was performed with nitrogen flowing through the treatment chamber to heat the metal powder to 750 ° C. At 750 ° C., H 2 as a hydrogen-containing compound was supplied and heat-treated for 240 minutes to carry out a reduction treatment step. At this time, the water concentration in the exhaust gas discharged from the treatment chamber was analyzed using FT-IR, and it was confirmed that the water concentration after 240 minutes was 10 ppm or less. After the reduction treatment step was completed, a cooling step of cooling the metal powder to 600 ° C. was performed while the supply of H 2 was continued. While the temperature was maintained at 600 ° C., the supply of H 2 was stopped, a gas containing 20% of F 2 in N 2 was supplied as a fluorine-containing compound, and heat treatment was performed for 240 minutes to perform a fluoride treatment step. When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peaks of Fe 2 O 3 and LiF disappeared, and the component peak of LiFeF 3 was confirmed. Further, the water content in the obtained LiFeF 3 was measured by temperature-temperature desorption gas mass spectrometry (TDS-MS) and found to be 14.5 μg per 1 g of LiFeF 3 .

比較例4
FeClと炭酸リチウム(LiCO)とを50%フッ酸溶液に溶解して反応させた。反応終了後、有機溶媒で洗浄してから真空乾燥を行い、LiFeFを製造した。得られたLiFeF内の含有水分量を測定するため、TDS-MSを実施したところ、LiFeFの1g当たり、1089μgであった。
Comparative Example 4
FeCl 3 and lithium carbonate (LiCO 3 ) were dissolved in a 50% hydrofluoric acid solution and reacted. After completion of the reaction, the mixture was washed with an organic solvent and then vacuum dried to produce LiFeF 3 . When TDS-MS was carried out to measure the water content in the obtained LiFeF 3 , it was 1089 μg per 1 g of LiFeF 3 .

比較例5
実施例5において、還元処理工程を十分に行わず、20分で終了した。このときの排気ガス中の水分濃度は300ppm以上であった。これ以外は実施例5と同じ条件で各工程を行った。フッ化処理工程終了後のサンプルのXRD測定を実施したところ、Fe、LiF及びLiFeFの成分ピークがそれぞれ確認された。さらに、得られたサンプル内の含有水分量を、昇温脱離ガス質量分析(TDS-MS)で測定したところ、サンプル1g当たり、30.5μgであった。
Comparative Example 5
In Example 5, the reduction treatment step was not sufficiently performed, and the process was completed in 20 minutes. The water concentration in the exhaust gas at this time was 300 ppm or more. Other than this, each step was performed under the same conditions as in Example 5. When the XRD measurement of the sample was carried out after the completion of the fluorination treatment step, the component peaks of Fe 2 O 3 , LiF and LiFeF 3 were confirmed, respectively. Further, the water content in the obtained sample was measured by temperature-temperature desorption gas mass spectrometry (TDS-MS) and found to be 30.5 μg per 1 g of the sample.

実施例5及び比較例4,5の結果をまとめて表3に示す。 The results of Example 5 and Comparative Examples 4 and 5 are summarized in Table 3.

Figure 0007048266000003
Figure 0007048266000003

表3の結果から、フッ酸溶液を使用した比較例4に比べて、ガス処理を行った実施例5の方が、格段に含有水分量が少なくなることがわかる。すなわち、水分量に関しては、実施例5ではドライな環境で製造したため、取り込まれる水分量が少ないことを示す。一方、比較例4では、合成過程でフッ酸溶液中の水分が多く取り込まれた結果である。このことから、ガス処理によるドライ環境で製造することにより、電池寿命の悪影響となる水分含有量が少ないフッ化物正極活物質を製造できることが分かる。また、実施例5と比較例5との比較では、共にドライ環境で製造したため、水分含有量は少ない。しかしながら、XRDピーク強度比の結果より、比較例5ではLiFeFが製造されている一方、未反応のFeやLiFが多く残留した。これは、比較例5の還元処理工程が不十分であり、排気ガス中の水分濃度が300ppm以上で還元処理工程を終了してしまったため、還元反応が不足していることを示している。したがって、還元処理工程を行っている際に、排気ガス中の水分濃度を監視することにより、還元反応の進行状態を把握することができる。 From the results in Table 3, it can be seen that the water content of Example 5 subjected to the gas treatment is significantly smaller than that of Comparative Example 4 using the hydrofluoric acid solution. That is, regarding the amount of water, it is shown that the amount of water taken in is small because it was produced in a dry environment in Example 5. On the other hand, in Comparative Example 4, a large amount of water in the hydrofluoric acid solution was taken in during the synthesis process. From this, it can be seen that the fluoride positive electrode active material having a low water content, which adversely affects the battery life, can be produced by producing in a dry environment by gas treatment. Further, in the comparison between Example 5 and Comparative Example 5, since both were produced in a dry environment, the water content was low. However, from the results of the XRD peak intensity ratio, while LiFeF 3 was produced in Comparative Example 5, a large amount of unreacted Fe 2 O 3 and LiF remained. This indicates that the reduction treatment step of Comparative Example 5 is insufficient, and the reduction treatment step is completed when the water concentration in the exhaust gas is 300 ppm or more, so that the reduction reaction is insufficient. Therefore, by monitoring the water concentration in the exhaust gas during the reduction treatment step, it is possible to grasp the progress state of the reduction reaction.

Claims (6)

処理室内に配置した原料粉末を加熱しながら処理ガスを供給してリチウムイオン二次電池用のフッ化物正極活物質を製造する方法であって、前記処理室内に配置した金属酸化物、金属フッ化物及びリチウム含有化合物の少なくとも1種類以上からなる原料粉末を加熱する加熱工程と、前記処理室内に水素含有化合物を供給して前記原料粉末の還元処理を行う還元処理工程と、前記処理室内にフッ素含有化合物を供給して還元処理された前記原料粉末のフッ化処理を行うフッ化処理工程とを含み、
前記水素含有化合物は、H 、SiH 、Si 、NH 、ヒドラジン、メチルヒドラジン、ジメチルヒドラジンの中の少なくとも1種類以上であり、
前記フッ素含有化合物は、F 、NF 、HF、BF 、ClF 、CF 、SF 、C 、XeF 、PF 、SiF 、CH F、CHF の中の少なくとも1種類以上であることを特徴とするフッ化物正極活物質の製造方法。
A method for producing a fluoride positive electrode active material for a lithium ion secondary battery by supplying a treatment gas while heating a raw material powder placed in the treatment chamber, wherein the metal oxide or metal fluoride placed in the treatment chamber is produced. A heating step of heating a raw material powder composed of at least one kind of a lithium-containing compound, a reduction treatment step of supplying a hydrogen-containing compound to the treatment chamber to perform a reduction treatment of the raw material powder , and a fluorine-containing treatment chamber. It includes a fluoride treatment step of supplying a compound and performing a fluoride treatment of the raw material powder which has been reduced.
The hydrogen-containing compound is at least one of H 2 , SiH 4 , Si 2 H 6 , NH 3 , hydrazine, methylhydrazine, and dimethylhydrazine.
The fluorine-containing compound is at least among F 2 , NF 3 , HF, BF 3 , ClF 3 , CF 4 , SF 6 , C 2 F 6 , XeF 2 , PF 3 , SiF 4 , CH 3 F, and CHF 3 . A method for producing a fluoride positive electrode active material, which is characterized by having one or more types .
処理室内に配置した原料粉末を加熱しながら処理ガスを供給してリチウムイオン二次電池用のフッ化物正極活物質を製造する方法であって、前記処理室内に配置した金属酸化物、金属フッ化物及びリチウム含有化合物の少なくとも1種類以上からなる原料粉末を加熱する加熱工程と、前記処理室内に水素含有化合物を供給して前記原料粉末の還元処理を行う還元処理工程と、前記処理室内に水素含有化合物を供給しながら還元処理された前記原料粉末を、前記還元処理工程の温度より低い温度に冷却する冷却工程と、前記処理室内にフッ素含有化合物を供給し、還元処理後に冷却された前記原料粉末のフッ化処理を行うフッ化処理工程とを含み、
前記水素含有化合物は、H 、SiH 、Si 、NH 、ヒドラジン、メチルヒドラジン、ジメチルヒドラジンの中の少なくとも1種類以上であり、
前記フッ素含有化合物は、F 、NF 、HF、BF 、ClF 、CF 、SF 、C 、XeF 、PF 、SiF 、CH F、CHF の中の少なくとも1種類以上であることを特徴とするフッ化物正極活物質の製造方法。
A method for producing a fluoride positive electrode active material for a lithium ion secondary battery by supplying a treatment gas while heating a raw material powder placed in the treatment chamber, wherein the metal oxide or metal fluoride placed in the treatment chamber is produced. A heating step of heating a raw material powder composed of at least one kind of a lithium-containing compound, a reduction treatment step of supplying a hydrogen-containing compound to the treatment chamber to perform a reduction treatment of the raw material powder , and a hydrogen-containing treatment chamber. A cooling step of cooling the raw material powder reduced while supplying the compound to a temperature lower than the temperature of the reduction treatment step, and the raw material powder of supplying the fluorine-containing compound to the treatment chamber and cooling after the reduction treatment. Including the fluorination treatment step of performing the fluorination treatment of
The hydrogen-containing compound is at least one of H 2 , SiH 4 , Si 2 H 6 , NH 3 , hydrazine, methylhydrazine, and dimethylhydrazine.
The fluorine-containing compound is at least among F 2 , NF 3 , HF, BF 3 , ClF 3 , CF 4 , SF 6 , C 2 F 6 , XeF 2 , PF 3 , SiF 4 , CH 3 F, and CHF 3 . A method for producing a fluoride positive electrode active material, which is characterized by having one or more types .
前記フッ化物正極活物質は、LiPOF(式中のa,bは、0<a≦2.0、0<b≦1.0を示し、Mは、Fe、Mn、Ni、Cu、Ti、Co、Mo、V、Znの中の少なくとも1種類以上を示す。)又は、Li(式中のc、d、eは、0<c≦3.0、0<d≦1.0、3.0≦e≦6.0を示し、Mは、Fe、Mn、Ni、Cu、Ti、Co、Mo、V、Znの中の少なくとも1種類以上を示す。)であることを特徴とする請求項1又は2記載のフッ化物正極活物質の製造方法。 The fluoride positive electrode active material is Li a M b PO 4 F (a and b in the formula show 0 <a ≦ 2.0, 0 <b ≦ 1.0, and M is Fe, Mn, Ni). , Cu, Ti, Co, Mo, V, Zn.) Or Li c M d Fe (c, d, e in the formula is 0 <c ≦ 3.0, 0 <d ≦ 1.0, 3.0 ≦ e ≦ 6.0, and M indicates at least one of Fe, Mn, Ni, Cu, Ti, Co, Mo, V, and Zn. ). The method for producing a fluoride positive electrode active material according to claim 1 or 2. 前記加熱工程は、前記原料粉末を600~750℃に加熱して保持することを特徴とする請求項1乃至のいずれか1項記載のフッ化物正極活物質の製造方法。 The method for producing a fluoride positive electrode active material according to any one of claims 1 to 3 , wherein the heating step heats and holds the raw material powder at 600 to 750 ° C. 前記フッ化処理工程は、前記原料粉末が500~600℃のときに行うことを特徴とする請求項1乃至のいずれか1項記載のフッ化物正極活物質の製造方法。 The method for producing a fluoride positive electrode active material according to any one of claims 1 to 4 , wherein the fluoride treatment step is performed when the raw material powder is at 500 to 600 ° C. 前記還元処理工程は、前記処理室から排出される排気ガス中の水分濃度が100ppm以下になるまで行うことを特徴とする請求項1乃至のいずれか1項記載のフッ化物正極活物質の製造方法。 The fluoride positive electrode active material according to any one of claims 1 to 5 , wherein the reduction treatment step is carried out until the water concentration in the exhaust gas discharged from the treatment chamber becomes 100 ppm or less. Method.
JP2017218026A 2017-11-13 2017-11-13 Manufacturing method of positive electrode active material Active JP7048266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218026A JP7048266B2 (en) 2017-11-13 2017-11-13 Manufacturing method of positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218026A JP7048266B2 (en) 2017-11-13 2017-11-13 Manufacturing method of positive electrode active material

Publications (2)

Publication Number Publication Date
JP2019091558A JP2019091558A (en) 2019-06-13
JP7048266B2 true JP7048266B2 (en) 2022-04-05

Family

ID=66836567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218026A Active JP7048266B2 (en) 2017-11-13 2017-11-13 Manufacturing method of positive electrode active material

Country Status (1)

Country Link
JP (1) JP7048266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447318B (en) * 2021-12-22 2023-07-25 西安理工大学 Preparation method for synthesizing ferric trifluoride carbon anode material by gas phase fluorination
CN115010113B (en) * 2022-06-24 2024-02-13 山东重山光电材料股份有限公司 Fluorocarbon material and application thereof, and lithium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175659A (en) 2002-11-12 2004-06-24 Santoku Corp Method for producing fluorine-containing lithium compound
JP2005200256A (en) 2004-01-14 2005-07-28 Nikon Corp Purification method of metal fluoride, production method of polycrystal and single crystal of metal fluoride, and its production apparatus
JP2009018989A (en) 2000-11-28 2009-01-29 Valence Technology Inc Method for preparing lithium metal compound useful as cathode active material
JP2012126589A (en) 2010-12-14 2012-07-05 Asahi Glass Co Ltd Method for producing fluorine-containing phosphoric acid compound, positive electrode for secondary battery, and secondary battery
JP2012204307A (en) 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018989A (en) 2000-11-28 2009-01-29 Valence Technology Inc Method for preparing lithium metal compound useful as cathode active material
JP2004175659A (en) 2002-11-12 2004-06-24 Santoku Corp Method for producing fluorine-containing lithium compound
JP2005200256A (en) 2004-01-14 2005-07-28 Nikon Corp Purification method of metal fluoride, production method of polycrystal and single crystal of metal fluoride, and its production apparatus
JP2012126589A (en) 2010-12-14 2012-07-05 Asahi Glass Co Ltd Method for producing fluorine-containing phosphoric acid compound, positive electrode for secondary battery, and secondary battery
JP2012204307A (en) 2011-03-28 2012-10-22 Kyushu Univ Positive electrode active material, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019091558A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
Lei et al. Surface modification of Li‐rich Mn‐based layered oxide cathodes: challenges, materials, methods, and characterization
WO2020134773A1 (en) Method for recovering and preparing lithium iron phosphate cathode material
Kebede et al. Structural and electrochemical properties of aluminium doped LiMn2O4 cathode materials for Li battery: experimental and ab initio calculations
JP4482507B2 (en) Method for producing a metal compound mixed with lithium
JP5813209B2 (en) Method for surface treatment of positive electrode active material particles and positive electrode active material particles formed therefrom
JP3456934B2 (en) Method for producing lithium hexafluorophosphate
EP3645466B1 (en) Process for making a cathode active material for a lithium ion battery
JPH11317217A (en) Fluorinated battery electrode, battery comprising the electrodes, and manufacture of them
US11688847B2 (en) Method and firing apparatus for manufacturing cathode active material for lithium ion secondary battery
WO2010082261A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009140909A (en) Method for manufacturing cathode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP7048266B2 (en) Manufacturing method of positive electrode active material
KR20160126036A (en) Process for making fluorinated lithiated mixed transition metal oxides
JPH0733443A (en) Lithium-containing metal-halogen oxide and its production
JP2012204322A (en) Method for producing active material for nonaqueous electrolyte secondary battery
JP2005197149A (en) Lithium battery processing method
JP7324003B2 (en) Additive for electrolyte
CN116457981A (en) Recycling and regeneration of lithium ion battery cathodes
KR101354481B1 (en) A method for removing impurities of lithium transtion metal oxide
CN114074942A (en) Method for preparing simple substance silicon by using joule heat
CN105189355B (en) The fluorine passivating method of lithium transition-metal oxide
CN115215341A (en) Preparation method of nano silicon
KR20130008786A (en) Manufacturing method for litium heafluoro phosphate
EP1790617A1 (en) Method for making a lithium mixed metal compound
Yu et al. Multifunctional Scavenger Boosts Cathode Interfacial Stability with Reduced Water Footprint for Direct Recycling of Spent Lithium‐Ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150